搜档网
当前位置:搜档网 › 基于单片机实现的温度采集显示系统

基于单片机实现的温度采集显示系统

基于单片机实现的温度采集显示系统
基于单片机实现的温度采集显示系统

单片机课程设计论文

论文题目:温度采集显示系统

一、功能和要求:

(1)温度测量范围 0 - 99℃。

(2)温度分辨率±1℃。

(3)选择合适的温度传感器。

(4)使用键盘输入温度的最高点和最低点,温度超出范围时候报警。(报警温度不需要保存)

二、系统方案:

方案一:由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。

方案二:进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。

从以上两种方案,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。

三、核心元件的功能

1、AT89C51

AT89S51美国ATMEL公司生产的低功耗,高性能CMOS 8位单片机,片内含4K BytesISP(In-system programmable)的可反

复擦写1000次的Flash只读程序存储器,器

件采用ATMEL公司的高密度、非易失性存储技

术制造,兼容标准MCS-51指令系统及AT89C51

引脚结构,芯片内集成了通用8位中央处理器

和ISP Flash存储单元。单片机AT89S51强大

的功能可为许多嵌入式控制应用系统提供高

性价比的解决方案。

AT89C51芯片的引脚结构如图1所示:

1.1功能特性概括:

AT89S51提供以下标准功能:40个引脚、4K Bytes Flash片内程序存储器、128 Bytes的随机存取数据存储器(RAM)、32个外部双向输入/输出(I/O)口、5个中断优先级2层中断嵌套中断、2个数据指针、2个16位可编图1 程定时/计数器、2个全双工串行通信口、看门狗(WDT)电路、片内振荡器及时钟电路。此外,AT89S51可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式,空闲模式,CPU暂停工作,而RAM、定时/计数器、串行通信口、外中断系统可继续工作。掉电模式冻结振荡器而保存RAM的数据,停止芯片其它功能直至外中断激活或硬件复位。同时该芯片还具有PDIP、TQFP和PLCC等三种封装形式,以适应不同产品的需求

1.2管脚说明:

P0口:P0口为一个8位漏级开路双向I/O口,也即地址/数据总线复用口。作为输出口用时,能驱动8个TTL逻辑门电路。对端口写“1”时,被定义为高阻输入。

在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8位)和数据总线复用,在访问期间激活内部上拉电阻。

在Flash编程时,P0口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。

P1口:P1口是一个带内部上拉电阻的8位双向I/O口,P1口的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(I IL)。

在Flash编程和程序校验期间,P1接收低8位地址。部分端口还有第二功能,如表1

表1 P1口部分引脚第二功能

P2口:P2口是一个带有内部上拉电阻的8位双向I/O口, P2口的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。作输入口使用时,因为内部存在上拉

)。

电阻,某个引脚被外部信号拉低时会输出一个电流(I

IL

在访问外部程序存储器或16位地址的外部数据存储器(例如执行MOVX@DPTR 指令)时,P2口送出高8位地址数据。在访问8位地址的外部数据寄存器(例如执行MOVX@Ri指令)时,P2口线上的内容(也即特殊功能寄存器(SFR)区中P2寄存器的内容),在整个访问期间不改变。

在Flash编程或校验时,P2亦接收高位地址和其它控制信号。

P3口: P3口是一个带有内部上拉电阻的双向8位I/O口, P3口的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对P3口写“1”时,它们被内部的上拉电阻拉高并可作为输入端口。作输入口使用时,被外部信号拉低的P3

)。

口将用上拉电阻输出电流(I

IL

P3口除了作为一般的I/O口线外,更重要的用途是它的第二功能,如表2所示:

P3

表2 P3口引脚第二功能

RST:复位输入。当振荡器工作时,RST引脚出现两个机器周期以上的高电平时间将使单片机复位。WDT溢出将使该引脚输出高电平,设置SFR AUXR的DISRTO位(地址8EH)可打开或关闭该功能。 DISRTO位缺省为RESET输出高电平打开状态。

ALE/:当访问外部存储器或数据存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8位字节。即使不访问外部寄存器,ALE仍以时钟振荡频率的1/6输出固定的正脉冲信号,因此它可对外输出时钟或用于定时目的。值得注意的是:每当访问外部数据存储器时将跳过一个ALE脉冲。

对Flash存储器编程期间,该引脚还用于输入编程脉冲(PROG)。

如有必要,可通过对特殊功能寄存器(SFR)区中的8EH单元的D0位置位,可禁止ALE操作。该位置位后,只要一条MOVX和MOVC指令才会激活ALE。此外,该引脚会被微弱拉高,单片机执行外部程序时,应设置ALE无效。

PSEN:程序存储允许(PSEN)输出是外部程序存储器的读选通信号,当AT89S51由外部程序存储器取指令(或数据)时,每个机器周期两次PSEN有效,即输出两个脉冲。当访问外部数据存储器时,没有两次有效的PSEN信号。

EA/VPP:外部访问允许。欲使CPU仅访问外部程序存储器(地址为

0000H-FFFFH),EA端必须保持低电平(接地)。需要注意的是:如果加密位LB1被编程,复位时内部会锁存EA端状态。

如EA端保持高电平(接VCC端),CPU则执行内部程序存储器中的指令。

Flash存储器编程期间,该引脚用于施加+12V编程电压(VPP)。

XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入端。

XTAL2:反向振荡放大器器的输出端。

2、DS18B20

美国Dallas半导体公司的数字化温度传感器DS1820是世界上第一片支持 "一线总线"接口的温度传感器,在其内部使用了在板(ON-B0ARD)专利技术。全部传感元件及转换电路集成在形如一只三极管的集成电路内。一线总线独特而且经济的特点,使用户可轻松地组建传感器网络,为测量系统的构建引入全新概念。现在,新一代的DS18B20体积更小、更经济、更灵活。使你可以充分发挥“一线总线”的优点。新的"一线器件"DS18B20体积更小、适用电压更宽、更经济。DS18B20可以程序设定9~12位的分辨率,精度为±0.5°C。可选更小的封装方式,更宽的电压适用范围。分辨率设定,及用户设定的报警温度存储在EEPROM 中,掉电后依然保存。DS18B20的性能是新一代产品中最好的!性能价格比也非常出色!继"一线总线"的早期产品后,DS1820开辟了温度传感器技术的新概念。DS18B20使电压、特性及封装有更多的选择,让我们可以构建适合自己的经济的测温系统。

DS18B20也支持"一线总线"接口,测量温度范围为-55°C~+125°C,在

-10~+85°C范围内,精度为±0.5°C。现场温度直接以"一线总线"的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3.0V~5.5V的电压范围,使系统设计更灵活、方便。而且新一代产品更便宜,体积更小。

2.1 DS18B20的主要特性

(1)适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数据线供电

(2)独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯

(3)DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温

(4)DS18B20在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路内

(5)温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃

(6)可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、

0.125℃和0.0625℃,可实现高精度测温

(7)在9位分辨率时最多在93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快

(8)测量结果直接输出数字温度信号,以"一线总线"串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力

(9)负压特性:电源极性接反时,芯片不会因发热而烧毁,但不能正常工作。

2.2 DS18B20的内部结构

DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。

DS18B20引脚定义:

(1) GND为电源地;

(2) DQ为数字信号输入/输出端;

(3) VDD为外接供电电源输入端(在寄生电源接线方式时接地)

2.3 DS18B20工作原理

DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s减为750ms。 DS18B20测温原理如图3所示。图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。高温度系数晶振随温度变化其振荡率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在-55℃所对应的一个基数值。计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。图3中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。

2.4 DS1820使用中注意事项

DS1820虽然具有测温系统简单、测温精度高、连接方便、占用口线少等优点,但在实际应用中也应注意以下几方面的问题:

1) 较小的硬件开销需要相对复杂的软件进行补偿,由于DS1820与微处理器间采用串行数据传送,因此,在对DS1820进行读写编程时,必须严格的保证读写时序,否则将无法读取测温结果。在使用PL/M、C等高级语言进行系统程序设计时,对DS1820操作部分最好采用汇编语言实现。

2) 在DS1820的有关资料中均未提及单总线上所挂DS1820数量问题,容易使人误认为可以挂任意多个DS1820,在实际应用中并非如此。当单总线上所挂DS1820超过8个时,就需要解决微处理器的总线驱动问题,这一点在进行多点测温系统设计时要加以注意。

3) 连接DS1820的总线电缆是有长度限制的。试验中,当采用普通信号电缆传输长度超过50m时,读取的测温数据将发生错误。当将总线电缆改为双绞线带屏蔽电缆时,正常通讯距离可达150m,当采用每米绞合次数更多的双绞线带屏蔽电缆时,正常通讯距离进一步加长。这种情况主要是由总线分布电容使信号波形产生畸变造成的。因此,在用DS1820进行长距离测温系统设计时要充分考虑总线分布电容和阻抗匹配问题。

4) 在DS1820测温程序设计中,向DS1820发出温度转换命令后,程序总要等待DS1820的返回信号,一旦某个DS1820接触不好或断线,当程序读该DS1820时,将没有返回信号,程序进入死循环。这一点在进行DS1820硬件连接和软件设计时也要给予一定的重视。

测温电缆线建议采用屏蔽4芯双绞线,其中一对线接地线与信号线,另一组接VCC和地线,屏蔽层在源端单点接

四、理论分析与计算

系统程序主要包括主程序,读出温度子程序,温度转换命令子程序,计算温度子程序,显示数据刷新子程序等。

4.1主程序流程图

主程序的主要功能是负责温度的实时显示、读出并处理DS18B20的测量的当前温度值,温度测量每1s进行一次。这样可以在一秒之内测量一次被测温度,其程序流程见图8所示。

图8 程序流程图

4.2读出温度子程序流程图

读出温度子程序的主要功能是读出RAM中的9字节,在读出时需进行CRC校验,验有错时

不进行温度数据的改写。其程序流程图如图9所示

4.3温度转换命令子程序流程图

温度转换命令子程序主要是发温度转换开始命令,当采用12位分辨率时转换时间约为750ms,在本程序设计中采用1s显示程序延时法等待转换的完成。温度转换命令子程序流程图如上图,图9所示

计算温度子程序将RAM中读取值进行BCD码的转换运算,并进行温度值正负的判

定,其程序流程图如图10所示。

五、电路与程序设计

5.1、电路图

5.2、程序

#include

#include

#define uchar unsigned char

#define uint unsigned int

bit DS18B20_IS_OK=1;

sbit DQ=P1^4;

sbit BEEP=P1^2;

sbit TEST=P1^7;

sbit jian_di=P1^5;

sbit jia_gao=P1^6;

//数码管位选

sbit ge=P1^0;

sbit shi=P1^1;

// 设置报警高低温时的按键次数

int key_counts=0;

//正常读取DS18B20的处理温度

uchar T;

//数码管显示程序,0-空显示的段码,低电平显示

uchar

duan[17]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8 e,0xff};

//暂存DS18B20的初始温度值

uchar Temp_Value[2]={0x00,0x00};

//平常温度段缓存

uchar duan_hc[2]={0x00,0x00};

//设置报警温度时的段缓存

uchar counts_hc[2]={0x00,0x00};

//报警低(20)、高(70)温度

uchar Alarm_Temp[2]={0x14,0x46};

//DS18B20_延迟

void Delay(int x)

{

while(x--);

}

//延迟一秒

void Delay_ms(int i)

{

uchar t;

while(i--)

{

for(t=0;t<180;t++);

}

}

//初始化DS18B20

uchar Init_DS18B20()

{

uchar status;

DQ=1;Delay(8);

DQ=0;Delay(90);

DQ=1;Delay(8);

status=DQ;

Delay(100);

DQ=1;

return status;//成功时返回值为0

}

//读一个字节

uchar ReadOneByte()

{

uchar i,dat=0;

DQ=1;_nop_();

for(i=0;i<8;i++)

{

DQ=0;dat>>=1;DQ=1;_nop_();_nop_();

if(DQ) dat|=0x80;Delay(30);DQ=1;

}

return dat;

}

//写一个字节

void WriteOneByte(uchar dat)

{

uchar i;

for(i=0;i<8;i++)

{

DQ=0;DQ=dat&0x01;Delay(5);DQ=1;dat>>=1;

}

}

//没设置报警高低温平常温度显示

void Show()

{

uchar j;

T=((Temp_Value[0]&0xF0)>>4)|((Temp_Value[1]&0x07)<<4);

duan_hc[1]=T%100/10;

duan_hc[0]=T%10;

for(j=0;j<24;j++)

{

P0=duan[duan_hc[0]];

ge=1;shi=0;

Delay(150);

P0=0XFF;

P0=duan[duan_hc[1]];

ge=0;shi=1;

Delay(150);

P0=0XFF;

}

}

//读取DS18B20的实时温度值

void Read_Temperature()

{

uchar j;

if(Init_DS18B20()==1)

DS18B20_IS_OK=0;

else

{

WriteOneByte(0xCC);

WriteOneByte(0x44);

Init_DS18B20();

WriteOneByte(0xCC);

WriteOneByte(0xBE);

Temp_Value[0]=ReadOneByte();

Temp_Value[1]=ReadOneByte();

DS18B20_IS_OK=1;

Show();

}

}

//设置报警高低温度时的温度显示

void Show_Temperature()

{

uchar j;

counts_hc[1]=key_counts%100/10;

counts_hc[0]=key_counts%10;

for(j=0;j<24;j++)

{

P0=duan[counts_hc[0]];

ge=1;shi=0;

Delay(150);

P0=0XFF;

P0=duan[counts_hc[1]];

ge=0;shi=1;

Delay(150);

P0=0XFF;

}

}

//设置报警高低温

void gao_di()

{

uchar key;

P3=0xFF;

key=0xFF;

key=P3;

Show_Temperature();

if(key!=0xFF)

{

Show_Temperature();

if(key!=0xFF)

{

switch (key)

{

case 0xFD:if(key_counts<99)key_counts++;break;

case 0xFB:if(key_counts<99){Alarm_Temp[1]=key_counts;jia_gao=1;}break;

case 0xF7:if(key_counts<99)key_counts--;break;

case 0xEF:if(key_counts<99){Alarm_Temp[0]=key_counts;jian_di=1;}break;

}

}

}

//报警

void Alarm()

{

if((Alarm_Temp[0]>=T)||(T>=Alarm_Temp[1])) {BEEP=0;TEST=1;}

else

{BEEP=1;TEST=0;}

}

void main()

{

while(1)

{jia_gao=0;jian_di=0;

while(1)

{

Read_Temperature();

Alarm();

P3=0XFF;

if((P3&0XFF)==0XFE)

{ Delay(50);

if((P3&0XFF)==0XFE)

{

while((P3&0XFF)==0XFE);

break;

}

}

}

BEEP=1;

while(1)

{

gao_di();

P3=0XFF;

if((P3&0XFF)==0XFE)

{ Delay(50);

if((P3&0XFF)==0XFE)

{

while((P3&0XFF)==0XFE);

break;

}

}

}

}

}

六、总结

本系统采用采用单片机和数字温度转换器DS18B20 来实现,具有主机接口

简单,结构灵活,调试方便等特点,实验结果表明这种测温系统转换速度快、精度高。回顾起此次课程设计,我们感慨颇多,从选题到定稿,从理论到实践,在整整这些日子里,可以说得是苦多于甜,但是可以学到很多东西。这次实习不仅巩固了以前所学过的知识,而且学到了很多在书本上没有的知识。通过这次课程设计,我们得到了一些工程项目知识,懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,才能真正提高自己的实际动手能力和独立思考的能力。在设计的过程中,我们经常遇到问题,可以说是困难重重,这毕竟第一次做,难免会遇到过各种各样的问题,同时在设计的过程中发现了自己的不足之处,对以前所学过的知识理解得不够深刻,掌握得不够牢固,通过这次课程设计之后,一定把以前所学过的知识重新温故。虽然课程设计过去了,但此次课程设计暴露了我不少问题,虽然在课堂上我学了不少东西,但当付诸于实际时却摸不着头脑,所以我们不但要学习知识,还要在实践中运用知识,做到游刃有余。不管是在以后的工作或学习中,我都会全力以赴,积极思考,勇于探索,不断创新。我想在以后我会继续查找各方面资料、请教老师、与同学共同探讨,一起来解决更加更深的问题。同时在以后的日子里我会慢慢改正并提升在这次课程设计的功能、把学过的知识掌握的更加牢固。

.

单片机温度采集显示系统

考试序列号____ 单片机课程设计论文 论文题目:温度采集显示系统 课程名称:单片机课程设计 学院物理与光电工程学院 专业班级 08电子3班 学号 3108009223 姓名梁辉浩 联系方式 任课教师 20 年月日

温度采集显示系统 一、功能和要求: (1)温度测量范围 0 - 99℃。 (2)温度分辨率±1℃。 (3)选择合适的温度传感器。 (4)使用键盘输入温度的最高点和最低点,温度超出范围时候报警。(报警温度不需要保存) 二、系统方案: 方案一:由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。 方案二:进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。 从以上两种方案,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。 三、核心元件的功能 1、AT89C51 AT89S51美国ATMEL公司生产的低功耗,高性能CMOS 8位单片机,片内含4K BytesISP(In-system programmable)的可反 复擦写1000次的Flash只读程序存储器,器 件采用ATMEL公司的高密度、非易失性存储技 术制造,兼容标准MCS-51指令系统及AT89C51 引脚结构,芯片内集成了通用8位中央处理器 和ISP Flash存储单元。单片机AT89S51强大 的功能可为许多嵌入式控制应用系统提供高 性价比的解决方案。 AT89C51芯片的引脚结构如图1所示: 1.1功能特性概括: AT89S51提供以下标准功能:40个引脚、 4K Bytes Flash片内程序存储器、128 Bytes 的随机存取数据存储器(RAM)、32个外部双

基于单片机的多路温度采集系统毕业设计(论文)外文翻译

华南理工大学学院 本科毕业设计(论文)外文翻译 外文原文名Structure and function of the MCS-51 series 中文译名MCS-51系列的功能和结构 学院电子信息工程学院 专业班级自动化一班 学生黎杰明 学生学号 3 指导教师吴实 填写日期2016年3月10日 页脚.

外文原文版出处:《association for computing machinery journal》1990, V ol.33 (12), pp.16-ff 译文成绩:指导教师(导师组长)签名: 译文: MCS-51系列的功能和结构 MSC-51系列单片机具有一个单芯片电脑的结构和功能,它是英特尔公司的系列产品的名称。这家公司在1976年推出后,引进8位单芯片的MCS-48系列计算机后于1980年推出的8位的MCS-51系列单芯片计算机。诸如此类的单芯片电脑有很多种,如8051,8031,8751,80C51BH,80C31BH等,其基本组成、基本性能和指令系统都是相同的。8051是51系列单芯片电脑的代表。 一个单芯片的计算机是由以下几个部分组成:(1)一个8位的微处理器(CPU)。(2)片数据存储器RAM(128B/256B),它只读/写数据,如结果不在操作过程中,最终结果要显示数据(3)程序存储器ROM/EPROM(4KB/8KB).是用来保存程序一些初步的数据和切片的形式。但一些单芯片电脑没有考虑ROM/EPROM,如8031,8032,80C51等等。(4)4个8路运行的I/O接口,P0,P1,P2,P3,每个接口可以用作入口,也可以用作出口。(5)两个定时/计数器,每个定时方式也可以根据计算结果或定时控制实现计算机。(6)5个中断(7)一个全双工串行的I/UART(通用异步接收器I口/发送器(UART)),它是实现单芯片电脑或单芯片计算机和计算机的串行通信使用。(8)振荡器和时钟产生电路,需要考虑石英晶体微调能力。允许振荡频率为12MHz,每个上述的部分都是通过部数据总线连接。其中CPU是一个芯片计算机的核心,它是计算机的指挥中心,是由算术单元和控制器等部分组成。算术单元可以进行8位算术运算和逻辑运算,ALU单元是其中一种运算器,18个存储设备,暂存设备的积累设备进行协调,程序状态寄存器PSW积累了2个输入端的计数等检查暂时作为一个操作往往由人来操作,谁储存1输入的是它使操作去上暂时计数,另有一个操作的结果,回环协调。此外,协调往往是作为对8051的数据传输转运站考虑。作为一般的微处理器,解码的顺序。振荡器和定时电路等的程序计数器是一个由8个计数器为2,总计16位。这是一个字节的地址,其实程序计数器,是将在个人电脑进行。从而改变它的容可以改变它的程序进行。在8051的单芯片电脑的电路,

基于51单片机的温度控制系统

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王*

毕业论文设计 基于51单片机的温度控制系统

摘要 在日常生活中温度在我们身边无时不在,温度的控制和应用在各个领域都有重要的作用。很多行业中都有大量的用电加热设备,和温度控制设备,如用于报警的温度自动报警系统,热处理的加热炉,用于融化金属的坩锅电阻炉及各种不同用途的温度箱等,这些都采用单片机技术,利用单片机语言程序对它们进行控制。而单片机技术具有控制和操作使用方便、结构简单便于修改和维护、灵活性大且具有一定的智能性等特 点,可以精确的控 制技术标准,提高了温控指标,也大大的提高了产品的质量和性能。 由于单片机技术的优点突出,智能化温度控制技术正被广泛地采用。本文介绍了基于单片机AT89C51 的温度控制系统的设计方案与软硬件实现。采用温度传感器DS18B20 采集温度数据,7段数码管显示温度数据,按键设置温度上下限,当温度低于设定的下限时,点亮绿色发光二极管,当温度高于设定的上限时,点亮红色发光二极管。给出了系统总体框架、程序流程图和Protel 原理图,并在硬件平台上实现了所设计功能。 关键词:单片机温度控制系统温度传感器

Abstract In daily life, the temperature in our side the ever-present, the control of the temperature and the application in various fields all have important role. Many industry there are a large number of electric heating equipment, and the temperature control equipment, such as used for alarm automatic temperature alarm systems, heat treatment furnace, used to melt metal crucible resistance furnace, and all kinds of different USES of temperature box and so on, these using single chip microcomputer, using single chip computer language program to control them. And single-chip microcomputer technology has control and convenient in operation, easy to modify and maintenance of simple structure, flexibility is large and has some of the intelligence and other characteristics, we can accurately control technology standard to improve the temperature control index, also greatly improve the quality of the products and performance. Because of the advantages of the single chip microcomputer intelligent temperature control technology outstanding, is being widely adopted. This paper introduces the temperature control based on single chip microcomputer AT89C51 design scheme of the system and the hardware and software implementation. The temperature sensor DS18B20 collection temperature data, 7 period of digital pipe display, the upper and lower limits of temperature button when temperature below the setting of the lower limit, light green leds, when the temperature is higher than the set on the limit, light red leds. Given the system framework and program flow chart and principle chart, and in Protel hardware platform to realize the function of the design. Keywords:SCM Temperature control system Temperature sensors

基于单片机的温度测量系统设计

基于STC单片机的温度测量系统的研究 摘要:本文针对现有温度测量方法线性度、灵敏度、抗振动性能较差的不足,提出了一种基于STC单片机,采用Pt1000温度传感器,通过间接测量铂热电阻阻值来实现温度测量的方案。重点介绍了,铂热电阻测量温度的原理,基于STC实现铂热电阻阻值测量,牛顿迭代法计算温度,给出了部分硬件、软件的设计方法。实验验证,该系统测量精度高,线性好,具有较强的实时性和可靠性,具有一定的工程价值。 关键词:STC单片机、Pt1000温度传感器、温度测量、铂热电阻阻值、牛顿迭代法。 Study of Temperature Measurement System based on STC single chip computer Zhang Yapeng,Wang Xiangting,Xu Enchun,Wei Maolin Abstract:A method to achieve temperature Measurement by the Indirect Measurement the resistance of platinum thermistor is proposed. It is realized by the single chip computer STC with Pt1000temperature sensor.The shortcomings of available methods whose Linearity, Sensitivity, and vibration resistance are worse are overcame by the proposed method. This paper emphasizes on the following aspects:the principle of temperature measurement by using platinum thermistor , the measurement of platinum thermistor’s resistance based on STC single chip computer, the calculating temperature by Newton Iteration Method. Parts of hardware and software are given. The experimental results demonstrate that the precision and linearity of the method is superior. It is also superior in real-time character and reliability and has a certain value in engineering application. Keywords: STC single chip computer,Pt1000temperature sensor,platinum thermistor’s resistance,Newton Iteration Method 0 引言 精密化学、生物医药、精细化工、精密仪器等领域对温度控制精度的要求极高,而温度控制的核心正是温度测量。 目前在国内,应用最广泛的测温方法有热电偶测温、集成式温度传感器、热敏电阻测温、铂热电阻测温四种方法。 (1) 热电偶的温度测量范围较广,结构简单,但是它的电动势小,灵敏度较差,误差较大,实际使用时必须加冷端补偿,使用不方便。 (2) 集成式温度传感器是新一代的温度传感器,具有体积小、重量轻、线性度好、性能稳定等优点,适于远距离测量和传输。但由于价格相对较为昂贵,在国内测温领域的应用还不是很广泛。 (3) 热敏电阻具有灵敏度高、功耗低、价格低廉等优点,但其阻值与温度变化成非线性关系,在测量精度较高的场合必须进行非线性处理,给计算带来不便,此外元件的稳定性以及互换性较差,从而使它的应用范围较小。 (4)铂热电阻具有输出电势大、线性度好、灵敏度高、抗振性能好等优点。虽然它 的价格相对于热敏电阻要高一些,但它的综合性能指标确是最好的。而且它在0~200°C范

基于单片机的温度数据采集系统实验报告

基于单片机的温度数据采集系统实验报告 班级:电技10—1班 姓名:田波平 学号:1012020108 指导老师:仲老师

题目:基于单片机的温度数据采集系统 一.设计要求 1.被测量温度范围:0~120℃,温度分辨率为0.5℃。 2.被测温度点:2个,每5秒测量一次。 3.显示器要求:通道号2位,温度4位(精度到小数点后一位)。 显示方式为定点显示和轮流显示。 4.键盘要求: (1)定点显示设定;(2)轮流显示设定;(3)其他功能键。 二.设计内容 1.单片机及电源模块设计 单片机可选用AT89S51及其兼容系列,电源模块可以选用7805等稳压组件,本机输入电压范围9-12v。 2.存储器设计 扩展串行I2C存储器AT24C02。 要求: AT24C02的SCK接P3.2 AT24C02的SDA接P3.4 2.传感器及信号转换电路 温度传感器可以选用PTC热敏电阻,信号转换电路将PTC输出阻值转换为0-5V。 3.A/D转换器设计 A/D选用ADC0832。 要求: ADC0832的CS端接P3.5 ADC0832的DI端接P3.6 ADC0832的DO端接P3.7 ADC0832的CLK端接P2.1 4.显示器设计。 6位共阳极LED显示器,段选(a-h)由P0口控制,位选由P2.2-P2.7控制。数码管由2N5401驱动。 5.键盘电路设计。 6个按键,P2.2-P2.7接6个按键,P3.4接公共端,采用动态扫描方式检测键盘。 6.系统软件设计。 系统初始化模块,键盘扫描模块,数据采集模块,标度变换模块、显示模块等。 三.设计报告要求 设计报告应按以下格式书写: (1)封面; (2)设计任务书; (3)目录; (4)正文;

基于DS18B20的温度采集显示系统的设计

《单片机技术》课程设计任务书(三) 题目:基于DS18B20的温度采集显示系统的设计 一、课程设计任务 传统的温度传感器,如热电偶温度传感器,具有精度高,测量范围大,响应快等优点。但由于其输出的是模拟量,而现在的智能仪表需要使用数字量,有些时候还要将测量结果以数字量输入计算机,由于要将模拟量转换为数字量,其实现环节就变得非常复杂。硬件上需要模拟开关、恒流源、D/A转换器,放大器等,结构庞大,安装困难,造价昂贵。新兴的IC温度传感器如DS18B20,由于可以直接输出温度转换后的数字量,可以在保证测量精度的情况下,大大简化系统软硬件设计。这种传感器的测温范围有一定限制(大多在-50℃~120℃),多适用于环境温度的测量。DS18B20可以在一根数据线上挂接多个传感器,只需要三根线就可以实现远距离多点温度测量。 本课题要求设计一基于DS18B20的温度采集显示系统,该系统要求包含温度采集模块、温度显示模块(可用数码管或液晶显示)和键盘输入模块及报警模块。所设计的系统可以从键盘输入设定温度值,当所采集的温度高于设定温度时,进行报警,同时能实时显示温度值。 二、课程设计目的 通过本次课程设计使学生掌握:1)单总线温度传感器DS18B20与单片机的接口及DS18B20的编程;2)矩阵式键盘的设计与编程;3)经单片机为核心的系统的实际调试技巧。从而提高学生对微机实时控制系统的设计和调试能力。 三、课程设计要求 1、要求可以从键盘上接收温度设定值,当所采集的温度高于设定值时,进行报警(可以是声音报警,也可是光报警) 2、能实时显示温度值,若用Proteus做要求保留一位小数; 四、课程设计内容 1、人机“界面”设计; 2、单片机端口及外设的设计; 3、硬件电路原理图、软件清单。 五、课程设计报告要求 报告中提供如下内容:

基于单片机的温控器

天津理工大学 课程设计报告 题目:基于单片机的温控器设计 学生姓名李天辉学号 20101009 届 2013 班级电气4班 指导教师专业电气工程及其自动化

说明 1. 课程设计文本材料包括设计报告、任务书、指导书三部分,其中 任务书、指导书由教师完成。按设计报告、任务书、指导书顺序装订成册。 2. 学生根据指导教师下达的任务书、指导书完成课程设计工作。 3. 设计报告内容建议主要包括:概述、系统工作原理、系统组成、设计内容、小结和参考资料。 4. 设计报告字数应在3000-4000字,采用电子绘图、采用小四号宋 体、1.25倍行距。 5.课程设计成绩由平时表现(30%)、设计报告(30%)和提问成绩(40%) 组成。

课程设计任务书、指导书 课程设计题目: Ⅰ.课程设计任务书 一、课程设计的内容和要求(包括原始数据、技术要求、工作量) 当今社会,温控器已经广泛应用于电冰箱、空调和电热毯等领域中。其优点是控制精度高,稳定性好,速度快自动化程度高,温度和风速全自动控制,操作简单可靠,对执行器要求低,故障率低,效果好。目前国内外生产厂家正在研究开发第三代智能型室温空调温控器,应用新型控制模型和数控芯片实现智能控制。现在已有国内厂家生产出了智能型室温空调温控器,并已应用于实际工程。 本课程设计要求设计温度控制系统,主要由温度数据采集、温度控制、按键和显示、通讯等部分组成。温度采集采用NTC或PTC热敏电阻(或由电位器模拟)或集成温度传感器、集成运算放大器构成的信号调理电路、AD转换器组成。温控部分采用交流开关BT136通过改变导通角进行调压限流达到控制加热丝温度的目的。 温度控制算法采用PID控制,可以采用普通PID或模糊PID。对控制PID参数进行整定,进行MATLAB仿真,说明控制效果。进行程序编制。 设计通讯协议,并能够通过RS485总线将数据传回上位机。2.课程设计的要求 1、选择相应元器件设计温度控制系统原理图并绘制PCB版图。 2、进行PID控制算法仿真,设计PID参数,或模糊PID规则。 3、系统功能要求:a要能够显示实时温度;b能够进行温度设置;c 能够进行PID参数设定;d能够把数据传回上位机;e可以设定本机地址。F温度控制范围0~99.9度。 4、编制程序并调试通过,并有程序流程图。

《基于单片机的温度控制系统的设计》

序号(学号):040930727 长春大学光华学院 毕业设计(论文) 姓名魏明岩 系别 专业 班级0409307 指导教师马春龙 年月日

目录 摘要 (1) 第一章前言 (3) 1.1课题背景和意义 (3) 1.2温度控制系统的使用 (3) 1.3毕业设计任务 (4) 第二章系统方案 (5) 2.1水温控制系统设计任务和要求 (5) 2.2水温控制系统部分 (5) 2.3控制方式 (7) 第三章系统硬件设计 (8) 3.1总体设计框图及说明 (8) 3.2外部电路设计 (8) 3.3单片机系统电路设计 (9) 第四章系统软件设计和调试 (13) 4.1 程序框架结构 (13) 4.2程序流程图及部分程序 (13) 4.3 系统安装调试和测试 (17) 第五章结论 (18) 致谢 (19) 参考文献 (20) 附件1(程序代码) (20) 附件2(电路原理图) (27)

基于单片机的水温控制系统 【摘要】温度是工业控制对象主要被控参数之一,在温度控制中,由于受到温度被控对象特性(如惯性大、滞后大、非线性等)的影响,使得控制性能难以提高,有些工艺过程其温度控制的好坏直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。为了实现高精度的水温测量和控制,本文介绍了一种以Atmel公司的低功耗高性能CMOS单片机为核心,以PID算法控制以及PID参数整定相结合的控制方法来实现的水温控制系统,其硬件电路还包括温度采集、温度控制、温度显示、键盘输入以及RS232接口等电路。该系统可实现对温度的测量,并能根据设定值对温度进行调节,实现控温的目的。 【关键词】单片机AT89C51;温度控制;温度传感器PT1000;PID 调节算法 The summary: Temperature is the main control of industrial control of parameters,In temperature control, due to temperature controlled object properties (such as inertia big, big, lagging effect of nonlinear, etc.), to improve performance, some process temperature control of its direct impact on the quality of the product, and designed a kind of ideal temperature control system is a very valuable.In order to realize high precision temperature measurement and control, this paper introduces a meter taking Atmel company low-power high-performance CMOS chip as the core, and the PID control algorithm with PID parameters combination of control method to realize the temperature control system, the hardware circuit including temperature, temperature

单片机温度采集系统

课程设计 课程设计名称:温度采集装置 班级:数控技术0901 学号: 课程设计时间:2011.12.5—12.11

目录 1 设计任务 (2) 2 确定设计方案 (3) 2.1 温度传感器—AD22100K (3) 2.2 A/D转换器—ADC0809 (4) 2.3 单片机的选择—80C51 (6) 2.4 显示器接口—LED动态显示接口 (8) 3 硬件电路的设计 (10) 3.1 温度传感器与A/D转换器的接口电路 (10) 3.2 A/D转换器与89C51的接口电路 (10) 3.3 89C51与显示器间的接口电路 (11) 3.4 晶振电路和复位电路的设计 (12) 4 软件设计 (13) 4.1温度采集的主程序流程图 (13) 4.2 程序清单 (15) 5 心得体会 (20) 附录 (21) 温度采集装置 1、设计任务

设计一个温度采集系统,要求按1路/s的速度顺序检测8路温度点,测温范围为+20℃~+100℃,测量精度为±1%。要求用5位数码管显示温度,最高位显示通道号,次高位显示“—”,低三位显示温度值。 2、设计方案 2.1 温度传感器—AD22100K AD22100K是有信号调节的单片温度传感器,工作温度范围为-50~+150,信号调节不需要调节电路、缓冲器和线性化电路,简化了系统设计。输出温度与电压和电源电压的乘积(比率测量)成比例。输出电压摆幅为0.25V(对应-50℃)和4.75V(对应150℃),用5V单电源工作。 2.1.1 AD22100K的引脚图如2.1.1 图2.1.1 AD22100K的引脚图 注:1.V电源 4.GND接地 2.U输出 3、5~8 NC不连接

基于单片机的温度采集系统设计

摘要 单片机已在各行业得到广泛应用,为适应更多的应用领域,厂家采取了在一块单片机芯片上集成多种功能部件和大容量存储器的方法。因而,整个应用系统不需要扩展,而体积变小、可靠性增高,使单片机成为真正意义上的单片机系统。 第一章单片机概述 单片机是单片微型计算机的简称,有时称为微控制器,是将计算机的主要功能单元集成在一个芯片中而构成的器件。由于单片机在一个芯片上集成诸多功能,因此就单项功能而言,通常都没有普通计算机强大,如计算机速度不够快、字长较短、外部可扩展接口的数量少且规模小等。但是,单片机具有体积小、价格便宜和技术成熟等优点,是各种电子产品的重要组成部分,在国民经济的各个领域发挥着重要作用。 早期的单片机都是8位或4位的。其中最成功的是INTEL的8031,因为简单可靠而性能不错获得了很大的好评。此后在8031上发展出了MCS51系列单片机系统。基于这一系统的单片机系统直到现在还在广泛使用。随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的应用。90年代后随着消费电子产品大发展,单片机技术得到了巨大提高。随着INTEL i960系列特别是后来的ARM系列的广泛应用,32位单片机迅速取代16位单片机的高端地位,并且进入主流市场。而传统的8位单片机的性能也得到了飞速提高,处理能力比起80年代提高了数百倍。目前,高端的32位单片机主频已经超过300MHz,性能直追90年代中期的专用处理器,而普通的型号出厂价格跌落至1美元,最高端[1]的型号也只有10美元。当代单片机系统已经不再只在裸机环境下开发和使用,大量专用的嵌入式操作系统被广泛应用在全系列的单片机上。而在作为掌上电脑和手机核心处理的高端单片机甚至可以直接使用专用的Windows和Linux操作系统。 单片机比专用处理器更适合应用于嵌入式系统,因此它得到了最多的应用。事实上单片机是世界上数量最多的计算机。现代人类生活中所用的几乎每件电子和机械产品中都会集成有单片机。手机、电话、计算器、家用电器、电子玩具、

单片机实验温度采集系统

单片机原理与运用 课 程 设 计 课题名称:专业班级:学生姓名:指导老师:完成时间:温度采集与显示系统2012年7月4号

摘要 随着信息技术的飞速发展,嵌入式智能电子技术已渗透到社会生产、工业 控制以及人们日常生活的各个方面。单片机又称为嵌入式微型控制器,在智能 仪表、工业控制、智能终端、通信设备、医疗器械、汽车电器、导航系统和家 用电器等很多领域都有着广泛的应用,已成为当今电子信息领域应用最广泛的 技术之一。 本文主要介绍了一个基于STC89C52单片机的温度采集与显示系统,详细 描述了利用液晶显示器件温度传感器DS18B20开发测温系统的原理,重点对传感器与单片机的硬件连接和软件编程进行了详细分析。主要地介绍了数字温度 传感器DS18B20的数据采集过程,进而对各部分硬件电路的工作原理进行了介绍。温度传感器DS18B20与STC89C52结合构成了最简温度检测系统,该系统可以方便的实现温度采集和显示,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合我们日常生活和工、农业生产中的温 度测量,也可以当作温度处理模块嵌入其它系统中,作为其他主系统的辅助扩展。 单片机综合实验的目的是训练单片机应用系统的编程及调试能力,通过对 一个单片机应用系统进行系统的编程和调试,掌握单片机应用系统开发环境和 仿真调试工具及仪器仪表的实用,掌握单片机应用程序代码的编写和编译,掌 握利用单片机硬件仿真调试工具进行单片机程序的跟踪调试和排错方法,掌握 示波器和万用表等杆塔工具在单片机系统调试中应用。 关键词:单片机STC89C52、DS18B20温度传感器、液晶显示器LCD1602、AT24C02数据存储芯片

基于液晶显示的单片机温度控制设计

. ... . 《基于液晶显示的单片机温度控制设计》 实习报告 专业班级:电子信息科学与技术11级 组长:彪组别:一 组员:邢路飞王晓东李梁刚蔡云云李德龙宋文杰指导教师:谢艳新王海波 学期:2013-2014学年第1学期 实习地点:组成原理及单片机实验室 《基于液晶显示的单片机温度控制设计》实习报告

一、实验目的 随着现代科技的不段发展,对温度测量的工具越来越多并且精度也是越来高,但随着生活水平的不段提高,越来越多的人健康的关注倍加重视,特别是对暖空气的变化更加注意,在此我们特设计有关温度控制的系统,通过它可以设置度的上下限,当温度低于所设的温度的下限或是高于所设的温度的上限时就会发生报警,因此可以提醒您要注意温度变化。本制作轻巧灵便适合在私人家庭中运用,使用时可以通过四个按键的作用来设置系统初值,即可达到准确提醒您的作用。 二、设计题目:基于液晶显示的单片机温度控制设计 三、功能描述 本次设本系统主要研究的是利用MCS-51系列单片机中的AT89C51单片机来实现温度检测及控制,通过对89C51的P1口的高4位设置上限值、下限值、,因考虑到在设置温度TH和TL,所以本次设计采用四个按键来控制,通过按键之间的协调作用来完成温度设置值,由于温度的不同我们采取不同的信息来作为信号处理,所以在硬件电路中用蜂鸣器来报警做为提醒实现温度从IN0输入89C51的P1口低4位设置报警系统。ADC0809实现模拟输入到数字量的转换,通过1602数码管显示数据。 四、系统硬件设计 4.1时钟振荡电路 时钟振荡电路如图1所示。 图1 时钟振荡电路图

4.2测温电路 测温电路如图2所示。 图2 测温电路图4.3复位电路 复位电路如图3所示。 图3 复位电路图4.4 报警电路 报警电路如图4所示。 图4 报警电路图4.5显示电路 显示电路如图5所示。

单片机温度采集与显示

1、课程设计目的 (1)利用单片机及相应温度传感器设计单检测节点或多检测节点数字温度计 (2)精度误差:0.5摄氏度以内;测温范围:10-50摄氏度 (3)LED数码管或LCD直接显示 (4)完成对设计系统测试 2、数字温度计正文 摘要:随着时代的进步和发展,单片机技术已经普及到我们生活、工作、科研、各个领域,已经成为一种比较成熟的技术,本文主要介绍了一个基于89C52单片机的测温系统,详细描述了利用数字温度传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,对各部分的电路也一一进行介绍,该系统可以方便的实现温度采集和显示,并可根据需要任意设定上下限报警温度,使用起来相当方便,适合于我们日常生活和嵌入其它系统中,作为其AT89C52结合最简温度检测系统,该系统恶劣环境下进行现场温度测量,有广泛的应用前景。本文将介绍一种基于单片机往制的数字温度计,本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置范围内时,可以报警。 关键词:单片机,数字控制,温度计,DSIBB20, AT89C52 2.1引言 随着科技的不断发展,现代社会对各种信息参数的准确度和精确度的要求都有了几何级的增长,而如何准确而又迅速的获得这些参数就需要受制于现代信息基础的发展水平。在三大信息信息采集(即传感器技术)、信息传输(通信技术)和信息处理(计算机技构中,传感器属于信息技术的前沿尖端产品,尤其是温度传感器技术,在我国各领域己经引用的非常广泛,可以说是渗透到社会的每一个领域,人民的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要的意义。 测量温度的关键是温度传感器,温度传感器的发展经历了三个发展阶段 ①传统的分立式温度传感器 ②模拟集成温度传感器 ③智能温度传感器 目前的智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的,它是微电子技术、计算机技术和自动测试技术(ATE)的结晶,特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU)。社会的发展使人们对传感器的要求也越来越高,现在的温度传感器正在基于单片机的基础上从模拟式向数字式,从集成化向智能化、网络化的方向飞速发展,并朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展,本文将介绍智能集成温度传感器DS18B20的结构特征及控制方法,并对以此传感器,AT89C52单片机为控制器构成的数字温度测量装置的工作

基于采用AT89S51单片机和LM35温度传感器的温度采集显示系统设计

基于采用AT89S51单片机和LM35温度传感器的温度采集显示系统设计随着电子和传感技术的快速发展,温度的测量和控制在民用、工业以及航空航天技术等领域,等到了广泛应用。小型的、低功耗的、廉价的、可靠性高的温度传感器引起了人们的广泛关注。在实际生产、生活等领域中,温度是环境因素不可或缺的一部分,对温度进行及时精确的控制和检测显得尤为重要。本文基于AT89S51单片机,采用 LM35温度传感器,设计了一种灵敏度较高,抗干扰能力强,工作稳定可靠的温度采集显示系统。 1、系统结构及工作原理温度采集显示系统电路由温度采集模块、A/D转换模块、单片机控制模块、数码管显示模块和下载模块组成。电路工作原理是:首先由LM35温度传感器采集外界环境的温度,经LM358放大10倍后以电压形式输入到A/D采样电路,由A/D 转换器TLC549将温度的数字量值传送给单片机系统,再有单片机系统驱动数码管显示温度。本文设计的基于LM35的单片机温度采集显示系统的温度测量范围为25℃~80℃温度采集显示系统电路是一个开环控制系统系统原理框图如图1示: 2、系统核心硬件电路设计系统核心硬件电路设计主要包含温度采集模块的设计、A/D转换模块的设计、单片机控制模块的设计、数码管显示模块的设计和下载模块的设计。 2.1、采集模块的设计 传感器是信号输入的第一个环节,也是整个测试系统性能的关键环节之一,因此对传感器的正确选用显得尤为重要。在本系统中,温度采集模块的核心硬件采用LM35温度传感器,该器件有很高的工作精度和较宽的线性工作范围,其输出电压与摄氏温度线性成比例,温度每上升1℃,电压上升10ms。LM35无需外部校准,可以提供±1/4℃的常用室温精度。从经济适用等多方面考虑,系统采用LM35温度传感器和LM358放大电路进行温度采集模块的设计,设计原理图如图2 所示。图2中,经过LM35传感器采集后的微弱电压通过LM358 放大电路放大10倍后送入单片机。 2.2、/D 转换模块的设计

单片机温度采集显示系统设计

课程设计 课程名称:微机原理与接口技术课程设计题目名称:温度采集显示系统 学生学院 专业班级 学号 学生姓名 指导教师

一、设计题目 温度采集系统 二、设计任务和要求 功能要求: (1)温度测量范围 0 - 99℃。 (2)温度分辨率±1℃。 (3)选择合适的温度传感器。 (4)使用键盘输入温度的最高点和最低点,温度超出范围时候报警。(报警温度不需要保存) 要求完成的内容: (1)系统硬件设计,并用电子CAD软件绘制出原理图, (2)给出流程图,编写并调试程序。 (3)撰写设计报告。 三、原理电路图和设计程序 1、方案比较 (1)、系统总体方案设计 总体框架图如图1示,软件流程图如图示

①该温度控制系统的设计包括硬件设计和软件设计两大部分,结合实际情况,该系统应具备如下功能: A、实时采集温度; B、显示温度; C、串行传送数据; D、控制外设;

②系统硬件设计 系统的硬件设计部分主要由以下几部分组成: A、单片机最小系统; B、温度采集模块; C、温度显示模块; D、串行通信模块; E、报警电路; 图2 软件流程图 (2)、方案比较 方案一采用8031作为控制核心,以使用最为普遍的器件ADC0809作模数转换,控制上使用对电阻丝加电使其升温和开动风扇使其降温。此方案简易可行,器件的价格便宜,但8031内部没有程序存储器,需要扩展,增加了电路的复杂性,且ADC0809是8位的模数转换,不能满足本题目的精度要求。 方案二采用比较流行的AT89S51作为电路的控制核心, AT89S52不但与8051,8052 指令,管脚完全兼容,而且其片内的程序存储器采用FLASH 工艺,用户可以用电的方式瞬间擦除、改写。AT89S52 单片机还支持在线编程,用户通过简单的电路连接就可以将电脑里的程序下载到单片机中,减少调试程序时不断拆卸和插入给芯片带来的损坏。此外AT89S52 单片机有8 KB的程序存储器和256 B 的数据存储器,不需外部扩展存储芯片,可以降低硬件电路的复杂度。此方案电路简单并且可以满足题目中的各项要求的精度。

基于单片机的温度控制器附程序代码

生产实习报告书 报告名称基于单片机的温度控制系统设计姓名 学号0138、0140、0141 院、系、部计算机与通信工程学院 专业信息工程10-01 指导教师 2013年 9 月 1日

目录 1.引言.................................. 错误!未定义书签。 2.设计要求.............................. 错误!未定义书签。 3.设计思路.............................. 错误!未定义书签。 4.方案论证.............................. 错误!未定义书签。方案一................................................. 错误!未定义书签。方案二................................................. 错误!未定义书签。 5.工作原理.............................. 错误!未定义书签。 6.硬件设计.............................. 错误!未定义书签。单片机模块............................................. 错误!未定义书签。 数字温度传感器模块 .................................... 错误!未定义书签。 DS18B20性能......................................... 错误!未定义书签。 DS18B20外形及引脚说明............................... 错误!未定义书签。 DS18B20接线原理图................................... 错误!未定义书签。按键模块............................................... 错误!未定义书签。声光报警模块........................................... 错误!未定义书签。数码管显示模块......................................... 错误!未定义书签。 7.程序设计.............................. 错误!未定义书签。主程序模块............................................. 错误!未定义书签。 读温度值模块.......................................... 错误!未定义书签。 读温度值模块流程图: ................................. 错误!未定义书签。

基于单片机的温湿度检测及显示

1设计的意义 最近几年来,随着科技的飞速发展,单片机领域正在不断的走向社会各个角落,还带动传统控制检测日新月异更新。在实时运作与自动控制的单片机应用到系统中,单片机如今就是作为一个核心部件来使用,仅掌握单片机方面知识就是不够的,还应根据其具体硬件结构,以及针对具体应用对象特点的软件结合,加以完善。“单片机原理及应用课程设计”就是电子类专业的学科基础科,它就是继“汇编语言程序设计”,“接口技术”等课程之后开出的实践环节课程。 与此同时,现代社会越来越多的场所会涉及到温度与湿度并将其显示。由于温度与湿度不管就是从物理量本身还就是在实际人们的生活中都有着密切的关系,例如:冬天温度为18至25℃,湿度为30%至80%;夏天温度为23至28℃,湿度为30%至60%。在此范围内感到舒适的人占95%以上。在装有空调的室内,室温为19至24℃,湿度为40%至50%时,人会感到最舒适。如果考虑到温、湿度对人思维活动的影响,最适宜的室温度应就是工作效率高。18℃,湿度应就是40%至60%,此时,人的精神状态好,思维最敏捷。所以,本课程设计就就是通过单片机驱动LCD1602,液晶显示温湿度,通过此设计,可以发现本设计有一定的扩展性,而且可以作为其她有关设计的基础。

2设计原理 2、1设计目标 2.1.1基本功能 检测温度、湿度 显示温度、湿度 过限报警 2.1.2主要技术参数 温度检测范围: -30℃至+55℃ 测量精度: ±2℃ 湿度检测范围: 20%-90%RH 检测精度:±5%RH 显示方式: 温度:四位显示湿度:四位显示 报警方式: 三极管驱动的蜂鸣器报警 2、2设计原理 温湿度监测系统要满足以下条件:温湿度监测系统能完成数据采集与处理、显示、串行通信、输出控制信号等多种功能。由数据采集、数据调理、单片机、数据显示等4个大的部分组成。该测控系统具有实时采集(检测粮库内的温湿度)、实时显示(对监测到的进行显示)、实时警报(根据监测的结果,超出预设定的值的进行蜂鸣警告)的功能。 传感器就是实现测量首要环节,就是监测系统的关键部件,如果没有传感器对原始被测信号进行准确可靠的捕捉与转换,一切准确的测量与控制都将无法实现。工业生产过程的自动化测量与控制,几乎主要依靠各种传感器来检测与控制生产过程中的各种参量,使设备与系统正常运行在最佳状态,从而保证生产的高效率与高质量。 一般温湿度控制系统中的温湿度测量均采用热敏电阻与湿敏电容,这种传统的模拟式温湿度传感器一般都需要设计信号调理电路并经过复杂的校准与标定过程,因此测量精度难以保证,且在线性度、重复性、互换性等方面也存在一定问

相关主题