搜档网
当前位置:搜档网 › AD620与AD705构成的微弱信号放大电路仿真

AD620与AD705构成的微弱信号放大电路仿真

AD620与AD705构成的微弱信号放大电路仿真
AD620与AD705构成的微弱信号放大电路仿真

AD620与AD705构成的电路仿真

AD620是一款仪表放大器,在微弱信号采集方面有着优秀的性能。具体电路形式如图1所示。

图1AD620+AD705仿真电路

从图1可以看出,AD620的5脚接了一个射随器,这样可以保证高阻抗输入。实际中,AD620的输出端电压值等于输入差分信号乘以放大倍数然后加上5脚的电压值。如果5脚的参考电压值等于0,AD620的输出电压值就直接等于输入差分信号乘以放大倍数。下面通过仿真来看看AD620的输出到底是多少?

仿真结果如图2所示。从仿真结果可以看出AD620的放大100倍以后的信号为29.679mV。输入差分信号值是多少呢?接下来请看图3。AD620差分信号如图3所示。

图2 AD620电路输出仿真结果

图3 AD620输入差分信号值

将图2的结果与图3对比,可以可以看出,AD620的输出信号要大于其放大100倍的输入信号。为什么结果会稍微有点大呢?原因就是AD705的输出不为零。AD705的输出结果如图4所示。

图4 AD705的输出结果

微小信号采集电路的设计与研究

微小信号采集电路的设计与研究 刘文光 牛荣军 陈扬枝 摘要 介绍微小信号采集电路的硬件、软件设计和工作原理,将采集到的微小信号放大后进行A/D转换,并通过串行通信方式传送到上位机,以便对信号进行分析处理。经对所制作微小信号采集电路的试验测试,测试结果显示,采集电路性能满足设计要求。 关键词:微小信号 采集 模数转换 中图分类号:TP24 文献标识码:A 文章编号:1671—3133(2005)07—0101—03 D esi gn and study on the c i rcu it for collecti n g ti n y si gna l L i u W enguang,N i u Rongjun,Chen Yangzh i Abstract The design of hard ware and s oft w are of the circuit f or collecting tiny signal and its operating p rinci p le has been intr o2 duced.So as t o analyze and deal with the signal,the collected tiny signal has been ADC after a mp lified,and send it t o the PC thr ough UART.After testing experi m ent on the circuit of collecting tiny signal,the results turn out that the perfor mance of the cir2 cuit f or collecting can reach t o the request of design. Keywords:T i n y si gna l Collecti on ADC 医用人体管道微机器人是当前国际微机械电子技术研究的一个热点,其研究难点在于微机器人的驱动方法及其驱动装置。笔者采用一种新型的轮式驱动方法及其驱动装置设计了管道微机器人的模型样机(如图1所示)。该驱动方法通过弹性啮合与摩擦耦合组合传动的方式使微机器人运动。目前微机器人已经顺利通过直径<20mm的塑料管道的实验,证明了该驱动方法及其驱动装置的原理可行性。因为微机器人采用的是一种新型的轮式驱动方法,该驱动方法最终要使用到医用人体管道微机器人,具体应用到人体肠胃道环境,其性能是否可靠需要进一步的理论与实验研究。同时管道微机器人采用的是直径为<8mm的微直流电动机为驱动源,其输出驱动力十分微小,如此大小的驱动力能否带动管道微机器人在人体肠道这种粘弹性环境中顺利运行,还需要对微机器人的驱动力进行测试与研究。由于管道微机器人驱动力的微小性,给测试与研究带来很大的困难。为了测试管道微机器人驱动力的大小,实验过程中利用悬臂梁式微小力传感器将微小力信号转换成微小电压信号。传感器输出的微小电压信号经过放大并A/D转换后直接送入微机进行计算、存储和显示。基于上述设计要求,本文对微小信号采集电路进行了设计和研究 。 图1 微机器人模型样机 1 采集电路的硬件设计 1.1 电路的组成与工作原理 采集电路主要包括放大电路、A/D转换和单片机三部分,组成框图如图2所示。其工作原理是:管道微机器人的驱动力作用在悬臂梁式微小力传感器上,传感器将微小力信号转换成微小电压信号。微小电信号输入到采集电路后,经过二级放大电路放大到0~5V,以满足A/D转换的需要,放大后的电压信号送入A/D 转换芯片ADS1286。AT89C51单片机根据ADS1286 4)在松开轴向锁定螺钉6时,螺钉不可松开过多,一般应控制在1/4~1/2圈内,以保证O形密封圈始终都处在压偏的密封状态下。 5 结语 可调偏心卡盘已在C620车床和曲柄磨床上使用,解决了695Q型柴油机曲轴等偏心件的生产问题。实践证明,使用效果良好。 参 考 文 献 1 顾维邦.金属切削机床概论[M].北京:机械工业出版社, 1991 2 陈万利.机械设备改装[M].北京:机械工业出版社,1997 3 陈永泰.机械制造技术实践.北京:机械工业出版社,2001 4 陆剑中.金属切削原理与刀具.北京:机械工业出版社,1999 作者通迅地址:湖南工学院(筹)西校区机械系(衡阳421101) 收稿日期:20050104  交叉学科:机械工程/生物医学?艺术造型

设计一个射频小信号放大器[1]要点

射 频 课 程 设 技 论 文 院系:电气信息工程学院 班级:电信2班 姓名:贾珂 学号:541101030211

1射频小信号放大器概述 射频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,所谓小信号,一是信号幅度足够小,使得所有有源器件(晶体三极管,场效应管或IC)都可采用二端口Y参数或线性等效电路来模型化;二是放大器的输出信号与输入信号成线性比例关系.从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 小信号放大器的分类:按元器件分为:晶体管放大器、场效应管放大器、集成电路放大器; 按频带分为:窄带放大器、宽带放大器; 按电路形式分为:单级放大器、多级放大器; 按负载性质分为:谐振放大器、非谐振放大器;. 小信号谐振放大器除具有放大功能外,还具有选频功能,即具有从众多信号中选择出有用信号,滤除无用的干扰信号的能力.从这个意义上讲,高频小信号谐振放大电路又可视为集放大,选频一体,由有源放大元件和无源选频网络所组成的高频电子电路.主要用途是做接收机的高频放大器和中频放大器. 其中射频小信号调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。其中最容易出现的问题是自激振荡,同时频率选择和各级间阻抗匹配也很难实现。本文以理论分析为依据,以实际制作为基础,用LC振荡电路为辅助,来消除高频放大器自激振荡和实现准确的频率选择;另加其它电路,实现放大器与前后级的阻抗匹配。2电路的基本原理 图2-1所示电路为共发射极接法的晶体管高频小信号单级单调谐回路谐振放大器。它不仅要放大高频信号,而且还要有一定的选频作用,因此,晶体管的集电极负载为LC并联谐振回路。在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响放大器输出信号的频率或相位。晶体管的静态工作点由电阻R b1、R b2及Re决定,其计算方法与低频单管放大器相同。

运放差分放大电路

差分放大电路 一. 实验目的: 1. 掌握差分放大电路的基本概念; 2. 了解零漂差生的原理与抑制零漂的方法; 3. 掌握差分放大电路的基本测试方法。 二. 实验原理: 1. 由运放构成的高阻抗差分放大电路 图为高输入阻抗差分放大器,应用十分广泛.从仪器测量放大器,到特种测量放大器,几乎都能见到其踪迹。 从图中可以看到A1、A2两个同相运放电路构成输入级,在与差分放大器A3串联组成三运放差分防大电路。电路中有关电阻保持严格对称,具有以下几个优点: (1)A1和A2提高了差模信号与共模信号之比,即提高了信噪比; (2)在保证有关电阻严格对称的条件下,各电阻阻值的误差对该电路的共模抑制比K CMRR 没有影响; (3)电路对共模信号几乎没有放大作用,共模电压增益接近零。 因为电路中R1=R2、 R3=R4、 R5=R6 ,故可导出两级差模总增益为: 3 5P 1p i2i1o vd R R R 2R R u u u A ???? ??+-=-= 通常,第一级增益要尽量高,第二级增益一般为1~2倍,这里第一级选择100倍,第二级为1倍。则取R3=R4=R5=R6=10K Ω,要求匹配性好,一般用金属膜精密电阻,阻值可在10K Ω~几百K Ω间选择。则 A vd =(R P +2R 1)/R P 先定R P ,通常在1K Ω~10K Ω内,这里取R P =1K Ω,则可由上式求得R 1=99R P /2=49.5K Ω 取标称值51K Ω。通常R S1和R S2不要超过R P /2,这里选R S1= R S2=510,用于保护运放输入级。 A1和A2应选用低温飘、高K CMRR 的运放,性能一致性要好。 三. 实验内容 1. 搭接电路 2. 静态调试

微弱信号的检测方案设计

微弱信号的检测方案设计 一、原理分析 针对微弱信号的检测的方法有很多,比如滤波法、取样积分器、锁相放大器等。下面就针对这几种方法做一简要说明。 方案一:滤波法。 在大部分的检测仪器中都要用到滤波方法对模拟信号进行一定的处理,例如隔离直流分量,改善信号波形,防止离散化时的波形混叠,克服噪声的不利影响,提高信噪比等。常用的噪声滤波器有:带通、带阻、高通、低通等。但是滤波方法检测信号不能用于信号频谱与噪声频谱重叠的情况,有其局限性。虽然可以对滤波器的通频带进行调节,但其噪声抑制能力有限,同时其准确性与稳定性将大打折扣。 方案二:取样积分器 取样积分法是利用周期性信号的重复特性,在每个周期内对信号的一部分取样一次,然后经过积分器算出平均值,于是各个周期内取样平均信号的总体便呈现出待测信号的真实波形。由于信号的取样是在多个周期内重复进行的,而噪声在多次重复的统计平均值为零,所以可大大提高信噪比,再现被噪声淹没的波形。 其系统原理图如图2-1所示。 Vo(t) Vr(t)

一个取样积分器的核心组件式是取样门和积分器,通常采用取样脉冲控制RC 积分器来实现,使在取样时间内被取样的波形做同步积累,并将累积的结果保持到下一次取样。 取样积分器通常有定点式和扫描式两种工作模式。定点式是测量周期信号的某一瞬态平均值,经过m 次取样平均后,其幅值信噪比改善为ni si n s V V m V V ;扫描式取样积分器利用取样脉冲在信号波形上延时取样,可用于恢复与记录被测信号的波形,由于其采样过程受到门脉冲宽度的限制,只有在门宽范围内才能被取样。 方案三:锁相放大器 锁相放大器也称为锁定放大器(Lock-In-Amplifier,LIA )。它主要作为一个极窄的带通滤波器的作用,而非一般的滤波器。它的原理是基于信号与噪声之间相关特性之间的差异。锁相放大器即是利用互相关原理设计的一种同步相关检测仪,利用参考信号与被测信号的互相关特性,提取出与参考信号同相位和同频率的被测信号。锁定放大器可在比被测信号强100dB 的噪声干扰中检测出有用信号。其原理框图如图2-3。 锁相放大器的核心部件是鉴相器,它实现了被测信号与参考信号的互相关运算。它把输入信号与参考信号进行比较,当两个信号相位完全 放大器 带通滤波 鉴相器 低通滤波器 移相器 本地振荡器 Vs(t)+Vn(t V o

一些经典的滤波电路

有源滤波电路 滤波器的用途 滤波器是一种能使有用信号通过,滤除信号中无用频率,即抑制无用信号的电子装置。 例如,有一个较低频率的信号,其中包含一些较高频率成分的干扰。

有源滤波器实际上是一种具有特定频率响应的放大器。它是在运算放大器的基础上增加一些R 、C 等无源元件而构成的。 低通滤波器(LPF ) 高通滤波器(HPF ) 带通滤波器(BPF ) 带阻滤波器(BEF )有源滤波电路的分类

低通滤波器的主要技术指标 (1)通带增益A v p 通带增益是指滤波器在通频带内的电压放大倍数,性能良好的LPF通带内的幅频特性曲线是平坦的,阻带内的电压放大倍数基本为零。(2)通带截止频率f p 其定义与放大电路的上限截止频率相同。通带与阻带之间称为过渡带,过渡带越窄,说明滤波器的选择性越好。

一阶有源滤波器 电路特点是电路简单,阻 带衰减太慢,选择性较差。 1 01R R A A f VF + == ) (11)(s V SRC s V i P ?? +=∴SRC A s V s V s A VF +==11 )()()(0S A =02.传递函数 当 f = 0时,电容视为开路,通带内的增益为1.通带增益

3. 幅频响应 一阶LPF 的幅频特性曲线 ) (1)()()(0 0n i j A j V j V j A ωωωωω+= =n i S A s V s V s A ω+= =1)()()(0 02 0) (1) () ()(n i A j V j V j A ωωωωω+= =

简单二阶低通有源滤波器 为了使输出电压在高频段以更快的速率下降,以改善滤波效果,再加一节RC低通滤波环节,称为二阶有源滤波电路。它比一阶低通滤波器的滤波效果更好。 二阶LPF二阶LPF的幅频特性曲线

换能器前置放大电路设计

项目支持:北京市科技攻关项目,农业节水灌溉监测与控制设备研制与开发(D0706007040191)国家“十一五”科技支撑计划农产品流通过程信息化关键技术与系统研发(2006BAD10A04) 国家“十一五”科技支撑计划灌区地下水开发利用关键技术(2006BAD11B05) 微弱信号检测的前置放大电路设计 张石锐1,2,郑文刚2*,黄丹枫1,赵春江2 (1.上海交通大学农业与生物学院上海市 200240 2.国家农业信息化工程技术研究中心北京市 100097) 摘要:针对精准农业中对微弱信号检测的技术需求,论文设计了以电流电压转换器,仪表放大器和低通滤波器为主要结构的微弱信号检测前置放大电路。结合微弱信号的特点讨论了电路中噪声的抑制和隔离,提出了电路元件的选择方法与电路设计中降低噪声干扰的注意事项。本文利用集成程控增益仪表放大器PGA202设计了微弱信号检测前置放大电路,并利用微弱低频信号进行了测试,得到了理想的效果。 关键字:精准农业、微弱信号检测、仪表放大器、前置放大电路 中图分类号:TN721.5 文献标识码:A The design of preamplifier circuit based on weak signal detection ZHANG Shi-rui1,2,ZHENG Wen-gang2,HUANG Dan-feng1,ZHAO Chun-jiang2 (1. School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China 2. National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China) Abstract:Combined with the demand of the detection of weak signal in precision agriculture, the article introduced the circuit principle of deigning preamplifier circuit whit I/V Conversion level, instrumentation amplifier level and low-pass filter level. At the same time the article discussed the circuit's noise suppression and isolation according to the characteristics of the weak signal, and gave the method of choosing elements and noise reduction. Finally, gave the design of the weak signal detection pre-amplifier using the program-controlled integrated instrumentation amplifier PGA202. Key words: precision agriculture ,weak signal detection, instrumentation amplifier, preamplifier 1、引言 精准农业主要是依据实时获取的农田环境和农作物信息,对农作物进行精确的灌溉、施肥、喷药,最大限度地提高水、肥和药的利用效率,减少环境污染,获得最佳的经济效益和生态效益[1]。农田环境和农作物信息的准确获取取决于可靠的生物传感技术。如常规精准灌溉主要关注空气的温度、湿度和土壤的含水量,利用这些参数的变化控制对农作物的灌溉,而作物自身产生的一些信号能够更准确的反映其自身的生理状况,通过检测这些信号控制灌溉可以使灌溉更精确。目前精准灌溉技术正朝着以环境信息和农作物生理信息相结合为控制依据的方向发展,为此各种生物传感器如植物电信号传感器、植物茎流传感器等应运而生。但一般作物自身生理状况产生的信号极其微弱,往往电流信号只能达到纳安级,电压信号也只能达到微伏级。为有效的利用这些信号,应首先对其进行调理,本文根据植物生理信号的特点设计了适合此类微弱信号检测的前置放大电路。 2、电路基本结构 生物传感器所产生的信号一般为频率较低的微弱信号,检测不同的植物生理参数,可能得到电压或电流信号。对于电流信号,应首先把电流信号转换成为电压信号,通过放大电路的放大,最后利用低通滤波器,滤除混杂在信号中的高频噪声。微弱信号检测前置放大电路的整体结构如图1。

差分运放

差分接法:差分放大电路(图3.8a.4)的输入信号是从集成运放的反相和同相输入端引入,如果反馈电阻RF等于输入端电阻R1 ,输出电压为同相输入电压减反相输入电压,这种电路也称作减法电路。 图3.8a.4 差分放大电路 差分放大器 如图所示,通过采用两个输入,该差分放大器产生的输出等于U1和U2之差乘以增益系数

运算放大器的单电源供电方法 梦兰 大部分运算放大器要求双电源(正负电源)供电,只有少部分运算放大器可以在单电源供电状态下工作,如LM358(双运放)、LM324(四运放)、CA3140(单运放)等。需要说明的是,单电源供电的运算放大器不仅可以在单电源条件下工作,也可在双电源供电状态下工作。例如,LM324可以在、+5~+12V单电源供电状态下工作,也可以在+5~±12V双电源供电状态下工作。 在一些交流信号放大电路中,也可以采用电源偏置电路,将静态直流输出电压降为电源电压的一半,采用单电源工作,但输入和输出信号都需要加交流耦合电容,利用单电源供电的反相放大器如图1(a)所示,其运放输出波形如图1(b)所示。 该电路的增益Avf=-RF/R1。R2=R3时,静态直流电压Vo(DC)=1/2Vcc。耦合电容Cl和C2的值由所需的低频响应和电路的输入阻抗(对于C1)或负载(对于C2)来确定。Cl及C2可由下式来确定:C1=1000/2πfoRl(μF);C2=1000/2πfoRL(μF),式中,fo是所要求最低输入频率。若R1、RL单位用kΩ,fO用Hz,则求得的C1、C2单位为μF。一般来说,R2=R3≈2RF。 图2是一种单电源加法运算放大器。该电路输出电压Vo=一RF(V1/Rl十V2/R2十V3/R3),若R1=R2=R3=RF,则Vo=一(V1十V2十V3)。需要说明的是,采用单电源供电是要付出一定代价的。它是个甲类放大器,在无信号输入时,损耗较大。

测控电路课后习题汇总

习题参考答案 (时间仓促,难免有误,请指正,谢谢!) 1-3试从你熟悉的几个例子说明测量与控制技术在生产、生活与各种工作中的广泛应用。 为了加工出所需尺寸、形状的高精度零件,机床的刀架与主轴必须精确地按所要求的轨迹作相对运动。为了炼出所需规格的钢材,除了严格按配方配料外,还必须严格控制炉温、送风、冶炼时间等运行规程。为了做到这些,必须对机器的运行状态进行精确检测,当发现它偏离规定要求,或有偏离规定要求的倾向时,控制它,使它按规定的要求运行。 计算机的发展首先取决于大规模集成电路制作的进步。在一块芯片上能集成多少个元件取决于光刻工艺能制作出多精细的图案,而这依赖于光刻的精确重复定位,依赖于定位系统的精密测量与控制。航天发射与飞行,都需要靠精密测量与控制保证它们轨道的准确性。 一部现代的汽车往往装有几十个不同传感器,对点火时间、燃油喷射、空气燃料比、防滑、防碰撞等进行控制。微波炉、照相机、复印机等中也都装有不同数量的传感器,通过测量与控制使其能圆满地完成规定的功能。 1-4测控电路在整个测控系统中起着什么样的作用? 传感器的输出信号一般很微弱,还可能伴随着各种噪声,需要用测控电路将它放大,剔除噪声、选取有用信号,按照测量与控制功能的要求,进行所需演算、处理与变换,输出能控制执行机构动作的信号。在整个测控系统中,电路是最灵活的部分,它具有便于放大、便于转换、便于传输、便于适应各种使用要求的特点。测控电路在整个测控系统中起着十分关键的作用,测控系统、乃至整个机器和生产系统的性能在很大程度是取决于测控电路。 1-5影响测控电路精度的主要因素有哪些,而其中哪几个因素又是最基本的,需要特别注意? 影响测控电路精度的主要因素有: (1)噪声与干扰; (2)失调与漂移,主要是温漂; (3)线性度与保真度; (4)输入与输出阻抗的影响。 其中噪声与干扰,失调与漂移(含温漂)是最主要的,需要特别注意。 1-7为什么说测控电路是测控系统中最灵活的环节,它体现在哪些方面? 为了适应在各种情况下测量与控制的需要,要求测控系统具有选取所需的信号、灵活地进行各种变换和对信号进行各种处理与运算的能力,这些工作通常由测控电路完成。它包括: (1)模数转换与数模转换; (2)直流与交流、电压与电流信号之间的转换。幅值、相位、频率与脉宽信号等之间的转换; (3)量程的变换; (4)选取所需的信号的能力,信号与噪声的分离,不同频率信号的分离等; (5)对信号进行处理与运算,如求平均值、差值、峰值、绝对值,求导数、积分等、

通信电子电路课程设计小信号放大器

通信电子线路课程设计-- 高频小信号谐振放大器 学校: 姓名: 学号: 班级: 指导老师:

目录 一、刖言 (3) 二、电路基本原理................................................. .3 三、主要性能指标及测量方法....................................... .5 1谐振频率 (7) 2、电压增益 (7) 3、通频带 (8) 4、矩形系数 (9) 四、设计方案 (10) 1设置静态工作点 (10) 2、计算谐振回路参数 (10) 3、电路图、仿真图和PCB图 (11) 五、电路装调与测试.......................................... ??13 六、心得体会................................................. ??14 七、参考文献............................................... ???15

一、前言高频调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。其中最容易出现问题是自激震荡,同时频率选择和各级建阻抗匹配也恶化你难实现。 Protel DXP 软件能实现从电学概念设计到输出物理生产数据,以及这之间的所有分析、验证、和设计数据管理。今天的Protel DXP 软件已不是单纯的PCB 设计工具,而是一个系统,它覆盖了以PCB 为核心的全部物理设计。使用Protel、等计算机软件对产品进行辅助 设计在很早以前就已经成为了一种趋势,这类软件的问世也极大地提高了设计人员在机械、电子等行业的产品设计质量与效率。 通过《通信电子线路》的学习,使用Protel DXP 软件设计了一个高频小信号放大器。 二、电路的基本原理高频小信号放大器的功用就是五失真的放大某一频率范围内的信号。按其频带宽度可以分为窄带和宽带放大器。高频小信号放大器是通信电子设备中常用的功能电路,它所放大的信号频率在数百千赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。

信号放大滤波电路设计

中北大学 课程设计说明书 学生姓名:罗再兵学号: 0906044151 学院: 电子与计算机科学技术学院 专业: 电子科学与技术 题目: 信号放大滤波电路设计 指导教师:孟令军职称: 副教授 2011 年 12 月 30日

目录 1、设计任务 (2) 2、设计目的 (2) 3、设计方案 (2) 4、参考电路设计与分析 (3) 4.1、同相比例放大器 (3) 4.2、二阶压控电压源低通滤波器 (3) 4.3、二阶压控电压源高通滤波器 (4) 5、信号放大滤波电路 (5) 5.1信号放大滤波电路设计 (5) 5.2信号放大滤波电路仿真 (6) 5.3信号放大滤波电路性能评估 (8) 5.4信号放大滤波电路PCB板图 (8) 6、设计仪器设备 (9) 7、设计心得 (9)

一. 设计任务 1、查阅熟悉相关芯片资料; 2、选择合适的运算放大器,实现信号的3级放大;总放大倍数为12; 3、并通过高通、低通滤波电路滤波; 4、利用PROTEL 绘制电路原理图和印刷板图,并利用multisim 软件仿真。 二. 设计目的 1、掌握电子电路的一般设计方法和设计流程。 2、学习使用PROTEL 软件绘制电路原理图和印刷版图。 3、掌握应用multisim 对设计的电路进行仿真,通过仿真结果验证设计的 正确性。 三.设计方案 由设计题目和设计要求可知,设计此电路需要用到集成运算放大器和高 低通滤波电路,首先信号放大12倍,我们选用同相比例放大器放大,该电路结构简单,性能良好;滤波电路部分我们选用典型的二阶压控电压源低通滤波器和二 阶压控电压源高通滤波器,该电路具有电路元件少,增益稳定,频率范围宽等优点。设计框架图如下: 信号输入 信号输出 图1 信号放大滤波电路设计方案 图1为信号放大滤波电路设计方案。在这一方案中,系统主要由同相比例放大器、二阶压控电压源低通滤波器、二阶压控电压源高通滤波器组成。 由于要求实现信号的3级放大,总放大倍数为12,信号经过同相比例放大器 后放大12倍,再经过二阶压控电压源低通滤波器(在通频带内增益等于1)过滤掉高频信号而留下所需频率信号,然后再经二阶高通滤波器(在通频带内增益等于1)后就可以得到我们所需频段的信号。 同相比例放大器 二阶压控电压源低通滤波器 二阶压控电压源高通滤波器

全差分运算放大器设计

全差分运算放大器设计 岳生生(200403020126) 一、设计指标 以上华0.6um CMOS 工艺设计一个全差分运算放大器,设计指标如下: ?直流增益:>80dB ?单位增益带宽:>50MHz ?负载电容:=5pF ?相位裕量:>60度 ?增益裕量:>12dB ?差分压摆率:>200V/us ?共模电压:2.5V (VDD=5V) ?差分输入摆幅:>±4V 二、运放结构选择

运算放大器的结构重要有三种:(a )简单两级运放,two-stage 。如图2所示;(b )折叠共源共栅,folded-cascode 。如图3所示;(c )共源共栅,telescopic 。如图1的前级所示。本次设计的运算放大器的设计指标要求差分输出幅度为±4V ,即输出端的所有NMOS 管的,DSAT N V 之和小于0.5V ,输出端的所有PMOS 管的,DSAT P V 之和也必须小于0.5V 。对于单级的折叠共源共栅和直接共源共栅两种结构,都比较难达到该 要求,因此我们采用两级运算放大器结构。另外,简单的两级运放的直流增益比较小,因此我们采用共源共栅的输入级结构。考虑到折叠共源共栅输入级结构的功耗比较大,故我们选择直接共源共栅的输入级,最后选择如图1所示的运放结构。两级运算放大器设计必须保证运放的稳定性,我们用Miller 补偿或Cascode 补偿技术来进行零极点补偿。 三、性能指标分析 1、 差分直流增益 (Adm>80db) 该运算放大器存在两级:(1)、Cascode 级增大直流增益(M1-M8);(2)、共源放大器(M9-M12) 第一级增益 1 3 5 11 1357 113 51 3 57 5 3 ()m m m o o o o o m m m m o o o o m m g g g g g g G A R r r r r g g r r r r =-=-=-+ 第二级增益 9 2 2 9112 9 9 11 ()m o o o m m o o g g G A R r r g g =-=-=- + 整个运算放大器的增益: 4 1 3 5 9 1 2 1 3 5 7 5 3 9 11 (80)10m m m m overall o o o o m m o o dB g g g g A A A g g g g r r r r = = ≥++ 2、 差分压摆率 (>200V/us ) 转换速率(slew rate )是大信号输入时,电流输出的最大驱动能力。 定义转换速率SR :

微弱信号检测的前置放大电路设计

微弱信号检测的前置放大电路设计 摘要:针对精准农业中对微弱信号检测的技术需求,论文设计了以电流电压转换器,仪表放大器和低通滤波器为主要结构的微弱信号检测前置放大电路。结合微弱信号的特点讨论了电路中噪声的抑制和隔离,提出了电路元件的选择方法与电路设计中降低噪声干扰的注意事项。本文利用集成程控增益仪表放大器PGA202设计了微弱信号检测前置放大电路,并利用微弱低频信号进行了测试,得到了理想的效果。 1、引言 精准农业主要是依据实时获取的农田环境和农作物信息,对农作物进行精确的灌溉、施肥、喷药,最大限度地提高水、肥和药的利用效率,减少环境污染,获得最佳的经济效益和生态效益[1]。农田环境和农作物信息的准确获取取决于可靠的生物传感技术。如常规精准灌溉主要关注空气的温度、湿度和土壤的含水量,利用这些参数的变化控制对农作物的灌溉,而作物自身产生的一些信号能够更准确的反映其自身的生理状况,通过检测这些信号控制灌溉可以使灌溉更精确。目前精准灌溉技术正朝着以环境信息和农作物生理信息相结合为控制依据的方向发展,为此各种生物传感器如植物电信号传感器、植物茎流传感器等应运而生。但一般作物自身生理状况产生的信号极其微弱,往往电流信号只能达到纳安级,电压信号也只能达到微伏级。为有效的利用这些信号,应首先对其进行调理,本文根据植物生理信号的特点设计了适合此类微弱信号检测的前置放大电路。 2、电路基本结构 生物传感器所产生的信号一般为频率较低的微弱信号,检测不同的植物生理参数,可能得到电压或电流信号。对于电流信号,应首先把电流信号转换成为电压信号,通过放大电路的放大,最后利用低通滤波器,滤除混杂在信号中的高频噪声。微弱信号检测前置放大电路的整体结构如图1。 考虑到传感器产生的信号非常微弱,很容易受到噪声的污染,所以放大电路选择仪表放大器结构。仪表放大器拥有差分式结构,对共模噪声有很强的抑制作用,同时拥有较高的输入阻抗和较小的输出阻抗,非常适合对微弱信号的放大。另外为了使输出电压在高频段以更快的速度下降,提高低通滤波器滤除噪声的能力,这里选择了二阶低通滤波器。微弱信号检测前置放大电路原理图如图2。生物传感器产生的生物信号通常具有很大的动态范围,达到几个数量级,原理图中R2 为可变电阻,通过改变R2 的阻值,可以改变仪表放大器的放大倍数,从而适应放大不同大小的微弱信号。

自动调零输出的运放

自动调零运算放大器——便携式信号调理应用固有的优点(图) 作者:Microchip Technology公司Kevin Tretter 日期:2009-3-17 来源:本网 字符大小:【大】【中】【小】乍一看,“自动调零”运算放大器好像是个新术语,但事实上这一概念已存在几十年了。本文将探讨自动调零运放的历史,并将大致描述该架构。此外,本文还将探讨该架构在信号调理应用中固有的优点。最后还将分析一个应用示例,以进一步比较自动调零运放的架构与传统运放的架构。 简史 斩波放大器已诞生几十年了,追溯起来将近有60年。斩波放大器的发明是为了满足极低失调、低漂移运放的需要。在那时,斩波放大器的性能比双极型运放优越。原始斩波放大器的输入和输出由开关控制(或斩波),对输入信号进行调制,校正失调误差,然后在输出时解调。该技术可确保失调电压和漂移很低,但也有其局限。由于要对放大器的输入进行采样,因此输入信号的频率必须低于斩波频率的一半,以避免混叠。除了带宽限制外,斩波操作还会导致出现显著毛刺,需要在输出端进行滤波,以滤除所造成的纹波。 作为下一代自校正放大器代表的斩波稳态运放使斩波放大器的性能获得了极大改进。该架构使用了两个放大器:“主”放大器和“调零”放大器,如图1所示。调零放大器通过将输入端短路并对其自身的调零引脚施加校正信号来校正其自身的失调误差,随后监视并校正主放大器的失调。因为主放大器始终连接到IC的输入和输出,因此输入信号的带宽由主放大器的带宽决定,而不再取决于斩波频率。这一特性使该架构相对于早期的斩波放大器有很大的优势。开关操作造成的电荷注入仍是个问题,这可能导致信号瞬变,并且注入的电荷会与输入信号耦合,造成互调失真。 图1简化的斩波稳态功能框图 自动调零架构在概念上与斩波稳态放大器相似,即有一个调零放大器和一个主放大器。但是,经过了多年的重大

高频小信号放大电路课程设计

通信基本电路课程设计报告设计题目:高频小信号放大电路 专业班级 学号 学生姓名 指导教师 教师评分

目录 一、设计任务与要求 (2) 二、总体方案 (2) 三、设计内容 (2) 3.1电路工作原理 (3) 3.1.1 电路原理图 (3) 3.1.2 高频小信号放大电路分析 (3) 3.2 主要技术指标 (6) 3.3仿真结果与分析 (10) 四、总结及体会 (12) 五、主要参考文献 (13)

一、设计任务与要求 1、主要内容 根据高频电子线路课程所学内容,设计一个高频小信号谐振放大器。通过在电路设计中发现问题、解决问题,掌握小信号谐振放大器的基本设计方法,加深对该门课程的理论知识的理解,提高电子实践能力。 2、基本要求 设计一个小信号谐振放大器,主要技术指标为: (1) 谐振频率04MHz f =; (2) 谐振电压放大倍数04060dB v dB A ≤≤; (3) 通频带300Hz BW K =。 二、总体方案 小信号调谐放大器是各种电子设备、发射和接收机中广泛应用的一种电压放大器。其主要特点是晶体管的输入输出回路(即负载)不是纯电阻,而是由L 、C 元件组成的并联谐振回路。 小信号调谐放大器的类型很多,按调谐回路区分:有单调谐回路,双调谐回路和参差调谐回路放大器。按晶体管连接方法区分:有共基极、共发射极和共集电极放大器。 高频小信号谐振放大器的作用、电路组成、及工作原理,与低频小信号放大电路是基本一致的。不同的是:一是在高频小信号谐振放大器中,所放大信号的频率远比低频放大电路信号频率高;二是高频小信号谐振放大器的频宽是窄带(要求只放大某一中心频率的载波信号)。因此,首先在电路组成上应将低频放大电路中的低频三极管换成具有更高功率晶体管和LC 并联谐振回路。 三、设计内容 1.电路工作原理

高频小信号放大器的设计

高 频 小 信 号 放 大 器 设 计 学号:320708030112 姓名:杨新梅 年级:07电信本1班 专业:电子信息工程 指导老师:张炜 2008年12月3日

目录 一、选题意义 (3) 二、总体方案 (4) 三、各部分设计及原理分析 (7) 四、参数选择 (11) 五、实验结果 (17) 六、结论 (18) 七、参考文献 (19)

一、选题的意义 高频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 高频小信号放大器的分类: 按元器件分为:晶体管放大器、场效应管放大器、集成电路放大器; 按频带分为:窄带放大器、宽带放大器; 按电路形式分为:单级放大器、多级放大器; 按负载性质分为:谐振放大器、非谐振放大器; 其中高频小信号调谐放大器广泛应用于通信系统和其它无线电系统中,特别是在发射机的接收端,从天线上感应的信号是非常微弱的,这就需要用放大器将其放大。高频信号放大器理论非常简单,但实际制作却非常困难。其中最容易出现的问题是自激振荡,同时频率选择和各级间阻抗匹配也很难实现。本文以理论分析为依据,以实际制作为基础,用LC振荡电路为辅助,来消除高频放大器自激振荡和实现准确的频率选择;另加其它电路,实现放大器与前后级的阻抗匹配。

二、总体方案 高频小信号调谐放大器简述: 高频小信号放大器的功用就是无失真的放大某一频率范围内的信号。按其频带宽度可以分为窄带和宽带放大器,而最常用的是窄带放大器,它是以各种选频电路作负载,兼具阻抗变换和选频滤波功能。对高频小信号放大器的基本要求是: (1)增益要高,即放大倍数要大。 (2)频率选择性要好,即选择所需信号和抑制无用信号的能力要强,通常用Q值来表示,其频率特性曲线如图-1所示,带宽BW=f2-f1= 2Δf0.7,品质因数Q=fo/2Δf0.7. 图-1频率特性曲线

运放差分放大电路原理知识介绍

差分放大电路 (1)对共模信号的抑制作用 差分放大电路如图所示。 特点:左右电路完全对称。 原理:温度变化时,两集电极电流增量相等,即C2C1I I ?=?,使集电极电压变化量相等,CQ2CQ1V V ?=?,则输出电压变化量0C2C1O =?-?=?V V V ,电路有效地抑制了零点漂移。若电源电压升高时,仍有0C2C1O =?-?=?V V V ,因此,该电路能有效抑制零漂。 共模信号:大小相等,极性相同的输入信号称为共模信号。 共模输入:输入共模信号的输入方式称为共模输入。 (2)对差模信号的放大作用 基本差分放大电路如图。 差模信号:大小相等,极性相反的信号称为差模信号。 差模输入:输入差模信号的输入方式称为差模输入。 在图中, I 2I 1I 2 1 v v v = -=, 放大器双端输出电压 差分放大电路的电压放大倍数为 可见它的放大倍数与单级放大电路相同。 (3)共模抑制比 共模抑制比CMR K :差模放大倍数d v A 与共模放大倍数c v A 的比值称为共模抑制比。 缺点:第一,要做到电路完全对称是十分困难的。第二,若需要单端输出,输出端的零点漂移仍能存在,因而该电路抑制零漂的优点就荡然无存了。 改进电路如图(b )所示。在两管发射极接入稳流电阻e R 。使其即有高的差模放大 倍数,又保持了对共模信号或零漂强抑制能力的优点。 在实际电路中,一般都采用正负两个电源供电,如图所示(c )所示。 差分放大电路 一. 实验目的: 1. 掌握差分放大电路的基本概念; 2. 了解零漂差生的原理与抑制零漂的方法; 3. 掌握差分放大电路的基本测试方法。 二. 实验原理: 1. 由运放构成的高阻抗差分放大电路 图为高输入阻抗差分放大器,应用十分广泛.从仪器测量放大器,到特种测量放大器,几乎都能见到其踪迹。

高频小信号谐振放大电路(打印版)

长春工程学院 高频电子线路课程设计(论文)题目:高频小信号放大电路设计 学院:电子与信息工程学院 专业班级:电子0942班 学号:20号、31号、9号、26号 学生姓名: 指导教师: 起止时间:2011.9.22~2011.10.20 电气与信息学院 和谐勤奋求是创新

内容摘要 高频小信号谐振放大电路 摘要:掌握高频小信号谐振放大器的工程设计方法,谐振回路的调谐方法,放大器的各项技术指标的测试方法及高频情况下的各种分布参数对电路性能的影响,表征高频小信号谐振放大器的主要性能指标由谐振频率fo,谐振电压放大倍数Avo,放大器的通频带BW及选择性(通常用矩形系数Kr0.1)。 关键词: 1.谐振频率放大器的谐振回路谐振时所对应的频率f0称为谐振频率。 2.电压增益放大器的谐振回路谐振时所对应的电压放大倍数Avo称为谐振放大器的电压增益(放大倍数) 3.通频带由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数Av下降到谐振电压放大倍数Avo的0.707倍时所对应的频率范围称为放大器的通频带BW。 4.矩形系数谐振放大器的选择性可由谐振曲线的矩形系数Kr0.1来表示矩形系数Kr0.1为电压放大倍数下降到0.1Avo时对应的频率范围与电压放大倍数下降到0.707Avo时对应的频率偏离之比。 工作计划: 1.确定电路形式。 2.设置静态工作点。 3.计算谐振回路的参数。 4.确定输入耦合回路及高频滤波电容。

content of marketing plan Resonant frequency small-signal amplifier Abstract: High-frequency small-signal resonance amplifier master of engineering design methods, resonant circuit tuning method, the technical specifications of the amplifier test methods and high-frequency parameters of various distributions in case of impact on circuit performance and characterization of high-frequency small-signal the main performance indicators of the resonant amplifier from the resonant frequency fo, the resonant voltage gain Avo, the amplifier passband BW and selective (usually rectangular coefficient Kr0.1). Keywords: 1 resonant circuit resonant frequency amplifier corresponding to the resonance frequency f0 is called the resonant frequency. 2 the resonant circuit voltage gain of the amplifier corresponding to the resonance voltage gain Avo called resonant amplifier voltage gain (magnification) 3 pass-band frequency selection as the role of the resonant circuit when the frequency deviation from the resonant frequency, the amplifier voltage gain drop, used to call down to the voltage gain Av resonant voltage gain Avo of 0.707 times the frequency range corresponding to known as the amplifier passband BW. 4 rectangular resonant amplifier selectivity coefficient by coefficient Kr0.1 resonance curve of the rectangle to represent a rectangle for the voltage gain coefficient Kr0.1 down to 0.1Avo corresponding to the frequency range and voltage gain drops to 0.707Avo the frequency corresponding to deviation of the ratio. Work plan: 1 to determine the circuit form. 2 set the quiescent operating point. 3 calculate the resonant circuit parameters. 4 Make sure the input coupling loop and high frequency filter capacitor. 设计任务说明

相关主题