搜档网
当前位置:搜档网 › 基于BP神经网络的胶囊异物缺陷识别

基于BP神经网络的胶囊异物缺陷识别

基于BP神经网络的胶囊异物缺陷识别
基于BP神经网络的胶囊异物缺陷识别

神经网络模式识别Matlab程序

神经网络模式识别Matlab程序识别加入20%噪声的A-Z26个字母。(20%噪声情况下,完全能够识别)clear;close all; clc; [alphabet,targets]=prprob; [R,Q]=size(alphabet); [S2,Q]=size(targets); S1=10; P=alphabet; net=newff(minmax(P),[S1,S2],{'logsig''logsig'},'traingdx'); net.LW{2,1}=net.LW{2,1}*0.01; net.b{2}=net.b{2}*0.01; T=targets; net.performFcn='sse'; net.trainParam.goal=0.1; net.trainParam.show=20; net.trainParam.epochs=5000; net.trainParam.mc=0.95; [net,tr]=train(net,P,T); netn=net; netn.trainParam.goal=0.6; netn.trainParam.epochs=300; T=[targets targets targets targets]; for pass=1:10; P=[alphabet,alphabet,... (alphabet+randn(R,Q)*0.1),... (alphabet+randn(R,Q)*0.2)]; [netn,tr]=train(netn,P,T); end netn.trainParam.goal=0.1; netn.trainParam.epochs=500; netn.trainParam.show=5; P=alphabet; T=targets; [netn,tr]=train(netn,P,T); noise_percent=0.2; for k=1:26 noisyChar=alphabet(:,k)+randn(35,1)*noise_percent; subplot(6,9,k+floor(k/9.5)*9); plotchar(noisyChar); de_noisyChar=sim(net,noisyChar); de_noisyChar=compet(de_noisyChar);

神经网络动态系统辨识与控制

神经网络动态系统的辨识与控制 摘要: 本论文表明神经网络对非线性动态系统进行有效的辨识与控制。本论文的侧重点是辨识与控制模型,并论述了动态反向传播以及静态反向传播方法在参数调节中的作用。在所介绍的模型中,加法器与重复网络结构的内部相连很独特,所以很有必要将他们统一起来进行研究。由仿真结果可知辨识与自适应控制方案的提出是可行的。整篇论文中都介绍到基本的概念和定义,也涉及了必须提出的学术性问题, 简介 用数学系统理论处理动态系统的分析与合成在过去的五十年里已经被列为应用广泛的权威科学原理了。权威系统理论最先进的地方定义于基于线性代数以及复合变量理论的先进技术线性操作器以及线性常微分方程。由于动态系统的设计技术与它们的稳定特性密切相关,线性时间不变系统的充分必要条件在上世纪已经产生了,所以已经建立了动态系统的著名设计方法。相反,只要在系统对系统基础上就可以基本上建立非线性系统的稳定性,因此对于大部分系统没有同时满足稳定性、鲁棒性以及良好动态响应的设计程序并不希奇。 过去三十年来,对线性、非时变和具有不确定参数的对象进行辨识与自适应控制的研究已取得了很大的进展。但是在这些研究中辨识器和控制器的结构选取和保证整个系统全局稳定性的自适应调参规律的构成等,都是建立在线性系统理论基础上的[1]。在本论文中,我们感兴趣的是神经网络非线性动态系统的控制与辨识。由于很少有可以直接应用的非线性系统理论结果存在,所以必须密切关注这个问题以及辨识器和控制器结构的选择和调整参数适应性规则的通用性问题。 在人工神经网络领域里,有两类网络今年来最引人注目:它们是(1)多层神经网络(2)回归神经网络。多层神经网络被证实在解决模式辨识问题[2]-[5]上非常成功。而回归神经网络则经常用于联想记忆以及制约优化问题的解决[[6]-[9]。从系统理论的观点来看,多层网络呈现静态非线性映射,而回归网络则通过非线性动态反馈系统显现。尽管两种网络存在外观上的不同外,但是很有必要将他们用统一成更一般化的网络。事实上,笔者确信将来会越来越多的用到动态因素以及反馈,这导致包括两种网络的复杂系统的产生。这样,将两个网络统一起来就成为必要。在本文的第三章,这个观点会得到进一步的阐述。 本文用了三个主要目标。第一个也是最重要的一个目标是在未知非线性动态系统中为自适应控制利用神经网络提出辨识以及控制器结构。当未知参数线性系

神经网络在系统辨识中的应用

神经网络在系统辨识中的应用 摘要应用于自动控制系统的神经网络算法很多,特点不一,对于非线性系统辨识的研究有一定影响。本文就BP网络算法进行了着重介绍,并点明了其收敛较慢等缺点,进而给出了改进算法,说明了建立在BP算法基础上的其他算法用于非线性系统辨识的可行性与有效性。 关键词神经网络BP算法;辨识;非线性系统 前言 神经网络是一门新兴的多学科研究领域,它是在对人脑的探索中形成的。神经网络在系统建模、辨识与控制中的应用,大致以1985年Rumelhart的突破性研究为界。在极短的时间内,神经网络就以其独特的非传统表达方式和固有的学习能力,引起了控制界的普遍重视,并取得了一系列重要结果。本文以神经网络在系统辨识中的应用作一综述,而后着重介绍BP网络算法,并给出了若干改进的BP算法。通过比较,说明改进算法具有诸多优点及用于非线性系统辨识[1]的可行性与有效性。 1 神经网絡用于系统辨识的原理及现状 神经网络在自动控制系统中的应用已有多年。目前,利用神经网络建立动态系统的输入/输出模型的理论及技术,在许多具体领域的应用得到成功,如化工过程、水轮机、机器入手臂、涡轮柴油发动机等。运用神经网络的建模适用于相当于非线性特性的复杂系统[2]。 目前系统辨识中用得最多的是多层前馈神经网络[1]。我们知道,自动控制系统中,一个单隐层或双隐层的具有任意数目神经元的神经网络,可以产生逼近任意函数的输入/输出映射。但网络的输入节点数目及种类(延迟输入和输出)、隐层节点的个数以及训练所用的算法对辨识精度和收敛时间均有影响。一般根据系统阶数取延迟输入信号,根据经验确定隐层节点数,然后对若干个神经网络进行比较,确定网络中神经元的合理数目。现在用得较多的多层前馈神经网络的学习算法是反向传播算法(Back Propagation),即BP算法。但BP算法收敛速度较慢,后面将会进一步讨论。 1.1 神经网络的结构 感知器是最简单的前馈网络,它主要用于模式分类。也可用在基于模式分类的学习控制和多模态控制中。现以多层前馈神经网络为代表,来说明神经网络的结构。多层前馈神经网络由输入、输出层以及一个或多个隐层组成。每层有若干个计算单元称之神经元。这些神经元在层状结构的网络中按图1所示方式相互连接。信息按树状路径从下至上逐层传送。一旦相邻层间神经元的连接权以及隐层中神经元的阈值被确定,整个网络的特性也就确定了。如图1所示,第1层为输

基于某某BP神经网络地手写数字识别实验报告材料

基于BP神经网络的手写体数字图像识别 PT1700105 宁崇宇 PT1700106 陈玉磊 PT1700104 安传旭 摘要 在信息化飞速发展的时代,光学字符识别是一个重要的信息录入与信息转化的手段,其中手写体数字的识别有着广泛地应用,如:邮政编码、统计报表、银行票据等等,因其广泛地应用范围,能带来巨大的经济与社会效益。 本文结合深度学习理论,利用BP神经网络对手写体数字数据集MNIST进行分析,作为机器学习课程的一次实践,熟悉了目前广泛使用的Matlab工具,深入理解了神经网络的训练过程,作为非计算机专业的学生,结合该课题掌握了用神经网络处理实际问题的方法,为今后将深度学习与自身领域相结合打下了基础。

1 引言 从计算机发明之初,人们就希望它能够帮助甚至代替人类完成重复性劳作。利用巨大的存储空间和超高的运算速度,计算机已经可以非常轻易地完成一些对于人类非常困难的工作,然而,一些人类通过直觉可以很快解决的问题,却很难通过计算机解决,这些问题包括自然语言处理、图像识别、语音识别等等,它们就是人工智能需要解决的问题。 计算机要想人类一样完成更多的智能工作,就需要掌握关于这个世界的海量知识,很多早期的人工智能系统只能成功应用于相对特定的环境,在这些特定环

境下,计算机需要了解的知识很容易被严格完整地定义。 为了使计算机更多地掌握开放环境下的知识,研究人员进行了很多的尝试。其中影响力很大的一个领域就是知识图库(Ontology),WordNet是在开放环境中建立的一个较大且有影响力的知识图库,也有不少研究人员尝试将Wikipedia中的知识整理成知识图库,但是建立知识图库一方面需要花费大量的人力和物力,另一方面知识图库方式明确定义的知识有限,不是所有的知识都可以明确地定义成计算机可以理解的固定格式。很大一部分无法明确定义的知识,就是人类的经验,如何让计算机跟人类一样从历史的经验中获取新的知识,这就是机器学习需要解决的问题。 卡内基梅隆大学的Tom Michael Mitchell教授在1997年出版的书籍中将机器学习定义为“如果一个程序可以在任务T上,随着经验E的增加,效果P 也可以随之增加,则称这个程序可以从经验中学习”。逻辑提取算法可以从训练数据中计算出每个特征和预测结果的相关度,在大部分情况下,在训练数据达到一定数量之前,越多的训练数据可以使逻辑回归算法的判断越精确,但是逻辑回归算法有可能无法从数据中学习到好的特征表达,这也是很多传统机器学习算法的共同问题。 对机器学习问题来说,特征提取不是一件简单的事情。在一些复杂问题上,要通过人工的方式设计有效的特征集合,需要很多的时间和精力,甚至需要整个领域数十年的研究投入。既然人工无法很好地抽取实体中的特征,那么是否有自动的方式呢?深度学习解决的核心问题就是自动地将简单的特征组合成更加复杂的特征,并使用这些特征解决问题。 因为深度学习的通用性,深度学习的研究者往往可以跨越多个研究方向,甚至同时活跃于数个研究方向。虽然深度学习受到了大脑工作原理的启发,但现代深度学习研究的发展并不拘泥于模拟人脑神经元和人脑的工作原理,各种广泛应用的机器学习框架也不是由神经网络启发而来的。 MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 MNIST是一个非常有名的手写体数字识别数据集,被广泛用作机器学习的入门样例,它包含了60000张图片作为训练数据,10000张图片作为测试数据,每一张图片代表了0~9中的一个数字,图片的大小为28x28,且数字会出现在图片的正中间。本文以该数据集为例,基于Matlab来分析BP神经网络的性能。 2 运行环境 本设计在Windows 10 下进行设计、主要利用Matlab工具环境,进行模拟演示。

基于神经网络的手写数字识别系统的设计与实现

中南大学 本科生毕业论文(设计) 题目基于神经网络的手写数字 识别系统的设计与实现

目录 摘要 (Ⅰ) ABSTRACT (Ⅱ) 第一章绪论 (1) 1.1手写体数字识别研究的发展及研究现状 (1) 1.2神经网络在手写体数字识别中的应用 (2) 1.3 论文结构简介 (3) 第二章手写体数字识别 (4) 2.1手写体数字识别的一般方法及难点 (4) 2.2 图像预处理概述 (5) 2.3 图像预处理的处理步骤 (5) 2.3.1 图像的平滑去噪 (5) 2.3.2 二值话处理 (6) 2.3.3 归一化 (7) 2.3.4 细化 (8) 2.4 小结 (9) 第三章特征提取 (10) 3.1 特征提取的概述 (10) 3.2 统计特征 (10) 3.3 结构特征 (11) 3.3.1 结构特征提取 (11) 3.3.2 笔划特征的提取 (11) 3.3.3 数字的特征向量说明 (12) 3.3 知识库的建立 (12) 第四章神经网络在数字识别中的应用 (14) 4.1 神经网络简介及其工作原理 (14) 4.1.1神经网络概述[14] (14) 4.1.2神经网络的工作原理 (14) 4.2神经网络的学习与训练[15] (15) 4.3 BP神经网络 (16) 4.3.1 BP算法 (16) 4.3.2 BP网络的一般学习算法 (16)

4.3.3 BP网络的设计 (18) 4.4 BP学习算法的局限性与对策 (20) 4.5 对BP算法的改进 (21) 第五章系统的实现与结果分析 (23) 5.1 软件开发平台 (23) 5.1.1 MATLAB简介 (23) 5.1.2 MATLAB的特点 (23) 5.1.3 使用MATLAB的优势 (23) 5.2 系统设计思路 (24) 5.3 系统流程图 (24) 5.4 MATLAB程序设计 (24) 5.5 实验数据及结果分析 (26) 结论 (27) 参考文献 (28) 致谢 (30) 附录 (31)

人工神经网络模式识别

人工神经网络模式识别 一、人工神经网络模式识别 1、人工神经网络的概述 人工神经网络从人脑的生理学和心理学角度出发,通过模拟人脑的工作机理,实现机器的部分智能行为,是从微观结构和功能上对人脑进行抽象和简化,是模拟人类智能的一条重要途径。具体的模式识别是多种多样的,如果从识别的基本方法上划分,传统的模式识别大体分为统计模式识别和句法模式识别,在识别系统中引入神经网络是一种近年来发展起来的新的模式识别方法。尽管引入神经网络的方法和引入网络的结构可以各不相同,但都可称为神经网络模式识别。而且这些识别方法在解决传统方法较难处理的某些问题上带来了新的进展和突破,因而得到了人们越来越多的重视和研究。 人工神经元网络(Artificial Neural Network)简称神经网络,是基于日前人们对自然神经系统的认识而提出的一些神经系统的模型,一般是由一系列被称为神经元的具有某种简单计算功能的节点经过广泛连接构成的一定网络结构,而其网络连接的权值根据某种学习规则在外界输入的作用下不断调节,最后使网络具有某种期望的输出特性。神经网络的这种可以根据输入样本学习的功能使得它非常适合于用来解决模式识别问题,这也是神经网络目前最成功的应用领域之一。 2、神经网络进行模式识别的方法和步骤 神经网络模式识别的基本方法是,首先用己知样本训练神经网络,使之对不同类别的己知样本给出所希望的不同输出,然后用该网络识别未知的样本,根据各样本所对应的网络输出情况来划分未知样本的类别。神经网络进行模式识别的一般步骤如图2-1所示,分为如下几个部分: 预处理 样本获取常规处理特征变换神经网络识别 图 2-1 神经网络模式识别基本构成 1、样本获取 这一步骤主要是为了得到一定数量的用于训练和识别的样本。

神经网络控制

人工神经网络控制 摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。 关键词: 神经网络控制;控制系统;人工神经网络 人工神经网络的发展过程 神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。 在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。 生物神经元模型 神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。 图1 生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉冲幅度达到一定强度,即超过其阈值电位后,突触前膜将向突触间隙释放神经传递的化学物质,突触有两

基于神经网络方法的字符识别方法

论文写作与规范 题目:基于神经网络方法的字符识别方法 学号: 210802102 专业:计算机系统结构 姓名:靳飞飞 2009 年 1 月 9日

基于神经网络方法的字符识别方法 靳飞飞 (中国海洋大学信息科学与工程学院, 山东青岛266071) 摘要:字符识别是模式识别领域的一项传统的课题,这是因为字符识别不是一个孤立的问题,而是模式识别领域中大多数课题都会遇到的基本问题,并且在不同的课题中,由于具体的条件不同,解决的方法也不尽相同,因而字符识别的研究仍具有理论和实践意义。这里讨论的是用神经网络方法实现基于照相的数字图像的字符识别的问题。并且通过模板匹配的方法作为参照,以体现神经网络在处理模式识别问题上的优势。由于人工神经网络的非线性以及并行性和鲁棒性等特点,在上述领域,其取得了以往传统算法无法获得的成功。 关键词:神经网络;字符识别;图像处理 Character recognition based on neural network Jin Feifei (College of Information Science and Engineering,Ocean University of China,Qingdao 266071,China) Abstract:Character recognition is a traditional problem in the field of pattern recognition, for it is rather an isolated task than a fundamental problem in most work of pattern recognition area, with which we have various methods to deal in terms of specific conditions. That means the pursuit of character recognition is of great significance both in theory and in practice .The goal of this paper is using neural network to recognize characters on digital image based on camera. It also can be seen, in the paper, the advantage of neural network compared with the template matching method. Because its nonlinearity, parallel and strong, in these fields mentioned above, artificial neural network has achieved the success which other traditional algorithms can not reach. Key word: neural network, character recognition, image processing 1引言 字符识别是模式识别领域的一项传统的课题,这是因为字符识别不是一个孤立的问题,

模式识别在神经网络中的研究

摘要:基于视觉理论的神经网络模式识别理论的研究一直是非常活跃的学科,被认为是神经网络应用最成功的一个方面,它的发展与神经网络理论可以说是同步的。几乎所有现有的神经网络物理模型都在模式识别领域得到了成功的应用,神经网络理论取得进步会给模式识别理论的发展带来鼓舞;相反,模式识别理论的进步又会大大推动神经网络理论的长足发展。它们的关系是相互渗透的。 关键词:神经网络;模式识别 Abstract: The research of pattern recognition theories according to the neural network mode of sense of vision theories has been very active in academics, neural network has been thought one of the most successful applications , its development can been seen as the same step with the neural network theories.Almost all existing physics model of the neural network all identified realm to get success in the mode of application, neural network theories' progress will give the development of the pattern recognition theories much encourage;Contrary, the pattern recognition theories of progress again consumedly push neural network theories of substantial development.Their relations permeate mutually. Key word: neural network; pattern recognition

7基于神经网络的模式识别实验要求

实验七基于神经网络的模式识别实验 一、实验目的 理解BP神经网络和离散Hopfield神经网络的结构和原理,掌握反向传播学习算法对神经元的训练过程,了解反向传播公式。通过构建BP网络和离散Hopfield 网络模式识别实例,熟悉前馈网络和反馈网络的原理及结构。 二、实验原理 BP学习算法是通过反向学习过程使误差最小,其算法过程从输出节点开始,反向地向第一隐含层(即最接近输入层的隐含层)传播由总误差引起的权值修正。BP网络不仅含有输入节点和输出节点,而且含有一层或多层隐(层)节点。输入信号先向前传递到隐节点,经过作用后,再把隐节点的输出信息传递到输出节点,最后给出输出结果。 离散Hopfield神经网络的联想记忆过程分为学习和联想两个阶段。在给定样本的条件下,按照Hebb学习规则调整连接权值,使得存储的样本成为网络的稳定状态,这就是学习阶段。联想是指在连接权值不变的情况下,输入部分不全或者受了干扰的信息,最终网络输出某个稳定状态。 三、实验条件 Matlab 7.X 的神经网络工具箱:在Matlab 7.X 的命令窗口输入nntool,然后在键盘上输入Enter键,即可打开神经网络工具箱。 四、实验内容 1.针对教材P243例8.1,设计一个BP网络结构模型(63-6-9),并以教材图8.5 为训练样本数据,图8.6为测试数据。 (1)运行train_data.m和test_data.m文件,然后从Matlab工作空间导入(Import)训练样本数据(inputdata10,outputdata10)和测试数据(testinputdata,testoutputdata),其次新建一个神经网络(New Network),选择参数如下表1,给出BP神经网络结构图。

神经网络系统建模综述

神经网络系统建模综述 一、人工神经网络简介 1.1人工神经网络的发展历史 人工神经网络早期的研究工作应追溯至本世纪40年代。下面以时间顺序,以著名的人物或某一方面突出的研究成果为线索,简要介绍人工神经网络的发展历史。 1943年,心理学家W·Mcculloch和数理逻辑学家W·Pitts在分析、总结神经元基本特性的基础上首先提出神经元的数学模型。此模型沿用至今,并且直接影响着这一领域研究的进展。因而,他们两人可称为人工神经网络研究的先驱。 1945年冯·诺依曼领导的设计小组试制成功存储程序式电子计算机,标志着电子计算机时代的开始。 50年代末,F·Rosenblatt设计制作了“感知机”,它是一种多层的神经网络。这项工作首次把人工神经网络的研究从理论探讨付诸工程实践。 在60年代初期,Widrow提出了自适应线性元件网络,这是一种连续取值的线性加权求和阈值网络。后来,在此基础上发展了非线性多层自适应网络。当时,这些工作虽未标出神经网络的名称,而实际上就是一种人工神经网络模型。 80年代初期,模拟与数字混合的超大规模集成电路制作技术提高到新的水平,完全付诸实用化,此外,数字计算机的发展在若干应用领域遇到困难。这一背景预示,向人工神经网络寻求出路的时机已经成熟。美国的物理学家Hopfield于1982年和1984年在美国科学院院刊上发表了两篇关于人工神经网络研究的论文,引起了巨大的反响。人们重新认识到神经网络的威力以及付诸应用的现实性。随即,一大批学者和研究人员围绕着Hopfield提出的方法展开了进一步的工作,形成了80年代中期以来人工神经网络的研究热潮。 1.2人工神经网络的工作原理 人工神经网络是由大量处理单元广泛互连而成的网络结构,是人脑的抽象、简化和模拟。人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。 人工神经网络首先要以一定的学习准则进行学习,然后才能工作。所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。

系统辨识研究综述

系统辨识研究综述 摘要:本文综述了系统辨识的发展与研究内容,对现有的系统辨识方法进行了介绍并分析其不足,进一步引出了把神经网络、遗传算法、模糊逻辑、小波网络知识应用于系统辨识得到的一些新型辨识方法。并对基于T-S模型的模糊系统辨识进行了介绍。文章最后对系统辨识未来的发展方向进行了介绍 关键词:系统辨识;建模;神经网络;遗传算法;模糊逻辑;小波网络;T-S 模型 1.系统辨识的发展和基本概念 1.1系统辨识发展 现代控制论是控制工程新的理论基础。辨识、状态估计和控制理论是现代控制论三个相互渗透的领域。辨识和状态估计离不开控制理论的支持;控制理论的应用又几乎不能没有辨识和状态估计。 而现代控制论的实际应用不能脱离被控对象的动态特性,且所用的数学模型需要选择一种使用方便的描述形式。但很多情况下建立被控对象的数学模型并非易事,尤其是实际的物理或工程对象,它们的机理复杂且含有各种噪声,使建立数学模型更加困难。系统辨识就是应此需要而形成的一门学科。 系统辨识和系统参数估计是六十年代开始迅速发展起来的。1960年,在莫斯科召开的国际自动控制联合会(IFCA)学术会议上,只有很少几篇文章涉及系统辨识和系统参数估计问题。然而,在此后,人们对这一学科给予了很大的注意,有关系统辨识的理论和应用的讨论日益增多。七十年代以来,随着计算机的开发和普及,系统辨识得到了迅速发展,成为了一门非常活跃的学科。 1.2系统辨识基本概念的概述 系统辨识是建模的一种方法。不同的学科领域,对应着不同的数学模型,从某种意义上讲,不同学科的发展过程就是建立它的数学模型的过程。建立数学模型有两种方法:即解析法和系统辨识。 L. A. Zadeh于1962年给辨识提出了这样的定义:“辨识就是在输入和输出数据的基础上,从一组给定的模型类中,确定一个与所测系统等价的模型。”当然按照Zadeh的定义,寻找一个与实际过程完全等价的模型无疑是非常困难的。根据实用性观点,对模型的要求并非如此苛刻。1974年,P. E. ykhoff给出辨识的定义“辨识问题可以归结为用一个模型来表示客观系统(或将要构造的系统) 本质为: 特征的一种演算,并用这个模型把对客观系统的理解表示成有用的形式。而1978

系统辨识课程综述

系统辨识课程综述 通过《系统辨识》课程的学习,了解了系统辨识问题的概述及研究进展;掌握了经典的辨识理论和辨识技术及其优缺点,如:脉冲响应法、最小二乘法(LS)和极大似然法等;同时对于那些为了弥补经典系统辨识方法的不足而产生的现代系统辨识方法的原理及其优缺点有了一定的认识,如:神经网络系统辨识、基于遗传算法的系统辨识、模糊逻辑系统辨识、小波网络系统辨识等;最后总结了系统辨识研究的发展方向。 一、系统辨识概论 自40年代Wiener创建控制论和50年代诞生工程控制论以来,控制理论和工程就一直围绕着建立模型和控制器设计这两个主题来发展。它们相互依赖、相互渗透并相互发展;随着控制过程的复杂性的提高以及控制目标的越来越高,控制理论的应用日益广泛,但其实际应用不能脱离被控对象的数学模型。但是大多数情况下,被控对象的数学模型是不知道的,或者在正常运行期间模型的参数可能发生变化,此时建立模型需要细致、完整地分析系统的机理和所有对该系统的行为产生影响的各种因素,从而变得十分困难。系统辨识建模正是适应这一需要而产生的,它是现代控制理论中一个很活跃的分支。 系统辨识是建模的一种方法,不同的学科领域,对应着不同的数学模型。从某种意义上来说,不同学科的发展过程就是建立他的数学模型的过程。所谓系统辨识,通俗地说,就是研究怎样利用对未知系统的试验数据或在线运行数据(输入/输出数据),运用数学归纳、统

计回归的方法建立描述系统的数学模型的科学。Zadeh与Ljung明确提出了系统辨识的三个要素:输入输出数据,模型类和等价准则。总之,辨识的实质就是从一组模型类中选择一个模型,按照某种准则,使之能最好地拟合我们所关心的实际过程的静态或动态特性。 通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及设计控制器。对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号;对系统进行控制的主要问题是根据系统的特性设计控制输入,使输出满足预先规定的要求。而系统辨识亦称为实验建模方法,它是“系统分析”和“控制系统设计”的逆问题。通常,预先给定一个模型类μ={M}(即给定一类已知结构的模型),一类输入信号u和等价准则J=L(y,yM)(一般情况下,J是误差函数,是过程输出y和模型输出yM的一个泛函);然后选择使误差函数J达到最小的模型,作为辨识所要求的结果。 二、经典的系统辨识 经典的系统辨识方法包括脉冲响应法、最小二乘法(LS)和极大似然法等。其中最小二乘法(LS)是应用最广泛的方法,但由于它是非一致的,是有偏差性,所以为了克服他的缺陷,形成了一些以最小二乘法为基础的系统辨识方法:广义最小二乘法(GLS)、辅助变量法(IV)、增广最小二乘法(ELS)、广义最小二乘法(GLS),以及将一般的最小二乘法与其他方法相结合的方法,有:最小二乘两步法(COR—LS)

神经网络应用于手写数字识别-matlab说课讲解

神经网络应用于手写数字识别-m a t l a b

实验报告 实验课程:管理运筹学 实验名称:神经网络应用于手写数字识别-matlab 学生姓名: 指导教师: 实验时间: 2018年1月16日

实验要求: 运用matlab编程进行神经网络进行手写数字识别。 小组成员: 姓名学号 实验过程: 一、BP神经网络 神经网络是由很多神经元组成,可以分为输入,输出,隐含层。 BP神经网络的特点:信号前向传递,信号反向传播。若输出存在误差,根据误差调整权值和阈值,使网络的输出接近预期。 在用BP神经网络进行预测之前要训练网络训练过程如下: 1.网络初始化:各个参数的确定包括输入,输出,隐含层的节点数,输入和隐含,隐含和输出层之间的权值,隐含,输出层的阈值,学习速度和激励函数。 2.计算隐含层输出 3.计算输出层输出 4.误差计算 5.权值更新 6.阈值更新 7.判断迭代是否结束 二、模型建立 数据集介绍: 数据集包含0-9这10个数字的手写体。是放在10个文件夹里,文件夹的名称对应存放的手写数字图片的数字,每个数字500张,每张图片的像素统一为28*28。 识别流程: 首先要对数据进行处理,这个主要是批量读取图片和特征提取的过程,特征提取的方法很多,这里只挑选最简单的来实现,然后是训练出一个神经网络的模型,最后用测试数据进行测试。为了方面,这里的神经网络的创建,训练和测试采用matlab函数来实现。

训练 运行流程: 1.确定神经网络的输入,输出。 输入是BP神经网络很重要的方面,输入的数据是手写字符经过预处理和特征提取后的数据。预处理有二值化,裁剪掉空白的区域,然后再统一大小为70*50为特征提取做准备。特征提取采用的是粗网格特征提取,把图像分成35个区域,每个区域100像素,统计区域中1像素所占的比例。经过预处理特征提取后,28*28图像转成1*35的特征矢量。提取完5000张图片后,依次把所有的特征存于一个矩阵(35*5000)中。 2.神经的网络的训练 用matlab的rands函数来实现网络权值的初始化,网络结构为输入层35,隐藏层34,输出层10,学习速率为0.1,隐藏层激励函数为sigmoid函数。随机抽取4500张图片提取特征后输入,按照公式计算隐含层和输出层输出,误差,更新网络权值。 3.神经网络的预测 训练好神经网络之后,用随机抽取的500个数字字符对网络进行预测,输入特征向量,计算隐含层和输出层输出,得到最后预测的数据。同时计算每个数字的正确率和全体的正确率。最后得到的总体正确率为0.8620。 主函数:

实验七:基于神经网络的模式识别实验

实验七:基于神经网络的模式识别实验 一、实验目的 理解BP神经网络和离散Hopfield神经网络的结构和原理,掌握反向传播学习算法对神经元的训练过程,了解反向传播公式。通过构建BP网络和离散Hopfield网络模式识别实例,熟悉前馈网络和反馈网络的原理及结构。 综合掌握模式识别的原理,了解识别过程的程序设计方法。 二、实验内容 熟悉模式识别的理论方法,用选择一种合适的识别方法,对图像中的字符(英文字母)进行识别,能够区分出不同的形态的26个字母。 在Matlab中,采用BP神经网络,对读取的数据进行训练,进而识别。 1. 程序设计 (1)程序各流程图 实验中主程序流程图如图4-1所示:

图4-1主程序流程图 其中图像预处理的流程如图4-2 所示: 图4-2图像预处理的流程神经网络训练的具体流程如图4-3所示:

图4-3 神经网络训练流程 (2)程序清单 %形成用户界面 clear all; %添加图形窗口 H=figure('Color',[0.85 0.85 0.85],... 'position',[400 300 500 400],... 'Name','基于BP神经网络的英文字母识别',... 'NumberTitle','off',... 'MenuBar','none'); %画坐标轴对象,显示原始图像 h0=axes('position',[0.1 0.6 0.3 0.3]); %添加图像打开按钮 h1=uicontrol(H,'Style','push',... 'Position',[40 100 80 60],... 'String','选择图片',... 'FontSize',10,... 'Call','op'); %画坐标轴对象,显示经过预处理之后的图像 h2=axes('position',[0.5 0.6 0.3 0.3]); %添加预处理按钮

系统辨识综述

系统辨识方法综述 摘要 在自然和社会科学的许多领域中,系统的设计、系统的定量分析、系统综合及系统控制,以及对未来行为的预测,都需要知道系统的动态特性。在研究一个控制系统过程中,建立系统的模型十分必要。因此,系统辨识在控制系统的研究中起到了至关重要的作用。本文论述了用于系统辨识的多种方法,重点论证了经典系统辨识方法中运用最广泛的的最小二乘法及其优缺点,引出了将遗传算法、模糊逻辑、多层递阶等知识应用于系统辨识得到的一些现代系统辨识方法,最后总结了系统辨识今后的发展方向。 关键字:系统辨识;最小二乘法;遗传算法;模糊逻辑;多层递阶 Abstract In many fields of natural and social science, the design of the system, the quantitative analysis of the system, the synthesis of the system and the control of the system, as well as the prediction of the future behavior, all need to know the dynamic characteristics of the system. It is very necessary to establish a system model in the process of studying a control system. Therefore, system identification plays an important role in the research of control system. This paper discusses several methods for system identification, the key argument is that the classical system identification methods using the least squares method and its advantages and disadvantages, and leads to the genetic algorithm, fuzzy logic, multi hierarchical knowledge application in system identification of some modern system identification method. Finally, the paper summarizes the system identification in the future direction of development. Keywords:System identification; least square method; genetic algorithm; fuzzy logic; multi hierarchy 第一章系统辨识概述 系统辨识是研究建立系统数学模型的理论和方法。系统辨识是建模的一种方法,不同的学科领域,对应着不同的数学模型。从某种意义上来说,不同学科的发展过程就是建立他的数学模型的过程。辨识问题可以归结为用一个模型来表示客观系统(或将要构造的系统)本质牲征的一种演算,并用这个模型把对客观系统的理解表示成有用的形式。当然也可以有另外的描述,辨识有三个要素:数据,模型类和准则。辨识就是按照一个准则在一组模型类中

(整理)BP神经网络识别.

Abstract 2 一引言: (3) 二字符图像获取: (3) 三字符预处理 (4) 3.2 字符区域 (4) 3.2 字符区域分割: (4) 3.3 单个字体分割: (4) 3.4 单个字体裁剪 (5) 四模板字符识别 (5) 4.2 字符模板归一化 (5) 五BP神经网络字符识别 (5) 5.1 训练样本制作 (6) 5.2设计BP神经网络 (6) 5.3 BP训练 (7) 六识别结果发送下位机 (7) 5.1 MATLAB下的串口工具: (7) 5.2 下位机处理 (7) 5.2. 3 串口通信图: (9) 七总结: (9) 摘要 在MATLAB环境下利用USB摄像头采集字符图像,读取一帧保存为图像,然后对读取保存的字符图像,灰度化,二值化,在此基础上做倾斜矫正,对矫正的图像进行滤波平滑处理,然后对字符区域进行提取分割出单个字符,识别方法一是采用模板匹配的方法逐个对字符与预先制作好的字符模板比较,如果结果小于某一阈值则结果就是模板上的字符;二是采用BP神经网络训练,通过训练好的net对待识别字符进行识别。最然后将识别结果通过MATLAB下的串口工具输出51单片机上用液晶显示出来。 关键字:倾斜矫正,字符分割,模板匹配,BP神经网络,液晶显示 Abstract In the MATLAB environmentusing USB camera capture the character images, saved as an image reading, thenread the saved character images, grayscale, binary, on this basis do tilt correction,the correction image smoothing filter, and then extract the character regionsegmentation of a single character, and then one by one using a templatematching method of character with good character template is a pre-production,if the result is less than a certain threshold, the result is a template of thecharacter. Second, the BP neural network trained by the trained net to identifythe character towards recognition The results will identify the most and thenthe serial port through the MATLAB tool output 51 under microcontroller withLCD display. Keyword: Tilt correction, character segmentation,template matching, liquid crystal display 一引言: 光学字符识别(OCR,Optical Character Recognition)是指对文本资料进行扫描,然后对图像文件进行分析处理,获取文字及版面信息的过程。已有30多年历史,近几年又出现了图像字符识别(image character recognition,

相关主题