搜档网
当前位置:搜档网 › 压轴题攻克数形结合思想

压轴题攻克数形结合思想

压轴题攻克数形结合思想
压轴题攻克数形结合思想

压轴题攻克数形结合思想,学会添加辅助线

解决数学中考压轴题一般都会用到数形结合等思想。数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想. 数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。

如何运用好数形结合思想,添加“辅助线(图)”就显得尤为重要了,但如何添加辅助线(图)并没有统一的方法,需要同学们灵活运用所学过的知识,方能看出辅助线怎么做。

一些几何题的证明或求解,由原图形分析探究,有时显得十分复杂,若通过适当的变换,即添加适当的辅助线(图),将原图形转换成一个完整的、特殊的、简单的新图形,则能使原问题的本质得到充分的显示,通过对新图形的分析,原问题顺利获解。

典型例题:

解题反思:

(1)此题主要考查了二次函数综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了数形结合思想的应用,考查了从已知函数图象中获取信息,并能利用获取的信息解答相应的问题的能力.

(2)此题还考查了平行四边形的性质和应用,以及待定系数法求函数解析式的方法,要熟练掌握.

(3)此题还考查了直角三角形的性质和应用,以及勾股定理的应用,要熟练掌握.

在几何题的证明或求解时,需要构成一些基本图形来求证(解)时往往要通过添加辅助线(图)来形成,添加辅助线(图),构成的基本图形是结果,构造的手段是方法。

(完整版)数形结合思想例题分析(可编辑修改word版)

(1- a )2 + b 2 a 2 + (1- b )2 (1- a )2 + (1- b )2 (1- a )2 + b 2 a 2 + (1- b )2 (1- a )2 + (1- b )2 y r x 数形结合思想例题分析 一、构造几何图形解决代数与三角问题: 1、证明恒等式: 例 1 已知 x 、 y 、 z 、 r 均为正数,且 x 2 + y 2 = z 2 , z ? = x 2 求证: rz = xy . C A B z 分析:由 x 2 + y 2 = z 2 , 自然联想到勾股定理。由 z ? = x 2 . 可以联想到 射影定理。从而可以作出符合题设条件的图形(如图)。对照图形,由直角三角形面积的两种 算法,结论的正确性一目了然。 证明:(略) 小结:涉及到与平方有关的恒等式证明问题,可构造出与之对应的直角三角形或圆,然后利用图形的几何性质去解决恒等式的证明问题。 2、证明不等式: 例 2 已知:0< a <1,0< b <1. 求证 + + + ≥ 2 2. 证明:如图,作边长为 1 的正方形 ABCD ,在 AB 上取点 E ,使 AE= a ;在 AD 上取点 G ,使 AG= b , 过 E 、G 分别作 EF//AD 交 CD 于 F ;作 GH//AB 交 BC 于 H 。设 EF 与 GH 交于点 O ,连接 AO 、BO 、CO 、DO 、AC 、BD. 由题设及作图知△ AOG 、△ BOE 、△ COF 、△ DOG 均为直角三角形,因此 OA = OB = OC = OD = 且 AC = BD = 由于 OA + OC ≥ AC , OB + OD ≥ BD . 所以: + + + ≥ 2 2. x 2 - r 2 x 2 - r 2 a 2 + b 2 a 2 + b 2 (1- a )2 + b 2 (1- a )2 + (1- b )2 a 2 + (1- b )2 2 a 2 + b 2

数形结合的思想

数形结合的思想 中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。“数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统一。华罗庚先生说过:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意

义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。数学中的知识,有的本身就可以看作是数形的结合。如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。

数形结合思想例题选讲

数形结合思想例题选讲 数形结合思想是“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合。 应用数形结合的思想,应注意以下数与形的转化 (1)集合的运算及韦恩图 (2)函数及其图象 (3)数列通项及求和公式的函数特征及函数图象 (4)方程(多指二元方程)及方程的曲线 以形助数常用的有 借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方 法; 以数助形常用的有 借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合。 例题选讲 类型一:集合的运算及韦恩图 利用数形结合的思想解决集合问题,常用的方法有数轴法、韦恩图法等。当所给问题的数量关系比较复杂,且没有学容斥原理前,不好找线索时,用韦恩图法能达到事半功倍的效果。 例1.如图,I 是全集,M 、P 、S 是I 的3个子集,则阴影部分所表示的集合是( ) ().A M P S B 。()M P S ().I C M P S e ().I D M P S e 解:阴影部分是M 与P 的公共部分(转化为集合语言就是M P ),且在 S 的外部(转化为集合语言就是C I S ),故选C 。通过上述例子,我们知道:当应用题中牵 涉到集合的交集、并集、补集时,用韦恩图比用数轴法简便。 类型二:图表信息题 此类题目都有图形(或图表)作为已知条件,须联系函数的性质分析求解,解 决问题的关键是从已知图形(图表)中挖掘信息. 例2.直角梯形ABCD 如图(1),动点P 从B 点出发,由A D C B →→→沿边运动,设点P 运动的路 程为x ,ABP ?的面积为 )(x f .如果函数)(x f y =的图象如图(2),则ABC ?的面积为( ) A .10 B .16 C . 解:由)(x f y = 图象可知,当04()0x f x →由时由由4=x 及9=x 时)(x f 不变,说明P 点在DC 上,即所以AD=14-9=5,过D 作DG AB ⊥ 则DG=BC=4 3=∴AG ,由此可求出AB=3+5=8. 16482 1 21=??=?=?BC DB S ABC 选B 例3.在某种新型材料的研制中,实验人员获得了下列一组实验数据: 现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是 A .y =2x -2 B.y = 21(x 2 -1) C.y =log 2x D.y =log 2 1x A B C D P 图(1)

最新小学数学六年级下册《数形结合解决问题》

小学数学六年级下册《数形结合解决问 题》

青岛版小学数学六年级下册《数形结合解决问题》精品教案 【教学内容】: 义务教育课程标准实验教科书青岛版小学数学六年级下册116——117页。【教学目标】: 在回顾整理的过程中,加深对数形结合思想方法的认识,使学生充分感受数形结合在小学数学学习中的应用。 【教学重点】: 通过一些数形结合的实例,使学生体会数形结合思想的优越性,并能帮助学生建立思路解决问题。 【教学过程】; 一、谈话引入。 师:同学们,在我们的数学学习中,除了研究各种数以外,还经常要用到各种各样的图形。利用图形来研究问题,会使问题变得更加简单明了。请同学们回忆所学的知识,你能举一些这样的例子吗? 学生思考后举例。 【设计意图】教师给学生一定的思考时间,可以使学生对所学过的用图形来研究问题的有关知识进行初步的梳理,从而为本节课的学习做好铺垫。 二、自主探究。 1、教师出示某电脑公司2008年各种电脑销售情况的具体数据及条形统计图、扇形统计图和某电脑公司2004-2008最畅销的两种电脑销量折线统计图。 师:仔细观察这些数据和统计图,你有什么发现?

学生各抒己见,发表自己的看法。 师引导学生总结:图形描述数据更加直观、有效。条形统计图能清楚看出数量的多少,扇形统计图能清楚看出个部分同总数之间的关系,折线统计图能清楚看出数量增长情况。 【设计意图】将原始数据和统计图同时呈现,可以给学生造成视觉上的冲击。原始数据杂乱无章而统计图简单明了,能够帮助阅读的人有效的提取信息。对于用图形描述数据的优越性,学生一目了然。 2、师:图形不仅在描述数据方面有优越性,在其他方面同样能体现出优势。你还能举例说明数形结合在其他方面的应用吗?(生独立思考)下面请同学们以小组为单位交流自己的想法。交流过程中,要注意倾听他人的想法。 集体交流。 教师在学生交流的基础上引导学生发现:画图可以帮助我们理解计算方法、图形可以更加形象的反映成正比例关系的两种量的变化情况、在平面内确定物体的位置也利用了数形结合。 3、小结 师:通过刚才的交流,我们发现实际上许多问题的解决都利用了数形结合,你能谈一谈自己的体会吗? 【设计意图】学生个人的想法可能是粗浅的、片面的,而通过小组交流,倾听他人的想法和意见,可以进一步完善自己的想法。教师在学生交流的基础上运用多媒体呈现相关的例子,通过这些数形结合的直观的例子,让学生充分感受数形结合在数学学习中的应用。 三、拓展延伸。

中考数学专题复习_数形结合思想

中考数学专题复习——数形结合思想 一、知识梳理 数形结合是把抽象的数学语言与直观的图形结合起来思索,使抽象思维和形象思维相结合,通过“以形助数”或“以数解形”可使复杂问题简单化,抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质。另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷,从而起到优化计算的目的。 华罗庚先生曾指出:“数与形本是相倚依,焉能分作两边飞;数缺形时少直觉,形少数时难入微;数形结合百般好,隔裂分家万事休。”这充分说明了数形结合在数学学习中的重要性,是中考数学的一个最重要数学思想。 二、典型例题 (一)在数与式中的应用 例1、实数a 、b 在数轴上的位置如图所示,化简2 ||a a b +-=_________。 (二)在方程、不等式中的应用 例2、已知关于x 的不等式组0 20x a x ->?? ->? 的整数解共有2个,则a 的取值范围是____________。 例3、用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( ) A .203210x y x y +-=??--=?, B .2103210x y x y --=??--=? , C .2103250x y x y --=?? +-=? , D .20210x y x y +-=?? --=? , (三)在锐角三角函数中的应用 例4、画△ABC ,使cosA=2 1 ,AB =2cm ,∠A 的对边可以在长为1cm 、2cm 、3cm 中任选,这 样的三角形可以画_______个。 (四)在函数中的应用 例5、如图为二次函数2y ax bx c =++的图象,在下列说法中: ①0ac <;②方程20ax bx c ++=的根为11x =-,23x =; ③0a b c ++>;④当1x >时,y 随着x 的增大而增大. a b 0 · P (1,1) 1 1 2 2 3 3 -1 -1 O x y x y O 3 -1

高中数学的数形结合思想方法-全(讲解+例题+巩固+测试)

数形结合的思想方法(1)---讲解篇 一、知识要点概述 数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石,所有的数学问题都是围绕数和形的提炼、演变、发展而展开的:每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法,简言之,就是把数学问题中的数量关系和空间形式相结合起来加以考察的处理数学问题的方法,称之为数形结合的思想方法。 数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。 数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。 二、解题方法指导 1.转换数与形的三条途径: ①通过坐标系的建立,引入数量化静为动,以动求解。 ②转化,通过分析数与式的结构特点,把问题转化到另一个角度来考虑,如将转化为勾股定理或平面上两点间的距离等。 ③构造,比如构造一个几何图形,构造一个函数,构造一个图表等。 2.运用数形结合思想解题的三种类型及思维方法: ①“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。 ②“由数化形”:就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示出数与式的本质特征。 ③“数形转换”:就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,分析数与式 的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。 三、数形结合的思想方法的应用 (一)解析几何中的数形结合 解析几何问题往往综合许多知识点,在知识网络的交汇处命题,备受出题者的青睐,求解中常常通过数形结合的思想从动态的角度把抽象的数学语言与直观的几何图形结合起来,达到研究、解决问题的目的. 1. 与斜率有关的问题 【例1】已知:有向线段PQ的起点P与终点Q坐标分别为P(-1,1),Q(2,2).若直线l∶x+my+m=0

2020中考数学 数形结合思想专题练习(含答案)

2020中考数学 数形结合思想专题练习 1.已知直线y 1=2x -1和y 2=-x -1的图象如图X5-1所示,根据图象填空. (1)当x ______时,y 1>y 2;当x ______时,y 1=y 2;当x ______时,y 1<y 2; (2)方程组的解集是____________. 图X5-1 图X5-2 2.已知二次函数y 1=ax 2+bx +c (a ≠0)与一次函数y 2=kx +m (k ≠0)的图象相交于点A (-2,4),B (8,2)(如图X5-2所示),则能使y 1>y 2成立的x 的取值范围是____________. 3.如图X5-3,正三角形ABC 的边长为3 cm ,动点P 从点A 出发,以每秒1 cm 的速度,沿A →B →C 的方向运动,到达点C 时停止.设运动时间为x (单位:秒),y =PC 2,则y 关于x 的函数的图象大致为( ) 图X5-3 A B C D 4.如图X5-4,半径为2的圆内接等腰梯形ABCD ,它的下底AB 是圆的直径,上底CD 的端点在圆周上,则该梯形周长的最大值是______. 图X5-4 21, 1y x y x =-?? =-- ?

5.某市实施“农业立市,工业强市,旅游兴市”计划后,2009年全市荔枝种植面积为24万亩.调查分析结果显示,从2009年开始,该市荔枝种植面积y(单位:万亩)随着时间x(单位:年)逐年成直线上升,y与x之间的函数关系如图X5-5. (1)求y与x之间的函数关系式(不必注明自变量x的取值范围); (2)该市2012年荔枝种植面积为多少万亩? 图X5-5 6.某公司推销一种产品,设x(单位:件)是推销产品的数量,y(单位:元)是推销费,图X5-6表示该公司每月付给推销员推销费的两种方案,看图解答下列问题: (1)求y1与y2的函数解析式; (2)解释图中表示的两种方案是如何付推销费的? (3)如果你是推销员,应如何选择付费方案? 图X5-6

数形结合思想在小学数学中的应用讲解

德宏师范高等专科学校 毕 业 论 文 系部:数学系 姓名:李宏 学号:20130732103 班级:2013级初等教育理科1班

目录 【摘要】 (1) 【关键词】数形结合;小学数学;教学应用 (1) 引言 (1) 1数学结合思想的简要概述 (1) 1.1数形结合思想的涵义 (2) 1.2数形结合在数学中的应用范围 (2) 2数形结合在小学数学中的意义和价值 (2) 2.1数形结合是开启数学大门的金钥匙 (2) 2.1.1数形结合是形成概念的好帮手 (2) 2.1.2数形结合深化课堂知识目标化解难点 (3) 2.2数形结合有助于知识的理解和记忆 (4) 2.3数学结合有利于培养小学生的数学能力 (5) 2.3.1 “数形结合形”发展学生的空间观念,培养学生初步的逻辑思维能力 (5) 2.3 . 2数形结合提高了小学生学习数学的趣味性 (5) 2.3.3能够增强学生学习数学的自信心 (7) 3数形结合在小学数学中的应用 (7) 3.1巧用数形结合,形成概念教学 (7) 3.2巧用数形结合,突破几何难点 (9) 3.3巧用数形结合,解决实际问题 (9) 4在运用数形结合教学中,应注意的问题 (10) 4.1教师应更新教学观念 (10) 4.2要培养学生运用数形结合思想的学习习惯 (11) 4.3充分发挥多媒体技术的作用 (11) 【参考文献】 (12)

数形结合思想在小学数学教学中的应用 【摘要】数形结合思想是一种重要的数学思想,数形结合在数学中应用广泛,新教材也在结合数形结合思想来编写。本文主要研究了四个方面的问题:一是数学结合思想的简要概述;二是数形结合在小学数学中的意义和价值;三是数形结合在小学数学中的应用;四是在运用数形结合教学中,应注意的问题。 【关键词】数形结合;小学数学;教学应用 引言:小学数学教学的根本任务是全面提高学生素质,其中最重要的是思维素质,而数学思想方法是增强学生数学观念、形成良好思维素质的关键。随着小学数学教学改革的不断深入,小学数学的教学模式更加多样化,传统的教学模式已经逐渐被取代。在多媒体教学的加入下,小学数学中的抽象概念变得形象,生动学生的数学逻辑思维能力以及创新能力也是显著提升。数形结合思想在数学中得到了充分的重视。运用数形结合的方法,可以直现感知抽象的理论及概念,避免机械记忆,使枯燥的名词真正地活起来,看得见,更有助于学生掌握知识。新课程标准修改后,将“双基”改为了“四基”,即基础知识、基本技能、基本思想方法、基本活动经验⑴,说明人们已经意识到数学思想方法的重要性。这一转变并不是偶然,而是纵观小学数学学习内容和小学生的认知特点而决定的。常用的数学思想方法:对应思想、假设思想、比较思想、符号化思想、类比思想、转化思想、分类思想、集合思想及数形结合思想等。本文就数形结合思想进行讨论。 1数学结合思想的简要概述 我国数学家张广厚曾说过:“抽象思维如果脱离直观,一般是很有限度的。同样,在抽象中如果看不出直观,一般说明还没有把握住问题的实质。”这句话深刻阐明了“数形结合”的思想[2]。依据《数学课程标准》中“变注重知识获得的结果为知识获得的过程”的教育理念,我以学生发展为立足点,以自主探索为主线,以求异创新为宗旨,采用多媒体辅助教学,运用设疑激趣直观演示,实际操作等教学方法,引导学生动手操作、观察辨析、自主探究,让学生全面、全程地参与到每个教学环节中,充分调动学生学习的积极性,培养学生的自主学习、合

高中数学数形结合思想经典例题(含解析)

高中数学数形结合思想经典例题 一、选择题 1.已知函数f (x )=???? ?3x ,x≤0,log 2 x ,x>0,下列结论正确的是( ) A .函数f (x )为奇函数 B .f (f (14))=1 9 C .函数f (x )的图象关于直线y =x 对称 D .函数f (x )在R 上是增函数 2.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( ) A .(-∞,-1)∪(0,+∞) B .(-∞,0)∪(1,+∞) C .(-1,0) D .(0,1) 3.函数f (x )=ln|x +cos x |的图象为( )

4.设奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式f (x )-f (-x ) x <0的解集为( ) A .(-2,0)∩(2,+∞) B .(-∞,-2)∪(0,2) C .(-∞,-2)∪(2,+∞) D .(-2,0)∪(0,2) 5.实数x ,y 满足不等式组???? ?x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为( ) A.215 5 B .21 C .20 D .25 6.已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根, 则实数k 的取值范围是( ) A .(0,1 2) B .(1 2,1) C .(1,2) D .(2,+∞) 7.若实数x ,y 满足|x -3|≤y ≤1,则z =2x +y x +y 的最小值为( ) A.53 B .2 C.35 D.12 8.设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=1 C .x 1x 2>1 D .0

数形结合的典型例题

数形结合思想 、数学结合思想 所谓的数形结合思想,就是根据数与形之间的对应关系,通过数与形的相 互转化来解决数学问题的思想。 数学结合思想的应用包括以下几个方面: (1)“以形助数”把,某些抽象的数学问题直观化、生动化,变抽象思维有形象思维, 提示数学问题的本质; (2)“以数助形”,把直观图形数量化,使形更加精确。 二、运用数形结合需要熟练掌握“数”、“形”及其相互转化: 1.“数”:主要是指数和数量关系。 中学阶段的“数”有以下几类: (1)复数;(2)代数式;(3)函数;(4)不等式;(5)方程;(6)向量。 2.“形”:主要是指图形,有点、线、面、体等。 中学阶段的“形”有以下几类: (1)数轴;(2)Venn 图;(3)函数图象;( 4)单位圆;(5)方程的曲线;(6)平面几 何的图形;(7)立体几何图形;(8)可行域; 三、数形结合思想应用的关键: 1 .由“数”联想到“;形2”.由“图”想“。数” 四、数形结合思想解决的问题类型: 1.运用数轴、Venn 图解决不等(组)的解集、 集合的运算问题;

2.运用平面直角坐标系和函数的图象解决

函数问题、不等式问题、方程问题; 3.三角函数与解三角形问题; 4 .立体几何问题; 5.可行域求最优解问题; 6.数列问题; 7 .方程曲线与曲线方程等解析几何问题; 8.复数冋题。 数形结合思想的典型试题 以形助数探索解题思路 sin7ix(0 < X < 1) 例6 :(改编题)已知函数f(x)斗' ',若a,b,c 互不相等,且 Iog 2011 x(x >1) f (a) = f (b) = f (c),则 a +b +c 的取值范围是(C ) 例7 .设0

数形结合思想例题分析

数形结合思想例题分析 一、构造几何图形解决代数与三角问题: 1、证明恒等式: 例1 已知x 、y 、z 、r 均为正数,且 222,x y z +=222z x r x ?-= 求证:.rz xy = 分析:由222,x y z +=自然联想到勾股定理。由 222.z x r x ?-=可以联想到射影定理。从而可以作出符合题设条件的图形(如图)。对照图形,由直角三角形面积的两种 算法,结论的正确性一目了然。 证明:(略) 小结:涉及到与平方有关的恒等式证明问题,可构造出与之对应的直角三角形或圆,然后利用图形的几何性质去解决恒等式的证明问题。 2、证明不等式: 例2 已知:0<a <1,0<b <1. 求证 22222222(1)(1)(1)(1)2 2.a b a b a b a b ++-+++-+-+-≥ 证明:如图,作边长为1的正方形ABCD ,在AB 上取点E ,使AE= a ;在AD 上取点G ,使AG= b , 过E 、G 分别作EF//AD 交CD 于F ;作GH//AB 交BC 于H 。设EF 与GH 交于点O ,连接AO 、BO 、CO 、DO 、AC 、BD. 由题设及作图知△ AOG 、△BOE 、△COF 、△DOG 均为直角三角形,因此 22 OA a b =+ 22 (1)OB a b =-+ 22(1)(1)OC a b =-+- 22 (1)OD a b =+- 且 2AC BD == 由于 ,.OA OC AC OB OD BD +≥+≥ 所以: B A C x y z r

y=1 x y 22222222(1)(1)(1)(1)2 2.a b a b a b a b ++-+++-+-+-≥ 当且仅当1 2 a b ==时,等号成立。 小结:在求证条件不等式时,可根据题设条件作出对应的图形,然后运用图形的几何性质或者平面几何的定理、公理去建立不等式使结论获证。 3、求参数的值或参数的取值范围: 例3 若方程 2 210ax x -+= (a >0)的两根满足:1x <1,1<2x <3,求a 的取值范围。 解析:画出与方程对应的二次函数 2 21y ax x =-+ (a >0)的草图: 0123 x y 0123 x y 由图可知:当 x =1时,y <0; 当x =3时,y >0. 即 2 1 211a ?-?+<0 ; 23231a ?-?+>0. 解得:5 9 <a <1. 例4 若关于x 的不等式2021x mx ≤ ++≤ 的解集仅有一个元素,求m 的值。 解:如图:在同一坐标系内,作出1y =与 2 2y x mx =++的图象。题设条件等价于抛物线 22y x mx =++在直线0y =与 1y =之间的带状区域仅有一个交点,且抛物线开口向上。由图形的直观 性质可知:这个交点只能在直线 1 y =上,故方程组 212y y x mx =? ?=++? 仅有一组解。

数形结合思想的含义数与形是数学中两个最古老

数形结合思想的含义数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石,所有的数学问题都是围绕数和形的提炼、演变、发展而展开的:每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法。 正恩格斯曾经说过:"数学是研究现实世界的空间形式和数量关系的一门科学。"在数学领域中包含着两大研究对象,即"数"与"形",这两大研究对象既是对立的又是统一的,它们是数学发展的内在因素。纵观数学知识的发展长河中,数形结合始终是发展的一条主线,并且数与形相结合能够让学生在实际应用中对知识的运用更加广泛和深入。在初中数学教学中教师要特别重视将数形结合的思想渗透到教学环节中,以此来让学生感受到数形结合的伟大力量,促进学生生成数形结合的思想, 让学生在以后的数学学习中受益 1.数形结合思想的涵义 “数”早期是古代的计数,现在表示数量的概念;“形”早期是古代的形状,现在表示空 间的概念。家欧几里得用自己毕生精力完成《几何原本》这一千古流芳的巨着,这是体现数形转化的文字资料。柏拉图说过,只有数学存在的实体才具备永恒的可理解性,任何科学都只有建立在几何学带来的概念和模式上,才可以解释现象表面背后的结构和关系。教育家波利亚也曾说:“画一个图,并用符号表示”。 数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法。它可以使抽象的问题具体化,复杂的问题简单化。数形结合包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质等等。

2021年中考数学专题三数形结合思想复习题及答案

2021年中考数学专题三数形结合思想复习题及答 案 1.(2020年四川自贡)伟伟从学校匀速回家,刚到家发觉当晚要完成的试卷不记得在学校,因此赶忙以更快的速度匀速沿原路返回学校.在这一情形中,速度v 和时刻t 的函数图象(不考虑图象端点情形)大致是( ) A B C D 2.文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,现在小明的位置在( ) A .玩具店 B .文具店 C .文具店西边40米 D .玩具店东边-60米 3.已知实数a ,b 在数轴上的对应点依次在原点的右边和左边,那么( ) A .ab b C .a +b >0 D .a -b >0 4.已知函数y =x 和y =x +2的图象如图Z3-3,则不等式x +2>x 的解集为( ) A .-2≤x <2 B .-2≤x ≤2 C .x <2 D .x >2 图Z3-3 5.如图Z3-4,直线l 1∥l 2,⊙O 与直线l 1和直线l 2分别相切于点A 和点B .点M 和点N 分别是直线l 1和直线l 2上的动点,MN 沿l 1和l 2平移.⊙O 的半径为1,∠1=60°.下列结论错误的是( ) 图Z3-4 A .MN =4 33 B .若MN 与⊙O 相切,则AM =3 2 C .若∠MON =90°,则MN 与⊙O 相切 D .直线l 1和直线l 2的距离为2 6.如图Z3-5,已知四边形OABC 为正方形,边长为6,点A 、C 分别在x 轴、y 轴的正半轴上,点D 在OA 上,且点D 的坐标为(2,0),点P 是OB 上的一个动点,则PD +P A 的最小值是( )

高中数学 数形结合思想

数形结合思想 由于新教材新大纲把常见的数学思想纳入基础知识的范畴,通过对数学知识 的考查反映考生对数学思想和方法的理解和掌握的程度。数形结合的思想重点考查以形释数,同时考查以数解形,题型会渗透到解答题,题量会加大.数形结合常用于解方程、解不等式、求函数值域、解复数和三角问题中,充分发挥形的形象性、直观性、数的深刻性、精确性,弥补形的表面性,数的抽象性,从而起到优化解题途径的作用。 例题1.关于x 的方程2x 2-3x -2k =0在(-1, 1)内有一个实根,则k 的取值范围是什么? 分析:原方程变形为2x 2-3x =2k 后可转化为函数 y =2x 2-3x 。和函数y =2k 的交点个数问题. 解:作出函数y =2x 2-3x 的图像后,用y =2k 去截抛物线,随着k 的变化,易知2k =-89 或-1≤2k <5时只 有一个公共点.∴ k =- 16 9或- 2 1≤k < 2 5. 点拨解疑:方程(组)解的个数问题一般都是通过相应的函数图象的交点问题去解决.这是用形(交点)解决数(实根)的问题. 例题2.求函数u =t t -++642的最值. 分析:观察得2t +4+2(6-t )=16,若设x =42+t ,y =t -6,则有x 2+2y 2=16, 再令u =x +y 则转化为直线与椭圆的关系问题来解决. 解:令42+t =x , t -6=y , 则x 2+2y 2=16, x ≥0, y ≥0, 再设u =x +y , 由于直线与椭圆的交点随着u 的变化而变化,易知,当直线与椭圆相切时截距u 取得最大值,过点(0,22)时,u 取得最小值22, 解方程组 ???=++-=16 22 2y x u x y ,得3x 2-4ux +2u 2-16=0, 令△=0, 解得u =±26 . ∴ u 的最大值为26,最小值为22. 点拨解疑:数学观察能力要求透过现象,发现本质,挖掘题中的隐含条件. 例题3.已知s = 1 322 +-t t ,则s 的最小值为 。 分析:等式右边形似点到直线距离公式. 解:|s |= 1 |32|2 +-t t , 则|s |可看成点(0, 0)到直线tx +y +2t -3=0的距离,又直线tx +y +2t -3=0变形为:(x +2)t +y -3=0后易知过定点P (-2,3),从而原点到直线 tx +y +2t -3=0的最短距离为|OP |=13, ∴ -13≤s ≤13.

数形结合论文

数形结合思想在中学数学解题中应用摘要:数形结合在数学中应用广泛,新教材也在结合数形结合思想来编写。数形结合思想在数学中得到了充分的重视。本文就数形结合思想在数学问题解析中的应用加以整理、总结,并给出部分例题,以便得到更好的推广。 关键词:数形结合代数问题几何问题相互转化For combining the application in mathematics (YANG zhongxiang) Abstract :Several combining in mathematics teaching is widely used in combination, a new mathematical thought to write with. Several combining ideas in mathematics got full attention. Based on several combining analytical mathematical thoughts in the application are summarized, and gives some examples, in order to get better. Key words:Combining the number Algebra problem Geometry problems Mutual transformation 前言 数形结合思想在实际的应用中显得十分重要和广泛,数形结合思想几乎贯穿了整个解析几何,可以说数形结合思想是解析几何的精髓所在。恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。”数形结合就是根据数学问题的条件和结论之间的

数形结合思想例题选讲

数形结合思想例题选讲 Revised by Jack on December 14,2020

数形结合思想例题选讲 数形结合思想是“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合。 应用数形结合的思想,应注意以下数与形的转化 (1)集合的运算及韦恩图 (2)函数及其图象 (3)数列通项及求和公式的函数特征及函数图象 (4)方程(多指二元方程)及方程的曲线 以形助数常用的有 借助数轴;借助函数图象;借助单位圆;借助数式的结构特 征;借助于解析几何方法; 以数助形常用的有 借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定 理的结合。 例题选讲 类型一:集合的运算及韦恩图 利用数形结合的思想解决集合问题,常用的方法有数轴法、韦恩图法等。当所给问题的数量关系比较复杂,且没有学容斥原理前,不好找线索时,用韦恩图法能达到事半功倍的效果。 例1.如图,I 是全集,M 、P 、S 是I 的3个子集,则阴影部分所表示的集合是( ) ().A M P S B 。()M P S () .I C M P S () .I D M P S 解:阴影部分是M 与P 的公共部分(转化为集合语言就是 M P ),且在S 的外部(转化为集合语言就是C I S ),故选C 。通过上述例子,我们知道:当应用题中牵涉到集合的交集、并集、补集时,用韦恩图比用数轴法简便。 类型二:图表信息题

此类题目都有图形(或图表)作为已知条件,须联系函数的性质分析求解,解决问题的关键是从已知图形(图表)中挖掘信息. 例2.直角梯形ABCD 如图(1),动点P 从B 点出发,由A D C B →→→沿边运动,设点P 运动的路程为x ,ABP ?的面积为)(x f 2),则 ABC ?的面积为( ) A .10 B .16 D .32 解:由)(x f y =图象可知,当04()0x f x →由时由变最大,说明,BC 4= 由4=x 及9=x 时)(x f 不变,说明P 点在DC 上,即CD=5. 所以AD=14-9=5,过D 作DG AB ⊥则DG=BC=4 3=∴AG ,由此可求出AB=3+5=8. 16482 1 21=??=?= ?BC DB S ABC 选B 例3.在某种新型材料的研制中,实验人员获得了下列一组实验数据: 现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是 A .y =2x -2 = 21(x 2 -1) =log 2x =log 2 1x 解:解法一:把表中x 的数值取整数代入下列函数中逐一计算,近似估算,最接近y 值的一个函数为()2 112 y x = -.故选B. 解法二:把表中()y x ,近似描点连线,对照可得最接近的函数为()2 112 y x =-的图象.故选B. 类型三:解析几何中直线与曲线 A B C D P 图 图

选修4-5不等式选讲》知识点详解+例题+习题(含详细答案)

选修4-5不等式选讲 最新考纲:1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:(1)|a+b|≤|a|+|b|(a,b∈R).(2)|a-b|≤|a-c|+|c-b|(a,b ∈R).2.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c,|ax+b|≥c,|x-c|+|x-b|≥.了解柯西不等式的几种不同形式,理解它们的几何意义,并会证明.4.通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法、数学归纳法. 1.含有绝对值的不等式的解法 (1)|f(x)|>a(a>0)f(x)>a或f(x)<-a; (2)|f(x)|0)-a

初中数学中的数形结合思想完整版

初中数学中的数形结合 思想 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

浅谈初中数学中的数形结合思想 在解决初中数学问题过程中,运用数形结合的思想,根据问题的具体情形,把图形性质问题转化成数量关系来研究。或者把数量关系问题转化成图形性质来研究,以便以“数”助“形”或以“形”助“数”,使问题简单化、具体化,促进“数”与“形”的相互渗透,这种转换不但能提高教学质量,同时也能有效地培养学生思维素质,所以“数形结合”是初中数学的重要思想,也是学好初中数学的关键所在。 数形结合在数学教学中对学生能力的培养是非常重要的,而对一个学生数学能力的培养主要包括使学生形成运算能力和利用数学思想方法解题的能力。数学思想是对数学知识的更高层次的概括和提炼,是培养学生数学能力的最重要的环节。数形结合的思想是初中数学学习中一个重要的数学思想,它贯穿了数学教学的始终。本文就数形结合的思想谈一点自己的认识。 数形结合的思想就是根据数(量)与形(图)的对应关系,把数与形结合起来进行分析研究把抽象的数学语言与直观的图形结合起来;使复杂的问题简单化抽象的问题具体化;通过图形的描述代数的论证来研究和解决数学问题的一种思想方法。数形结合的思想在初中数学中的应用主要体现在一下两个方面。 一、有数思形数形结合,用形来解决数的问题和解决一些运算公式;把代数关系(数量关系)与几何图形的直观形象有机的结合起来,使抽象的问题形象化复杂的问题简单化。 如1.利用数轴来讲解绝对值的概念、相反数的概念、有理数的加、减、乘、除运算等。 2.用几何图形来推导平方差、平方和、完全平方公式以及多边形外角和定理。 3.用函数的图像解决函数的最值问题、值域问题。 4.用图形比较不等式的大小问题。解这种类型题的关键是根据数(量)结构特征构造出相应的几何图形,将概念形象化,复杂计算的问题简单化。

数形结合思想专题练习

数形结合思想单元测试 一、选择题. 1.设全集U =R ,集合A =(1,+∞),集合B =(-∞,2)。则eU (A∩B)=( ) A .(-∞,1)∪(2,+∞) B .(-∞,1)∪[2,+∞) C .(-∞,1]∪[2,+∞) D .(-∞,1]∪(2,+∞) 解析:涉及数集的运算,画出数轴可求{}A B=/12x x ?<<,进而得eU (A∩B)=(-∞,1]∪[2,+∞); 2.如图,直线A x +B y +C =0(AB ≠0)的右下方有一点(m ,n ),则A m +B n +C 的值( ) A 与A 同号,与B 同号 B 与A 同号,与B 异号 C 与A 异号,与B 同号 D 与A 异号,与B 异号 A,D ,不妨设 A>0, 则B<0,C<0,因为点(m ,n )在直线的下方,所以A m +B n +C>0,故选B. 3.设关于x 的方程sin x +3cos x +a =0在(0,π)内有相异解α、β.则a 的取值范围是( ); A (–2,–3)∪(–3,2) B (–2,–3) C (–3,2) D 不确定 解析:作出y =sin(x + 3 π )(x ∈(0,π))及y =–2a 的图象,知当|–2a |<1且–2a ≠ 2 3 时,曲线与直线有两个交点,故a ∈(–2,–3)∪(–3,2).故选A 。 4.方程sin(x – 4π)=4 1 x 的实数解的个数是( ) A.2 B.3 C.4 D.以上均不对 解析:由函数与方程思想知:方程的根转化为对应函数图像的交点的横坐标,分别作出函数y=sin(x –4 π)和函数y= 4 1 x 的图像,由图像知交点个数为3个,故方程的根有3个。 5.已知f (x )=(x –a )(x –b )–2(其中a <b ),且α、β是方程f (x )=0的两根(α<β),则实数a 、b 、α、β的大小关系为( ) A.α<a <b <β B.α<a <β<b C.a <α<b <β D.a <α<β<b 解析:令g (x )= f (x ) +2=(x –a )(x –b )(其中a <b ),可知函数f (x )的图像向上平移2个单位可得函数g (x ),而方程g (x )=0的两个跟为a ,b ,结合图像可知α<a <b <β。 6. 椭圆上一点A 看两焦点的视角为直角,设AF 1的延长线交椭圆于B ,又|AB|=|AF 2|,则椭圆的离心率e 为( ) A 1 2 B C D 2 ,

相关主题