搜档网
当前位置:搜档网 › 挠度应变理论值表

挠度应变理论值表

挠度应变理论值表

挠度1(短边端部)

712(短边1/4)

166

3(短边)跨

中261

4(长边1/4)

256

5(长边端部)

12

一0 0.443 0.786 0.659 0 二0 0.888 1.572 1.319 0 三0 1.332 2.358 1.978 0 四0 1.776 3.145 2.638 0 五0 1.853 3.292 2.761 0 一0 0.929 1.646 1.381 0

应变1(短边端部)

712(短边1/4)

166

3(短边)跨

中261

4(长边1/4)

256

5(长边端部)

12

一 2 3 12 2 1

二 3 6 25 5 2

三 5 9 37 7 4

四 6 12.6(13)49 9 5

五 6 13 52 12 5 一 3 7 26 5 2

挠度计算

1. 挠度建筑的基础、上部结构或构件等在弯矩作用下因挠曲引起的垂直于轴线的线位移。 2. 148梁施工图在计算挠度前,先要形成连续梁。在连续梁与其它梁相交的节点处,若恒载弯矩<0且为峰值点,则认为此节点为梁的一个支座,否则没有支座。此规则对于大多数的情况都是正确的。但对于井字梁的情况,用此方法判断出的结果计算挠度误差较大。 对于这种情况,建议参考SATWE中的挠度计算结果。需注意SATWE中的挠度计算采用了弹性刚度,故需×长期刚度与弹性刚度的比值。另外,SATWE中的弹性挠度是在恒+活的作用下的结果,故还需注意到规范规定的挠度计算采用准永久组合,应对其进行换算。 可以使用放大弹性挠度的方法来求长期挠度吗? 日期:2011-10-21 点击:62在梁上弯矩不变的情况下,挠度与刚度成反比例关系。由于有限元计算变形时考虑构件变形协调,因此对于次梁和井字梁,此方案得到结果要比各跨单独计算挠度更合理一些。特别是井字梁,此方案算得两方向的挠度更为接近。对次梁和井字梁,放大弹性挠度不失为一种求长期挠度的合理解决方案。计算时放大系数可以取EcIc/B,其中B 可取跨中最大弯矩截面的长期刚度,可直接查梁施工图模块中提供的挠度计算书。 3. 均布荷载下的工字钢的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EJ). 式中: Ymax 为梁跨中的最大挠度(cm). q 为均布线荷载(kg/cm). E 为工字钢的弹性模量,对于工程用结构钢,E = 2100000 kg/cm^2. J 为工字钢的截面惯矩,可在型钢表中查得(cm^4). 4. 简支梁在各种荷载作用下跨中最大挠度计算公式: 均布荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载标准值(kn/m). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式:

简支梁在各种荷载作用下跨中最大挠度计算公式

简支梁在各种荷载作用下跨中最大挠度计算公式 一、均布荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q为均布线荷载标准值(kn/m). E为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I为钢的截面惯矩,可在型钢表中查得(mm^4). 二、跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 三、跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 6.81pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 四:跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4).

五、悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). 其中: q 为均布线荷载标准值(kn/m). p 为各个集中荷载标准值之和(kn). 你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件进行反算,看能满足的上部荷载要求!

挠度计算

简支梁在各种荷载作用下跨中最大挠度计算公式: 均布荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载标准值(kn/m). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 6.81pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn).

各种梁的弯矩剪力计算(大全)表

表1 简单载荷下基本梁的剪力图与弯矩图 梁的简图 剪力Fs 图 弯矩M 图 1 l a F s F F l a F l a l -+ - F l a l a ) (-+ M 2 l e M s F l M e + M e M + 3 l a e M s F l M e + M e M l a l -e M l a + - 4 l q s F + -2 ql 2 ql M 8 2ql + 2 l 5 l q a s F + -l a l qa 2) 2(-l qa 22 M 2 228)2(l a l qa -+ l a l qa 2) (2 -l a l a 2)2(- 6 l q s F + -3 0l q 6 0l q M 3 92 0l q + 3 )33(l - 7 a F l s F F + Fa -M

8 a l e M s F + e M M 9 l q s F ql + M 2 2ql - 10 l q s F 2 l q + M 6 20l q - 注:外伸梁 = 悬臂梁 + 端部作用集中力偶的简支梁 表2 各种载荷下剪力图与弯矩图的特征 某一段梁上的外力情况 剪力图的特征 弯矩图的特征 无载荷 水平直线 斜直线 或 集中力 F 突变 F 转折 或 或 集中力偶 e M 无变化 突变 e M 均布载荷 q 斜直线 抛物线 或 零点 极值 表3 各种约束类型对应的边界条件 约束类型 位移边界条件 力边界条件

(约束端无集中载荷) 固定端 0=w ,0=θ — 简支端 0=w 0=M 自由端 — 0=M ,0=S F 注:力边界条件即剪力图、弯矩图在该约束处的特征。

挠度计算公式

挠度计算公式 挠度计划公式简支梁在百般荷载作用下跨中最大挠度计划公 式: 均布荷载下的最大挠度在梁的跨中,其计划公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载准绳值(kn/m). E 为钢的弹性模量,对付工程用机关钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个齐集荷载下的最大挠度在梁的跨中,其计划公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个齐集荷载准绳值之和(kn). E 为钢的弹性模量,对付工程用机关钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距安排两个十分的齐集荷载下的最大挠度在梁的跨中,其计划公式: Ymax = 6.81pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个齐集荷载准绳值之和(kn). E 为钢的弹性模量,对付工程用机关钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距安排三个十分的齐集荷载下的最大挠度,其计划公式:

Ymax = 6.33pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个齐集荷载准绳值之和(kn). E 为钢的弹性模量,对付工程用机关钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 悬臂梁受均布荷载或自由端受齐集荷载作用时,自由端最大挠度分别为的,其计划公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). q 为均布线荷载准绳值(kn/m). ;p 为各个齐集荷载准绳值之和(kn). 你可以凭据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件 实行反算,看能餍足的上部荷载要求!

挠度计算公式

挠度计算公式 默认分类 2009-08-20 12:46 阅读2447 评论1 字号:大中小 简支梁在各种荷载作用下跨中最大挠度计算公式: 均布荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载标准值(kn/m). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 6.81pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.

I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn). 你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件 进行反算,看能满足的上部荷载要求!

挠度计算和工字钢的型号、截面尺寸、重量、截面惯性矩、截面抵抗矩等各项力学参数统计表(1)

挠度计算和工字钢的型号、截面尺寸、重量、截面惯性矩、截面抵抗矩等各项力学参数统计表(1)

工字钢各项力学参数统计表 型号 尺寸/mm 截面面积 /em2 理论质量 /(kg/m) 参考数值 X-X Y-Y h b d t r r1 1x/cm4 Wx/cm3 ix/cm Ix:Sx Iy/cm4 Wy/cm3 iy/cm 10 100 68 4.5 7.6 6.5 3.4 14.345 11.261 245 49 4.14 8.59 33.0 9.72 1.52 12.6 126 74 5.0 8.4 7.0 3.5 18.118 14.223 488 77.5 5.20 10.8 46.9 12.7 1.61 14 140 80 5.5 9.1 7.5 3.8 21.516 16.890 712 102 5.76 12.0 64.4 16.1 1.73 16 160 88 6.0 9.9 8.0 4.0 26.131 20.513 1130 141 6.58 13.8 93.1 21.2 1.89 18 180 94 6.5 10.7 8.5 4.3 30.756 24.143 1660 185 7.36 15.4 122 26.0 2.00 20a 200 100 7.0 11.4 9.0 4.5 35.578 27.929 2370 237 8.15 17.2 158 31.5 2.12 20b 200 102 9.0 11.4 9.0 4.5 39.578 31.069 2500 250 7.96 16.9 169 33.1 2.06 22a 220 110 7.5 12.3 9.5 4.8 42.128 33.070 3400 309 8.99 18.9 225 40.9 2.31 22b 220 112 9.5 12.3 9.5 4.8 46.528 36.524 3570 325 8.78 18.7 239 42.7 2.27 25a 250 116 8.0 13.0 10.0 5.0 48.541 38.105 5020 402 10.2 21.6 280 48.3 2.40 25b 250 118 10.0 13.0 10.0 5.0 53.541 42.030 5280 423 9.94 21.3 309 52.4 2.40 28a 280 122 8.5 13.7 10.5 5.3 55.404 43.492 7110 508 11.3 24.6 345 56.6 2.50 28b 280 124 10.5 13.7 10.5 5.3 61.004 47.888 7480 534 11.1 24.2 379 61.2 2.49 32a 320 130 9.5 15.0 11.5 5.8 67.156 52.717 11100 692 12.8 27.5 460 70.8 2.62 32b 320 132 11.5 15.0 11.5 5.8 73.556 57.741 11600 726 12.6 27.1 502 76.0 2.61 32c 320 134 13.5 15.0 11.5 5.8 79.956 62.765 12200 760 12.3 26.8 544 81.2 2.61 36a 360 136 10.0 15.8 12.0 6.0 76.480 60.037 15800 875 14.4 30.7 552 81.2 2.69 36b 360 138 12.0 15.8 12.0 6.0 83.680 65.689 16500 919 14.1 30.3 582 84.3 2.64 36c 360 140 14.0 15.8 12.0 6.0 90.880 71.341 17300 962 13.8 29.9 612 87.4 2.60 40a 400 142 10.5 16.5 12.5 6.3 86.112 67.598 21700 1090 15.9 34.1 660 93.2 2.77 40b 400 144 12.5 16.5 12.5 6.3 94.112 73.878 22800 1140 15.6 33.6 692 96.2 2.71 40c 400 146 14.5 16.5 12.5 6.3 102.112 80.158 23900 1190 15.2 33.2 727 99.6 2.65 45a 450 150 11.5 18.0 13.5 6.8 102.446 80.420 22200 1430 17.7 38.6 855 114 2.89 45b 450 152 13.5 18.0 13.5 6_8 111.446 87.485 33800 1500 17.4 38.0 894 118 2.84 45c 450 154 15.5 18.0 13.5 6.8 120.446 94.550 35300 1570 17.1 37.6 938 122 2.79 50a 500 158 12.0 20.0 14.0 7.0 119,304 93.654 46500 1860 19.7 42.8 1120 142 3.07 50b 500 160 14.0 20.0 14.0 7.0 129.304 101.504 48600 1940 19.4 42.4 1170 146 3.01 50c 500 162 16.0 20.0 14.0 7.0 139.304 109.354 50600 2080 19.0 41.8 1220 151 2.96 56a 560 166 12.5 21.0 14.5 7.3 135.435 106.316 65600 2340 22.0 47.7 1370 165 3.18 56b 560 168 14.5 21.0 14.5 7.3 146.635 115.108 68500 2450 21.6 47.2 1490 174 3.16 56c 560 170 16.5 21.0 14.5 7.3 157.835 123.900 71400 2550 21.3 46.7 1560 183 3.16 63a 630 176 13.0 22.0 15.0 7.5 154.658 121.407 93900 2980 24.5 54.2 1700 193 3.31 63b 630 178 15.0 22.0 15.0 7.5 167.258 131.298 98100 3160 24.2 53.5 1810 204 3.29 63c 630 180 17.0 22.0 15.0 7.5 179.858 141.189 102000 3300 23.8 52.9 1920 214 3.27

顶板支撑计算

板模板(扣件钢管高架)计算书 鸿宝电气厂房工程;工程建设地点:市嘉定区南翔镇顺达路以北、家泾河道 以南;属于框架结构;地上11层;地下1层;建筑高度:49.9m;标准层层高:4.2m ;总建筑面积:21028平方米;总工期:400天。 本工程由鸿宝电气投资建设,江南建筑设计,昌发岩土工程勘察技术地质勘察,景业建设工程监理咨询监理,八润建筑组织施工;由边挺秀担任项目经理,伟琦担 任技术负责人。 高支撑架的计算依据《建筑施工扣件式钢管脚手架安全技术规》 (JGJ130-2001)、《混凝土结构设计规》GB50010-2002、《建筑结构荷载规》(GB 50009-2001)、《钢结构设计规》(GB 50017-2003)等规编制。 因本工程模板支架高度大于4米,根据有关文献建议,如果仅按规计算,架体 安全性仍不能得到完全保证。为此计算中还参考了《施工技术》2002(3):《扣件式钢管模板高支撑架设计和使用安全》中的部分容。 一、参数信息 1.模板支架参数 横向间距或排距(m):0.90;纵距(m):0.90;步距(m):1.80; 立杆上端伸出至模板支撑点长度(m):0.10;模板支架搭设高度(m):5.40; 采用的钢管(mm):Φ48×3.0 ;板底支撑连接方式:方木支撑; 立杆承重连接方式:双扣件,考虑扣件的保养情况,扣件抗滑承载力系数:0.75; 2.荷载参数 模板与木板自重(kN/m2):0.500;混凝土与钢筋自重(kN/m3):25.500; 施工均布荷载标准值(kN/m2):1.000; 3.材料参数 面板采用胶合面板,厚度为18mm;板底支撑采用方木; 面板弹性模量E(N/mm2):9500;面板抗弯强度设计值(N/mm2):13;

扰度计算公式(全)

扰度计算公式(全) -CAL-FENGHAI.-(YICAI)-Company One1

简支梁在各种荷载作用下跨中最大挠度计算公式: 均布荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载标准值(kn/m). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = ^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = ^3/(384EI).

式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn). 你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件 进行反算,看能满足的上部荷载要求! 机械零件和构件的一种截面几何参量,旧称截面模量。它用以计算零件、构 件的抗弯强度和抗扭强度(见强度),或者用以计算在给定的弯矩或扭矩条件 下截面上的最大应力。根据材料力学,在承受弯矩Μ的梁截面上和承受扭矩T 的杆截面上,最大的弯曲应力σ和最大的扭转应力τ出现于离弯曲中性轴线和扭转中性点垂直距离最远的面或点上。σ和τ的数值为√(C+W)√(RD↑2) 式中Jxx和J0分别为围绕中性轴线XX和中性点O的截面惯性矩;Jxx/y和J0/y分别为弯曲和扭转的截面模量(见图和附表)。一般截面系数的符号为W,单位为毫米3 。根据公式可知,截面的抗弯和抗扭强度与相应的截面系数成正比。

结构力学简支梁跨中挠度计算公式

简支梁跨中最大挠度计算公式 均布荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载标准值(kn/m). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 6.81pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.

I 为钢的截面惯矩,可在型钢表中查得(mm^4). 悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn). 你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件 进行反算,看能满足的上部荷载要求!

V7.0 计算混凝土板长期挠度的操作步骤

V7.0计算混凝土板长期挠度的操作步骤 对于大跨度的混凝土板,结构在荷载长期作用下产生较大变形,这个变形值要比弹性计算的变形值大的多。因此需要计算大板的长期挠度值,必要时需要根据计算的挠度值对大板进行预起拱。《砼规》提供的挠度计算公式仅适用于单向板的挠度计算,对于双向板则没有理论公式进行计算。STRAT通过有限元计算的方法可以精确计算出板的长期挠度值。 选取一个实际工程的局部结构模型进行说明,该工程为空心板无梁楼盖结构,第二层跨度最大处有18.4m,结构示意图如图1所示。 图1空心板工程结构示意图 在Plots通用后处理中,点击“变形”命令可查看结构的变形图和变形值。按F5可打开位移图形设置菜单,选择恒载作用下Z向位移,结构变形如图2所示。可以从图形左侧读出此时结构最大位移的绝对值为25.9577,单位为mm,这是结构在弹性计算结果下的变形。 图2恒载作用下Z向位移 下面详细介绍V7.0混凝土板长期挠度的计算和查看。 1、形成计算混凝土板挠度的新模型 在Plots通用后处理界面中完成“楼板配筋计算”后,程序会弹出提示框如图3所示。 图3计算混凝土挠度提示框

点击“是”后弹出提示框如图4所示。提示框第一行说明,已经形成计算混凝土板挠度的新模型,即原文件名加后缀“_Dp”的新模型。新模型与原模型同名,但文件名后缀多了“_Dp”字样,如图5所示。提示框中同时详细说明了计算长期挠度的具体步骤,以供参考。 图4长期挠度计算操作提示框图5原模型与新模型 2、新模型设置及保存计算文件 进入Prep图形前处理界面,打开后缀名带“_Dp”的新模型。该模型仅用于计算混凝土板长期挠度,不适用于计算其他结果。 长期挠度考虑恒活荷载的作用,如果原模型进行了动力计算,新模型可以设置为不进行动力计算以减小计算量,对计算结果无影响。模型不用再进行其他处理,直接进入生成Sta计算文件这一步。在生成计算数据菜单中,勾选“读板刚度折减系数(Plots)”选项,如图6所示,确定后保存计算文件。 图6生成计算数据文件菜单设置图7直接导入板刚度 上述读取板刚度的操作方式,对各类模拟混凝土板 的单元类型(超单元、细分网格荷载、板单元等)均适 用,但板刚度仅导入到生成的Sta计算文件中,前处理 模型中并未导入刚度折减系数。 如果模型中不包含超单元、细分网格荷载,也可以 运行“File/接口输入/导入混凝土板刚度系数”把板刚度 直接导入模型板中,如图7所示。此时可通过图形参数 设置菜单查看板刚度折减系数,如图8所示,勾选“刚 度折减”选项即可进行查看。板刚度系数导入后,直接 保存Sta计算文件(此时不必勾选“读板刚度折减系数 (Plots)”选项)。 图8查看板刚度折减系数

悬挑板结构计算说明(新规范)

挑檐板配筋、裂缝及挠度计算原理 一、确定计算方法 因为板的配筋面积研究的是1米板宽 线荷载均为1米板宽的数值(b=1000mm) 挑檐采用雨篷构件的计算方法 二、确定荷载分类、统计数据 1.均布恒荷载标准值gk (kN/m) 板自重+板底板侧的抹灰、粉刷+找平、找坡(面层)+其他材料(轻质 材料如SBS防水、附加层、掺入的防水剂等可取) 材料容重参考:混凝土(kN/m3)25 纸筋石灰抹底(抹灰)(kN/m)16 水泥砂浆找平、找坡(面层)(kN/m3)20 C15细石混凝土(面层)(kN/m3)23 水泥砂浆粉刷墙面单位自重(kN/m2)=20×(厚)×2 2.均布活荷载标准值qk (kN/m) 取不上人屋面活荷标准值与雪荷载标准值的最大值 有翻边的(会产生积水)取积水荷载与以上值的最大值 归纳一句话即取活荷载、雪荷载、积水荷载较大值 注:不上人屋面活荷+(《楼梯阳台雨篷设计》第222页;《荷规》注:1 允许部分构件加) 积水荷载为1米板宽底板受到的积水线荷载 雪荷载标准值=基本值×μ r 取值见《荷规》表项次1 积雪分布系数μ r 3.集中恒荷载标准值Fgk (kN/m) 翻边+翻板自重(挑檐的翻边之上还有翻板)

4.施工检修集中荷载F (kN) 雨篷、挑檐取F=1kN 三、采取最不利的荷载组合 永久荷载控制的组合:P=+××q k 可变荷载控制的组合:P=+ 以上组合分别定义了不同的荷载分项系数γ g 与γ q 及组合值系数 没有集中恒荷载F gk 对弯矩的影响时只要取上述最大值 如有集中恒荷载F gk ,取两种组合下产生的最大弯矩的组合 四、进行弯矩计算 计算原则: 集中荷载F不与活荷载q同时考虑(算弯矩时不组合,并不是不考虑) M1=(γg·g k+γq·q k)l n2+F g·l n M2=γg·g k·l n2+F g·l n+1×l n M=max(M1,M2) 注:有集中恒荷载时M要计算两种荷载组合下M1、M2的值,取产生最大弯矩的荷载组合,荷载分项系数取相应组合下的。(这部分程序自动算)五、正截面受弯配筋 计算钢筋面积A S =M/γ S f y h (mm2) 内力臂系数γ S =(1+(1-2α S )1/2)/2 见《混凝土设计原理》P63 截面抵抗矩系数α S =M/α 1 f c bh 2 钢筋混凝土截面的弹塑性抵抗矩系数,见《混凝土设计原理》P63 等效矩形应力图计算系数α 1

板计算

板模板(扣件钢管高架)计算书 高支撑架的计算依据《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)、《混凝土结构设计规范》GB50010-2002、《建筑结构荷载规范》(GB 50009-2001)、《钢结构设计规范》(GB 50017-2003)等规范编制。 因本工程梁支架高度大于4米,根据有关文献建议,如果仅按规范计算,架体安全性仍不能得到完全保证。为此计算中还参考了《施工技术》2002(3):《扣件式钢管模板高支撑架设计和使用安全》中的部分内容。 一、参数信息: 1.模板支架参数 横向间距或排距(m):0.80;纵距(m):0.80;步距(m):1.20; 立杆上端伸出至模板支撑点长度(m):0.50;模板支架搭设高度(m):6.00; 采用的钢管(mm):Φ48×3.5 ; 扣件连接方式:双扣件,考虑扣件的保养情况,扣件抗滑承载力系数:0.80; 板底支撑连接方式:方木支撑; 2.荷载参数 模板与木板自重(kN/m2):0.350;混凝土与钢筋自重(kN/m3):25.000; 施工均布荷载标准值(kN/m2):2.500; 4.材料参数 面板采用胶合面板,厚度为10mm。 面板弹性模量E(N/mm2):9000;面板抗弯强度设计值(N/mm2):13; 板底支撑采用方木; 木方弹性模量E(N/mm2):9000.000;木方抗弯强度设计值(N/mm2):13.000; 木方抗剪强度设计值(N/mm2):1.400;木方的间隔距离(mm):300.000; 木方的截面宽度(mm):50.00;木方的截面高度(mm):100.00; 托梁材料为:钢管(双钢管) :Φ48 × 3.5; 5.楼板参数

现浇板跨中挠度的试验研究

现浇板跨中挠度的试验研究 【摘要】静载试验是检验现浇楼板工作性能常用的试验方法,在工程检测中应用广泛,但是静载试验测得的现浇楼板挠度值往往远小于规范限值,以致使人对试验结果的可靠性产生怀疑,本文对某厂房现浇楼板静载试验测得的挠度值与理论计算值进行对比分析,并结合相关规范验证了静载试验检测楼板跨中挠度结果的可靠性。 【关键词】现浇楼板;静载试验;挠度 1. 引言静载试验是结构试验中最基本和最大量的试验,它具有所需的技术与设备比较简单,操作方便,加载过程易于控制,对所检结构构件五破坏性,可实时观测结构的变形等优点[1][2]。在对现浇楼板结构进行静载试验时,楼板裂缝的发展和挠度的变化是能较为直观反映楼板结构性能的实测指标,但是楼板挠度实测值往往远小于 《混凝土结构设计规范》(gb50010-2010)第332条受弯构件的 挠度限值,对于在工程中采用现浇板静载试验测得的楼板挠度来评判楼板的工作状态是否科学的争议,做为一线检测人员,笔者感触颇深。本文对某厂房现浇楼板的静载试验所测得的跨中挠度与理论计算值进行了对比,验证了静载试验检测楼板跨中挠度结果的可靠性。 2. 试验概况 图 1 试验楼板百分表布置图 杭州市余杭区某厂房为两层框架结构,二层部分楼板在浇注完毕养护期间发现板面有不同程度的不规则裂缝,裂缝宽度约为0.1?0.3mm裂缝最大深度约为30mm因此选用静载试验来检测楼板的工作

状况。该试验为非破坏性结构性能试验,试验目的是检验现浇楼板是否处于正常工作状态,故试验加载取荷载标准值。试验楼板厚度为 120mm尺寸为3750mr H 3600mm如图1所示。由于试验楼板尚未进行板面找平和板底粉刷处理,故试验加载包括楼板活荷载、相关楼层结构找平层及板底粉刷层作用的荷载,共计 4.3k n/m 2。 板面共划分为间距为100mm的16块区格,在板底共安装5只百分表以检测楼板的挠度,见图1。试验采用多孔砖均布加载方式进行,荷载共分6级,首先每级荷载按试验荷载的20%递加,加载时间间隔为15min,百分表读数完成后进行下一级试验加载,加至80%后按试验荷载的10%递加,最后加载至100%待荷载持续30min后读取短期试验荷载变形]3]。试验过程中无可视性裂缝出现,各级外加荷载作用下百分表实测挠度见表1: 3?试验结果分析 3.1荷载标准组合下楼板挠度计算。 根据试验结果,在外加荷载作用下实测现浇楼板跨中挠度为 0.39mm 外加荷载为4.3kn/m 2,楼板自重3.0kn/m 2,则由 (1)按线弹性分析方法]4]计算楼板在全部荷载标准组合作用下 的挠度为0.66mm f=q s+q gq sf s (1)

玻璃强度与挠度计算

摘单片玻璃强度和挠度计算方法研究 作者:lixuecom标签:幕墙设计幕墙施工建筑设计建筑方案2010-04-30 23:04 星期五晴 一、前言 目前国内涉及玻璃强度、挠度计算的标准有JGJ102-96《玻璃幕墙工程技术规范》、JGJ113-97《建筑玻璃应用技术规程》、上海市地方标准DBJ08-56-96《建筑幕墙工程技术规程(玻璃幕墙分册)》。JGJ102-96、DBJ08-56-96(以下简称现行国标)对单片玻璃强度计算均有规定,根据有关试验资料在一定范围内强度计算偏于保守。DBJ08-56-96对单片玻璃的挠度有规定,根据有关试验资料挠度实测值与计算值有相当大偏差。 我们希望通过试验数据对比研究,建立较完善的幕墙玻璃强度和挠度计算理论。 二、试验概况和研究内容 (一)试验概况 1. 试验样品玻璃品种包括浮法、半钢化、钢化玻璃,支承条件以四边支撑为主。试验样品约六十片,玻璃厚度以玻璃幕墙工程常用的6mm、8mm、10mm为主。 2. 试验方法通过对四边支撑的玻璃板块在侧向均布荷载作用下的试验,研究其跨中挠度、最大应力的变化规律。检验过程参照ASTM-E998进行,将玻璃板块安装在测试箱体上。试验过程中采集的数据包括控制点的应变值和跨中挠度值。 (二)研究内容和方法 1. 通过以上较为典型的玻璃板块在侧向荷载作用下的的应力和挠度试验,研究单片玻璃在侧向荷载作用下的应力和挠度变化规律。采取四边支承方式进行玻璃侧向荷载的试验,采集的数据主要包括控制点的应变和跨中挠度。 2. 运用薄板弹性弯曲理论,通过有限元方法计算四边支承玻璃的最大应力和跨中挠度,并与试验数据进行对比,从而建立合理的玻璃应力和挠度计算方法,为玻璃结构性能的理论分析建立合适的计算模型。 3. 由较合理的玻璃有限元计算模型,计算大量的不同厚度、长宽比的玻璃最大应力和跨中挠度,拟合玻璃应力和挠度公式。 通过以上试验和研究,建立单片玻璃较完整的计算方法,弥补现行幕墙玻璃规范中的不足之处、为使用中幕墙玻璃的评估提供理论依据。 三、试验结果分析 (一)单片玻璃强度和挠度研究 1. 试验实测数据与现行规范计算值的对比 现行规范(JGJ102-96、DBJ08-56-96)采用小挠度理论来计算玻璃最大应力和跨中挠度。 试验实测数据与现行规范计算值对比结果显示现行规范计算结果与试验结果误差相当大。现行规范计算应力与实测应力的误差波动范围在-9.80%~142.64%,其中负偏差占4.55%,负偏差平均值为-7.14%;正偏差占95.45%,正偏差平均值为59.06%。上海地方标准计算挠度与实测挠度的误差波动范围在3.57%~167.72%,均为正偏差,误差平均值为74.60%。 2. 大挠度计算方法研究

板受力计算

扣件钢管楼板模板支架计算书 计算依据《建筑施工模板安全技术规范》(JGJ162-2008)。 计算参数: 钢管强度为205.0 N/mm2,钢管强度折减系数取1.00。 模板支架搭设高度为5.2m, 立杆的纵距 b=1.20m,立杆的横距 l=1.20m,立杆的步距 h=1.50m。 面板厚度15mm,剪切强度1.4N/mm2,抗弯强度15.0N/mm2,弹性模量6000.0N/mm2。木方50×100mm,间距300mm, 木方剪切强度1.3N/mm2,抗弯强度13.0N/mm2,弹性模量9000.0N/mm2。 模板自重0.20kN/m2,混凝土钢筋自重25.10kN/m3,施工活荷载2.50kN/m2。 扣件计算折减系数取1.00。 图1 楼板支撑架立面简图

图2 楼板支撑架荷载计算单元 按照模板规范4.3.1条规定确定荷载组合分项系数如下: 由可变荷载效应控制的组合S=1.2×(25.10×0.12+0.20)+1.40×2.50=7.354kN/m2 由永久荷载效应控制的组合S=1.35×25.10×0.12+0.7×1.40×2.50=6.516kN/m2 由于可变荷载效应控制的组合S最大,永久荷载分项系数取1.2,可变荷载分项系数取1.40 采用的钢管类型为φ48×3.0。 一、模板面板计算 面板为受弯结构,需要验算其抗弯强度和刚度。模板面板的按照三跨连续梁计算。 考虑0.9的结构重要系数,静荷载标准值q1 = 0.9×(25.100×0.120×1.200+0.200×1.200)=3.469kN/m 考虑0.9的结构重要系数,活荷载标准值 q2 = 0.9×(0.000+2.500)×1.200=2.700kN/m 面板的截面惯性矩I和截面抵抗矩W分别为: 本算例中,截面惯性矩I和截面抵抗矩W分别为: W = 120.00×1.50×1.50/6 = 45.00cm3; I = 120.00×1.50×1.50×1.50/12 = 33.75cm4; (1)抗弯强度计算 f = M / W < [f] 其中 f ——面板的抗弯强度计算值(N/mm2);

楼板强度的计算

楼板强度的计算 (1)计算楼板强度说明 验算楼板强度时按照最不利考虑,楼板的跨度取8.400m,梁板承受的荷载按照线均布考虑。 宽度范围内配筋2级钢筋,配筋面积A s=3696.0mm2,f y=300.0N/mm2。 板的截面尺寸为 b×h=5600mm×220mm,截面有效高度 h0=200mm。 按照楼板每12天浇筑一层,所以需要验算12天、24天、36天...的 承载能力是否满足荷载要求,其计算简图如下: (2)计算楼板混凝土12天的强度是否满足承载力要求 楼板计算长边7.00m,短边7.00×0.80=5.60m, 楼板计算范围内摆放8×7排脚手架,将其荷载转换为计算宽度内均布荷载。 第2层楼板所需承受的荷载为

q=1×1.20×(0.20+25.10×0.22)+ 1×1.20×(0.50×8×7/7.00/5.60)+ 1.40×(0.00+ 2.50)=11.22kN/m2 计算单元板带所承受均布荷载q=5.60×11.22=62.83kN/m 板带所需承担的最大弯矩按照四边固接双向板计算 M max=0.0664×ql2=0.0664×62.82×5.602=130.82kN.m 按照混凝土的强度换算 得到12天后混凝土强度达到74.57%,C40.0混凝土强度近似等效为C29.8。 混凝土弯曲抗压强度设计值为f cm=14.22N/mm2 则可以得到矩形截面相对受压区高度: ξ= A s f y/bh0f cm = 3696.00×300.00/(5600.00×200.00×14.22)=0.07 查表得到钢筋混凝土受弯构件正截面抗弯能力计算系数为 αs=0.067 此层楼板所能承受的最大弯矩为: M1=αs bh02f cm = 0.067×5600.000×200.0002×14.2×10-6=213.4kN.m 结论:由于∑M i = 213.38=213.38 > M max=130.82 所以第12天以后的各层楼板强度和足以承受以上楼层传递下来的荷载。 第2层以下的模板支撑可以拆除。 钢管楼板模板支架计算满足要求!

按简支单向板计算长边方向的挠度

按简支单向板计算长边方向的挠度,并应分别按荷载标准值和荷载准永久值组合。 4 5360 385ql l B ω= ≤ 要求: 荷载组合(一个波宽内): 标准组合:()3.5420.2 1.108kN/m s q =+?= 准永久组合:()3.540.520.20.908kN/m sq q =+??= 刚度( )l s 2 2 c c n n s s o n E : 121() s B B B B B B B B E I I I A x h I A h x α=====? ?'''=+-++-??? ?标准组合:准永久组合: 其中: c c E s o n c E s s E s A h A h x A A E E ααα'+'= += 由已知条件得: s E c c n 3 2 3 2 c 2060008.08 25500 7616000768.08205.21129 79m m 160008.08205.211801702008020080(76)58705870( 7) 12 2 12 2 E E h m m x I α= =='=?+??'==+?= ??+??- + ??+??+ ()23 64 48487027025741.4810m m 35 2 ???+?+ ?+=?? ??? ()2 25 4 1 414800001600(7976)10064000.2205.21109798.085210m m I ??= +?-+?+?-? ?=? 59s 2060005210 1.0710B E I ∴==??=?2 kN mm ?

在荷载标准组合下: 4 4 4 555 1.08 3.939000.3m m 10.8m m 38438410700 360 360 384ql ql l B B ω??= = = =< = =? 在准永久组合下: 4 4 550.908 3.939000.26mm 10.8mm 38438410700 360 360 ql l B ω??= = =< = =? 满足要求 9.1.7 自振频率计算 仅考虑恒载作用下组合板的挠度: 32hz>15hz, ω= = =满足。 另外,在压型钢板的顶面必须焊接横向短钢筋以保证压型钢板与混凝土层共同工作。圆头焊钉应穿过压型钢板焊于钢梁上,只作为压型钢板与混凝土层的抗剪储备,满足构造要求,本设计选用M19的焊钉。 9.2 组合次梁设计

相关主题