搜档网
当前位置:搜档网 › 极限思想的产生与发展

极限思想的产生与发展

极限思想的产生与发展
极限思想的产生与发展

毕业论文

题目极限思想的产生与发展

专业数学教育

院系数学系

学号 131002145

姓名

指导教师

二○一三年五月

定西师范高等专科学校

2010 级数学系系毕业论文开题报告专业班级:数学教育姓名:指导教师:

目录

内容摘要: ............................................................................................................... (4)

关键词: (4)

引言: (5)

一、极限思想的产生 (6)

二、极限思想发展的分期 (6)

(一)极限思想的萌芽时期 (6)

(二)极限思想的发展时期 (8)

(三)极限思想的完善时期 (8)

三、极限思想与微积分 (9)

(一)微积分的孕育 (10)

(二)牛顿与微积分 (11)

(三)莱布尼茨与微积分 (12)

(四)微积分的进一步发展 (13)

结束语 (14)

参考文献 (15)

致谢 (15)

内容摘要本文综述了极限思想的产生和发展历史。极限思想的产生与完善是社会实践的需要,它的产生为数学的发展增加了新的动力,成为了近代数学思想和方法的基础和出发点。

关键词极限;无穷;微积分

引言

极限思想作为一种哲学和数学思想,由远古的思想萌芽,到现在完整的极限理论,其漫长曲折的演变历程布满了众多哲学家、数学家们的勤奋、智慧、严谨认真、孜孜以求的奋斗足迹。极限思想的演变历程,是数千年来人类认识世界和改造世界的整个过程的一个侧面反应,是人类追求真理、追求理想,始终不渝地求实、创新的生动写照。

在数学的发展中,数学问题的来源和发展表现为多种多样的途径和极其复杂的情况。纵观极限思想的发展,首先哲学为其提供了直觉上的发展方向,数学家们依据这种直觉或直观进行应用和探索;其后悖论一次次地出现,又促使数学家们一次一次地进行探究求证,使这一思想不断得以发展和完善。而数学的求证又给予了哲学以实在的支持,为哲学更好地描述和论证世界提供了强有力的工具。从最初时期朴素、直观的极限观,经过了2000多年的发展,演变成为近代严格的极限理论,这其中的思想演变是渐进的、螺旋式发展的、相互推动的。

极限理论是微积分学的基础,极限方法为人类认识无限提供了强有力的工具,它从方法论上突出地表现了微积分学不同于初等数学的特点,是近现代数学的一种重要思想。极限思想蕴含着丰富的辩证法思想,是唯物辩证法的对立统一规律在数学领域中的极好应用。理清极限思想的发展脉络,揭示极限思想的核心内容及其与哲学思想的内在联系,对于理解数学史和数学哲学史上的一些问题将具有一定的理论意义。对于培养人的思维方法、思维品质,提高其分析问题和解决问题的能力都有极好的促进作用。

一、极限思想的产生

限思想的产生和其他科学思想一样,是经过历代古人的思考与实践一步一步渐渐积累起来的,因此它也是社会实践的产物。极限的思想可以追溯到古代,刘徽的割圆术是建立在直观基础上的一种原始的极限思想的应用;古希腊认的穷竭法也蕴含了极限思想,但希腊人对“无限的恐惧”,他们避免明显的“取极限”,而是借助于间接证法——归谬法来完成有关的证明。

到了16世纪,荷兰数学家斯泰文在考察三角形重心的过程中改进了古希腊人的归谬法,他借助几何直观,大胆地运用极限思想思考问题,放弃了归缪法的证明。如此,他就在无意中“指出了把极限方法发展成为一个实用概念的方向”。数学家拉夫纶捷夫曾说:“数学极限法的创造是对那些不能够用算术,代数和初等几何的简单方法来解决的问题进行了许多世纪的顽强探索的结果”。两千多年前可以称作是极限思想的萌芽阶段。其突出特点为人们已经开始意识到极限的存在,并且会运用极限思想解决一些实际问题,但是还不能够系统而清晰的利用极限思想解释现实问题。极限思想的萌芽阶段以希腊的芝诺、中国古代的惠施、刘徽、祖冲之等为代表。

我国春秋战国时期的哲学名著《庄子》记载着惠施的一句名言:“一尺之锤,日取其半,万世不竭。”也就是说,从一尺长的竿,每天截取前一天剩下的一半,随着时间的流逝竿会越来越短,长度越来越趋于零,但又有缘不会等于零。这更是从直观上体现了极限思想。我国古代的刘徽和祖冲之计算圆周率时所采用的“割圆术”则是极限思想的一种基本应用。所谓“割圆术”,就是用半径为R的圆的内接正多边形的面积S就越来越接近于圆的面积πR。在有限次的过程中,用正多边形的面积来逼近圆的面积,只能到达近似的程度。但可以想象,如果把这个过程无限次的继续下去,就能得到精确的圆面积。

二、极限思想发展的分期

(一)极限思想的萌芽时期

远在2000多年以前,人们在对无穷的萌芽认识中,极限的思想和方法就不可

回避的孕育在其中了。在我国,著名的《庄子·天下篇》一书中记有:“一尺之锤,日取其半,万世不竭。”墨家著作《墨子·经天下》中也有“非半弗,则不动,说在端。”的论述。从中可体现出我国早期对物质的无限可分性与连续性已有了相当深刻的认识,虽然这些认识属于哲学,但已反映出极限思想的萌芽。将无穷思想创造性地运用到数学中的是我国魏晋时期的数学家刘徽。刘徽在注释《九章算术》中多次用到极限思想处理问题,运用的比较熟练,说明当时他已经对极限思想有了相当深刻的认识。对极限的观念和方法已经有了直观基础上的运用。正是以“割圆术”为理论基础,刘徽得出徽率。到公元五世纪,南北朝时期的大数学家、科学家祖冲之(429—500年)的《缀术》中,同样运用“割圆术”推算出24576边形得到:3.1415926<π<3.1415927。祖冲之这一成果领先世界近千年。

在国外,古希腊的巧辩学派—几何三大问题。安提芬在研究画圆为方的问题时想到用边数不断增加的内接正多边形来接近圆面积,当多边形的边数不断加倍时内接正多边形与圆周之间存在的空隙就被逐渐“穷竭”,而布莱森(约公元前450年)则从相反的方向,提出通过圆的外切正多边形的面积来逼近圆的面积的思想。公元前4世纪,古希腊数学家欧多克斯创立了较严格的确定面积和体积的一般方法—“穷竭法”,这种方法假定量的无限可分性,并且以及下面命题为基础:“如果从任何量中减去一个不小于它的一半部的部分,从剩余部分中再减去不小于它的一半的另一部分,继续下去,则最后将留下一个小于任何给定的同类量的量”。应用穷竭法,欧多克斯(约公元前400—前347年)正确地证明了“圆面积与直径的平方成正比例”以及“球的体积与直径的立方成正比例等结论”。他的穷竭法也已经体现出了极限论思想。继欧多克索斯之后,阿基米德使用穷竭法求出了一系列几何图形的面积。他用足够“内接”和“外切”扇形逼近螺线所围成的平面图形,这和我国的“割圆术”理论大相径庭,实质上是一种极限思想。阿基米德(Archimedes,公元前287—前212年)生于叙拉古(现意大利西西里岛)。他才智过人、成果卓著,被誉为古代最伟大的数学家和科学家。他的传世名著有《圆的测量》、《论球体和圆柱体》、《论劈锥曲面体与球体》、《抛物线弓形求积》、《论螺线》、《砂粒计算》等。他巧妙地把欧克多索斯与人的穷竭法与德·谟克利特的原子论观点结合起来通过严密的计算,解决了求几何图形的面积、体积、曲线场,计算大量的计算问题。他突破了传统的有限运算,采用了无限逼近的思想,将需要求积的量分成许多微小单元,再来用另一组容易计算总和的微小单元来进行比较,他的无穷小概念到17世纪被牛顿作为微积分的基础。阿基米德的杰出成就丰

富了古代数学内容,其思想的深度和论述的严密性在当时是极为罕见的,因而被人们称为“数学之神”,并与高斯、欧拉和牛顿并称为19世纪以前的“数学四杰”。

由此,我们可以看到数学无穷思想发展之初,古人已经在极限领域开创了光辉的起点。

(二)极限思想的发展时期

14世纪末,欧洲开始有了资本主义的萌芽,到15世纪中期,封建制度的解体,欧洲的生产力得到了迅速地发展,开始了“文艺复兴”时代。由于生产力的发展,也推动了科学技术的进步,当时,围绕着力学为中心,在天文学、物理学、地理学等方面都提出了大量的新问题,对这些问题的探究促进了相关科学的发展。如哥白尼“日心说”的诞生带来了一场自然科学的革命;由于对天体力学的研究,涌现出了一批科学家,如斯蒂文、伽利略、开普勒等,他们在数学方面也做了大量的研究工作,为微积分的发展奠定了基础,为极限思想和方法的发展及运用带来了机遇。16世纪以后,欧洲处于资本主义的萌芽时期,生产力得到了极大的发展。生产力和科学技术中发生了大量的变量问题,如曲线切线问题、最值问题、力学中速度问题、受力做功问题等,初等数学方法对此越来越无能为力,需要的是新的数学思想,新的数学方法,突破只研究常量的传统范围,提供能够用以描述和研究运动,变化过程的新工具,这极大的促进了极限思想的发展。

众多数学家为解决上述问题做了不懈的努力,如笛卡尔、费马、巴罗、卡瓦列里、沃利斯等,并取得了一定成果,尤其是牛顿和莱布尼茨创立微积分的工作,他们都以不同的角度运用了极限的思想和方法,虽然他们的工作过多的依赖于直观,缺乏严密的逻辑基础,但在他们的努力和成就为极限思想的进一步完善奠定了坚实的基础。

(三)极限思想的完善时期

18世纪微积分富有成果然而欠缺严密的基础,因而受到了人们的怀疑和攻击。英国哲学家大主教贝克莱对微积分的攻击最为激烈,他说微积分的推导是“分明的诡辩”。正因为当时缺乏严密的极限定义,微积分理论才受到严峻的挑战。弄清极限概念,建立严格的微积分理论基础,不但是数学本身的需要,而且还有着认识论上的重大意义。

柯西的贡献几乎遍及所有数学领域,在他的7本专著和800篇论文中,可以看出他在微积分学、级数理论、微分方程、复变函数论、数论、行列式论、群论等方面都有研究和贡献。

1821年至1826年他的《无穷小计算在几何中的应用》和《无穷小分析讲义》等3部专著给出了分析学的一系列基本理论的严格定义,从而形成了现代微积分体系,他是近代微积分的奠基着。在复变函数方面,柯西在《关于定积分理论的报告》中,从可交换积分顺序的二重积分着手,导出来积分于路径无关的柯西理

论。他证明了函数()f z 在极点1z 的留数为:1()()2c

f z d z i π?(其中c 为包含1z 的圆)。并且他还证明了:如果曲线C 包围着函数()f z 的一些极点,则()f z 沿曲线C 的积分就是该函数在这些极点上留数之和的2i π倍。在微积分方程理论中,柯西探讨了微分方程的存在性问题,证明了微分方程在不包含奇点的区域内存在着满足给定条件的解这一事实,从而使微分方程的理论得以进一步深化。在研究微分方程的解法时,他成功地提出了优势函数法,柯西之后,魏尔斯特拉斯、戴德金、康托尔各自经过独立深入的研究,都将分析基础归结为实数理论,并于19世纪70年代各自建立了完整的实数体系。魏尔斯特拉斯的理论可归纳为递增有界数列极限存在原理;戴德金建立了有名的戴德金分割;康拓尔提出用有理基本序列的极限来定义无理数。由此,沿柯西开辟的道路,建立起来了严谨的极限理论与实数理论,完成了分析学的逻辑奠基工作。数学分析的无矛盾性问题归纳为实数论的无矛盾性,从而使微积分学这座人类数学史上空前雄伟的大厦建在了牢固可靠地基础之上。

三、极限思想与微积分

极限思想的发展与微积分的建立有着密不可分的联系。16世纪的欧洲由于资本主义的兴起,资本主义手工业迅速发展,使得力学在科学中的地位越来越重要。以力学为中心地一系列实际问题摆在可科学家面前,归纳起来有大致有以下四个方面:第一,由距离和时间的函数关系求物体在任意时刻的速度和加速度;反之,由物体的加速度和时间的函数关系求速度和距离;第二,确定运动物体在其轨道上任一点处的运动方向,以及通过研究光线透镜的途径而提出求曲线的切线问题;第三,求函数的最大值和最小值,这是普遍存在的实际问题;例如求行星离开太阳的最远和最近距离;第四,寻找曲线长度、曲线围成的面积和体积、物体的重

心等的一般方法。从这四类问题的出现可以看出,以常对量为主要研究对象的数学已经不能满足社会发展的需求,因而科学家门开始由对以常量为主要研究对象的研究转移到以变量为主要研究对象的研究上来,自然科学开始迈入综合与突破 的阶段。

(一)微积分的孕育

微积分的诞生是数学史上的伟大事件。然而它是经过长期酝酿和孕育的产物,其根源可以追溯到古希腊时代,例如欧多克索斯的穷竭法,阿基米得的圆、球、抛物线图形求积法。此外,我国古代数学家对此也做过有益探索,刘徽的割圆术、祖恒之的截面原理都可以说明这一点。但是,这些工作由于时代限制,在数学史上仅是一些孤立的技巧。17世纪,许多数学家围绕着前述四个方面问题做了大量研究工作,他们为微积分的孕育做出了重大贡献。

求复杂面积、体积和线段长度的工作开始于得国科学家开普勒(kepler.1571-1630年)。1615年,开普勒发表《酒桶的建立体几何学》,集中研究了求旋转体体积问题。其基本方法是--首先,把给定得几何图形分成无穷多个无穷小得图形,用某种特定的方法把这些图形的面积或体积加起来,变得到给定的图形的面积和体积;其次,几何图形是由同样维数的不可分离量即无穷小面积或体积组成的。虽然这些计算都是不严格的,但是他得出的结果却是正确的。这些简单易行的方法,同今天常采用的“微元法”有着相似之处。开普勒是第一个在求积中运用无穷小的数学家,这就是他对积分学的最大贡献。

1635年,意大利数学家卡瓦利里(1598-1647年)的《用新方法促进的连续不可分几何学》的正式出版标志着积分学的一个重要进展。他认为,几何图形是由无数多个维为数较低的不可分量组成的,即面积是由条数不定的等距离平行线构成的,体积是由等距离的平行平面构成的,他把这些元素分别称之为面积和体积的不可分量。这一方法所依据的一个重要原理就是“祖恒原理”(国外数学家称为卡瓦利里原理,实际上发展这一原理我国数学家祖冲之、祖恒之父子比卡瓦利里要早1100多年)。他用他“重新发现”的这一原理证明:圆锥的体积是外接圆柱体积的31

,抛3

2。卡瓦利里不可分求和原理,实际上就是后来定积分概念的雏形。同时,他还证明了:对于1到9的正整数n ,

有1

01n a n x dx n a +=+?。在《用新方法促进的连续不可分几何学》一书中,还有应用微积分概念求极值的某些定理,第一个命题就包含着与罗尔定理等价的推断。

意大利物理学家伽利略对微积分的孕育也做了重大贡献。微积分概念形成于切线、极值及运动速度问题的处理。伽利略在《两种新科学的对话》一书中,给出了自由落体运动距离和时间的关系式2s t κ=。他在处理迅速运动问题时,证明了在速度-时间曲线下的面积就是距离,他把面积看成是由无穷多个不可分的单位堆积而成的。在他的著作中,他描述了无穷大和无穷小的某些性质,还求援出了摆线一个拱尺面的面积和摆线切线的做法。

法国数学家费马对微积分的孕育也有重要的影响。1629年,他首次获得了求函数极值的法则,即运用上了微分学思想;用类似方法他还求出了平面曲线()y f x =的切线,抛物线体积的重心和拐点;他还用极限1

1121

lim +=+???++=∞→n m m n n n n m 求出了抛物线2y x =的面积等。 此外,英国数学家沃利斯(john wsillis.1616-1703年)和巴罗(Isaac barrow.1630-1677年)微积分萌芽中也做了大量工作。1655年沃利斯在其名著《无穷算术》中运用分析法和不可分原理,得到了一些更为广泛有用的结果。他首次把圆锥曲线看作二次曲线,从而使得笛卡儿和卡瓦利里的方法得到系统化和推广。同时他还把1

11

0+=?n dx x n 推广到n 维分数或负数(除-1外)。 综上所述,这些数学家的先驱性工作均为微积分的创立奠定了坚实基础。为微积分的创立积累了大量的资料,而这些坚实基础和大量的资料,无一不是以极限的思想为基石一步一步堆积起来的。

(二)牛顿与微积分

牛顿(Isaac Newton ,1643—1727),英国物理学家和数学家。1643年出生于英格兰北部林肯郡的一个农民家庭。为躲避鼠疫回乡,两年间他提出了“流数法”,发现万有引力定律并得到了太阳光谱。牛顿发现微积分首先得助于其老师巴罗,巴罗关于“微分三角形”的深刻思想给他影响极大;另外,费马的切线方法和沃利斯的《无穷算术》也给了他很大启发。

1666年,牛顿写出第一篇关于微积分的论文《流数短论》,在该文中首先提出了流数概念。而于1669年完成到1711年才发表的《运用无穷多项方程的分析学》,则给出了一个求变量对另一个变量的瞬时变化率的普遍方法,并且证明了面积可以求变化率的逆过程得到。

1671年,牛顿完成了《流数法与无穷级数》(1736年出版),进一步对自己的思想做了更广泛更明确的说明,系统的引进了他所独创的概念和记法。他将变量称作“流”,将变量的变化率称作“流数”。

1676年牛顿完成了另一部著作《求曲边形的面积》(1704年出版),提出了“最初比”和“最后比”两个新概念,并且明确的表现出将导数作为增量比的极限思想。

在牛顿微积分学说的发展过程中,可以看到牛顿始终不渝地努力改进、完善自己的微积分学说,经过20年左右的时间,他的微积分从以无穷小为基础,转变为以极限为基础。但由于时代或认识的问题,牛顿始终没能给出无穷小和极限的严格定义,但瑕不掩瑜,他将自古以来求解无穷小问题的各种方法和特殊技巧有机地统一起来。正是在这种意义下,我们说牛顿创立了微积分。

(三).莱布尼茨与微积分

德国自然科学家、数学家、哲学家莱布尼茨生于莱比锡。在惠更斯的激励和引导下,莱布尼茨步入数学和物理之门。他深入研究了笛卡尔,法国数学家帕斯卡,巴罗等人的数学论著并做了大量笔记。在这段时间,他引进了常量、变量,和参考变量概念,从研究几何问题入手完成了微积分的基本计算理论。他创作了微积分的符号dx、dy及积分符号 ,并提出了函数的和、差、积、商的微分法则和在积分量下对参变量求微分的方法以及旋转体体积公式。1684年,他在博学文摘上发表第一篇论文,文中提出了切线、极大值、极小值和拐点的方法。

牛顿和莱布尼茨同是微积分的创始人—牛顿和莱布尼茨在创立微积分过程中都采用了一些新的方法,在数学发展史上都有创造性作用。他们都把求面积和体积以及其他以往作为求和处理的问题都归于反微分,从而为积分运算开辟了一个简单途径。

然而,他们的创造性工作也有所不同。牛顿较多的注重于创立微积分的体系和基本方法,从考虑变化率出发解决面积和体积问题。而莱布尼茨更多地关心微

积分运算公式的建立和推广,从而建立了微积分法则和公式。

综上所述,众多数学家在解决问题时都不同程度地使用了无穷小,进而是极限的思想和方法,但都没有给出明确的定义,包括被誉为微积分的创始人牛顿和莱布尼兹,他们在创立微积分的过程中也没有给出无穷小和极限的数学定义。但这些丝毫也无损于这些科学伟人的历史功绩,因为任何科学理论的创立,都不是某个数学家凭空臆想出来的,而是社会发展的需要。从认识论的角度看,人的认识规律是由具体到抽象,那么人类对极限理论的认识和发展也不应例外。

(四)、微积分的进一步发展

继牛顿和莱布尼茨之后,17—18世纪初产生了不少微积分成果。这些成果主要包括两方面:一是对微积分的可靠性进行研究,指出不足、做出修正;二是增补具体成果。

欧拉(Leonhard Euler ,1707—1783年),瑞士数学家、物理学家。在发展微积分方面,他整理了莱布尼茨的支持者——大陆派的微积分内容,先后发表了《无穷小分析应论》、《微分学》、《积分学》等著作。在这些著作与一系列论文中,欧拉对微积分的发展做出了伟大的贡献。1、他对函数概念进行了系统的探讨,定义了多元函数和超越函数概念,区分了显函数和隐函数,单值函数和多值函数;2、

他给出了用累次积分计算有界区域的二重积分方法;3、他研究了数列11n n ??????????

??+ ???极限的存在性,并把该极限记为e;对于发散级数∑∞

=11n n ,他给出了下面的结果(欧

拉常数γ): 111ln 0.5772152lim n n n γ→∞????=++???+-=??? ???????

他把实函数的许多结果都推广到复数域,从而推动了复变函数的理论发展;5、通过对函数极值问题的研究,他解决了一般函数问题的极值问题,并成功的找到了极值函数必须满足的微分方程——欧拉方程;6、欧拉通过对积分(1)0n x n dx x e τ∞

-+=?以及()()(,)()

m n m n m n τττ+B =。此外,他在微分方程、几何、数论以及力学、光学和天文学等方面做出了极大的贡献,难怪人们称他是:“一个多才的科学家,一个方法的发明家,一个熟练的巨匠”。

拉格朗日(Joseph Louis lagrange,1736—1813年),法国数学家、力学家和天文学家。从1766年起,由欧拉推荐任柏林科学院院长长达21年。在柏林科学院工作期间,他对代数、数论、微分方程、变分法、力学、天文学等进行了广泛深入的研究,并取得了丰硕成果。关于微积分他试图彻底的抛弃模糊不清的无穷小概念,在其名著《解析函数论》(1797年发表)中。他曾经尝试把微分、无穷小和极限与概念,从微积分中排除。他用代数方法证明了泰勒展开式。他对无穷小级数的收敛问题仍无法回避极限,因而他的“纯代数的微分学”尝试并未成功。但他对函数的抽象处理却可以说是实变函数的起点。此外,还给出了泰勒级数的余项公式,研究了二元函数极值,阐明了条件极值的理论,并研究了三重积分的变量代数式。

结束语

极限思想作为人类思想宝库中的一种重要思想,它的发展历程与哲学和数学的发展有着密不可分的关系。本文从哲学和数学史的视角,阐述了极限思想的产生、发展和完善历程以及极限理论所蕴含的丰富的辩证法思想,从中让我们看到了哲学思想和微积分在极限理论发展中所起的作用。一方面,哲学思想与极限思想同为人类认识世界的思维成果,其发展并不是相互独立的,而是相互交织,相互推进,共同螺旋式上升发展的过程;同时也让我们看到哲学思想的探究与发展对于极限思想发展的指导作用,而极限思想的建立与完善又使得哲学思想得到了完美的科学体现。

另一方面,现代极限理论作为一种数学方法,不可能完全归于或依赖于哲学理论而发展,它有着自身的发展规律。从早期萌芽的感性认识,及起初片面的、零碎的、甚至是含糊不清的描述,经过几代数学家的去伪存真、去粗存精、由此及彼、由表及里的理性认识,逐渐形成了科学的定义。其过程经历了由具体到抽象、由简单到复杂、由特殊到一般、由低级到高级的多种形式的发展过程。

参考文献

[1]陈金干,孙映成.《中外数学简史》,中国矿业大学出版社, 2002年。

[2]明清河.《数学分析的思想与方法》,山东大学出版社, 2006年。

[3]周述崎.《数学思想和数学哲学》,中国人民大学出版社, 1993年。

[4](美)莫里斯.克莱因. 《古今数学思想》(第2册).北京大学数学系数学史翻

译组翻译, 上海科学技术出版社,2007年。

致谢

行文至此,我的论文已接近尾声;岁月如梭,我三年的大学时光也即将敲响结束的钟声。离别在即,我站在人生的又一个转折点上,心中难免思绪万千,心中一种感恩之情油然而生。育我成才者是老师。感谢我的指导老师,这篇论文是在老师的的悉心指导与鼓励下完成的。老师以其严谨求实的治学态度、高度的敬业精神、兢兢业业、孜孜以求的工作作风和大胆创新的进取精神对我产生重要影响尤其是老师渊博的学识、严谨的治学态度、精益求精的工作作风和诲人不倦的高尚师德,都将深深地感染和激励着我。在此谨向老师致以诚挚的感谢!

写作毕业论文是一次再系统学习的过程,毕业论文的完成,同样也意味着新的学习生活的开始。

极限思想及其应用

本科毕业论文(设计) 极限思想及其应用 学生姓名:孙金龙 学 号:071611140系 部:应用数学系专业:金融数学 指导教师:刘炎讲师 提交日期:2011年3月21日 广东金融学院 2008-JX16-

毕业论文基本要求 1.毕业论文的撰写应结合专业学习,选取具有创新价值和实践意义的论题。 2.论文篇幅一般为8000字以上,最多不超过15000字。 3.论文应观点明确,中心突出,论据充分,数据可靠,层次分明,逻辑清楚,文字流畅,结构严谨。 4.论文字体规范按《广东金融学院本科生毕业论文写作规范》和“论文样板”执行。 5.论文应书写工整,标点正确,用用微机打印后,装订成册。

本科毕业论文(设计)诚信声明 本人郑重声明:所呈交的本科毕业论文(设计),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 学生签名: 时间:年月日 关于论文(设计)使用授权的说明 本人完全了解广东金融学院关于收集、保存、使用学位论文的规定,即: 1.按照学校要求提交学位论文的印刷本和电子版本; 2.学校有权保存学位论文的印刷本和电子版,并提供目录检索与阅览服务,在校园网上提供服务; 3.学校可以采用影印、缩印、数字化或其它复制手段保存论文; 本人同意上述规定。 学生签名: 时间:年月日

摘要 极限思想作为一种数学思想,由远古的思想萌芽,到现在完整的极限理论,其漫长曲折的演变历程布满了众多数学家们的勤奋、智慧、严谨认真、孜孜以求的奋斗足迹。极限思想的演变历程,是数千年来人类认识世界和改造世界的整个过程的一个侧面反应,是人类追求真理、追求理想,始终不渝地求实、创新的生动写照。 极限思想的产生与完善是社会实践的需要,它的产生为数学的发展增加了新的动力,成为了近代数学思想和方法的基础和出发点。极限思想是微积分理论的基础,而微积分与经济学、物理学、机械自动化等与生活息息相关的学科是密不可分的。尤其是对于经济学来说,是一个透过现象看本质的必不可少的工具,经济学的核心词语“边际”便是一个将导数经济化的概念。只有结合微积分等数学知识,才能使经济学从一个仅仅对表面现象进行肤浅的常识推理、流于表面化的学科,变为一个用科学的方法进行数理分析、再结合各社会学科的丰富知识,从而分析出深层次的、更具有广泛应用性的基本结论的学科。 其他学科也是如此,极限思想的应用无处不在,理解掌握并合理应用极限要思想,可以让我们在解决实际问题的过程中,能较快发现解决问题的方法,提高实际效果.本文就利用数学的极限思想在解决各个学科中的实际问题的思考过程做出初步的探索和分析。 [关键词]:极限思想;微积分;经济学

高等数学求极限的常用方法

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{} 的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii )A x x f x A x f x =+∞ →=-∞ →?=∞ →lim lim lim )()( (iii) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 ) (lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通 项之后,就能变成(i)中的形式了。即)(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0 ∞”对于幂指函数,方法主要是取指数还取对数的方法,即e x f x g x g x f ) (ln )()()(=, 这样就能把幂上的函数移下来了,变成“∞?0”型未定式。 3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候)

极限思想方法

七、趋势判断 趋势判断法,包括极限判断法,连同估值法,大致可以归于直觉判断法一类。具体来讲,顾名思义,趋势判断法的要义是根据变化趋势来发现结果,要求化静为动,在运动中寻找规律,因此是一种较高层次的思维方法。 【例题】、(06年全国卷Ⅰ,11)用长度分别为2、3、4、5、6(单位:cm )的5根细木棍围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为多少? A 、85 cm 2 B 、610 cm 2 C 、355 cm 2 D 、20 cm 2 【解析】、此三角形的周长是定值20,当其高或底趋向于零时其形状趋向于一条直线,其面积趋向于零,可知,只有当三角形的形状趋向于最“饱满”时也就是形状接近于正三角形时面积最大,故三边长应该为7、7、6,因此易知最大面积为610cm 2,选B 。) 【练习1】、在正n 棱锥中,相邻两侧面所成二面角的平面角的取值范围是( ) A 、2(,)n n ππ- B 、1(,)n n ππ- C 、(0,)2π D 、21(,)n n n n ππ-- (提示:进行极限分析,当顶点无限趋近于底面正多边形的中心时,相邻两侧面所成二面角απ→,且απ;当锥体h →+∞且底面正 多边形相对固定不变时,正n 棱锥形状趋近于正n 棱柱, 2,n n απ-→且2,n n απ-选A ) 【练习2】、设四面体四个面的面积分别为它们的最大值为S ,记

41i i S S λ==∑,则λ一定满足( ) A 、24λ≤ B 、34λ C 、2.5 4.5λ D 、3.5 5.5λ (提示:进行极限分析,当某一顶点A 无限趋近于对面时,S=S 对面,不妨设S=S 1,则S 2+S 3+S 41S →那么2λ=,选项中只有A 符合,选A 。 当然,我们也可以进行特殊化处理:当四面体四个面的面积相等时,4λ=,凭直觉知道选A ) 【练习3】、正四棱锥的相邻两侧面所成二面角的平面角为α,侧面与底面 所成角为β,则2cos cos 2αβ+的值是( ) A 、1 B 、12 C 、0 D 、-1 (提示:进行极限分析,当四棱锥的高无限增大时, 90,90,αβ→→那么 2cos cos22cos90cos1801αβ+→+=-,选D ) 【练习4】、在△ABC 中,角A 、B 、C 所对边长分别为a 、b 、c ,若c-a 等于AC 边上的高,那么sin cos 22C A C A -++的值是( ) A 、1 B 、1 2 C 、1 3 D 、-1 (提示:进行极限分析,0A →时,点C →A ,此时高0,h c a →→,那么180,0C A →→,所以sin cos 22C A C A -++sin 90cos01→+=,选A 。) 【练习5】、若0,sin cos ,sin cos ,4a b π αβααββ+=+=则( ) A 、a b B 、a b C 、1ab D 、2ab

中国古代数学中的极限思想开题报告

毕业论文开题报告 信息与计算科学 中国古代数学中的极限思想 一、选题的背景、意义(所选课题的历史背景、国内外研究现状和发展趋势) 微积分是近代数学产生的标志之一,而其中极限概念与极限方法是近代微积分学的基础。美国学者C.B.波斯湾耶在他的《微积分概念史》一书中,多处指出在古希腊数学中没有产生极限概念和使用过极限方法,但在古代东方的中国,早在春秋战国时期就有了极限思想的萌芽,对宇宙的无线性与连续性已有了相当深的认识;到三国魏晋时期,我国著名数学家刘徽受到秦汉的极限思想的启迪,继承并发展了极限思想,在为《九章算术》作注时,最先创造性地把极限思想引入数学,成为数学方法,这种方法在圆田术和阳马术得到了充分的发挥和广泛作用,可以说为微积分的产生准备了必要的条件(参见文献[1][2])。本次论文设计针对极限思想的萌芽、发展到完善过程,以及其在古代数学中应用和影响做较为全面的探讨。 数学中有很多重要的思想和方法,比如极限思想就是人们认识无限运动变化的伟大结晶,是联系初等数学和高等数学的一条重要的纽带[3]。这种思想和方法的运用,扩大了人们的思维空间,产生了许多重要的结论和经典故事。而极限又是高等数学中最重要的概念,高等数学许多深层次的理论及其应用都是极限的延拓与深化。作为研究函数最基本的方法——极限方法,早在古代就有比较清楚的描述,其在古代数学中的应用也有很多具体实例。因此,结合国外的极限思想的应用实例,对中国古代极限思想的理论及实际应用进行研究十分必要。 以中国为代表的长于算法的东方数学和以希腊为代表的长于逻辑的西方数学, 是雪白梅香, 各有所长(参见文献[4])。我们知道, 极限概念是微积分的最重要概念之一。数学家们如果一开始因为无穷小的概念不严格而放弃它, 那么微积分就不会诞生。当时的微积分是建立在经验观察或并不很审慎的直观的基础上的, 以在天文力学上的实用性为其后盾。这和中国学者走的道路类似。到了19世纪, 微积分开始严格化运动, 它要求高度演绎。只有这样才便于理论自身的发展, 这又和古希腊学者走的道路一致。可见,在数学的发展过程中, 不能偏废任何一方(参见文献[5])。在古代西方, 芝诺的四个著名悖论首先触及到数学上敏感而后困惑的“无限”问题。欧多克斯的穷竭法, 阿基米德的无穷小思想都含有非常重要的微积分思想。到16 世纪末, 由于实践的需要和对穷竭法的好奇与兴趣, 那些促使微积分产生的数学问题引起了数学家们的广泛兴趣, 他们做了大量有意义的工作, 为微积分的创

极限思想在高中数学及应用

极限思想在高中解题中的运用 宜宾县一中 雷勇 极限的思想是近代数学的一种重要思想,我们在大学所学的数学分析就是以极限概念为基础、极限理论为主要工具来研究函数的一门学科。而在高中一些数学问题的解答上如运用极限的思想,会是我们的解答简单而高效。 所谓极限的思想,是指用极限概念分析问题和解决问题的一种数学思想。下面将用例题举出极限思想的妙处。尝试将极限思想和方法渗透、融合在解题教学中,实现方法与内容的整合实践,以期引起广大师生的广泛关注和高度重视。 例1、过抛物线 )0(2 >=a ax y 的焦点F 作一直线交抛物线于P 、Q 两点,若线段PF 与QF 的长分别是p 、q ,则q p 1 1+等于( ) (A)a 2 (B) a 21 (C) a 4 (D) a 4 分析:本题是有关不变性的问题,常规解法是探求a q p 、、的关 系,过程繁琐,且计算较复杂。若能充分借助于极限思想即取PQ 的极限位置可使问题变得简便易行:将直线PQ 绕点F 顺时针方向旋转到与y 轴重合,此时Q 与O 重合,点P 运动到无穷远处,虽不能再称它为抛物线的弦了, 它是弦的一种极限情形,因为 a OF p QF 41 = ==,而+∞→=q PF ,所以 a q p 41 1→+,故选择(C )。针对客观选择题题型的特点,这种解法体现出思维的灵活性和敏捷性,凸现了试题的选拔功能。 例2、正n 棱锥中,相邻两侧面所成的二面角的取值范围是( ) A ( 2,n n ππ-) B (1 ,n n ππ-) C (0,2 π ) D ( 21 ,n n n n ππ--) x y F P Q O H A n A 1 A 2 A 3 S

浅论极限思想在小学数学中的应用

龙源期刊网 https://www.sodocs.net/doc/7618489610.html, 浅论极限思想在小学数学中的应用 作者:王琳 来源:《中国校外教育(中旬)》2020年第07期 【摘要】极限思想是近代数学的一种重要思想。随着我国对数学教育教学改革力度的不断加大,从小学数学开始抓起,注重将数学思想植根于小学生的脑海里,使他们应用极限思想的思维方式、量化方法和内在规律,来指导他们分析问题和解决问题,理解问题和总结问题,从而激发学生的学习兴趣,提高他们的数学素养和综合能力,使小学数学教学质量得到有效提升。 【关键词】极限思想小学数学应用 一、极限思想在小学数学教学中应用的重要意义 随着教育体制改革,数学的教育教学改革力度也在不断地加大,注重从小学数学开始抓起,将数学思想牢牢植根于小学生的脑海里,用来指导他们分析问题和解决问题,充分调动学生的参与激情,变被动为主动,激发他们的学习兴趣,活跃课堂气氛,化繁为简,有效提高课堂的教学质量。 1.激发学习兴趣,变被动为主动,充分调动学生的参与激情 小学生思维比较活跃,喜欢动脑筋,但小学阶段数学的内容相对简单,基本概念比较多,而且受传统教育模式的影响,课堂教学以老师讲,学生听为主,学生的学习兴趣不高。那么,将极限思想渗透到小学数学教学过程中,让学生充分发挥想象,扩散他们的思维,比如,老师在讲射线概念的时候,它是由线段的一端无限延长所形成的直的线,那个“无限延长”就是极限思想的体现,让学生尽情地想象,就像铁轨一眼望不到头,就像喷气式飞机在天空留下的飞行轨迹一样直到天际之外,又像远行的航船驶向海的尽头。通过学生积极的思维活动,有利于激发他们的学习兴趣,变被动为主动。 2.活跃课堂气氛,化繁为简,有效提高课堂的教学质量 小学生的思维虽然相对活跃但思维能力有限,小学阶段数学概念较多,有些概念解释起来比较饶舌,学生往往理解困难,使课堂气氛沉闷。这时老师要改变教学方法,将极限思想渗透给学生,比如在学习无限小数的时候,按照传统的教学方法,老师将无限小数的概念告诉学生并让他们记住就完事了,虽然在学生脑海里对无限小数概念中的“无穷尽”有一个大大的问号,但教材就是这样说的,老师的讲解也到此为止了。但是,应用极限思维的方法,老师引导学生积极思考,将“无穷尽”与生活结合起来,像海水能斗量吗?天上的星星能数过来吗?这样学生

极限思想的产生及发展

毕业论文 题目极限思想的产生与发展 专业数学教育 院系数学系 学号 131002145 姓名 指导教师 二○一三年五月

定西师范高等专科学校 2010 级数学系系毕业论文开题报告专业班级:数学教育姓名:指导教师:

目录 内容摘要: ............................................................................................................... (4) 关键词: (4) 引言: (5) 一、极限思想的产生 (6) 二、极限思想发展的分期 (6) (一)极限思想的萌芽时期 (6) (二)极限思想的发展时期 (8) (三)极限思想的完善时期 (8) 三、极限思想与微积分 (9) (一)微积分的孕育 (10) (二)牛顿与微积分 (11) (三)莱布尼茨与微积分 (12) (四)微积分的进一步发展 (13) 结束语 (14) 参考文献 (15) 致谢 (15)

内容摘要本文综述了极限思想的产生和发展历史。极限思想的产生与完善是社会实践的需要,它的产生为数学的发展增加了新的动力,成为了近代数学思想和方法的基础和出发点。 关键词极限;无穷;微积分

引言 极限思想作为一种哲学和数学思想,由远古的思想萌芽,到现在完整的极限理论,其漫长曲折的演变历程布满了众多哲学家、数学家们的勤奋、智慧、严谨认真、孜孜以求的奋斗足迹。极限思想的演变历程,是数千年来人类认识世界和改造世界的整个过程的一个侧面反应,是人类追求真理、追求理想,始终不渝地求实、创新的生动写照。 在数学的发展中,数学问题的来源和发展表现为多种多样的途径和极其复杂的情况。纵观极限思想的发展,首先哲学为其提供了直觉上的发展方向,数学家们依据这种直觉或直观进行应用和探索;其后悖论一次次地出现,又促使数学家们一次一次地进行探究求证,使这一思想不断得以发展和完善。而数学的求证又给予了哲学以实在的支持,为哲学更好地描述和论证世界提供了强有力的工具。从最初时期朴素、直观的极限观,经过了2000多年的发展,演变成为近代严格的极限理论,这其中的思想演变是渐进的、螺旋式发展的、相互推动的。 极限理论是微积分学的基础,极限方法为人类认识无限提供了强有力的工具,它从方法论上突出地表现了微积分学不同于初等数学的特点,是近现代数学的一种重要思想。极限思想蕴含着丰富的辩证法思想,是唯物辩证法的对立统一规律在数学领域中的极好应用。理清极限思想的发展脉络,揭示极限思想的核心内容及其与哲学思想的内在联系,对于理解数学史和数学哲学史上的一些问题将具有一定的理论意义。对于培养人的思维方法、思维品质,提高其分析问题和解决问题的能力都有极好的促进作用。

数学中的极限思想及其应用

摘要:本文对数学极限思想在解题中的应用进行了诠释,详细介绍了数学极限思想在几类数学问题中的应用,如在数列中的应用、在立体几何中的应用、在函数中的应用、在三角函数中的应用、在不等式中的应用和在平面几何中的应用,并在例题中比较了数学极限思想与一般解法在解题中的不同。灵活地运用极限思想解题,可以避开抽象、复杂的运算,优化解题过程、降低解题难度。极限思想有利于培养学生从运动、变化的观点看待并解决问题。 关键词:极限思想,应用 Abstract: In this paper, the application of the limit idea in solving problems is explained. What’s more, the applications in several mathematic problems, such as the application in series of numbers, the application in solid geometry, the application in function, the application in trigonometric function, the application in inequalities, the application in plane geometry are introduced in detail. The mathematic limit idea is compared with a common solution in a example, showing their differences in solving a problem. Solving problem by applying the limit idea can avoid abstract and complex operation, optimize the process of solving problem and reduce difficulty of solving problem. Students will benefit from the limit idea, treating and resolving problems from views of the movement and the change. Keywords:the limit idea,application

浅谈极限思想在数学解题中的应用_0

浅谈极限思想在数学解题中的应用 极限思想是一种重要的数学思想,它是一种用有限认识无限,从近似认识精确,从量变认識质变的思想。灵活地借助极限思想,可以简化计算过程,优化解题方案,探索解题新方法。 标签:极限思想;数学解题;应用 极限思想是社会实践的产物。早在远古已经萌芽,从我国古代名言:“一尺之棰,日取其半,万世不竭”中渗透着的极限思想,到刘徽的‘割圆术’,再到法国数学家柯西对极限做出的明确定义。极限思想逐渐成为一种重要的数学工具,它能突破解题常规,巧解数学问题,因此被广泛应用于解决函数、线性代数、平面几何、立体几何等问题,以达到化难为简,节省时间的效果。 一、利用极限思想判断参数的取值范围 例1.已知不等式m2+(cos2θ-5)m+4sin2θ≥0恒成立,则实数m的取值范围()。 A.0≤m≤4 B.1≤m≤4 C.m≥4或m≤0 D.m≥1或m≤0 分析:当m趋于∞时,左边结果大于0,可以排除A,B;当m趋于1时,不等式不一定成立,排除D,因此答案为C。由此可以看出极限思想是特殊值法的延伸。该题利用极限思想,着眼于问题的极限状态,减少了计算量,迅速准确获解。 二、利用极限思想判断函数值的范围 例 2.已知0

数学史试卷及答案

一、单项选择题 1、古代美索不达米亚的数学成就主要体现在(A) A.代数学领域 B.几何学领域 C.三角学领域 D.解方程领域 2、建立新比例理论的古希腊数学家是( C) A.毕达哥拉斯 B.希帕苏斯 C.欧多克斯 D.阿基米德 3、我国古代关于求解一次同余式组的方法被西方称作“中国剩余定理”,这一方法的首创者是( D) A.贾宪 B.刘徽 C.朱世杰 D.秦九韶 4、下列著作中,为印度数学家马哈维拉所著的是( B) A.《圆锥曲线论》 B.《计算方法纲要》 C.《算经》 D.《算法本源》 5、在射影几何的诞生过程中,对于透视画法所产生的问题从数学上直接给予解答的第一个人是(C) A.达·芬奇 B.笛卡儿 C.德沙格 D.牛顿 6、提出行星运行三大定律的数学家是( D) A.牛顿 B.笛卡儿 C.伽利略 D.开普勒 7、欧拉从事科学研究工作的地方,主要是( B) A.瑞士科学院 B.俄国圣彼得堡科学院 C.法国科学院 D.英国皇家科学院 8、《几何基础》的作者是(C) A.高斯 B.罗巴契夫斯基 C.希尔伯特 D.欧几里得 9、提出“集合论悖论”的数学家罗素是( A) A.英国数学家 B.法国数学家 C.德国数学家 D.巴西数学家 10、运筹学原意为“作战研究”,其策源地是(A) A.英国 B.法国 C.德国 D.美国 11、数学的第一次危机,推动了数学的发展。导致产生了(A) A欧几里得几何 B非欧几里得几何 C微积分 D集合论 12、世界上第一个把π计算到3.11415926 <π<3.1415927的数学家是(祖冲之) 13、我国元代数学著作《四元玉鉴》的作者是(C) A秦九韶 B杨辉 C朱世杰 D贾宪 14、变量的函数是一个由该变量与一些常数以任何方式组成的解析表达式。这个 函数定义在18世纪后期占据了统治地位,给出这个函数定义的数学家是(C) A莱布尼茨 B约翰贝努利 C欧拉 D狄利克雷 15、几何原本的作者是(欧几里得) 16、世界上讲述方程最早的著作是(中国的九章算术)

极限的常用求法及技巧.

极限的常用求法及技巧 引言 极限是描述数列和函数在无限过程中的变化趋势的重要概念。极限的方法是微积分中的基本方法,它是人们从有限认识无限,从近似认识精确,从量变认识质变的一种数学方法,极限理论的出现是微积分史上的里程碑,它使微积分理论更加蓬勃地发展起来。 极限如此重要,但是运算题目多,而且技巧性强,灵活多变。极限被称为微积分学习的第一个难关,为此,本文对极限的求法做了一些归纳总结, 我们学过的极限有许多种类型:数列极限、函数极限、积分和的极限(定积分),其中函数极限又分为自变量趋近于有限值的和自变量趋近于无穷的两大类,如果再详细分下去,还有自变量从定点的某一侧趋于这一点的所谓单边极限和双边极限,x 趋于正无穷,x 趋于负无穷。函数的极限等等。本文只对有关数列的极限以及函数的极限进行了比较全面和深入的介绍.我们在解决极限及相关问题时,可以根据题目的不同选择一种或多种方法综合求解,尤其是要发现数列极限与函数极限在求解方法上的区别与联系,以做到能够举一反三,触类旁通 。 1数列极限的常用求法及技巧 数列极限理论是微积分的基础,它贯穿于微积分学的始终,是微积分学的重要研究方法。数列极限是极限理论的重要组成部分,而数列极限的求法可以通过定义法,两边夹方法,单调有界法,施笃兹公式法,等方法进行求解.本章节就着重介绍数列极限的一些求法。 1.1利用定义求数列极限 利用定义法即利用数列极限的定义 设{}n a 为数列。若对任给的正数N,使得n 大于N 时有 ε<-a a n 则称数列{}n a 收敛于a ,定数a 称为数列{}n a 的极限,并记作,lim n a n a =∞ →或 )(,∞→∞→n a n

极限的发展史

极限的发展史 从极限思想到极限理论 极限的朴素思想和应用可追溯到古代,我国古代哲学名著《庄子》记载着庄子的朋友惠施的一句话:“一尺之棰,日取其半,万世不竭。”其含义是:长为一尺的木棒,第一天截取它的一半,第二天截取剩下的一半,这样的过程无穷无尽地进行下去。随着天数的增多,所剩下的木棒越来越短,截取量也越来越小,无限地接近于0,但永远不会等于0。 中国早在2000年前就已能算出方形、圆形、圆柱等几何图形的面积和体积,3世纪刘徽创立的割圆术,就是用园内接正多边形的极限时圆面积这一思想来近似计算圆周率π的,并指出“割之弥细,所失弥少,割之又割,以至不可割,则与圆合体而无所失矣”,这就是早期的极限思想。 到17世纪,由于科学与技术上的要求促使数学家们研究运动与变化,包括量的变化与形的变换,还产生了函数概念和无穷小分析即现在的微积分,使数学从此进入了一个研究变量的新时代。到17世纪后半叶,牛顿和莱布尼茨在前人研究的基础上,分别从物理与几何的不同思想基础、不同研究方向,分别独立地建立了微积分学。他们建立微积分的出发点使直观的无穷小量,极限概念被明确提出,但含糊不清。牛顿子发明微积分的时候,合理地设想:t?越小,这个平均速度应当越接近物体在时刻t时的瞬时速度。这一新的数学方法,受到数学家和物理学家欢迎,并充分地运用它解决了大量过去无法问津的科技问题,因此,整个18世纪可以说是微积分的世纪。但由于它逻辑上的不完备也招来了哲学上的非难甚至嘲讽与攻击,贝克莱主教曾猛烈地攻击牛顿的微分概念。实事求是地讲,把瞬时速度说成是无穷小时间内所走的无穷小的距离之比,即“时间微分”与“距离微分”之比,是牛顿一个含糊不清的表述。其实,牛顿也曾在著作中明确指出过:所谓“最终的比”不是“最终的量”的比。而是比所趋近的极限。但他既没有清除另一些模糊不清的陈述,又没有严格界说极限的含义。包括莱布尼茨对微积分的最初发现,也没有明确极限的意思。因而,牛顿及其后一百年间的数学家,都不能有力地还击贝克莱的这种攻击,这就是数学史上所谓第二次数学危机。 经过近一个世纪的尝试与酝酿,数学家们在严格化基础上重建微积分的努力到19世纪初开始获得成效。由于法国数学家柯西、德国数学家魏尔斯特拉斯等人的工作,以及实数理论的建立,才使极限理论建立在严密的理论基础之上。至此极限理论才真正建立起来,微积分这门学科才得以严密化。因而真正现代意义上的极限定义,一般认为是由魏尔斯特拉斯给出的,他当时是一位中学数学教师.所谓“定义”极限,本质上就是给“无限接近”提供一个合乎逻辑的判定方法,和一个规范的描述格式。这样,我们的各种说法,诸如“我们可以根据需要写出根号2的任一接近程度的近似值”,就有了建立在坚实的逻辑基础之上的意义。 2.1最早的极限思想

求极限的常用方法(精髓版)考试必备

求极限的常用方法(精髓版) 初等数学的研究对象基本上是不变的量,而高等数学的研究对象则是变动的量。极限方法就是研究变量的一种基本方法。极限分为数列的极限和函数的极限,下文研究的是函数的极限,这些方法对于数列的极限同样适用。 1.直接代入数值求极限 例1 求极限1lim(21)x x →- 解 1lim(21)2111 x x →-=?-= 2.约去不能代入的零因子求极限 例2 求极限11lim 41--→x x x 解 4221111(1)(1)(1) lim lim lim(1)(1)4 11x x x x x x x x x x x →→→--++==++=-- 3.分子分母同除最高次幂求极限 例3 求极限13lim 3 2 3+-∞→x x x x 解 3131lim 13lim 11323=+-=+-∞→∞→x x x x x x x 注:一般地,分子分母同除x 的最高次幂有如下规律 ??????? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1 4.分子(母)有理化求极限 例4 求极限) 13(lim 22+-++∞ →x x x 解 1 3) 13)(13(lim )13(lim 2222222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 1 32lim 2 2 =+++=+∞ →x x x 例5 求极限 x →解 01)2x x x →→→=== 5.应用两个重要极限的公式求极限 两个重要极限是1sin lim 0=→x x x 和1lim(1)x x e x →∞+=,下面只介绍第二个公式的例子。 例6 求极限 x x x x ??? ??-++∞→11lim

极限思想在实际生活中的应用【开题报告】

开题报告 信息与计算科学 极限思想在实际生活中的应用 一、综述本课题国内外研究动态, 说明选题的依据和意义 极限的思想可以追溯到我国古代, 刘徽的割圆术就是建立在直观基础上的一种原始的极限思想的应用; 古希腊人的穷竭法也蕴含了极限思想, 但由于希腊人“对无限的恐惧”, 他们避免明显地“取极限”, 而是借助于间接证法——归谬法来完成了有关的证明. 到了16世纪, 荷兰数学家斯泰文在考察三角形重心的过程中改进了古希腊人的穷竭法, 他借助几何直观, 大胆地运用极限思想思考问题, 放弃了归缪法的证明. 如此, 他就在无意中指出了把极限方法发展成为一个实用概念的方向. 极限思想的进一步发展是与微积分的建立紧密相联系的. 16世纪的欧洲处于资本主义萌芽时期, 生产力得到极大的发展, 生产和技术中大量的问题, 只用初等数学的方法已无法解决, 要求数学突破只研究常量的传统范围, 而提供能够用以描述和研究运动、变化过程的新工具, 这是促进极限发展、建立微积分的社会背景. 起初牛顿和莱布尼茨以无穷小概念为基础建立微积分, 后来因遇到了逻辑困难, 所以在他们的晚期都不同程度地接受了极限思想. 牛顿用路程的改变量与时间的改变量之S ?t ?比表示运动物体的平均速度, 让无限趋近于零, 得到物体的瞬时速度, 并由此引S t ??t ?出导数概念和微分学理论. 他意识到极限概念的重要性, 试图以极限概念作为微积分的基础, 他说:“两个量和量之比, 如果在有限时间内不断趋于相等, 且在这一时间终止前互相靠近, 使得其差小于任意给定的差, 则最终就成为相等.”但牛顿的极限观念也是建立在几何直观上的, 因而他无法得出极限的严格表述. 牛顿所运用的极限概念, 只是接近于下列直观性的语言描述, “如果当无限增大时, 无限地接近于常数, 那么就说以为极限” . n n a A n a A 这种描述性语言, 人们容易接受, 现代一些初等的微积分读物中还经常采用这种定义. 但是, 这种定义没有定量地给出两个“无限过程”之间的联系, 不能作为科学论证的逻辑基础. 正因为当时缺乏严格的极限定义, 微积分理论才受到人们的怀疑与攻击, 极限思想的完

浅论高等数学中的极限思想

浅论高等数学中的极限思想 谷亮 (辽宁铁道职业技术学院 辽宁 锦州 121000 中国) 摘要: 极限是高等数学最基本的概念之一,极限思想是近代数学的一种很重要的数学思想,是用极限概念分析问题和解决问题的一种数学思想,本文从极限的定义、极限思想的价值、教学中如何渗透极限思想几个方面进行了简要论述。 关键词:高等数学,极限,极限思想、教学 一、极限的概念 1、数列极限:设 {x }n 为一个数列,a 为一常数,若0ε?>,总存在一个正整数N ,使得 当n N >时,有n x a ε-<,称a 是数列{x }n 的极限。记作lim n n x a →∞= 2、函数极限:设函数(x)f 在点a 的某去心邻域内有定义,A 为一常数,若0ε?>,总存在一个正数δ,使得当0x a δ <-<时,有 (x)f A ε -<,称A 是当x 趋向于a 时函数(x) f 的极限。记作lim (x)x a f A →=。 自变量变化过程还包括: ,,,x a x a x x +- →→→+∞→-∞,极限的定义类似。 在数学发展的过程中,出于不同需要,还引进了不同意义下的极限概念,比如在集论中引 进了集列的上、下极限的概念,在无穷级数论中引进级数绝对收敛与条件收敛的概念,以及在函数逼近论中引进了一致逼近、平均逼近等的极限概念.无论怎样定义,其本质都是一样的,都是从有限观念发展到无限观念的过程。 二、极限思想的价值 极限思想揭示了变量与常量、无限与有限的关系,通过极限思想,我们可以从有限来认识无限,以直线近似代替曲线,以不变认识变化,从量变认识质变。因此,极限思想具有由此及彼的创新作用,极限思想方法也广泛用于微分方程、积分方程、函数论、概率极限理论、微分几何、泛函分析、函数逼近论、计算数学、力学等领域。 生活中也有这样的例子:一张饼,第一天吃它的一半,第二天吃它的一半的一半,第三天吃它的一半的一半的一半,……如此这样,这张饼能吃得完吗?显然是永远吃不完的,虽然饼越来越小,但还是有的。只能说,这张饼的极限为零,但绝不是零。这就是一种极限思想的具体写照。 极限思想不仅非常重要,它也是学生难以理解掌握的重要概念,它贯穿整个数学体系,是一种非常重要的数学思想,它是人类发现并解决数学问题的非常重要手段,它能很好地展现出数学的思维之美,在高等数学的教学过程中起着相当重要的作用,恰当的应用极限思想

中期报告,数学,极限思想的产生与发展,应用

目录 摘要: (2) 关键词 (2) 引言: (2) 1 极限思想的产生 (3) 2 极限思想的发展 (4) 3 极限思想的概念 (4) 3.1 极限的现代定义 (4) 3.2 函数极限的性质 (5) 4 极限思想的应用 (6) 4.1极限思想在开方方面中的应用 (6) 4.2极限思想在求解某一点问题的应用 (7) 结论: (8) 参考文献 (9)

极限思想的产生﹑发展和应用 摘要:本文主要论述极限思想的产生与发展、极限思想的概念及其应用。极限思想是荷 兰数学家斯泰文在考察三角形重心的过程中改进了古希腊人的穷竭法时产生的,他借助几何直观,大胆地运用极限思想思考问题,放弃了归谬法的证明,而牛顿,莱布尼兹对极限思想的建立作出了创造性的贡献。本文最后探讨了极限思想在开方和求解某一点方面的应用。 关键词:极限;产生;发展;应用 The Developmemt and Application Of Limit Abstract: This paper discusses the emergence and development of the limits of thought, the concept and application of the limits of thought. The ultimate idea is Tolstoy text, Dutch mathematician, in the process of inspection triangle center of gravity to improve the method of exhaustion of the ancient Greeks, by means of geometric, bold use the thinking of extreme to solve problem, give up the reductio ad absurdum proof, and Newton Leibniz made ??a creative contribution to the establishment of the extreme ideas. Finally, we discuss the thinking of limits in prescribing and solving of a certain point. Key words: Limit ;Generation;Development;Application 引言 数学是对现实世界数与形简洁的、高效的、优美的描述, 是有其内部抽象和外部有效性的一门学科。数学科学是知识和思想方法的有机组合。求解实际问题的正确解法是由一系列正确的程序组成, 即从已知量出发, 通过对已知条件与目标结果的联系, 并运用数学的各种运算, 最终得到正确的结果的过程。微积分是解决实际问题的一个基础, 极限的思想是微

求极限的常用方法

求极限的常用方法 摘要 极限思想是大学课程中微积分部分的基本原理,这显示出极限在高等数学中的重要地位。同时,极限的计算本身也是一个重要内容。 关键词 极限;计算方法 初等数学的研究对象基本上是不变的量,而高等数学的研究对象则是变动的量。极限方法就是研究变量的一种基本方法。极限分为数列的极限和函数的极限,下文研究的是函数的极限,这些方法对于数列的极限同样适用。 1.直接代入数值求极限 例1 求极限1lim(21) x x →- 解 1 lim(21)2111 x x →-=?-= 2.约去不能代入的零因子求极限 例2 求极限11 lim 41--→x x x 解 4221111(1)(1)(1)lim lim lim(1)(1)4 11x x x x x x x x x x x →→→--++==++=-- 3.分子分母同除最高次幂求极限 例3 求极限13lim 3 2 3+-∞→x x x x 解 3131lim 13lim 3 11323=+-=+-∞→∞→x x x x x x x 注:一般地,分子分母同除x 的最高次幂有如下规律 ??????? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1ΛΛ 4.分子(母)有理化求极限 例4 求极限) 13(lim 22+-++∞ →x x x 解 1 3) 13)(13(lim )13(lim 2222222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 1 32lim 2 2 =+++=+∞ →x x x

极限思想的产生与发展精编WORD版

极限思想的产生与发展精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

毕业论文 题目极限思想的产生与发展 专业数学教育 院系数学系 学号 131002145 姓名 指导教师 二○一三年五月 定西师范高等专科学校 2010 级数学系系毕业论文开题报告专业班级:数学教育姓名:指导教师: 一.论文题目:极限思想的产生与发展

目录 内容摘要: ............................................................................................................... (4) 关键词: (4) 引言: (5) 一、极限思想的产生 (6) 二、极限思想发展的分期 (6) (一)极限思想的萌芽时期 (6)

(二)极限思想的发展时期 (8) (三)极限思想的完善时期 (8) 三、极限思想与微积分 (9) (一)微积分的孕育 (10) (二)牛顿与微积分 (11) (三)莱布尼茨与微积分 (12) (四)微积分的进一步发展 (13) 结束语 (14) 参考文献 (15) 致谢 (15) 内容摘要本文综述了极限思想的产生和发展历史。极限思想的产生与完善是社会实践的需要,它的产生为数学的发展增加了新的动力,成为了近代数学思想和方法的基础和出发点。 关键词极限;无穷;微积分 引言 极限思想作为一种哲学和数学思想,由远古的思想萌芽,到现在完整的极限理论,其漫长曲折的演变历程布满了众多哲学家、数学家们的勤奋、智慧、严谨认真、孜孜以求的奋斗足迹。极限思想的演变历程,是数千年来人类认识世界和改造世界的整个过程的一个侧面反应,是人类追求真理、追求理想,始终不渝地求实、创新的生动写照。 在数学的发展中,数学问题的来源和发展表现为多种多样的途径和极其复杂的情况。纵观极限思想的发展,首先哲学为其提供了直觉上的发展方向,数学家们依据这种直觉或直观进行应用和探索;其后悖论一次次地出现,又促使数学家们一次一次地进行探究求证,使这一思想不断得以发展和完善。而数学的求证又给予了哲学以实在的支持,为哲学更好地描述和论证世界提供了强有力的工具。从最初时期朴素、直观的极限观,经过了2000多年的发展,演变成为近代严格的极限理论,这其中的思想演变是渐进的、螺旋式发展的、相互推动的。 极限理论是微积分学的基础,极限方法为人类认识无限提供了强有力的工具,它从方法论上突出地表现了微积分学不同于初等数学的特点,是近现代数学的一种重要思想。极限思想蕴含着丰富的辩证法思想,是唯物辩证法的对立统一规律在数学领域中的极好应用。理清极限思想的发展脉络,揭示极限思想的核心内容及其与哲学思想的内在联系,对于理解数学史和数学哲学史上的一些问题将具有一定的理论意义。对于培养人的思维方法、思维品质,提高其分析问题和解决问题的能力都有极好的促进作用。

相关主题