搜档网
当前位置:搜档网 › 红旗热车不着车故障用一小轴承解决

红旗热车不着车故障用一小轴承解决

万方数据

万方数据

万方数据

电控发动机怠速不稳故障原因与排除方法毕业论文

电控发动机怠速不稳故障原因与排除方法毕业论文 电控发动机怠速不稳故障原因与排除方法1 摘要:车应用的普及是现代文明社会的一个重要标志。目前,汽车已经进入许多中国人家2 庭,拥有汽车再也不是一件难以实现的事。近年来,我国汽车驾驶者的队伍,每年以百万人3 4 的数量增加。成品油售价不断攀升,如何减低油耗成了人们最关心的问题。 5 保持汽车良好的技术状态,直接关系到行车的安全,经济和环保。发动机怠速运转时间 约占汽车使用时间的30%,怠速运转的高低影响油耗、排放、运转的稳定性等。在保证发动6 7 机排放要求且运转稳定的前提下,应尽量使发动机怠速转速保持最低,以降低油耗。怠速不 8 稳是日常用车中最常见的问题之一,如何判断和维护成了一个用车一族必须知道的内容。 9 关键词:维护怠速排除诊断 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

发动机怠速控制系统 31 1.1概述 32 怠速控制就是ECU根据传感器检测的发动机状态参数确定目标转速,计算出目标33 转速与实际转速的差值,确定控制量,驱动怠速控制装置,改变进气量,使实际34 转速接近目标转速。 35 36 37 说明模块系统、特点(CAN、可擦写)、功能、控制系统组成 38 发动机控制模块(ECU) 和许多与排放相关的部件及系统相互联系,并且监测与排放相关的部 39 件和系统是否损坏。OBD II 诊断监测系统性能,并在系统性能下降时设置故障诊断码(DTC)。 40 故障指示灯(MIL) 的工作和故障诊断码的存储取决于故障诊断码的类型。如果故障诊断码与 41 排放相关,则故障诊断码被分成A 类或B类。C 类是与排放无关的故障诊断码。 42 发动机控制模块位于发动机舱内。发动机控制模块是发动机控制系统的控制中心。发动机控 制模块控制以下部件: 43 44 ?燃油喷射系统 45 ?点火系统 46 ?排放控制系统 47 ?车载诊断系统 48 ?空调和风扇系统 ?节气门体电机系统 49 50 发动机控制模块持续监测各个传感器的信息和其他输入,并控制影响车辆性能和排放的系统。 51 发动机控制模块也对系统的各个部分执行诊断测试。发动机控制模块可以识别运行故障并通 过故障指示灯警告驾驶员。当发动机控制模块检测到故障时,发动机控制模块存储故障诊断52 53 码。通过特定故障诊断码的设置,可以识别故障部位。这有助于技术人员进行维修。 54 发动机控制模块的功能 55 发动机控制模块(ECU) 可以向各种传感器或开关提供5 伏或12 伏电压。这通过调节发动机 56 控制模块电源的电阻来实现。在某些情况下,由于电阻太小,车间中使用的普通电压表不能 57 指示精确的读数。因此,需要使用输入阻抗至少10 兆欧的数字式电压表,才能确保电压读数

简析滚动轴承故障诊断方法及要点

简析滚动轴承故障诊断方法及要点 滚动轴承是应用最为广泛的机械零件质疑,同时,它也是机器中最容易损坏的元件之一。许多旋转机械的故障都与滚动轴承的状态有关。据统计,在使用滚动轴承的旋转机械中,大约有30%的机械故障都是由于轴承而引起的。可见,轴承的好坏对机器工作状态影响极大。 通常,由于轴承的缺陷会导致机器产生振动和噪声,甚至会引起机器的损坏。而在精密机械中(如精密机床主轴、陀螺等),对轴承的要求就更高,哪怕是在轴承上有微米级的缺陷,都会导致整个机器系统的精度遭到破坏。 最早使用的轴承诊断方法是将听音棒接触轴承部位,依靠听觉来判断轴承有无故障。这种方法至今仍在使用,不过已经逐步使用电子听诊器来替代听棒以提高灵敏度。后来逐步采用各式测振仪器、仪表并利用位移、速度或加速度的均方根值或峰峰值来判断轴承有无故障。这可以减少对设备检修人员的经验的依赖,但仍然很难发现早期故障。 滚动轴承在设备中的应用非常广泛,滚动轴承状态好坏直接关系到旋转设备的运行状态,尤其在连续性大生产企业,大量应用于大型旋转设备重要部位,因此,实际生产中作好滚动轴承状态监测与故障诊断是搞好设备维修与管理的重要环节。我们经过长期实践与摸索,积累了一些滚动轴承实际故障诊断的实用技巧。 一、滚动轴承故障诊断的方式及要点: 对滚动轴承进行状态监测和故障诊断的实用方法是振动分析。 实用中需注意选择测点的位置和采集方法。要想真实准确反映滚动轴承振动状态,必须注意采集的信号准确真实,因此要在离轴承最近的地方安排测点,在电机自由端一般有后风扇罩,其测点选择在风扇罩固定螺丝有较好监测效果。另外必须注意对振动信号进行多次采集和分析,综合进行比较。才能得到准确结论。 二、滚动轴承正常运行的特点与实用诊断技巧: 我们在长期生产状态监测中发现,滚动轴承在其使用过程中表现出很强的规律性,并且重复性非常好。正常优质轴承在开始使用时,振动和噪声均比较小,但频谱有些散乱,幅值都较小,可能是由于制造过程中的一些缺陷,如表面毛刺等所致。 运动一段时间后,振动和噪声维持一定水平,频谱非常单一,仅出现一、二倍频。极少出现三倍工频以上频谱,轴承状态非常稳定,进入稳定工作期。 继续运行后进入使用后期,轴承振动和噪声开始增大,有时出现异音,但振动增大的变化较缓慢,此时,轴承峭度值开始突然达到一定数值。我们认为,此时轴承即表现为初期故障。

电喷发动机怠速不稳的原因分析与排除

周口职业技术学院 毕业论文 2008级机电工程系 汽车检测与维修技术(2)班 论文题目:电喷发动机怠速不稳的原因分析与排除姓名:党亚龙学号:08040101指导教师:刘高俊职称:助教 2011年04月19日

电喷发动机怠速不稳的原因分析与排除 摘要:发动机怠速不良包括:怠速太低、太高,怠速运转不柔及怠速不稳等现象。电喷发动机构造原理与化油器式发动机有很大区别,怠速不稳的故障原因多而复杂,增加了故障诊断和排除的难度,本文就电子燃油喷射系统发动机怠速不稳的主要原因进行概要分析。 关键词:怠速控制原理;怠速不良;故障分析;故障排除

前言 电喷发动机是采用电子控制装置.取代传统的机械系统(如化油器)来控制发动机的供油过程。如汽油机电喷系统就是通过各种传感器将发动机的温度、空燃比、油门状况、发动机的转速、负荷、曲轴位置、车辆行驶状况等信号输入电子控制装置。电子控制装置根据这些信号参数,计算并控制发动机各气缸所需要的喷油量和喷油时刻,将汽油在一定压力下通过喷油器喷入到进气管中雾化。并与进入的空气气流混合,进入燃烧室燃烧,从而确保发动机和催化转化器始终工作在最佳状态。这种由电子系统控制将燃料由喷油器喷入发动机进气系统中的发动机称为电喷发动机。而怠速不良故障诊断程序怠速不良是电控燃油喷射式发动机常见的故障之一,它有多种表现形式,包括怠速不稳、怠速熄火、冷车怠速不良、热车怠速不良等。 尽管现在大多数的轿车都有故障自诊断系统,但也会出现汽车有故障而自诊断系统却显示正常代码或显示与故障无关的代码情况。这通常是由不受电控单元(ECU)直接控制的执行装置发生故障或传统机械故障而形成。

汽车怠速不稳的故障诊断与排除

汽车发动机烧机油的故障诊断与排除 汽车发动机烧机油是指机油通过一定的途径进入了发动机的燃烧室,与混合气一起参与燃烧。主要是由于活塞环损坏导致汽缸漏气,机油窜入燃烧室。建议尽快进行保养,长期如此的话,不但机油耗损较大,而且机油燃烧生成的杂质将会造成燃烧室积碳的增加,进而影响发动机性能。 发动机出现烧机油现象时,应及时排除故障,否则会导致燃烧室的积炭增加,怠速不稳,加速无力,油耗上升,尾气排放超标等不良后果,严重时会使发动机润滑不足,产生难以修复的损伤甚至报废,甚至造成事故隐患。 从现象上分析烧机油可分为以下三种情况:冷车烧机油,加速烧机油,任何工况下都烧机油。下面介绍如何判断和排除故障。 一、冷车烧机油 1.故障现象:在早晨第一次启动发动机时,后排气管会有比较浓的蓝烟排出,过一段时间蓝烟逐渐消失,当停车时间过长时,再启动发动机仍会出现上述情况。 2.故障原因:由于气门油封和气门导管长时间使用,导致气门油封老化气门导管磨损严重,以至无法达到良好的密封效果,机油沿气门油封及气门导管流入气缸。汽缸内的机油在高温高压的作用下就会燃烧出大量的蓝色烟雾。 3.排除方法:更换已老化的气门油封及磨损严重的气门导管。 二、加速时烧机油 1.故障现象:在车辆行驶时驾驶员猛踩油门或原地猛踩油门时,从排气管排出大量的蓝烟,严重时车辆行驶中驾驶员猛踩油门时,驾驶员会从排气管侧的后视镜中看到大量的蓝烟冒出。 2.故障原因:由于发动机活塞上的活塞环与汽缸壁密封不严,在加速时机油直接从曲轴箱串到汽缸内,导致烧机油。 3.排除方法:更换活塞环、活塞,有必要时更换缸套。 三、任何工况下都烧机油 1.故障现象这种情况比较复杂,不管发动机是冷机,还是在热机加速中都会有蓝烟从排气管排出。 2.故障原因: (1)发动机主机以外的原因:外输油管道漏油、机油油面太高、机油级别与

轴承常见故障分析

轴承常见故障分析 1 轴承的种类: 表1-1滚动轴承类型与适用精度等级。 轴承形式适用标 准 适用精度等级 深沟球轴 承 GB307 0 级 6 级 5 级 4 级 2级 角接触球轴承0 级 6 级 5 级 4 级 2级 调心球轴 承0级 圆柱滚子轴承0 级 6 级 5 级 4 级 2级 圆锥滚子轴承公制系 列 (单 列) GB307 级 6 级 6 级 5 级 4 级 公制系 列(双 列、四 列) SB/T534 1994 级

英制系列SB/CO/ T1089 Cla ss4 Cla ss2 Cla ss3 Cla ss0 Cla ss0 调心滚子 轴承 GB307 0级 推力球轴 承0 级 6 级 5 级 4 级 推力调心滚子轴承0级 2 轴承使用中常见问题及对策 2.1 强金属音 1、异常载荷:选择合适的装配游隙和预紧力 2、组装不良:提高轴的加工精度,改善安装方法 3、润滑剂不足:补充或使用合适润滑剂 2.2 规则音 1、异物引起沟道锈蚀、压痕、伤痕:清洗相关零件,使用干净润滑脂 2、沟道剥落:疲劳磨损,更换轴承 2.3 不规则异音 1、异物侵入:清洗相关零件,使用干净润滑脂 2、游隙过大:注意配合及选择合适游隙 3、钢球伤痕:钢球疲劳剥落或异物卡伤,更换轴承

2.4 异常温升 1、润滑剂过多:减少润滑剂。 2、润滑剂不足,或不适合:增加润滑剂或选择合适润滑剂。 3、配合面蠕变或密封装置过大:轴承外径或内径配合面修正,密封形式进行变更。 2.5 轴的回转振动大 1、剥落:疲劳剥落,更换轴承 2、组装不良:提高轴的加工精度,改善安装方法 3、异物侵入:清洗相关零件,使用干净润滑脂 2.6 润滑剂泄漏大变色 1、润滑剂过多:减少润滑剂 2、异物入侵:清洗相关零

滚动轴承故障诊断分析

滚动轴承故障诊断分析 学院名称:机械与汽车工程学院专业班级: 学生姓名: 学生学号: 指导教师姓名:

摘要 滚动轴承故障诊断 本文对滚动轴承的故障形式、故障原因、常用诊断方法等诊断基础和滚动轴承故障的振动机理作了研究,并建立了相应的滚动轴承典型故障(外圈损伤、内圈损伤、滚动体损伤)的理论模型,给出了一些滚动轴承故障诊断常见实例。通过对滚动轴承故障振动机理的研究可以帮助我们了解滚动轴承故障的本质和特征。本文对特征参数的提取,理论推导,和过程都进行了详细的阐述, 关键词:滚动轴承;故障诊断;特征参数;特征; ABSTRACT : The Rolling fault diagnosis In the thesis ,the fault types,diagnostic methods an d vibration principle of rolling bearing are discussed.the thesis sets up a series of academic m odels of faulty rolling bearings and lists some sym ptom parameters which often used in fault diagnosis of rolling bearings . the study of vibration prin ciple of rolling bearings can help us to know the essence and feature of rolling bearings.In this pa

滚动轴承故障诊断与分析..

滚动轴承故障诊断与分析Examination and analysis of serious break fault down in rolling bearing 学院:机械与汽车工程学院 专业:机械设计制造及其自动化 班级:2010020101 姓名: 学号: 指导老师:王林鸿

摘要:滚动轴承是旋转机械中应用最广的机器零件,也是最易损坏的元件之一, 旋转机械的许多故障都与滚动轴承有关,轴承的工作好坏对机器的工作状态有很大的影响,其缺陷会产生设备的振动或噪声,甚至造成设备损坏。因此, 对滚动轴承故障的诊断分析, 在生产实际中尤为重要。 关键词:滚动轴承故障诊断振动 Abstract: Rolling bearing is the most widely used in rotating machinery of the machine parts, is also one of the most easily damaged components. Many of the rotating machinery fault associated with rolling bearings, bearing the work of good or bad has great influence to the working state of the machine, its defect can produce equipment of vibration or noise, and even cause equipment damage. Therefore, the diagnosis of rolling bearing fault analysis, is especially important in the practical production. Key words: rolling bearing fault diagnosis vibration 引言:滚动轴承是机器的易损件之一,据不完全统计,旋转机械的故障约有30% 是因滚动轴承引起的,由此可见滚动轴承故障诊断工作的重要性。如何准确判断出它的末期故障是非常重要的,可减少不必要的停机修理,延长设备的使用寿命,避免事故停机。滚动轴承在运转过程中可能会由于各种原因引起损坏,如装配不当、润滑不良、水分和异物侵入、腐蚀和过载等。即使在安装、润滑和使用维护都正常的情况下,经过一段时间运转,轴承也会出现疲劳剥落和磨损。总之,滚动轴承的故障原因是十分复杂的,因而对作为运转机械最重要件之一的轴承,进行状态检测和故障诊断具有重要的实际意义,这也是机械故障诊断领域的重点。 一滚动轴承故障诊断分析方法 1滚动轴承故障诊断传统的分析方法 1.1振动信号分析诊断 振动信号分析方法包括简易诊断法、冲击脉冲法(SPM法)、共振解调法(IFD 法)。振动诊断是检测诊断的重要工具之一。 (1)常用的简易诊断法有:振幅值诊断法,反应的是某时刻振幅的最大值,适用于表面点蚀损伤之类的具有瞬时冲击的故障诊断;波峰因素诊断法,表示的

电喷柴油发动机怠速不稳维修及排除方法

宁波日兴动力科技有限公司 宁波重康船舶设备有限公司 电喷发动机怠速不稳故障诊断及排除 发动机怠速不稳是汽车使用中常见的故障之一。尽管现在大多数的轿车都有故障自诊断系统,但也会出现汽车有故障面自诊断系统却显示正常代码或显示与故障无关的代码的情况。这通常是由不受电控单元(ECU)直接控制的执行装置发生故障或传统机械故障成。下面列举在此情况下常兄的故障原因及它们的诊断与排除方法。 1、怠速开关不闭合 故障分析:怠速触点断开,ECU便判定发动机处于部分负荷状态。此时ECU根据空气流量计和曲轴转速信号确定喷油量。面此时发动机却是在怠速工况下工作,进气量较少,造成混合气过浓,转速上升。当ECU收到氧传感器反馈的“混合气过浓”信号时,减少喷油量,增加怠速控制阀的开度,又造成混合气过稀。使转速下降。当ECU收到氧传感器反馈的“混合气过稀”信号时,又增加喷油量,减小怠速控制阀的开度,又造成混合气过浓,使转速上升。如此反复使发动机怠速不稳,在怠速工况时开空调,打方向盘,开前照灯会增加发动机的负荷。为了防止发动机因负荷增大而熄火.ECU会增人喷油量来维持发动机的平稳运转。怠速触点断开,ECU认为发动机不是处于怠速工况,就小会增大喷油量,因而转速没有提升。 诊断方法:怠速时打开空调,打方向盘.发动机转速不升高,可证明是此故障。 故障排除:对节气门位置传感器进行调整、修复或更换。 2、怠速控制阀(ISC)故障 故障分析:电喷发动机的正确怠速足通过电控怠速控制阀来保证的。ECU根据发动机转速、温度、节气门开关及空调等信号,红过运算对怠速控制阀进行调节。当怠速转速低于设定转速值时,电脑指令怠速控制阀打开进气旁通道或直接或直接加大节气门的开度,使进气量增加,以提高发动机怠速。当怠速转速高于设定转速值时,电脑便指令怠速控制阀关小进飞旁通道,使进气最减小,降低发动机转速。由于油污、积炭造成怠速控制阀动作滞涩或卡死,节气门关闭不到位等原因,使ECU无法对发动机进行正确地怠速调节,造成怠速转速不稳。 诊断方法:检查怠速控制阀的作动声音,若无作动声即怠速控制阀出现故障。 故障排除:清洗或业换怠速控制阀,并用专用解码器对怠速转速进行基本设定。 3、进气管路漏气

滚动轴承常见故障及原因分析

滚动轴承常见故障及原因分析 1.故障形式 (1)轴承转动困难、发热; (2)轴承运转有异声; (3)轴承产生振动; (4)内座圈剥落、开裂; (5)外座圈剥落、开裂; (6)轴承滚道和滚动体产生压痕。 2.故障原因分析 (1)装配前检查不仔细,轴承在装配前要先清洗并认真检查轴承的内外座圈、滚动体和保持架,是否有生锈、毛刺、碰伤和裂纹;检查轴承间隙是否合适,转动是否轻快自如,有无突然卡止的现象;同时检查轴径和轴承座孔的尺寸、圆度和圆柱度及其表面是否有毛刺或凹凸不平等。对于对开式轴承座,要求轴承盖和轴承底座接合面处与外座圈的外圆面之间,应留出0.1mm~0.25mm间隙,以防止外座两侧“瓦口”处出现“夹帮”现象导致的间隙减小,磨损加快,使轴承过早损坏。 (2)装配不当。装配不当会导致轴承出现上述的各种故障形式,以及以下的几种情况: A.配合不当 轴承内孔与轴的配合采用基孔制,轴承外圆与轴承座孔的配合采用基轴制。一般在正常负荷情况下工作的离心泵、离心机、减速机、电动机和离心式压缩机的轴与轴承内座圈,采用j5,js5,js6,k5,k6,m6配合,

轴承座孔与轴承外座圈采用j6,j7配合。旋转的座圈(大多数轴承的内座圈为旋转座圈,外座圈不为旋转座圈,少部分轴承则相反),通常采用过盈配合,能在负荷作用下避免座圈在轴径和轴承座孔的配合表面上发生滚动和滑动。 滚动轴承常见故障原因分析 但有时由于轴径和轴承座孔的尺寸测量不精确或配合面粗糙度未达到标准要求,造成过大的过盈配合,使轴承座圈受到很大挤压,从而导致轴承本身的径向间隙减少,使轴承转动困难、发热,磨损加剧或卡死,严重时会造成轴承内外座圈在按装时开裂。不旋转座圈常采用间隙或过盈不大的配合,这样不旋转座圈就有可能产生微小的爬动,而使座圈与滚动体的接触面不断更换,座圈滚道磨损均匀。同时也可以消除轴因热伸长而使轴承中滚动体发生轴向卡住的现象。但过大的间隙配合,会使不旋转座圈随滚动体一同转动,致使轴(或轴承座孔)与内座圈(或外座圈)发生严重磨损,而出现摩擦使轴承发热、振动。 B.装配方法不当 轴承和轴径或轴承座孔的过盈较小时,多采用压入法装配。最简单的方法是利用铜棒和手锤,按一定的顺序对称地敲打轴承带过盈配合的座圈,使轴承顺利压入。另外,也可用软金属制的套管借手锤打入或压力机压入。若操作不当,则会使座圈变形开裂,或者手锤打在非过盈配合的座圈上,则会使滚道和滚动体产生压痕或轴承间接被破坏。 C.装配时温度控制不当 滚动轴承在装配时,若其与轴径的过盈较大,一般采用热装法装配。

滚动轴承故障诊断频谱分析讲解学习

滚动轴承故障诊断1(之国外专家版) 滚动轴承故障 现代工业通用机械都配备了相当数量的滚动轴承。一般说来,滚动轴承都是机器中最精密的部件。通常情况下,它们的公差都保持在机器的其余部件的公差的十分之一。但是,多年的实践经验表明,只有10%以下的轴承能够运行到设计寿命年限。而大约40%的轴承失效是由于润滑引起的故障,30%失效是由于不对中或“卡住”等装配失误,还有20%的失效是由过载使用或制造上缺陷 等其它原因所致。 如果机器都进行了精确对中和精确平衡,不在共振频率附近运转,并且轴承润滑良好,那么机器运行就会非常可*。机器的实际寿命也会接近其设计寿命。然而遗憾的是,大多数工业现场都没有做到这些。因此有很多轴承都因为磨损而永久失效。你的工作是要检测出早期症状并估计故障的严重程度。振动分析和磨损颗粒分析都是很好的诊断方法。 1、频谱特征 故障轴承会产生与1X基频倍数不完全相同的振动分量——换言之,它们不是同步的分量。对振动分析人员而言,如果在振动频谱中发现不同步分量那么极有可能是轴承出现故障的警告信号。 振动分析人员应该马上诊断并排除是否是其它故障引起的这些不同步分量。 如果看到不同步的波峰,那极有可能与轴承磨损相关。如果同时还有谐波和边频带出现,那么轴承磨损的可能性就非常大——这时候你甚至不需要再去了解轴承准确的扰动频率。 2、扰动频率计算 有四个与轴承相关的扰动频率:球过内圈频率(BPI)、球过外圈频率(BPO)、保持架频率(FT)和球的自旋频率(BS)。轴承的四个物理参数:球的数量、球的直径、节径和接触角。其中,BPI 和BPO的和等于滚珠/滚柱的数量。例如,如果BPO等于3.2 X,BPI等于4.8 X,那么滚珠/滚柱 的数量必定是8。

电控发动机怠速不稳故障原因与排除方法

电控发动机怠速不稳故障原因与排除方法

电控发动机怠速不稳故障原因与排除方法 1 摘要:车应用的普及是现代文明社会的一个重要标2 志。目前,汽车已经进入许多中国人家庭,拥有3 汽车再也不是一件难以实现的事。近年来,我国4 汽车驾驶者的队伍,每年以百万人的数量增加。5 成品油售价不断攀升,如何减低油耗成了人们最6 关心的问题。 7 保持汽车良好的技术状态,直接关系到行车8 的安全,经济和环保。发动机怠速运转时间约占9 汽车使用时间的30%,怠速运转的高低影响油10 耗、排放、运转的稳定性等。在保证发动机排放11 要求且运转稳定的前提下,应尽量使发动机怠速12 转速保持最低,以降低油耗。怠速不稳是日常用13 车中最常见的问题之一,如何判断和维护成了一14 个用车一族必须知道的内容。 15 16 关键词:维护 怠速 排除诊断 17 18 19 20 21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 发动机怠速控制系统 39 1.1概述 40 怠速控制就是ECU根据传感器检测的发动机状态参数确定目标转速,计算出目标41 转速与实际转速的差值,确定控制量,驱动怠速控制装置,改变进气量,使实际42 转速接近目标转速。 43 44 说明模块系统、特点(CAN、可擦写)、功能、45 控制系统组成 46 发动机控制模块(ECU) 和许多与排放相关的部件47 及系统相互联系,并且监测与排放相关的部件和48 系统是否损坏。OBD II 诊断监测系统性能,并在

系统性能下降时设置故障诊断码(DTC)。故障指示 49 50 灯(MIL) 的工作和故障诊断码的存储取决于故障 51 诊断码的类型。如果故障诊断码与排放相关,则 故障诊断码被分成A 类或B类。C 类是与排放无52 53 关的故障诊断码。 54 发动机控制模块位于发动机舱内。发动机控制模 55 块是发动机控制系统的控制中心。发动机控制模 56 块控制以下部件: 57 ?燃油喷射系统 58 ?点火系统 59 ?排放控制系统 60 ?车载诊断系统 61 ?空调和风扇系统 62 ?节气门体电机系统 63 发动机控制模块持续监测各个传感器的信息和其 64 他输入,并控制影响车辆性能和排放的系统。发 65 动机控制模块也对系统的各个部分执行诊断测 66 试。发动机控制模块可以识别运行故障并通过故 障指示灯警告驾驶员。当发动机控制模块检测到 67 68 故障时,发动机控制模块存储故障诊断码。通过 特定故障诊断码的设置,可以识别故障部位。这 69 70 有助于技术人员进行维修。 71 发动机控制模块的功能 72 发动机控制模块(ECU) 可以向各种传感器或开关 73 提供5 伏或12 伏电压。这通过调节发动机控制 74 模块电源的电阻来实现。在某些情况下,由于电

发动机怠速不稳故障诊断与排除

发动机怠速不稳故障诊断与排除 发动机怠速不稳是汽车使用中常见的故障之一。尽管现在大多数的轿车都有故障自诊断系统,但也会出现汽车有故障面自诊断系统却显示正常代码或显示与故障无关的代码的情况。这通常是由不受电控单元(ECU)直接控制的执行装置发生故障或传统机械故障成。下面列举在此情况下常兄的故障原因及它们的诊断与排除方法。 1、怠速开关不闭合 故障分析:怠速触点断开,ECU便判定发动机处于部分负荷状态。此时ECU根据空气流量计和曲轴转速信号确定喷油量。而此时发动机却是在怠速工况下工作,进气量较少,造成混合气过浓,转速上升。当ECU收到氧传感器反馈的“混合气过浓”信号时,减少喷油量,增加怠速控制阀的开度,又造成混合气过稀。使转速下降。当ECU收到氧传感器反馈的“混合气过稀”信号时,又增加喷油量,减小怠速控制阀的开度,又造成混合气过浓,使转速上升。如此反复使发动机怠速不稳,在怠速工况时开空调,打方向盘,开前照灯会增加发动机的负荷。为了防止发动机因负荷增大而熄火.ECU会增加喷油量来维持发动机的平稳运转。怠速触点断开,ECU认为发动机不是处于怠速工况,就会增大喷油量,因而转速没有提升。 诊断方法:怠速时打开空调,打方向盘.发动机转速不升高,可证明是此故障。 故障排除:对节气门位置传感器进行调整、修复或更换。 2、怠速控制阀(ISC)故障 故障分析:电喷发动机的正确怠速是通过电控怠速控制阀来保证的。ECU根据发动机转速、温度、节气门开关及空调等信号,经过运算对怠速控制阀进行调节。当怠速转速低于设定转速值时,电脑指令怠速控制阀打开进气旁通道或直接加大节气门的开度,使进气量增加,以提高发动机怠速。当怠速转速高于设定转速值时,电脑便指令怠速控制阀关小进气旁通道,使进气最减小,降低发动机转速。由于油污、积炭造成怠速控制阀动作滞涩或卡死,节气门关闭不到位等原因,使ECU无法对发动机进行正确地怠速调节,造成怠速转速不稳。 诊断方法:检查怠速控制阀的作动声音,若无作动声即怠速控制阀出现故障。 故障排除:清洗或更换怠速控制阀,并用专用解码器对怠速转速进行基本设定。 3、进气管路漏气 故障分析:由发动机的怠速稳定控制原理可知,在正常情况下,怠速控制阀的开度与进气量严格遵循某种函数关系,即怠速控制阀开度增大,进气量相应增加。进气管路漏气,进气量与怠速控制阀的开度将不严格遵循原函数关系,即进气量随怠速控制阀的变化有突变现象,空气流量计就无法测出真实的进气量,造成ECU对进气量控制不准确,导致发动机怠速不稳。 诊断方法:若听见进气管有泄漏的嗤嗤声,则证明进气系统漏气。 故障排除:查找泄漏处,重新进行密封或更换部件。 4、配气相位错误 故障分析:对于使用质量流量型空气流量传感器的车型,此种传感器采用了恒温差控

典型轴承故障的4个发展阶段及频谱分析

典型轴承故障的4个发展阶段及频谱分析 解调频谱作为一个早期指示故障的测量参数,检查正常频谱和解调频谱: 1.都没有故障频率,状态良好,作为基线继续监测; 2.只在解调频谱存在故障频率,早期故障指示或需要润滑; 3.在两种频谱中存在谱峰值,计划下一次维修时更换轴承; 4.只在正常频谱中存在谱峰值,同时在解调频谱中噪声水平升高,应立即更换。 轴承故障劣化发展不是按线性规律,而是按指数规律变化!

轴承故障发展的四个阶段频谱 I.初始阶段 a.噪声正常 b.温度正常 c.可用超声、振动解调谱、声发射测量出来; d.轴承外环有缺陷 e.振动总量比较小,无离散的轴承故障频率尖峰 f.轴承剩余寿命大于B-10规定的10%

II.第二阶段 a.噪声略增大 b.温度正常 c.超声、声发射、振动解调频谱明显增大,轴承外环有缺陷 d.振动总量略增大(振动加速度总量和振动速度总量) e.对数刻度频谱上可清楚看到轴承故障频率,线性刻度频谱上难得看到,噪声地平明显提高 f.轴承剩余寿命大于B-10规定的5% III.第三阶段 a.可听到噪声 b.温度略升高 c.非常高的超声、声发射,解调频谱通频值,轴承外环有故障 d.振动加速度总量和振动速度总量有大的增加 e.在线性刻度的频谱上清楚地看出轴承故障频率及其谐波和边带

f.振动频谱噪声地平明显提高 g.轴承剩余寿命大于B-10规定的1% IV.第四阶段 a.噪声的强度改变 b.温度明显升高 c.超声,声发射,振动尖峰能量迅速增大,随后逐渐减小 d.轴承外环处在损坏之前故障状态 e. 振动速度总量和振动位移总量明显增大,振动加速度总量减小 f. 较低的轴承故障频率占优势的振动尖峰,振动频谱中噪声地平非常高 g.轴承剩余寿命大于B-10规定的0.2% 综上所述,通过对影响,缩短股东轴承寿命的分析,得出不同轴承故障的解决、预防措施,根据滚动轴承解调分析原理得到轴承故障频谱曲线,结合滚动轴承故障发展的四个阶段特征,判断轴承工作状态,能很好的监控滚动轴承的运行状况及时准确地判断滚动轴承更换周期,确保设备的正常维修及运行。

滚动轴承故障诊断与分析

滚动轴承故障诊断与分析 Examination and analysis of serious break fault down in rolling bearing

学院:机械与汽车工程学院 专业:机械设计制造及其自动化 班级:2010020101 姓名: 学号: 指导老师:王林鸿 :摘要,滚动轴承是旋转机械中应用最广的机器零件,也是最易损坏的元件之一 轴承的工作好坏对机器的工作状态有很旋转机械的许多故障都与滚动轴承有关,对滚动甚至造成设备损坏。因此, 大的影响,其缺陷会产生设备的振动或噪声, 轴承故障的诊断分析, 在生产实际中尤为重要。关键词:振动滚动轴承故 障诊断 Rolling bearing is the most widely used in rotating Abstract:easily machinery of the machine parts, is also one of the most damaged components. Many of the rotating machinery fault associated with rolling bearings, bearing the work of good or bad has great influence to the working state of the machine, even and of vibration or noise, produce its defect can equipment cause equipment damage. Therefore, the diagnosis of rolling bearing fault analysis, is especially important in the practical production. Key words: rolling bearing fault diagnosis vibration 引言:%30滚动轴承是机器的易损件之一,据不完全统计,旋转机械的故障约

滚动轴承故障的形式有哪些

滚动轴承故障的形式有哪些 轴承在我们的生活中很常见,经过长时间的使用,滚动轴承难免会出现各种各样的故障问题,那么滚动轴承故障有哪些形式呢?轴易购 锈蚀,锈蚀是滚动轴承最严重的问题之一,高精度轴承可能会由于表面锈蚀导致精度丧失而不能继续工作。水分或酸、碱性物质直接侵人会引起轴承锈蚀。当轴承停止工作后,轴承温度下降达到露点,空气中水分凝结成水滴附在轴承表面上也会引起锈蚀。此外,当轴承内部有电流通过时,电流有可能通过滚道和滚动体上的接触点处,很薄的油膜引起电火花而产生电蚀,在表面上形成搓板状的凹凸不平。进口轴承 断裂,过高的载荷会可能引起轴承零件断裂。磨削、热处理和装配不当都会引起残余应力,工作时热应力过大也会引起轴承零件断裂。另外,装配方法、装配工艺不当,也可能造成轴承套圈挡边和滚子倒角处掉块。国产轴承 磨损,由于尘埃、异物的侵入,滚道和滚动体相对运动时会引起表面磨损,润滑不良也会加剧磨损,磨损的结果使轴承游隙增大,表面粗糙度增加,降低了轴承运转精度,因而也降低了机器的运动精度,振动及噪声也随之增大。对于精密机械轴承,往往是磨损量限制了轴承的寿命。轴承工厂 疲劳剥落,滚动轴承的内外滚道和滚动体表面既承受载荷又相对滚动,由于交变载荷的作用,首先在表面下一定深度处形成裂纹,继而扩展到接触表面使表层发生剥落坑,最后发展到大片剥落,这种现象就是疲劳剥落。疲劳剥落会造成运转时的冲击载荷、振动和噪声加剧。 胶合,在润滑不良、高速重载情况下工作时,由于摩擦发热,轴承零件可以在极短时间内达到很高的温度,导致表面烧伤及胶合。所谓胶合是指一个零部件表面上的金属粘附到另一个零件部件表面上的现象。 塑性变形,当轴承受到过大的冲击载荷或静载荷时,或因热变形引起额外的载荷,或有硬度很高的异物侵入时都会在滚道表面上形成凹痕或划痕。这将使轴承在运转过程中产生剧烈的振动和噪声。而且一旦有了压痕,压痕引起的冲击载荷会进一步引起附近表面的剥落。 保持架损坏,由于装配或使用不当可能会引起保持架发生变形,增加它与滚动体之间的摩擦,甚至使某些滚动体卡死不能滚动,也有可能造成保持架与内外圈发生摩擦等。这一损伤会进一步使振动、噪声与发热加剧,导致轴承损坏。

滚动轴承故障诊断综述

摘要:滚动轴承是旋转机械中使用最多,最为关键,同时也是机械设备中最易损坏的机械零件之一。滚动轴承质量的好坏对机械设备运行质量影响很大,许多旋转机械设备的运行状况与滚动轴承的质量有很大的关系。滚动轴承作为旋转机械设备中使用频率较高,同时也是机械设备中较为薄弱的环节,因此对滚动轴承进行故障诊断具有重大意义。 引言:故障诊断技术是一门研究设备运行状况信息,查找故障源,研究故障发展趋势,确定相应决策,与生产实际紧密相结合的实用技术。故障诊断技术是20世纪中后迅速发展起来的一门新型技术。国外对滚动轴承故障诊断技术的研究开始于20世纪60年代。美国是世界上最早研究滚动轴承故障诊断技术的国家,于1967年对滚动轴承故障进行研究,经过几十年的发展,先后研制了基于时域分析,频域分析,和时频分析的滚动轴承故障诊断技术。 目前国外已经研制出先进的滚动轴承故障诊断仪器,并且已经应用于工业生产中,对预防机械事故,减少损失起到了至关重要的作用。国内对故障诊断技术的研究起步较晚,20世纪80年代我过开始研究滚动轴承故障诊断技术,经过多年的研究,先后出现了基于振动信号的滚动轴承故障诊断,基于声音信号的滚动轴承诊断方法,基于温度的滚动轴承诊断方法,基于油膜电阻的滚动轴承诊断方法和基于光钎的滚动轴承诊断方法。从实用性方面来看,基于振动信号的滚动轴承诊断方法具有实用性强,效果好,测试和信号处理简单等优点而被广泛采用。在滚动轴承故障诊断中,比较常用的振动诊断方法有特征参数法,频谱分析法,包络分析法,共振解调技术。其中共振解调技术是目前公认最有效的方法。 振动检测能检测轴承的剥落、裂纹、磨损、烧伤且适于早期检测和在线检测。因而,振动诊断法得到一致认可。包络检测是轴承故障振动诊断的一种有效方法,实际中已广泛使用。当轴承出现局部损伤类故障后,振动信号中包含了以故障特征频率为周期的周期性冲击成分,虽然这些冲击成分是周期出现的,但单个冲击信号却具有非平稳信号的特性。Fourier变换在频域上是完全局部化的,但由于其基函数在时域上的全局性使它没有任何的时间分辨率,因此不适合非平稳信号的分析。短时Fourier 变换虽然在时域和频域上都具有一定的分辨率而由于其基函数只能对信号进行等带宽的分解。因此基函数一旦确定,其时域和频域分辨率也就不能变化,从而不能自适应地确定信号在不同频段的分辨率。小波变

汽车行驶中怠速不稳的原因详细讲解和排除

汽车行驶中怠速不稳,忽然很高,忽然熄火,怠速马达已经换过了,节气门也洗过了,怎么回事? 【怠速不稳的分类】1. 如何观察怠速不稳①观察发动机缸体抖动程度,也可以观看机油尺把晃动的程度,平稳的油尺把很清晰,抖动的油尺把看起来是双的;②从发动机转速表或读数据块观察,转速以怠速期望值为中心抖动,或在期望值一侧剧烈抖动,程序中的怠速期望值包括标准怠速值、负荷(打开灯光,自动变速器挂上挡等)怠速值、空调怠速值、暖车怠速值;③原地启动发动机,坐在座椅上感觉车身剧烈抖动。 2. 按出现规律分类①冷车(冷却液温度低于50℃)有节奏的不稳;②热车(冷却液温度高于50℃)有节奏的不稳;③无规律的剧烈抖动一、两下。 · 3、按抖动程度分类①正常,以怠速期望值±10r/min抖动;②一般不稳,以怠速期望值±20r/min 抖动;③严重不稳,超过怠速期望值±20r/min抖动;④在怠速期望值的一侧剧烈抖动。 4. 按原因关联分类①直接原因,指机械零件脏污、磨损、安装不正确等,导致个别汽缸功率的变化,从而造成各汽缸功率不平衡,致使发动机出现怠速不稳;②间接原因,指发动机电控系统不正常,导致混合气燃烧不良,造成各汽缸功率难以平衡,使发动机出现怠速不稳。· 5. 按故障系统分类①进气系统;②燃油系统;③点火系统;④发动机机械系统。 【怠速抖动机理】汽缸内气体作用力的变化(一个汽缸气体作用力变化或几个汽缸气体作用力变化),引起各汽缸功率不平衡,导致各活塞在做功行程时的水平方向分力不一致,出现对发动机横向摇倒的力矩不平衡,从而产生发动机抖动。也可以说,凡是引起发动机汽缸内气体作用力变化的故障都有可能导致发动机怠速抖动。 【怠速不稳的原因】· 1. 进气系统(1)进气歧管或各种阀泄漏 当不该进入的空气、汽油蒸汽、燃烧废气进入到进气歧管,造成混合气过浓或过稀,使发动机燃烧不正常。当漏气位置只影响个别汽缸时,发动机会出现较剧烈的抖动,对冷车怠速影响更大。常见原因有:进气总管卡子松动或胶管破裂;进气歧管衬垫漏气;进气歧管破损或其它机件将进气歧管磨出孔洞;喷 油器O型密封圈漏气;真空管插头脱落、破裂;曲轴箱强制通风(PCV)阀开度大;活性炭罐阀常开;废气再循环(EGR)阀关闭不严等。 (2)节气门和进气道积垢过多 节气门和周围进气道的积炭、污垢过多,空气通道截面积发生变化,使得控制单元无法精确控制怠速进气量,造成混合气过浓或过稀,使燃烧不正常。常见原因有:节气门有油污或积炭;节气门周围的进气道有油污、积炭;怠速步进电机、占空比电磁阀、旋转电磁阀有油污、积炭。 (3)怠速空气执行元件故障 怠速空气执行元件故障导致怠速空气控制不准确。常见原因有:节气门电机损坏或发卡;怠速步进电机、占空比电磁阀、旋转电磁阀损坏或发卡。 (4)进气量失准 控制单元接收错误信号而发出错误的指令,引起发动机怠速进气量控制失准,使发动机燃烧不正常,属于怠速不稳的间接原因。常见原因有:空气流量计或其线路故障;进气压力传感器或其线路故障;发动机控制单元插头因进水接触不良或电脑内部故障。 · 2. 燃油系统(1)喷油器故障 喷油器的喷油量不均、雾状不好,造成各汽缸发出的功率不平衡。常见原因有:喷油器堵塞、密封不良、喷出的燃油成线状等。 (2)燃油压力故障:油压过低,从喷油器喷出的燃油雾化状态不良或者喷出的燃油成线状,严重时只喷出油滴,喷油量减少使混合气过稀;油压过高,实际喷油量增加,使混合气过浓。常见原因有:燃油滤清器堵塞;燃油泵滤网堵塞;燃油泵的泵油能力不足;燃油泵安全阀弹

轴承故障及原因

轴承故障及原因 目录 简介 轴承故障及其原因 轴承的使用寿命 滑道类型及其说明 轴承损坏的类型 磨损 研磨颗粒引起的磨损 不充分润滑引起的磨损 振动引起的磨损 缺口/凹痕 错误安装或过载引起的缺口/凹痕 外来颗粒引起的缺口/凹痕 脏污 滚子末端或导轨边缘的脏污 滚子和滑道的脏污 与滚子间距对应的滑道的脏污 外表面的脏污 止推球轴承的脏污 表面损坏

深层生锈 摩擦腐蚀 电流通过引起的损坏 散裂 预载引起的散裂 椭圆挤压引起的散裂轴挤压引起的散裂 未对准引起的散裂 缺口/凹痕引起的散裂脏污引起的散裂 深层生锈引起的散裂摩擦腐蚀引起的散裂槽/坑引起的散裂 裂缝 粗糙处理引起的裂缝过分驱动引起的裂缝脏污引起的裂缝 摩擦腐蚀引起的裂缝支撑架损坏 振动 超速

阻塞 其他 简介 轴承故障及其原因 轴承是大多数机器的最重要组成部分, 因而对其工作能力和稳定性有严格要求. 因此, 非常重要的滑动轴承近年来一直是人们广泛研究的对象, 滑动轴承技术也已成为一特殊的科学分枝. SKF从一开始就一直站在这一领域的前沿. 进行此项研究, 可以相当精确地计算轴承寿命, 从而更好地与有关机器寿命相匹配. 然而, 轴承有时达不到它的额定寿命. 原因可能有很多, 比如负载比预期大, 不充分润滑, 粗糙处理, 无效密封, 安装过紧从而导致不能彻底清洁轴承内部. 不同类型的原因会造成不同类型的损坏. 因此, 如果可能的话, 应检查损坏的轴承, 在大多数情况下查明损坏原因并采取必要的措施以防止损坏的再次发生. 轴承的使用寿命 一般说来, 旋转轴承不可能永远旋转下去, 除非达到理想怕操作条件, 或者达不到疲劳极限, 但材料迟早会出现疲劳. 出现疲劳前的阶段有助于确定轴承旋转圈数和负载大小. 剪切应力循环出现于支

声发射检测技术用于滚动轴承故障诊断的研究综述_郝如江

振 动 与 冲 击 第27卷第3期 J OURNAL OF V IBRAT I ON AND SHOCK Vo.l 27No .32008 声发射检测技术用于滚动轴承故障诊断的研究综述 基金项目:863计划(2006AA04Z438)资助;河北省自然科学基金(E2007000649)资助 收稿日期: 2007-06-25 修改稿收到日期:2007-07-12 第一作者郝如江男,博士生,副教授,1971年生 郝如江1,2 , 卢文秀1 , 褚福磊 1 (1.清华大学精密仪器与机械学系,北京 100084;2.石家庄铁道学院计算机与信息工程分院,石家庄 050043) 摘 要:声发射是材料受力变形产生弹性波的现象,故障滚动轴承在运转过程中会产生声发射。从几个方面综合 阐述了国内外轴承故障声发射检测技术的研究和发展现状,即轴承故障声发射信号的产生机理,故障声发射信号的传播衰减特性,声发射信号的参数分析法和波形分析法对故障特征的描述,轴承故障声发射源的定位问题,根据信号特征进行 故障模式识别以及声发射检测和振动检测的比较问题。通过分析总结出滚动轴承声发射检测技术下一步的研究方向,并指出滚动轴承故障的声发射检测是振动检测的有力补充工具,特别是在轴承低转速和故障早期的检测中更能发挥作用。 关键词:声发射;滚动轴承;故障诊断 中图分类号:TH 113,TG 115 文献标识码:A 滚动轴承是各种旋转机械中最常用的通用零部件之一,也是旋转机械易损件之一。据统计,旋转机械的故障有30%是轴承故障引起的,它的好坏对机器的工 作状况影响极大[1] 。滚动轴承主要损伤形式有:疲劳、 胶合、磨损、烧伤、腐蚀、破损、压痕等[2] 。轴承的缺陷会导致机器剧烈振动和产生噪声,甚至会引起设备的损坏。因此,对重要用途的轴承进行工况检测与故障诊断是非常必要的。 滚动轴承故障的检测诊断技术有很多种,如振动信号检测、润滑油液分析检测、温度检测、声发射检测等。在各种诊断方法中,基于振动信号的诊断技术应用最为广泛,该技术分为简易诊断法和精密诊断法两种。简易诊断利用振动信号波形的各种参数,如幅值、波形因数、波峰因数、概率密度、峭度系数等,以及各种解调技术对轴承进行初步判断以确认是否出现故障;精密诊断则利用各种现代信号处理方法判断在简易诊断中被认为是出现了故障的轴承的故障类别及原因。振动信号检测并非在任何场合都很适用,例如在汽轮机、航空器变速箱及液体火箭发动机等鲁棒性较低的系统中,轴承的早期微弱故障就会导致灾难性的后果,但是早期故障的振动信号很微弱,又容易被周围相对幅度较大的低频环境噪声所淹没,从而无法有效检测出故障的存在[3] 。由于声发射是故障结构本身发出的高频应力波 信号,不易受周围环境噪声的干扰[4] ,因此声发射检测方法在滚动轴承的故障诊断中得到了应用。 1 滚动轴承故障声发射检测机理 111 声发射检测技术原理 材料受到外力或内力作用产生变形或者裂纹扩展 时,以弹性波的形式释放出应变能的现象称为声发射[5] 。用仪器检测、分析声发射信号和利用声发射信号推断声发射源的技术称为声发射检测技术,它是20世纪60年代发展起来的一种动态无损检测新技术,其利用物质内部微粒(包括原子、分子及粒子群)由于相对运动而以弹性波的形式释放应变能的现象来识别和了解物质或结构内部状态。 声发射信号包括突发型和连续型两种。突发型声发射信号由区别于背景噪声的脉冲组成,且在时间上可以分开;连续型声发射信号的单个脉冲不可分辨。实际上,连续型声发射信号也是由大量小的突发型信号组成的,只不过太密集而不能分辨而已。目前对于声发射信号的分析方法主要包括参数分析法和波形分析法。112 滚动轴承故障声发射源问题 滚动轴承在运行不良的情况下,突发型和连续型的声发射信号都有可能产生。轴承各组成部分(内圈、外圈、滚动体以及保持架)接触面间的相对运动、碰摩所产生的赫兹接触应力,以及由于失效、过载等产生的诸如表面裂纹、磨损、压痕、切槽、咬合、润滑不良造成的的表面粗糙、润滑污染颗粒造成的表面硬边以及通过轴承的电流造成的点蚀等故障,都会产生突发型的声发射信号。 连续型声发射信号主要来源于润滑不良(如润滑油膜的失效、润滑脂中污染物的浸入)导致轴承表面产生氧化磨损而产生的全局性故障、过高的温度以及轴承局部故障的多发等,这些因素造成短时间内的大量突发声发射事件,从而产生了连续型声发射信号。 滚动轴承在运行过程中,其故障(不管是表面损伤、裂纹还是磨损故障)会引起接触面的弹性冲击而产生声发射信号,该信号蕴涵了丰富的碰摩信息,因此可利用声发射来监测和诊断滚动轴承故障。与振动方法不同的是,声发射信号的频率范围一般在20kH z 以上,而振动信号频率比较低,因此它不受机械振动和噪声

相关主题