搜档网
当前位置:搜档网 › 化工散热计算公式

化工散热计算公式

化工散热计算公式
化工散热计算公式

https://www.sodocs.net/doc/84196327.html,/hgx/hgyl/kj/huagongyuanli/dzkj/sc/4-6.htm

初中化学常用计算公式和方程式

初中化学 一. 常用计算公式: (1)相对原子质量 (2)设某化合物化学式为 ①它的相对分子质量=A的相对原子质量×m+B的相对原子质量×n ②A元素与B元素的质量比=A的相对原子质量×m:B的相对原子质量×n ③A元素的质量分数 (3)混合物中含某物质的质量分数(纯度) (4)标准状况下气体密度(g/L) (5)纯度

(6)溶质的质量分数 (7)溶液的稀释与浓缩 (8)相对溶质不同质量分数的两种溶液混合 (9)溶液中溶质的质量 =溶液的质量×溶液中溶质的质量分数 =溶液的体积×溶液的密度 二. 化学方程式: (1)镁带在空气中燃烧 (2)碱式碳酸铜受热分解 (3)磷在空气中燃烧 (4)木炭在氧气中充分燃烧

(5)硫在氧气中燃烧 (6)铁在氧气中燃烧 (7)氯酸钾与二氧化锰共热 (8)高锰酸钾受热分解 (9)氧化汞受热分解 (10)电解水 (11)锌与稀硫酸反应 (12)镁与稀硫酸反应 (13)铁与稀硫酸反应 (14)锌与盐酸反应

(15)镁与盐酸反应 (16)铁与盐酸反应 (17)氢气在空气中燃烧 (18)氢气还原氧化铜 (19)木炭在空气不足时不充分燃烧 (20)木炭还原氧化铜 (21)木炭与二氧化碳反应 (22)二氧化碳与水反应 (23)二氧化碳与石灰水反应

(24)碳酸分解的反应 (25)煅烧石灰石的反应 (26)实验室制取二氧化碳的反应 (27)泡沫灭火器的原理 (28)一氧化碳在空气中燃烧 (29)一氧化碳还原氧化铜 (30)一氧化碳还原氧化铁 (31)甲烷在空气中燃烧 (32)乙醇在空气中燃烧

(33)甲醇在空气中燃烧 (34)铁与硫酸铜反应 (35)氧化铁与盐酸反应 (36)氢氧化铜与盐酸反应 (37)硝酸银与盐酸反应 (38)氧化铁与硫酸反应 (39)氢氧化铜与硫酸反应 (40)氯化钡与硫酸反应 (41)氧化锌与硝酸反应

化工原理公式和重点概念

《化工原理》重要公式 第一章 流体流动 牛顿粘性定律 dy du μτ= 静力学方程 g z p g z p 2211 +=+ρ ρ 机械能守恒式 f e h u g z p h u g z p +++=+++2222222111 ρρ 动量守恒 )(12X X m X u u q F -=∑ 雷诺数 μμρ dG du ==Re 阻力损失 22 u d l h f λ= ????d q d u h V f ∞∞ 层流 Re 64=λ 或 2 32d ul h f ρμ= 局部阻力 2 2 u h f ζ= 当量直径 ∏ =A d e 4 孔板流量计 ρP ?=20 0A C q V , g R i )(ρρ-=?P 第二章 流体输送机械 管路特性 242)(8V e q g d d l z g p H πζλ ρ+∑+?+?= 泵的有效功率 e V e H gq P ρ= 泵效率 a e P P =η

最大允许安装高度 100][-∑--=f V g H g p g p H ρρ]5.0)[(+-r NPSH 风机全压换算 ρ ρ''T T p p = 第四章 流体通过颗粒层的流动 物料衡算: 三个去向: 滤液V ,滤饼中固体) (饼ε-1V ,滤饼中液体ε饼V 过滤速率基本方程 )(22 e V V KA d dV +=τ , 其中 φμ 012r K S -?=P 恒速过滤 τ22 2 KA VV V e =+ 恒压过滤 τ222KA VV V e =+ 生产能力 τ ∑=V Q 回转真空过滤 e e q q n K q -+=2? 板框压滤机洗涤时间(0=e q ,0=S ) τμμτV V W W W W 8P P ??= 第五章 颗粒的沉降和流态化 斯托克斯沉降公式 μρρ18)(2 g d u p p t -=, 2R e

散热片计算方法

征热传导过程的物理量 在图3的导热模型中,达到热平衡后,热传导遵循傅立叶传热定律: Q=K·A·(T1-T2)/L (1) 式中:Q为传导热量(W);K为导热系数(W/m℃);A 为传热面积(m2);L为导热长度(m).(T1-T2)为温度差. 热阻R表示单位面积、单位厚度的材料阻止热量流动的能力,表示为: R=(T1-T2)/Q=L/K·A(2) 对于单一均质材料,材料的热阻与材料的厚度成正比;对于非单一材料,总的趋势是材料的热阻随材料的厚度增加而增大,但不是纯粹的线形关系. 对于界面材料,用特定装配条件下的热阻抗来表征界面材料导热性能的好坏更合适,热阻抗定义为其导热面积与接触表面间的接触热阻的乘积,表示如下: Z=(T1-T2)/(Q/A)=R·A (3) 表面平整度、紧固压力、材料厚度和压缩模量将对接触热阻产生影响,而这些因素又与实际应用条件有关,所以界面材料的热阻抗也将取决于实际装配条件.导热系数指物体在单位长度上产生1℃的温度差时所需要的热功率,是衡量固体热传导效率的固有参数,与材料的外在形态和热传导过程无关,而热阻和热阻抗是衡量过程传热能力的物理量. 芯片工作温度的计算 如图4的热传导过程中,总热阻R为: R=R1+R2+R3 (4) 式中:R1为芯片的热阻;R2为导热材料的热阻;R3为散热器的热阻.导热材料的热阻R2为: R2=Z/A (5) 式中:Z为导热材料的热阻抗,A为传热面积.芯片的工作温度T2为:

T2=T1+P×R (6) 式中:T1为空气温度;P为芯片的发热功率;R为热传导过程的总热阻.芯片的热阻和功率可以从芯片和散热器的技术规格中获得,散热器的热阻可以从散热器的技术规格中得到,从而可以计算出芯片的工作温度T2. 实例 下面通过一个实例来计算芯片的工作温度.芯片的热阻为1.75℃/W,功率为5W,最高工作温度为90℃,散热器热阻为1.5℃/W,导热材料的热阻抗Z为5.8℃cm2/W,导热材料的传热面积为5cm2,周围环境温度为50℃.导热材料理论热阻R4为: R4=Z/A=5.8 (℃·cm2/W)/ 5(cm2)=1.16℃/W(7) 由于导热材料同芯片和散热器之间不可能达到100%的结合,会存在一些空气间隙,因此导热材料的实际热阻要大于理论热阻.假定导热材料同芯片和散热器之间的结合面积为总面积的60%,则实际热阻R3为: R3=R4/60%=1.93℃/W(8) 总热阻R为: R=R1+R2+R3=5.18℃/W (9) 芯片的工作温度T2为: T2=T1+P×R=50℃+(5W× 5.18℃/W)=75.9℃ (10) 可见,芯片的实际工作温度75.9℃小于芯片的最高工作温度90℃,处于安全工作状态. 如果芯片的实际工作温度大于最高工作温度,那就需要重新选择散热性能更好的散热器,增加散热面积,或者选择导热效果更优异的导热材料,提高整体散热效果,从而保持芯片的实际工作温度在允许范围以内(作者:方科 )转载

化工原理下公式大全

泡点(饱和液体)q=1 露点(饱和蒸汽)q=0气液混合0tw(tas)>td 不饱和全等 湿物料比热容 绝干空气消耗量新鲜 所谓理论板,是指在其上气液两相充分混合,各自组成均匀,且传热及传质过程阻力均为零的理想化塔板。意义:理论板仅用作衡量实际板分离效率的依据和标准,在精馏计算中,先求得理论板数,然后利用塔板效率予以修正,即求得实际板数。 影响塔板效率的因素:物系性质,塔板结构,操作条件,流动状况 影响理论板层数的因素:分离要求, 平衡关系,回流比,进料组成,进料热状况参数 双膜理论假设:1相互接触的气液两相流体间存在着稳定的相界面,界面两侧各有一个很薄的停滞膜,吸收质以分子扩散方式通过此二膜层由气相主体进入液相主体;2在相界面处,气液相达到平衡;3在两个停滞膜以外的气液两相主体中,由于流体充分湍动,物质组成均匀。 恒摩尔流假定:1)精馏操作时,在精馏塔的精流锻内,每层板的上升蒸汽摩尔流量都是相等的,在提馏段内也是如此,但两段的上升蒸气摩尔流量却不一定相等2)…… 萃取剂选择考虑的主要因素:1选择性系数2原料剂B与萃取剂S的互溶度3萃取剂回收的难易程度4萃取剂的其他物性(密度,表面张力,黏度)5萃取剂的稳定性、安全性、经济性

分配系数选择性系数萃取因子 单级萃取操作线多级错流求理论板BS完全不溶图解解析部分互溶三角形图解 多级逆流解析图解操作线

散热量计算公式

一、标准散热量 标准散热量是指供暖散热器按我国国家标准(GB/T13754-1992),在闭室小室内按规定条件所测得的散热量,单位是瓦(W)。而它所规定条件是热媒为热水,进水温度95摄氏度,出水温度是70摄氏度,平均温度为(95+70)/2=82.5摄氏度,室温18摄氏度,计算温差△T=82.5摄氏度-18摄氏度=64.5摄氏度,这是散热器的主要技术参数。散热器厂家在出厂或售货时所标的散热量一般都是指标准散热量。 那么现在我就要给大家讲解第二个问题,我想也是很多厂商和经销商存在疑问的地方。 二、工程上采用的散热量与标准散热量的区别 标准散热量是指进水温度95摄氏度,出水温度是70摄氏度,室内温度是18摄氏度,即温差△T=64.5摄氏度时的散热量。而工程选用时的散热量是按工程提供的热媒条件来计算的散热量,现在一般工程条件为供水80摄氏度,回水60摄氏度,室内温度为20摄氏度,因此散热器△T=(80摄氏度+60摄氏度)÷2-20摄氏度=50摄氏度的散热量为工程上实际散热量。因此,在对工程热工计算中必须按照工程上的散热量来进行计算。 在解释完上面的术语以后,下面我介绍一下采暖散热器的欧洲标准(EN442)。欧洲标准(EN442)是由欧洲标准化委员会/技术委员会CEN所编制.按照CEN内部条例,以下国家必须执行此标准,这些国家是:澳大利亚、比利时、丹麦、芬兰、法国、意大利、荷兰、西班牙、瑞典、英国等18个国家。而欧洲标准(EN442)的标准散热量与我国标准散热量是不同的,欧洲标准所确定的标准工况为:进水温度80摄氏度,出水温度65摄氏度,室内温度20摄氏度,

所对应的计算温差△T=50摄氏度。欧洲标准散热量是在温差△T=50摄氏度的散热量。 那么怎么计算散热器在不同温差下的散热量呢? 散热量是散热器的一项重要技术参数,每一个散热器出厂时都标有标准散热量(即△T=64.5摄氏度时的散热量)。但是工程所提供的热媒条件不同,因此我们必须根据工程所提供的热媒条件,如进水温度,出水温度和室内温度,来计算出温差△T,然后计算各种温差下的散热量。△T=(进水温度+出水温度)/2-室内温度。 现在我就介绍几种简单的计算方法 (一)根据散热器热工检测报告中,散热器与计算温差的关系式来计算。 Q=m×△T的N次方 例如74×60检测报告中的热工计算公式(10柱): Q=5.8259×△T1.2829 (1)当进水温度95摄氏度,出口温度70摄氏度,室内温度18摄氏度时: △T=(95摄氏度+70摄氏度)/2-18摄氏度=64.5摄氏度 Q=5.8259×64.51.2829=1221.4W(10柱) 每柱的散热量为122.1W/柱 (2)当进水温度为80摄氏度,出口温度60摄氏度,室内温度20摄氏度时: △T=(80摄氏度+60摄氏度)/2-20摄氏度=50摄氏度 Q=5.8259×501.2829=814.6W(10柱) 每柱的散热量为81.5W/柱 (3)当进水温度为70摄氏度,出口温度50摄氏度,室内温度18摄氏度时:

传热效率计算

传热效率计算 有一发热体发热峰值功率为4000W ,平均值为3000W 左右,需用水冷散热,可提供稳定的25度冷水,该发热体发热面积为127mm*137mm ,要求发热体表面(与水冷头接触面)温度能控制在50度以下,现需要计算如下内容: 1、 所提供的冷水的流量和流速 2、 水冷头底板厚度 3、 水冷头内部与水接触面积 4、 如果采用紫铜或铝合金加工,在同等条件下的散热效率差异。 5、 水管宜用多粗的? 解: 这里缺少条件,先假设发热体工作时间为 1 小时。 1..冷水的流量: Q=C*M*(T 2-T 1) )12(T T C Q M -==)2550(./42003600*4000℃℃℃kg J S W -=137.14 kg 2.流速:设计水管内径为:φ15mm Q=V*S S=秒 3600*0075.0*0075.0*14.3/1*1000/14.13723m m t t S Q ==0.216m/秒 3.水冷头底板厚度 取5mm. 4. 水冷头内部与水接触面积: 因为发热体发热面积为127mm*137mm ,所以取冷水头底内尺寸为127mm*137mm. 计算内高度为:

h= mm m g kg 137 * 127/ 1000 * 14 . 1373=7.88 mm 5.紫铜和铝合金的导热系数不同,紫铜的导热系数为λ =393W/(m·k),铝合金的导热系数为λ=123 W/(m·k)在同等条件下紫铜比铝合金的散热效率高。 根据导热的计算:Q=λ*A* δ? ?t公式可出在同等条件下紫铜比铝合金的散出的热量多。 6.水管宜用多粗的? 设计水管内径为:φ15mm

化工原理重要概念和公式

《化工原理》重要概念 第一章流体流动 质点含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多。 连续性假定假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。 拉格朗日法选定一个流体质点 , 对其跟踪观察,描述其运动参数 ( 如位移、速度等 ) 与时间的关系。 欧拉法在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化。 轨线与流线轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果。流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果。 系统与控制体系统是采用拉格朗日法考察流体的。控制体是采用欧拉法考察流体的。 理想流体与实际流体的区别理想流体粘度为零,而实际流体粘度不为零。 粘性的物理本质分子间的引力和分子的热运动。通常液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主。气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主。 总势能流体的压强能与位能之和。 可压缩流体与不可压缩流体的区别流体的密度是否与压强有关。有关的称为可压缩流体,无关的称为不可压缩流体。 伯努利方程的物理意义流体流动中的位能、压强能、动能之和保持不变。 平均流速流体的平均流速是以体积流量相同为原则的。 动能校正因子实际动能之平均值与平均速度之动能的比值。 均匀分布同一横截面上流体速度相同。 均匀流段各流线都是平行的直线并与截面垂直 , 在定态流动条件下该截面上的流体没有加速度 , 故沿该截面势能分布应服从静力学原理。

层流与湍流的本质区别是否存在流体速度 u 、压强 p 的脉动性,即是否存在流体质点的脉动性。 第二章流体输送机械 管路特性方程管路对能量的需求,管路所需压头随流量的增加而增加。 输送机械的压头或扬程流体输送机械向单位重量流体所提供的能量 (J/N) 。 离心泵主要构件叶轮和蜗壳。 离心泵理论压头的影响因素离心泵的压头与流量,转速,叶片形状及直径大小有关。 叶片后弯原因使泵的效率高。 气缚现象因泵内流体密度小而产生的压差小,无法吸上液体的现象。 离心泵特性曲线离心泵的特性曲线指 H e~ q V ,η~ q V , P a~ q V 。 离心泵工作点管路特性方程和泵的特性方程的交点。 离心泵的调节手段调节出口阀,改变泵的转速。 汽蚀现象液体在泵的最低压强处 ( 叶轮入口 ) 汽化形成气泡,又在叶轮中因压强升高而溃灭,造成液体对泵设备的冲击,引起振动和侵蚀的现象。 必需汽蚀余量 (NPSH)r 泵入口处液体具有的动能和压强能之和必须超过饱和蒸汽压强能多少 离心泵的选型 ( 类型、型号 ) ①根据泵的工作条件,确定泵的类型;②根据管路所需的流量、压头,确定泵的型号。 正位移特性流量由泵决定,与管路特性无关。 往复泵的调节手段旁路阀、改变泵的转速、冲程。 离心泵与往复泵的比较 ( 流量、压头 ) 前者流量均匀,随管路特性而变,后者流量不均匀,不随管路特性而变。前者不易达到高压头,后者可达高压头。前者流量调节用泵出口阀,无自吸作用,启动时关出口阀;后者流量调节用旁路阀,有自吸作用,启动时开足管路阀门。 通风机的全压、动风压通风机给每立方米气体加入的能量为全压 (Pa=J/m 3 ) ,其中动能部分为动风压。

中考化学常用计算公式大全(整理)教案资料

中考化学常用计算公式大全(整理)

中考化学常用计算公式 相对分子质量=(化学式中各原子的相对原子质量×化学式中该元素原子个数)之和 如设某化合物化学式为AmBn ①它的相对分子质量=A的相对原子质量×m+B的相对原子质量×n ②A元素与B元素的质量比=A的相对原子质量×m:B的相对原子质量×n ③A元素的质量分数ω=A的相对原子质量×m /AmBn的相对分子质量 ④A的化合价×m + B的化合价×n = 0 ⑤原子个数比:A : B = m : n (3)混合物中含某物质的质量分数(纯度)=纯物质的质量/混合物的总质量× 100% (4)标准状况下气体密度(g/L)=气体质量(g)/气体体积(L) (5)纯度=纯物质的质量/混合物的总质量× 100% =纯物质的质量/(纯物质的质量+杂质的质量) × 100%= 1- 杂质的质量分数 (6)溶质的质量分数=溶质质量/溶液质量× 100% =溶质质量/(溶质质量+溶剂质量) × 100% (饱和溶液溶质的质量分数=溶质质量/(溶质质量+100) × 100%)、 含有晶体溶质的质量分数=溶质所有质量-晶体质量/(溶质所有质量-晶体质量+溶剂质量) × 100%)(7)溶液的稀释与浓缩 M浓× a%浓=M稀× b%稀=(M浓+增加的溶剂质量) × b%稀 (8)相对溶质不同质量分数的两种溶液混合 M浓× a%浓+M稀× b%稀=(M浓+M稀) × c% (9)溶液中溶质的质量=溶液的质量×溶液中溶质的质量分数=溶液的体积×溶液的密度 (1)化合物中某元素百分含量的计算式 (2)化合物质量与所含元素质量的关系式 仅供学习与交流,如有侵权请联系网站删除谢谢2

化工原理公式总结

化工原理公式总结 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

第一章 流体流动与输送机械 1. 流体静力学基本方程:gh p p ρ+=02 2. 双液位U 型压差计的指示:)21(21ρρ-=-Rg p p ) 3. 伯努力方程:ρ ρ2 22212112121p u g z p u g z + +=++ 4. 实际流体机械能衡算方程:f W p u g z p u g z ∑+++=++ρ ρ2 22 212112121+ 5. 雷诺数:λ μ ρ64 Re = =du 6. 范宁公式:ρρμλf p d lu u d l Wf ?==??=2 2322 7. 哈根-泊谡叶方程:2 32d lu p f μ=? 8. 局部阻力计算:流道突然扩大:2211??? ??-=A A ξ流产突然缩小:??? ? ? -=2115.0A A ξ 9. 混合液体密度的计算:n wn B wB A wA m x x x ρρρρ+ ++=....1ρ液体混合物中个组分得密度, 10. Kg/m 3,x--液体混合物中各组分的质量分数。 10。表压强=绝对压强-大气压强真空度=大气压强-绝对压强 11. 体积流量和质量流量的关系:w s =v s ρm 3/skg/s 整个管横截面上的平均流速: A Vs = μA--与流动方向垂直管道的横截面积,m 2 流量与流速的关系: 质量流量:μρ ===A v A w G s s G 的单位为:kg/ 12. 一般圆形管道内径:πμs v d 4= 13. 管内定态流动的连续性方程: 常数 =====ρμρμρμA A A s w (222111) 表示在定态流动系统中,流体流经各截面的质量流量不变,而流速u 随管道截面积A 及流体的密度ρ而变化。 对于不可压缩流体的连续性方程: 常数=====A A A s v μμμ (2211) 体积流量一定时流速与管径的平方成反比:() 2 2 121d d = μμ 14.牛顿黏性定律表达式:dy du μ τ=μ为液体的黏度=1000cP 15平板上边界层的厚度可用下式进行评估:

化工原理化工计算所有公式总结

化工原理化工计算所有 公式总结 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

化工原理化工计算所有公式总结 第一章 流体流动与输送机械 1. 流体静力学基本方程:gh p p ρ+=02 2. 双液位U 型压差计的指示: )21(21ρρ-=-Rg p p ) 3. 伯努力方程:ρ ρ2 22212112121p u g z p u g z ++=++ 4. 实际流体机械能衡算方程:f W p u g z p u g z ∑+++=++ρ ρ2 22 212112121+ 5. 雷诺数:μ ρ du = Re 6. 范宁公式:ρρμλf p d lu u d l Wf ?= =??=22322 7. 哈根-泊谡叶方程:2 32d lu p f μ= ? 8. 局部阻力计算:流道突然扩大:2 211??? ? ? -=A A ξ流产突然缩小:??? ??- =2115.0A A ξ 第二章 非均相物系分离 1. 恒压过滤方程:t KA V V V e 222=+ 令A V q /=,A Ve q e /=则此方程为:kt q q q e =+22 第三章 传热 1. 傅立叶定律:n t dA dQ ??λ-=,dx dt A Q λ-= 2. 热导率与温度的线性关系:)1(0t αλλ+=

3. 单层壁的定态热导率:b t t A Q 21-=λ,或m A b t Q λ?= 4. 单层圆筒壁的定态热传导方程: )ln 1(21 2 21r r t t l Q λπ-= 或m A b t t Q λ21-= 5. 单层圆筒壁内的温度分布方程:C r l Q t +-=ln 2λ π(由公式4推导) 6. 三层圆筒壁定态热传导方程:3 4 12321214 1ln 1ln 1ln 1(2r r r r r r t t l Q λλλπ++-= 7. 牛顿冷却定律:)(t t A Q w -=α,)(T T A Q w -=α 8. 努塞尔数λαl Nu =普朗克数λμ Cp =Pr 格拉晓夫数223μρβtl g Gr ?= 9. 流体在圆形管内做强制对流: 10000Re >,1600Pr 6.0<<,50/>d l k Nu Pr Re 023.08.0=,或k Cp du d ??? ?????? ??=λμμρλα8 .0023.0,其中当加热时,k=,冷却时k= 10. 热平衡方程:)()]([1222211t t c q T T c r q Q p m s p m -=-+= 无相变时:)()(12222111t t c q T T c q Q p m p m -=-=,若为饱和蒸气冷凝: )(12221t t c q r q Q p m m -== 11. 总传热系数: 2 1 211111d d d d b K m ?+?+=αλα 12. 考虑热阻的总传热系数方程:2 12121 211111d d R R d d d d b K s s m ?++?+?+=αλα 13. 总传热速率方程:t KA Q ?= 14. 两流体在换热器中逆流不发生相变的计算方程:??? ? ??-=--22111112211ln p m p m p m c q c q c q KA t T t T

散热器散热量计算

客厅用散热器价格散热量计算 关于金旗舰散热器的价格 散热器的最后成交价格与所选散热器的规格型号、数量、交货方式、付款方式有关,有一点需要用户 特别注意铝散热器通常采用纯铝或6063合金来制造,这两种材质都有很好的导热性与之相比杂铝的导热性 则差数倍;(其导热系数请见【相关数据】)由于散热器成本一半以上是材料费,杂铝的价格是低廉的; 因此对特别便宜的散热器,购买时要考虑因材质造成的散热性能的损失。 关于散热器的订购 选择好散热器的型号后,根据散热计算结果确定截断长度,及表面处理方式;需要订购请提供如下内 容: (1)散热器型号及长度例如:50DQ140-200(型号50DQ140;长度200mm) (2)表面处理方式(银白色黑色其他颜色) (3)散热器上需要机加工的部位、加工数量及技术要求 关于散热器分类 为了方便用户查找选购,按照散热器的制造工艺分为型材散热器、插片散热器、组合散热器及热管散热器;其中对用量极大的型材

散热器按其形状分为单肋、双肋、异型并在网页左侧列出;以便用户快速查找。 关于散热器的选择 首先确定要散热的电子元器件,明确其工作参数,工作条件,尺寸大小,安装方式,选择散热器的底板大小比元器件安装面略大一些即可,因为安装空间的限制,散热器主要依靠与空气对流来散热,超出与元器件接触面的散热器,其散热效果随与元器件距离的增加而递减。对于单肋散热器,如果所需散热器的宽度在表中空缺,可选择两倍或三倍宽度的散热器截断即可。 关于散热器选择的计算方法 参数定义: Rt─── 总内阻,℃/W; Rtj─── 半导体器件内热阻,℃/W; Rtc─── 半导体器件与散热器界面间的界面热阻,℃/W; Rtf─── 散热器热阻,℃/W; Tj─── 半导体器件结温,℃; Tc─── 半导体器件壳温,℃; Tf─── 散热器温度,℃; Ta─── 环境温度,℃; Pc─── 半导体器件使用功率,W; ΔTfa ─── 散热器温升,℃; 散热计算公式:

板式换热器的换热计算方法

板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: 总传热量(单位:kW). 一次侧、二次侧的进出口温度 一次侧、二次侧的允许压力降 最高工作温度 最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 T2 = 热侧出口温度 t1 = 冷侧进口温度 t2= 冷侧出口温度 热负荷

热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为: (热流体放出的热流量)=(冷流体吸收的热流量) 在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; m h,m c-----热、冷流体的质量流量,kg/s; C ph,C pc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为:

初中常见化学方程式及常用计算公式

初中常见化学方程式及 常用计算公式 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

初中常见化学方程式及常用计算公式 一.化合反应 二.分解反应 三.置换反应 四.复分解反应 1.盐酸和氢氧化钠反应:NaOH+HCl=NaCl+H 2O 2.中和胃酸的反应:Al (OH )3+3HCl=AlCl 3+3H 2O 3.熟石灰和硫酸反应:Ca(OH)2+H 2SO 4=CaSO 4+2H 2O 4.盐酸和硝酸银反应:AgNO 3+HCl=AgCl ↓+HNO 3 5.硫酸和氯化钡反应:BaCl 2+H 2SO 4=BaSO 4↓+2HCl 6.碳酸钙和过量盐酸反应:CaCO 3+2HCl=CaCl 2+H 2O+CO 2↑ 7.碳酸氢钠和盐酸反应:NaHCO 3+HCl=NaCl+H 2O+CO 2↑ 8.碳酸钠和过量盐酸反应:Na 2CO 3+2HCl=2NaCl+H 2O+CO 2↑ 9.氢氧化钠和硫酸铜反应:2NaOH+CuSO 4=Na 2SO 4+Cu(OH)2↓ 10.氢氧化钙和碳酸钠反应:Ca(OH)2+Na 2CO 3=CaCO 3↓+2NaOH 11.氯化钙和碳酸钠反应:CaCl 2+Na 2CO 3=CaCO 3↓+2NaCl 12.硝酸银和氯化钠反应:AgNO 3+NaCl=AgCl ↓+NaNO 3 13.硫酸钠和氯化钡反应:BaCl 2+Na 2SO 4=BaSO 4↓+2NaCl 14.盐酸除铁锈:Fe 2O 3+6HCl=2FeCl 3+3H 2O 15.硫酸除铁锈:Fe 2O 3+3H 2SO 4=Fe 2(SO 4)3+3H 2O 16.氧化铜和硫酸反应:CuO +H 2SO 4=CuSO 4+H 2O 五.其他反应 1.二氧化碳和过量澄清石灰水反应:CO 2+Ca(OH)2=CaCO 3↓+H 2O 2.二氧化碳和过量氢氧化钠反应:CO 2+2NaOH=Na 2CO 3+H 2O 3.氢氧化钠吸收二氧化硫:SO 2+2NaOH=Na 2SO 3+H 2O 4.一氧化碳还原氧化铜:CO+CuO ?=Cu+CO 2 5.一氧化碳还原氧化铁:3CO+Fe 2O 3高温=2Fe+3CO 2 6.甲烷燃烧:CH 4+2O 2点燃=2H 2O+CO 2 7.酒精燃烧:C 2H 5OH+3O 2点燃 =3H 2O+2CO 2 8.葡萄糖在酶的作用下与氧气反应:C6H12O6+6O2酶=6H2O+6CO2

化工原理化工计算所有公式总结

化工原理化工计算所有公式总 结 第一章 流体流动与输送机械 1. 流体静力学基本方程:gh p p ρ+=02 2. 双液位U 型压差计的指示: )21(21ρρ-=-Rg p p ) 3. 伯努力方程:ρ ρ2 2221 211212 1 p u g z p u g z ++=+ + 4. 实际流体机械能衡算方程:f W p u g z p u g z ∑+++=+ +ρ ρ2 2221 211212 1 + 5. 雷诺数:μ ρ du = Re 6. 范宁公式:ρρμλf p d lu u d l Wf ?==??=2 2322 7. 哈根-泊谡叶方程:2 32d lu p f μ= ? 8. 局部阻力计算:流道突然扩大:2 211?? ? ?? -=A A ξ流产突然缩小:??? ??-=2115.0A A ξ 第二章 非均相物系分离 1. 恒压过滤方程:t KA V V V e 222=+

令A V q /=,A Ve q e /=则此方程为:kt q q q e =+22 第三章 传热 1. 傅立叶定律:n t dA dQ ??λ-=,dx dt A Q λ-= 2. 热导率与温度的线性关系:)1(0t αλλ+= 3. 单层壁的定态热导率:b t t A Q 21-=λ,或m A b t Q λ?= 4. 单层圆筒壁的定态热传导方程: )ln 1(21 2 21r r t t l Q λπ-= 或m A b t t Q λ21-= 5. 单层圆筒壁内的温度分布方程:C r l Q t +- =ln 2λ π(由公式4推导) 6. 三层圆筒壁定态热传导方程:3 4 12321214 1ln 1ln 1ln 1(2r r r r r r t t l Q λλλπ++-= 7. 牛顿冷却定律:)(t t A Q w -=α,)(T T A Q w -=α 8. 努塞尔数λαl Nu =普朗克数λ μ Cp =Pr 格拉晓夫数223μρβtl g Gr ?= 9. 流体在圆形管内做强制对流: 10000Re >,1600Pr 6.0<<,50/>d l k Nu Pr Re 023.08.0=,或k Cp du d ??? ? ????? ??=λμμρλα8 .0023.0,其中当加热时,k=0.4,冷却时

脱硫系统常用计算公式

1) 由于烟气设计资料,常常会以不同的基准重复出现多次,(如:干基湿基,标态实际态,实际O2 等),开始计算前一定要核 算统一,如出现矛盾,必须找出正确的一组数据,避免原始数据代错。 常用折算公式如下: 烟气量(dry)=烟气量(wet) >(1-烟气含水量%) 实际态烟气量=标态烟气量>气压修正系数x温度修正系数 烟气量(6%02) = ( 21-烟气含氧量)/ ( 21 -6%) S02 浓度(6%02 ) = ( 21 - 6%) / (21 -烟气含氧量) S02 浓度( mg/Nm3 ) =S02 浓度( ppm) x2.857 物料平衡计算 1 )吸收塔出口烟气量G2 G2= (G1 x (1 - mw1) X(P2/(P2-Pw2)) (X —mw2 )+ G3X (1- 0.21/K) ) >(P2/(P2-Pw2)) G1: 吸收塔入口烟气流量 mw1: 入口烟气含湿率 P2:烟气压力 Pw2 :饱和烟气的水蒸气分压 说明: Pw2 为绝热饱和温度下的水蒸气分压,该值是根据热平衡计算的反应温度,由烟气湿度表查得。(计算步骤见热平衡计 算) 2) 氧化空气量的计算 根据经验,当烟气中含氧量为6%以上时,在吸收塔喷淋区域的氧化率为50 - 60 %。采用氧枪式氧化分布技术,在浆池中氧化 空气利用率n 02=25-30%,因此,浆池内的需要的理论氧气量为: S=(G1 x q1-G2 x q2) x(1-0.6)/2/22.41 所需空气流量Qreq Qreq=S x22.4/(0.21 0.x3) G3= Qreq >K G3:实际空气供应量 K :根据浆液溶解盐的多少根据经验来确定,一般在 2.0-3左右。 3) 石灰石消耗量计算 W1=100x qs xns W1: 石灰石消耗量 qs: :入口S02 流量 n S兑硫效率 4) 吸收塔排出的石膏浆液量计算 W2=172xx qs xn s/Ss W2:石膏浆液量 Ss石膏浆液固含量 5) 脱水石膏产量的计算 W3=172xx qs xn s/Sg W3: 石膏浆液量 Sg:脱水石膏固含量(1-石膏含水量) 6) 滤液水量的计算 W4=W3-W2 W3: 滤液水量 7) 工艺水消耗量的计算 W5=18x (G4-G1-G3 x(1-0.21/K))+W3 (1x-Sg)+36x qs x n+W s WT

化工原理公式

第一章流体流动 1.牛顿粘性定律: 2.静力学基本方程: 3. 4.流速与流量的关系: 5.连续性方程:对于不可压缩流体: 6.伯努力方程: 7.雷诺数平板:直圆管: 8.圆管层流的速度分布 9.圆管湍流的速度分布 (n通常取1/7) 10.动能校正系数注: 层流时:湍流时: 11.圆管湍流时的平均速度: 12.哈根—泊谡叶方程: 13.阻力损失其中层流时:湍流时:查图

14.非圆形直管的当量直径 16.局部阻力损失 17.伯努力方程(机械能衡算) 18.流速和流量的测定 皮托管:孔板流量计:文丘里流量计: 转子流量计: 转子流量计的刻度换算: 第二章流体流动机械 1.离心泵的功率

2.离心泵的轴功率 3.影响因素:密度: 粘度: 转速: 叶轮直径: 4.汽蚀余量: 5.最大安装高度: 第三章液体的搅拌 1.功率特征常数: 2.搅拌雷诺数: 3. 4.搅拌器的放大 原则:几何相似(Re)、运动相似(Fr)、动力相似(We)、热相似 ○1.○2. ○3. ○4.○5.○6. 第四章流体通过颗粒层的流动 1.床层空隙率:

2.床层比表面积: 3.床层当量直径: 4.床层压降: 5.床层雷诺数: 6. 7.(Re’=0.17~420)欧根方程: 当Re’<3时,等式右方第二项可以略去 当Re’>100时,右方第一项可以略去 8.过滤速度: 9.滤饼厚度:其中体积分数 10.过滤速度:令 11.过滤基本方程:,其中 12.恒速过滤: 13.恒压过滤: 14.先恒速后恒压: 15.洗涤时间: 16.板框压滤机的洗涤时间:

17.间歇式过滤机的生产能力: 18.回转真空过滤机: 第五章颗粒的沉降与流态化 1. 2. 3. 4. 5.当颗粒直径较小时,位于Stocks区 当颗粒直径较大时,位于Newton区 6.K判值法: Stocks区:K<2.62(3.3) Newton区:K<4.36(69.12) 7.降尘室的生产能力: 8.离心沉降:将重力沉降中的g改为 第六章传热 一、热传导(无内热源)

各种流量计计算公式

V锥流量计计算公式为: 其中: K为仪表系数; Y为测量介质压缩系数;对于瓦斯气Y=0.998; ΔP为差压,单位pa; ρ为介质工况密度,单位kg/m3。取0.96335 涡街流量计计算公式:

一、孔板流量计 1.1 工作原理 流体流经管道内的孔板,流速将在孔板处形成局部收缩因而流速增加,静压力降低,于是在孔板上、下游两侧产生静压力差。流体流量愈大,产生的压差愈大,通过压差来衡量流量的大小。它是以流动连续性方程(质量守恒定律)和伯努利方程(能量守恒定律)为基础,在已知有关参数的条件下,根据流动连续性原理和伯努利方程可以推导出差压与流量之间的关系而求得流量。其流量计算公式如下: 上式中:ε——被测介质可膨胀性系数,对于液体ε=1;对气体等可压缩流体ε<1(0.99192)Q工——流体的体积流量(单位:m3/min) d ——孔径(单位:m ) △P——差压(单位:Pa) ρ1——工作状况下,节流件(前)上游处流体的密度,[㎏/m3]; C ——流出系数 β——直径比 1.2 安装 孔板流量计的安装要求:对直管段的要求一般是前10D后5D,因此在安装孔板流量计时一定要满足这个直管段距离要求,否则测量的流量误差大。

1.3 测量误差分析 1.3.1 基本误差 孔板在使用过程中,会由于煤气的侵蚀而产生变形,从而引起流量系数增大而产生测量误差;而且流量计工作时间越长,流体对节流件的冲刷越严重,也会引起流量系数增大而产生测量误差。 1.3.2 附件误差 孔板节流装置安装于现场严酷的工作场所,在长期运行后,无论管道或节流装置都会发生一些变化,如堵塞、结垢、磨损、腐蚀等等。检测件是依靠结构形状及尺寸保持信号的准确度,因此任何几何形状及尺寸的变化都会带来附加误差。

散热器的表面积计算

散热器的表面积计算: S = 0.86W/(△T*a)) (平方米) 式中 △T——散热器温度与周围环境温度(T a)之差(℃); a——传导系数,是由空气的物理性质及空气流速决定的。 a的值可以表示为: A = Nu*λ/L 式中λ——热电导率由空气的物理性质决定; L——散热器海拔高度(); Nu——空气流速系数。 Nu值由下式决定 Nu = 0.664* [(V/V1)^(1/2)]*[Pr^(1/3)] 式中V——动黏性系数,是空气的物理性质; V1——散热器表面的空气流速; Pr——参数(见表1)。

散热器选择的计算方法 一,各热参数定义: Rja———总热阻,℃/W; Rjc———器件的内热阻,℃/W; Rcs———器件与散热器界面间的界面热阻,℃/W; Rsa———散热器热阻,℃/W; Tj———发热源器件内结温度,℃; Tc———发热源器件表面壳温度,℃; Ts———散热器温度,℃; Ta———环境温度,℃; Pc———器件使用功率,W; ΔTsa ———散热器温升,℃; 二,散热器选择: Rsa =(Tj-Ta)/Pc - Rjc -Rcs 式中:Rsa(散热器热阻)是选择散热器的主要依据。 Tj 和Rjc 是发热源器件提供的参数, Pc 是设计要求的参数, Rcs 可从热设计专业书籍中查表,或采用Rcs=截面接触材料厚度/(接触面积X 接触材料导热系数)。 (1)计算总热阻Rja:Rja= (Tjmax-Ta)/Pc (2)计算散热器热阻Rsa 或温升ΔTsa:Rsa = Rja-Rtj-Rtc ΔTsa=Rsa×Pc (3)确定散热器 按照散热器的工作条件(自然冷却或强迫风冷),根据Rsa 或ΔTsa 和Pc 选择散热器,查所选散热器的散热曲线(Rsa 曲线或ΔTsa 线),曲线上查出的值小于计算值时,就找到了合适的热阻散热器及其对应的风速,根据风速流经散热器截面核算流量及根据散热器流阻曲线上风速对应的阻力压降,选择满足流量和压力工作点的风扇。

高中化学常用计算公式

1. 有关物质的量(mol )的计算公式 (1)物质的量(mol 即n= M m ;M 数值上等于该物质的相对分子(或原子)质量 (2)物质的量(mol )= )(个微粒数(个)mol /1002.623 ? 即n=A N N N A 为常数6.02×1023,应谨记 (3)气体物质的量(mol 即n= m g V V 标, V m 为常数22.4L ·mol -1,应谨记 (4)溶质的物质的量(mol )=物质的量浓度(mol/L )×溶液体积(L )即n B =C B V aq (5)物质的量(mol )=)反应热的绝对值()量(反应中放出或吸收的热mol KJ KJ / 即n=H Q ? 2. 有关溶液的计算公式 (1)基本公式 ①溶液密度(g/mL 即ρ = aq V m 液 ②溶质的质量分数=%100) g g ?+溶剂质量)((溶质质量)溶质质量(=) ) g g 溶液质量(溶质质量(×100% 即w= 100%?液质m m =剂质质m m m +×100% ③物质的量浓度(mol/L 即C B=aq B V n (2)溶质的质量分数、溶质的物质的量浓度及溶液密度之间的关系: ①溶质的质量分数100%(g/mL) 1000(mL)(g/mol) 1(L)(mol/L)????= 溶液密度溶质的摩尔质量物质的量浓度 即C B = B M ρω 1000 ρ单位:g/ml (3)溶液的稀释与浓缩(各种物理量的单位必须一致): 原则:稀释或浓缩前后溶质的质量或物质的量不变! ①浓溶液的质量×浓溶液溶质的质量分数=稀溶液的质量×稀溶液溶质的质量分数 即浓m 稀稀浓ωωm =

热负荷及散热量计算

热负荷及散热量计算 所谓热负荷是指维持室内一定热湿环境所需要的在单位时间向室内补充的热量。所谓得热量是指进入建筑物的总量,它们以导热、对流、辐射、空气间热交换等方式进入建筑。 系统热负荷应根据房间得、失热量的平衡进行计算,即 房间热负荷=房间失热量总和-房间得热量总和 房间的失热量包括: 1)围护结构传热量Q1; 2)加热油门、窗缝隙渗入室内的冷空气的耗热量Q2; 3)加热油门、孔洞和其他相邻房间侵入的冷空气的耗热量Q3; 4)加热由外部运入的冷物料和运输工具的耗热量Q4; 5)水分蒸发的耗热量Q5; 6)加热由于通风进入室内冷空气的耗热量Q6; 7)通过其他途径散失的热量Q7; 房间的得热量包括: 1)太阳辐射进入房间的热量Q8; 2)非供暖系统的管道和其他热表面的散热量Q9; 3)热物料的散热量Q10; 4)生产车间最小负荷班的工艺设备散热量Q11; 5)通过其他途径获得的散热量Q12; 1.1围护结构的基本耗热量 a t t KF q w n )(''-= 式中 ' q —围护结构的基本耗热量,W ; K —围护结构的传热系数,w/(㎡.℃); F —围护结构的面积,㎡; w t ' —供暖室外计算温度,℃; n t —冬季室内计算温度,℃; a —围护结构的温差修正系数。 整个建筑物的基本耗热量等于各个部分围护结构的基本耗热量的总和: ) (Q ' '' 1w n t t KF q -==∑∑ 1.2围护结构的附加耗热量 在实际中,气象条件和建筑物的结构特点都会影响基本耗热量使其发生变化,此时需要对基本耗热量加以修正,这些修正耗热量称为围护结构附加耗热量。附加耗热量主要有朝向修正,风力附加和高度附加耗热量。 1.2.1朝向修正耗热量 朝向修正耗热量是太阳辐射对建筑围护耗热量的修正。

相关主题