搜档网
当前位置:搜档网 › 【科普季】基于简单积分和常微分方程的高中理科知识点扩展拾零(— —好长的名字).pdf

【科普季】基于简单积分和常微分方程的高中理科知识点扩展拾零(— —好长的名字).pdf

【科普季】基于简单积分和常微分方程的高中理科知识点扩展拾零(— —好长的名字).pdf
【科普季】基于简单积分和常微分方程的高中理科知识点扩展拾零(— —好长的名字).pdf

【科普季】基于简单积分和常微分方程的高中理科知识点扩展拾零(——好长的名字)

我可不像吧主一样痛舰娘,所以我们随便拉个妹纸镇楼(水印什么的都是浮云)。

本帖受众人群:高中,部分初中自学党。(放心起点很低的)需要的数学知识:求导,基本的初等函数,简单的关于解常微分方程(组)和定积分的知识

(没有也可以……吧?)

没看见FIN不要插楼

这种活动我也来凑个热闹……问我要写什么?看看我的头像我自然要写……诶量子部分被吧主抢去了?好吧我们来写相对论……什么看的太多精品区里堆成山?……好吧我放弃了我们还是回归课本(老师经常这样教育我们~)看看利用简单的高等数学知识,我们能从高中那些熟得不能再熟的知识点中挖出点什么来。

另外,这其实是一个数学的科普贴

一、物理部分

1. 速度的定义

我想从一个大家都知道的笑话说起(人教版教材物理必修1收录):

一位女士由于驾车超速而被警察拦住,警察走过来对她说:“太太,您刚才的车速是60

英里每小时!”(1英里=1.609千米)这位女士反驳说:“不可能的!我才开了7分钟,还不到一小时,怎么可能走了60英里了呢?”“太太,我的意思是:如果您继续像刚才那样开车,在下一个小时里,您将驶过60英里。”“这也是不可能的,我只要再行驶10英里就到家了,

根本不需要再开过60英里的路程。”

这位女士显然没有认清速度这一个概念,不过笑归笑,你明白速度这一个概念了么?

速度的定义是“单位时间内物体的位移”,问自己一个问题:“单位时间是多长?”笑话中

的女士把它认为是1小时,当然是错的,很明显,这个“单位时间”不可能是1小时或者1 秒——因为物体可以运动0.1秒而仍然有速度这一物理属性,那么,单位时间是多长?

这听起来很有些滑稽,就好像在问“白马是马么?”一样的逻辑问题,可是这是定义速度中无法绕开的问题,如果不把这个问题弄清楚,那么我们也必须承认,我们其实不知道什么是速度。

我们已经学了导数,经过郑老师的几个关于物理的例题引入,我们可以自然的得到下面这个定义:

v = x '(t )或者v=dx dt

(dx 与 dt 是微分的代表符号,或称莱布尼兹记号,dx/dt 代表位移对时间求一次导数)

那么,结合导数的定义,我们可以自然的得到“单位时间”即是“一小段”时间,一个无穷

小的概念(不讨论这个时间的物理意义,实际上这都是抽象出来的数学定义),大家都知道,什么东西扯上无限就会变的玄♂乎,比如著名的芝诺悖论和飞矢不动悖论,关于这两个悖论,限于篇幅,笔者不多加讨论,而且这方面的科普应该在精品区里也堆成山了,就看你会不会去看……

2.交变电流有效值的推导

交变电流算是高中物理中挺麻烦的一章,倒不是说难学,而是要记的东西太多,就比如最大值,平均值,有效值三个概念,在高中物理模型(那个在磁场里绕轴线转的线圈)下分别

会在三个式子里用到,然后从而变出各种各样的题目……其中有效值的计算是被略过的,正好趁这个机会介绍一下那个根号二的来历。

首先我们写出磁通量随时间变化的表达式(同样以高中线圈模型为例)

Φ = BS cos(ωt)

由法拉第电磁感应定律(自然这是求导了)

U =

d Φ

= -BS ω sin(ωt ) dt

为表达方便,略去负号,则电流随时间变化的表达式为

I =

U

R = BS R ω

sin(ωt )

由有效值的定义我们可以知道(实际上电流热效应中电流的那个平方才是根号二的根源)

I

2

Rt = ?

t t 12 I 2

Rdt

接下来解右边的积分

t 2

B

2

S 2ω2

t 2

?t 1

I 2

Rdt =

?

t 1

sin 2

(ωt ) dt

R 2

注意到积分号外面的成分是最大值的平方,并利用三角公式化简积分,我们可以得到

t 2

I 2

Rdt

2

t 2

1 - cos(2ωt )

?t 1 = I max R ?t 1

dt

2

后两项可以分离得到(这时候结果已经呼之欲出了)

2

t 2

1 - cos(2ωt )

2 t 2 1 2

t 2

cos(2ωt ) I max

R

?t 1 dt = I max R ?t 1 dt - I max R

?t 1 dt

2 2 2

分析第二项,第二项的积分结果是

1 I max

2 R sin(2ωt )t 2

t 1

这个结果在 t1 和 t2 相差半个周期(或整数倍)时为 0,而交变电流中的周期很小,我们日 常生活中涉及到的时间间隔,会使积分结果第一项的大小比第二项大上很多倍,所以一般我 们将其略去。

t 2

1 1

I 0

2 Rt = I

max

2

R

?t 1

dt =

I max

2

R

2

2

I 0 = 2 I max

2

3.LC 震荡电路

对于一个学人教版教材的学生来说,LC 震荡回路的知识点仅限于知道其周期为 2

π LC

(自感系数和电容),然后分析分析(如果)L 和 C 怎么变,周期怎么变……

(请再一次无视水印)

为了体现出本科普高大上的一面我们来推导一下这个周期公式,从而引入一个重要的常微分 方程。

(左侧电容右侧电感线圈)

设电路中任意时刻的电流为 I ,它经过电感线圈 L 和电容 C 所产生的电压降(换句话说就 是线圈和电容上的电压)相加为 0,即满足基尔霍夫电压定律【这个听起来高端的定律用一 句话概括一下,就是指在任一瞬间,沿电路中的任一回路绕行一周,在该回路上电动势之和 恒等于各电阻上的电压降之和,既然 LC 震荡电路没有电动势(外力做功),那自然和为零】

L

dI

dt + Q

C = 0

(第一项是经过电感时的电压,即自感电动势,第二项是电容上的电压),由于 I = dQ

dt ,

所以上式可改为

d 2Q + Q

= 0 (*)

dt 2

LC

这是一个二阶常微分方程,但是由于其简单的特性,我们甚至可以不了解任何常微分方程的

解法,只需要考虑一个问题,什么函数求两次导会变成自身的相反数?没错,就是它!sin

和 cos 函数(实际上, e

kix

类的函数也是可行的,但是这里就略过不做讨论了),实际上,

由于 sin 与 cos 的相似性,上面方程的通解可以表示为

t t

Q (t )= A cos( ) +B sin( )

LC LC

而一个显然的事实是,该式在任何初始条件下,其周期为2π LC ……

值得一提的是,单摆的周期公式,同样也可以来自于一个类似(*)式的微分方程,实际上,该方程是所有简单一维简谐振动(或类似简谐振动的物理模型,比如LC)的动力学方程,方程形式为

d

2y

+ k 2 y =0

(?) dx

2

无论是蹦极还是你手里的弹簧,无论是在火星还是地球,只要是简单的简谐运动,其运动就可以用同一个数学模型来解释,这也反映了不同物理现象的共通性,实际上,这也是古往今来物理学家们一直想做并一直在做的事情,希望宇宙的一切,都可以用一套理论来解释(大

统一场の胜利)

4 切割磁感线的导体棒

如图,导体棒电阻为R,长度为L,质量为m,以初速度v向右侧运动,磁感应强度为B,其他电阻和所有摩擦不计。

这应该是一个非常久远的模型了,实际上这个模型在高中阶段也有很多题目可以出,比如最后散发的热量,经过过的距离(也用到了一点积分的思想),流过电流表的电量,但这都

不是真的算彻底掌握了这个模型,让我们从动力学的角度来分析这个问题看看是否能得到任

意时刻的v(t)函数。

首先根据牛顿第二定律和安培力公式,我们可以得到

m dv = - B 2

L2V dt R

这是一个非常简单的微分方程,我们直接移项分别积分即可

dv = - B 2 L2 dt →ln V = - B 2 L2 t

+C

? V ? mR mR

把ln和绝对值去掉并带入V(0)=v可得结果

常微分方程知识点总结

常微分方程知识点总结 常微分方程知识点你学得怎么样呢?下面是的常微分方程知识 点总结,欢迎大家阅读! 微分方程的概念 方程对于学过中学数学的人来说是比较熟悉的;在初等数学中 就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。这些方程都是要把研究的问题中的已知数和数之间的关系找出来,列出包含一个数或几个数的一个或者多个方程式,然后取求方程的解。 但是在实际工作中,常常出现一些特点和以上方程完全不同的 问题。比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等。 物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个函数。也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个的函数。 解这类问题的基本思想和初等数学解方程的基本思想很相似, 也是要把研究的问题中已知函数和函数之间的关系找出来,从列出的包含函数的一个或几个方程中去求得函数的表达式。但是无论在方程

的形式、求解的具体方法、求出解的性质等方面,都和初等数学中的解方程有许多不同的地方。 在数学上,解这类方程,要用到微分和导数的知识。因此,凡是表示函数的导数以及自变量之间的关系的方程,就叫做微分方程。 微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。牛顿在建立微积分的同时,对简单的微分方程用级数来求解。后来瑞士数学家雅各布?贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。 常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的。数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常 有力的工具。 牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律。后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星 的位置。这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量。 微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法。微分方程也就成了最有生命力的数学分支。

高中数学三角函数基础知识点及答案

高中数学三角函数基础知识点及答案 1、角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。射线的起始位置称为始边,终止位置称为终边。 2、象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。 3. 终边相同的角的表示: (1)α终边与θ终边相同(α的终边在θ终边所在射线上)?2()k k αθπ=+∈Z , 注意:相等的角的终边一定相同,终边相同的角不一定相等.如与角 1825-的终边相同,且绝对值最小的角的度数是___,合___弧度。 弧度:一周的弧度数为2πr/r=2π,360°角=2π弧度,因此,1弧度约为57.3°,即57°17'44.806'', 1°为π/180弧度,近似值为0.01745弧度,周角为2π弧度,平角(即180°角)为π弧度, 直角为π/2弧度。(答:25-;5 36 π- ) (2)α终边与θ终边共线(α的终边在θ终边所在直线上) ?()k k αθπ=+∈Z . (3)α终边与θ终边关于x 轴对称?2()k k αθπ=-+∈Z . (4)α终边与θ终边关于y 轴对称?2()k k απθπ=-+∈Z . (5)α终边与θ终边关于原点对称?2()k k απθπ=++∈Z . (6)α终边在x 轴上的角可表示为:,k k Z απ=∈; α终边在y 轴上的角可表示为:,2k k Z παπ=+∈;α终边在坐标轴上的角可表示为:,2 k k Z π α=∈. 如α的终边与 6 π 的终边关于直线x y =对称,则α=____________。 (答:Z k k ∈+ ,3 2π π) 4、α与2α的终边关系:由“两等分各象限、一二三四”确定.如若α是第 二象限角,则2 α 是第_____象限角 (答:一、三) 5.弧长公式:||l R α=,扇形面积公式:211||22 S lR R α==,1弧度 (1rad)57.3≈. 如已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积。 (答:22cm ) 6、任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是220r x y =+>,那么 s i n ,c o s y x r r αα==,()tan ,0y x x α=≠,cot x y α=(0)y ≠,sec r x α=()0x ≠, ()csc 0r y y α=≠。三角函数值只与角的大小有关,而与终边上点P 的位置无关。

高中数学导数与积分知识点

高中数学教案—导数、定积分 一.课标要求: 1.导数及其应用 (1)导数概念及其几何意义 ① 通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵; ②通过函数图像直观地理解导数的几何意义。 (2)导数的运算 ① 能根据导数定义求函数y=c ,y=x ,y=x 2,y=x 3 ,y=1/x ,y=x 的导数; ② 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax+b ))的导数; ③ 会使用导数公式表。 (3)导数在研究函数中的应用 ① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间; ② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 (4)生活中的优化问题举例 例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。 (5)定积分与微积分基本定理 ① 通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念; ② 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。 (6)数学文化 收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。 二.命题走向 导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值. 三.要点精讲 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值 x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。 如果当0→?x 时, x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

常微分方程练习题及答案复习题)

常微分方程练习试卷 一、 填空题。 1. 方程23 2 10d x x dt +=是 阶 (线性、非线性)微分方程. 2. 方程 ()x dy f xy y dx =经变换_______,可以化为变量分离方程 . 3. 微分方程 3230d y y x dx --=满足条件(0)1,(0)2y y '==的解有 个. 4. 设常系数方程 x y y y e αβγ'''++=的一个特解*2()x x x y x e e xe =++,则此方程的系数α= ,β= ,γ= . 5. 朗斯基行列式 ()0W t ≡是函数组12(),(),,()n x t x t x t 在a x b ≤≤上线性相关的 条件. 6. 方程 22(2320)0xydx x y dy ++-=的只与y 有关的积分因子为 . 7. 已知 ()X A t X '=的基解矩阵为()t Φ的,则()A t = . 8. 方程组 20'05??=???? x x 的基解矩阵为 . 9.可用变换 将伯努利方程 化为线性方程. 10 .是满足方程 251y y y y ''''''+++= 和初始条件 的唯一解. 11.方程 的待定特解可取 的形式: 12. 三阶常系数齐线性方程 20y y y '''''-+=的特征根是 二、 计算题 1.求平面上过原点的曲线方程, 该曲线上任一点处的切线与切点和点(1,0)的连线相互垂直. 2.求解方程13 dy x y dx x y +-=-+. 3. 求解方程 222()0d x dx x dt dt += 。 4.用比较系数法解方程. . 5.求方程 sin y y x '=+的通解. 6.验证微分方程 22(cos sin )(1)0x x xy dx y x dy -+-=是恰当方程,并求出它的通解.

(完整版)常微分方程的大致知识点

= + ?x = + ?x = + ?x 常微分方程的大致知识点 (一)初等积分法 1、线素场与等倾线 2、可分离变量方程 3、齐次方程(一般含有 x 或 y 的项) y x 4、一阶线性非齐次方程 常数变易法,或 y = e ? a ( x )dx [? b (x )e -? a ( x )dx dx + C ] 5、伯努力方程 令 z = y 1-n ,则 dz = (1 - n ) y -n dy ,可将伯努力方程化成一阶线性非齐次或一阶线性齐次 dx 6、全微分方程 若?M ?y 若 ?M ?y dx = ?N ,则u (x , y ) = C ,(留意书上公式) ?x ≠ ?N ,则找积分因子,(留意书上公式) ?x f (x f ( y , (二)毕卡序列 x y 1 y 0 0 x f (x , y 0 )dx , y 2 y 0 0 x f (x , y 1 )dx , y 3 y 0 0 f (x , y 2 )dx ,其余类推 (三)常系数方程 1、常系数齐次L (D ) y = 0 方法:特征方程 7、可降阶的二阶微分方程 d 2 y = , dy ) ,令 dy = d 2 y p ,则 = dy dx 2 d 2 y = dx dy ) ,令 dx dy = p ,则 dx 2 d 2 y dx = p dp dx 2 dx dx dx 2 dy 8、正交轨线族

? ? dy 单的实根, , y = C e 1x + C e 2 x 1 2 1 2 单的复根1, 2 = ± i , y = e x (C cos x + C 2 sin x ) 重的实根 = = , y = (C + C x )e x 1 2 1 2 重的复根1, 2 = ± i ,3, 4 = ± i , y = e x [(C + C 2 x ) c os x + (C 3 + C 4 x ) sin x ] 2、常系数非齐次L (D ) y = 方法:三部曲。 f (x ) 第一步求L (D ) y = 0 的通解Y 第二步求L (D ) y = f (x ) 的特解 y * 第三步求L (D ) y = f (x ) 的通解 y = Y + y * 如何求 y * ? 当 f (x ) = P m (x )e x 时, y * = x k Q (x )e x 当 f (x ) = P m (x )e ux cos vx + Q (x )e ux sin vx 时, y * = x k e ux (R (x ) cos vx + S m (x ) sin vx ) 当 f (x ) 是一般形式时, y * = ? x W (x ,) f ()d ,其中 W(.)是郎斯基行列式 x 0 W () (四)常系数方程组 方法:三部曲。 第一步求 dX dt = A (t ) X 的通解, Φ(t )C 。利用特征方程 A - I = 0 ,并分情况讨论。 第二步求 dX dt 第三步求 dX dt = A (t ) X + f (t ) 的特解, Φ(t )?Φ-1 (s ) f (s )ds ,(定积分与不定积分等价) = A (t ) X + f (t ) 的通解, Φ(t )C + Φ(t )?Φ-1 (s ) f (s )ds (五)奇点与极限环 ? dx = ax + b y dt ? ? = cx + dy 1、分析方程组? dt 的奇点的性质,用特征方程: A - I = 0 特征方程的根有 3 种情况:相异实根、相异复根、相同实根。第一种情况:相异实根,1 ≠ 2 1 1 m m m

高中数学知识点总结(精华版)

高中数学必修+选修知识点归纳新课标人教A版 一、集合 1、把研究的对象统称为元素,把一些元素组成的总体叫做集合。集合三要素:确定性、互异性、无序性。 2、只要构成两个集合的元素是一样的,就称这两个集合相等。 3、常见集合:正整数集合: 或 ,整数集合: ,有理数集合: ,实数集合: . 4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系 1、一般地,对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元素,则称集合A是集合B的子集。记作 .

2、如果集合 ,但存在元素 ,且 ,则称集合A是集合B的真子集.记作:A B. 3、把不含任何元素的集合叫做空集.记作: .并规定:空集合是任何集合的子集. 4、如果集合A中含有n个元素,则集合A有 个子集, 个真子集. §1.1.3、集合间的基本运算 1、一般地,由所有属于集合A或集合B的元素组成的集合,称为集合A与B的并集.记作: . 2、一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.记作: . 3、全集、补集? §1.2.1、函数的概念

1、设A、B是非空的数集,如果按照某种确定的对应关系 ,使对于集合A中的任意一个数 ,在集合B中都有惟一确定的数 和它对应,那么就称 为集合A到集合B的一个函数,记作: . 2、一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等. §1.2.2、函数的表示法 1、函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值 1、注意函数单调性的证明方法: (1)定义法:设 那么 上是增函数; 上是减函数. 步骤:取值—作差—变形—定号—判断 格式:解:设

高中数学定积分知识点

数学选修2-2知识点总结 一、导数 1.函数的平均变化率为 =??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或 0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.函数的平均变化率的几何意义是割线的斜率; 函数的导数的几何意义是切线的斜率。 4导数的背景(1)切线的斜率;(2)瞬时速度;

6、常见的导数和定积分运算公式:若() g x均可导(可积),则有: f x,() 用导数求函数单调区间的步骤: ①求函数f(x)的导数'() f x ②令'() f x>0,解不等式,得x的范围就是递增区间. ③令'() f x<0,解不等式,得x的范围,就是递减区间; [注]:求单调区间之前一定要先看原函数的定义域。 7.求可导函数f(x)的极值的步骤: (1)确定函数的定义域。 (2) 求函数f(x)的导数'() f x (3)求方程'() f x=0的根 (4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查/() f x在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如

常微分方程的大致知识点

常微分方程的大致知识点Last revision on 21 December 2020

常微分方程的大致知识点 (一)初等积分法 1、线素场与等倾线 2、可分离变量方程 3、齐次方程(一般含有x y y x 或的项) 4、一阶线性非齐次方程 常数变易法,或])([)()(?+??=-C dx e x b e y dx x a dx x a 5、伯努力方程 令n y z -=1,则dx dy y n dx dz n --=)1(,可将伯努力方程化成一阶线性非齐次或一阶线性齐次 6、全微分方程 若x N y M ??=??,则C y x u =),(,(留意书上公式) 若 x N y M ??≠??,则找积分因子,(留意书上公式) 7、可降阶的二阶微分方程 ),(22dx dy x f dx y d =,令dx dy dx y d p dx dy ==22,则 ),(22dx dy y f dx y d =,令dy dp p dx y d p dx dy ==22,则 8、正交轨线族 (二)毕卡序列 ?+=x x dx y x f y y 0),(001,?+=x x dx y x f y y 0),(102,?+=x x dx y x f y y 0),(203,其余类推 (三)常系数方程 1、常系数齐次0)(=y D L 方法:特征方程 单的实根21,λλ,x x e C e C y 2121λλ+= 单的复根i βαλ±=2,1,)sin cos (21x C x C e y x ββα+= 重的实根λλλ==21,x e x C C y λ)(21+= 重的复根i βαλ±=2,1,i βαλ±=4,3,]sin )(cos )[(4321x x C C x x C C e y x ββα+++=

2018年电大第三版常微分方程答案知识点复习考点归纳总结参考

习题1.2 1.dx dy =2xy,并满足初始条件:x=0,y=1的特解。 解:y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x . 2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。 解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y 1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1 +x c 3.dx dy =y x xy y 321++ 解:原方程为:dx dy =y y 21+31x x + y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 2 4. (1+x)ydx+(1-y)xdy=0 解:原方程为: y y -1dy=-x x 1+dx 两边积分:ln|xy|+x-y=c 另外 x=0,y=0也是原方程的解。 5.(y+x )dy+(x-y)dx=0 解:原方程为:

dx dy =- y x y x +- 令x y =u 则dx dy =u+x dx du 代入有: -1 12++u u du=x 1 dx ln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2x y . 6. x dx dy -y+22y x -=0 解:原方程为: dx dy =x y +x x ||-2)(1x y - 则令x y =u dx dy =u+ x dx du 211u - du=sgnx x 1 dx arcsin x y =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=x c cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32+=0 解:原方程为:dx dy =y e y 2e x 3 2 e x 3-3e 2y -=c. 9.x(lnx-lny)dy-ydx=0 解:原方程为: dx dy =x y ln x y 令 x y =u ,则dx dy =u+ x dx du

高中数学知识点总结(精华版)

高中数学知识点总结 1. 元素与集合的关系 U x A x C A ∈??,U x C A x A ∈??. 2.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B ==. 3.包含关系 A B A A B B =?=U U A B C B C A ???? U A C B ?=ΦU C A B R ?= 4.容斥原理 ()()card A B cardA cardB card A B =+- ()()card A B C cardA cardB cardC card A B =++- ()()()()card A B card B C card C A card A B C ---+. 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1 个;非空的真子集有2n –2个. 6.二次函数的解析式的三种形式 (1)一般式2 ()(0)f x ax bx c a =++≠; (2)顶点式2 ()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <- ? 11 ()f x N M N >--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(210时,若[]q p a b x ,2∈- =,则{}min max max ()(),()(),()2b f x f f x f p f q a =-=; []q p a b x ,2?- =,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =.

常微分方程期末复习提要(1)

常微分方程期末复习提要 中央电大 顾静相 常微分方程是广播电视大学本科开放教育数学与应用数学专业的统设必修课程.本课程的主要任务是要使学生掌握常微分方程的基本理论和方法,增强运用数学手段解决实际问题的能力.本课程计划学时为54,3学分,主要讲授初等积分法、基本定理、线性微分方程组、线性微分方程、定性理论简介等内容。本课程的文字教材是由潘家齐教授主编、中央电大出版社出版的主辅合一型教材《常微分方程》.现已编制了28学时的IP 课件供学生在网上学习. 一、复习要求和重点 第一章 初等积分法 1.了解常微分方程、常微分方程的解的概念,掌握常微分方程类型的判别方法. 常微分方程与解的基本概念主要有:常微分方程,方程的阶,线性方程与非线性方程,解,通解,特解,初值问题。 2.了解变量分离方程的类型,熟练掌握变量分离方程解法. (1)显式变量可分离方程为: )()(d d y g x f x y = ; 当0≠g 时,通过积分??+=C x x f y g y d )()(d 求出通解。 (2)微分形式变量可分离方程为: y y N x M x y N x M d )()(d )()(2211=; 当0)()(21≠x M y N 时,通过积分 ??+=C x x M x M y y N y N d ) ()(d )()(2112求出通解。 3.了解齐次方程的类型,熟练掌握齐次方程(即第一类可化为变量可分离的方程)的解法. 第一类可化为变量可分离方程的一阶齐次微分方程为: )(d d x y g x y = ; 令x y u =,代入方程得x u u g x u -=)(d d ,当0)(≠-u u g 时,分离变量并积分,得?=-u u g u x C )(d 1e ,即)(e u C x ?=,用x y u =回代,得通解)(e x y C x ?=. 4.了解一阶线性方程的类型,熟练掌握常数变易法,掌握伯努利方程的解法. (1)一阶线性齐次微分方程为: 0)(d d =+y x p x y 通解为:?=-x x p C y d )(e 。 (2)一阶线性非齐次微分方程为: )()(d d x f y x p x y =+; 用常数变易法可以求出线性非齐次方程的通解:??+?=-]d e )([e d )(d )(x x f C y x x p x x p 。 (3)伯努利方程为:)1,0()()(d d ≠=+n y x f y x p x y n ,

常微分方程解题方法总结.doc

常微分方程解题方法总结 来源:文都教育 复习过半, 课本上的知识点相信大部分考生已经学习过一遍 . 接下来, 如何将零散的知 识点有机地结合起来, 而不容易遗忘是大多数考生面临的问题 . 为了加强记忆, 使知识自成 体系,建议将知识点进行分类系统总结 . 著名数学家华罗庚的读书方法值得借鉴, 他强调读 书要“由薄到厚、由厚到薄”,对同学们的复习尤为重要 . 以常微分方程为例, 本部分内容涉及可分离变量、 一阶齐次、 一阶非齐次、 全微分方程、 高阶线性微分方程等内容, 在看完这部分内容会发现要掌握的解题方法太多, 遇到具体的题 目不知该如何下手, 这种情况往往是因为没有很好地总结和归纳解题方法 . 下面以表格的形 式将常微分方程中的解题方法加以总结,一目了然,便于记忆和查询 . 常微分方程 通解公式或解法 ( 名称、形式 ) 当 g( y) 0 时,得到 dy f (x)dx , g( y) 可分离变量的方程 dy f ( x) g( y) 两边积分即可得到结果; dx 当 g( 0 ) 0 时,则 y( x) 0 也是方程的 解 . 解法:令 u y xdu udx ,代入 ,则 dy 齐次微分方程 dy g( y ) x dx x u g (u) 化为可分离变量方程 得到 x du dx 一 阶 线 性 微 分 方 程 P ( x)dx P ( x) dx dy Q(x) y ( e Q( x)dx C )e P( x) y dx

伯努利方程 解法:令 u y1 n,有 du (1 n) y n dy , dy P( x) y Q( x) y n(n≠0,1)代入得到du (1 n) P(x)u (1 n)Q(x) dx dx 求解特征方程:2 pq 三种情况: 二阶常系数齐次线性微分方程 y p x y q x y0 二阶常系数非齐次线性微分方程 y p x y q x y f ( x) (1)两个不等实根:1, 2 通解: y c1 e 1x c2 e 2x (2) 两个相等实根:1 2 通解: y c1 c2 x e x (3) 一对共轭复根:i , 通解: y e x c1 cos x c2 sin x 通解为 y p x y q x y 0 的通解与 y p x y q x y f ( x) 的特解之和. 常见的 f (x) 有两种情况: x ( 1)f ( x)e P m ( x) 若不是特征方程的根,令特解 y Q m ( x)e x;若是特征方程的单根,令特 解 y xQ m ( x)e x;若是特征方程的重根, 令特解 y*x2Q m (x)e x; (2)f (x) e x[ P m ( x) cos x p n ( x)sin x]

高中数学人教版选修2-2导数及其应用(定积分)知识点总结

数学选修2-2导数及其应用(定积分)知识点必记 1.函数的平均变化率是什么? 答:平均变化率为 =??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念是什么? 答:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.平均变化率和导数的几何意义是什么? 答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景是什么? 答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。 5、常见的函数导数和积分公式有哪些? 函数 导函数 不定积分 y c = 'y =0 ———————— n y x =()*n N ∈ 1'n y nx -= 1 1n n x x dx n +=+? x y a =()0,1a a >≠ 'ln x y a a = ln x x a a dx a =? x y e = 'x y e = x x e dx e =? log a y x =()0,1,0a a x >≠> 1 'ln y x a = ———————— ln y x = 1'y x = 1 ln dx x x =? sin y x = 'cos y x = cos sin xdx x =? cos y x = 'sin y x =- sin cos xdx x =-? 6、常见的导数和定积分运算公式有哪些?

常微分方程期末试题知识点复习考点归纳总结参考

期末考试 一、填空题(每空2 分,共16分)。 1.方程22d d y x x y +=满足解的存在唯一性定理条件的区域是 . 2. 方程组 n x x x R Y R Y F Y ∈∈=,),,(d d 的任何一个解的图象是 维空间中的一条积分曲线. 3.),(y x f y '连续是保证方程),(d d y x f x y =初值唯一的 条件. 4.方程组???????=-=x t y y t x d d d d 的奇点)0,0(的类型是 5.方程2)(2 1y y x y '+'=的通解是 6.变量可分离方程()()()()0=+dy y q x p dx y N x M 的积分因子是 7.二阶线性齐次微分方程的两个解)(1x y ?=,)(2x y ?=成为其基本解组的充要条件是 8.方程440y y y '''++=的基本解组是 二、选择题(每小题 3 分,共 15分)。 9.一阶线性微分方程 d ()()d y p x y q x x +=的积分因子是( ). (A )?=x x p d )(e μ (B )?=x x q d )(e μ (C )?=-x x p d )(e μ (D )?=-x x q d )(e μ 10.微分方程0d )ln (d ln =-+y y x x y y 是( ) (A )可分离变量方程 (B )线性方程 (C )全微分方程 (D )贝努利方程 11.方程x (y 2-1)d x+y (x 2-1)d y =0的所有常数解是( ). (A) 1±=x (B)1±=y

(C )1±=y , 1±=x (D )1=y , 1=x 12.n 阶线性非齐次微分方程的所有解( ). (A )构成一个线性空间 (B )构成一个1-n 维线性空间 (C )构成一个1+n 维线性空间 (D )不能构成一个线性空间 13.方程222+-='x y y ( )奇解. (A )有一个 (B )有无数个 (C )只有两个 (D )无 三、计算题(每小题8分,共48分)。 14.求方程22 2d d x y xy x y -=的通解 15.求方程0d )ln (d 3=++y x y x x y 的通解 16.求方程2 221)(x y x y y +'-'=的通解

高一数学上册基础知识点总结

数学必修一基础要点归纳 第一章 集合与函数的概念 一、集合的概念与运算: 1、集合的特性与表示法:集合中的元素应具有:确定性、互异性、无序性;集合的表示法 有:列举法、描述法、文氏图等。 2、集合的分类:①有限集、无限集、空集。 ②数集:{ } 2 2y y x =- 点集: (){},1x y x y += 3、子集与真子集:若x A ∈则x B ∈?A B ? 若A B ?但A ≠B ?A B 若{}123,n A a a a a =,,,则它的子集个数为2n 个 4、集合的运算:①{}A B x x A x B =∈∈且,若A B A =则A B ? ②{}A B x x A x B =∈∈或,若A B A =则B A ? ③ {} U C A x x U x A =∈?但 5、映射:对于集合A 中的任一元素a,按照某个对应法则f ,集合B 中都有唯一的元素b 与 之对应,则称:f A B →为A 到的映射,其中a 叫做b 的原象,b 叫a 的象。 二、函数的概念及函数的性质: 1、函数的概念:对于非空的数集A 与B ,我们称映射:f A B →为函数,记作()y f x =, 其中,x A y B ∈∈,集合A 即是函数的定义域,值域是B 的子集。定义域、值域、对应法则称为函数的三要素。 2、 函数的性质: ⑴ 定义域:0 1 简单函数的定义域:使函数有意义的x 的取值范围,例: 25y x =- 的定义域为:25053302x x x ->??<? 2 复合函数的定义域:若()y f x =的定义域为[),x a b ∈,则复合函数 ()y f g x =????的定义域为不等式()a g x b ≤<的解集。 0 3 实际问题的定义域要根据实际问题的实际意义来确定定义域。

常微分方程基本知识点

常微分方程基本知识点 第一章 绪论 1. 微分方程的概念(常微分与偏微),什么是方程的阶数,线性与非线性,齐次与非齐次,解、特解、部分解和通解的概念及判断! (重要) 例:03)(22=-+y dx dy x dx dy (1阶非线性); x e dx y d y =+22sin 。 2.运用导数的几何意义建立简单的微分方程。(以书后练习题为主) (习题1,2,9题) 例:曲线簇cx x y -=3满足的微分方程是:__________. 第二章 一阶方程的初等解法 1.变量分离方程的解法(要能通过适当的变化化成变量分离方程);(重要) 2.齐次方程的解法(变量代换);(重要) 3.线性非齐次方程的常数变易法; 4.分式线性方程、贝努利方程、恰当方程的概念及判断(要能熟练的判断各种类型的一阶方程)(重要); 例题:(1).经变换_____y c u os =___________后, 方程1cos sin '+=+x y y y 可化为___线性_____方程; (2).经变换_____y x u 32-=____________后, 方程1 )32(1 '2+-=y x y 可化为____变量分离__方程; (3).方程0)1(222=+-dy e dx ye x x x 为:线性方程。

(4).方程221 'y x y -=为:线性方程。 5.积分因子的概念,会判断某个函数是不是方程的积分因子; 6.恰当方程的解法(分项组合方法)。(重要) 第三章 一阶方程的存在唯一性定理 1.存在唯一性定理的内容要熟记,并能准确确定其中的h ; 2.会构造皮卡逐步逼近函数序列来求第k 次近似解!(参见书上例题和习题 3.1的1,2,3题) 第四章 高阶微分方程 1.n 阶线性齐次(非齐次)微分方程的概念,解的概念,基本解组,解的线性相关与线性无关,齐次与非齐次方程解的性质; 2.n 阶线性方程解的Wronskey 行列式与解的线性相关与线性无关的关系; 3.n 阶线性齐次(非齐次)微分方程的通解结构定理!!(重要) 4.n 阶线性非齐次微分方程的常数变易法(了解); 5.n 阶常系数线性齐次与非齐次微分方程的解法(Eurler 待定指数函数法确定基本解组),特解的确定(比较系数法、复数法);(重要) 例题:t te x x 24=-'',确定特解类型? (习题4.2相关题目) 6.2阶线性方程已知一个特解的解法(作线性齐次变换)。(重要) 7.其他如Euler 方程、高阶方程降阶、拉普拉斯变换法等了解。

(完整版)高中数学知识点体系框架超全超完美

高中数学基础知识整合 函数与方程区间建立函数模型 抽象函数复合函数分段函数求根法、二分法、图象法;一元二次方程根的分布 单调性:同增异减赋值法,典型的函数 零点函数的应用 A 中元素在 B 中都有唯一的象;可一对一(一一映射),也可多对一,但不可一对多 函数的基本性质 单调性奇偶性周期性 对称性 最值 1.求单调区间:定义法、导数法、用已知函数的单调性。 2.复合函数单调性:同增异减。 1.先看定义域是否关于原点对称,再看f (-x )=f (x )还是-f (x ). 2.奇函数图象关于原点对称,若x =0有意义,则f (0)=0. 3.偶函数图象关于y 轴对称,反之也成立。 f (x +T)=f (x );周期为T 的奇函数有:f (T)=f (T/2)= f (0)=0.二次函数、基本不等式,对勾函数、三角函数有界性、线性规划、导数、利用单调性、数形结合等。 函数的概念 定义 列表法解析法图象法 表示三要素使解析式有意义及实际意义 常用换元法求解析式 观察法、判别式法、分离常数法、单调性法、最值法、重要不等式、三角法、图象法、线性规划等 定义域 对应关系值域 函数常见的几种变换平移变换、对称变换翻折变换、伸缩变换 基本初等函数正(反)比例函数、一次(二次)函数幂函数 指数函数与对数函数三角函数 定义、图象、性质和应用 函数 映 射 第二部分映射、函数、导数、定积分与微积分 退出 上一页 第二部分映射、函数、导数、定积分与微积分 导数 导数概念函数的平均变化率运动的平均速度曲线的割线的斜率 函数的瞬时变化率运动的瞬时速度曲线的切线的斜率 ()()的区别 与0x f x f ' '0 t t t v a S v ==,() 0' x f k =导数概念 基本初等函数求导 导数的四则运算法则简单复合函数的导数()()()()()()()().ln 1ln ln 1 log sin cos cos sin 01x x x x a n n e e a a a x x a x x x x x x nx x c c ==== -====-;;;;;;; 为常数()()()()[]()() ()()[]()()()()()()()()()()()[]2)3()2()1(x g x g x f x g x f x g x f x g x f x g x f x g x f x g x f x g x f x g x f -=? ? ????+=?±=±是可导的,则有:,设()()[]()() x u u f x g f ' ' ' ?=1.极值点的导数为0,但导数为0的点不一定是极值点; 2.闭区间一定有最值,开区间不一定有最值。导数应用函数的单调性研究函数的极值与最值 曲线的切线变速运动的速度生活中最优化问题 ()()()(). 00''在该区间递减在该区间递增,x f x f x f x f ?1.曲线上某点处切线,只有一条;2.过某点的曲线的切线不一定只一条,要设切点坐标。 一般步骤:1.建模,列关系式;2.求导数,解导数方程;3.比较区间端点函数值与极值,找到最大(最小)值。 定 积分与微积分 定积分概念 定理应用 性质定理含意微积分基本 定理 曲边梯形的面积变力所做的功 ()的极限 和式i n i i x f ?∑-=1 1 ξ定义及几何意义 1.用定义求:分割、近似代替、求和、取极限; 2.用公式。 ()()()()[]()()()()()()()() c b a dx x f dx x f dx x f dx x f dx x f dx x g dx x f dx x g x f dx x f k dx x kf c b b a c a a b b a b a b a b a b a b a <<=-=±=±=?????????? .;;;()()()()()() 莱布尼兹公式牛顿则若--==?a F b F dx x f x f x F b a ,'1.求平面图形面积;2.在物理中的应用(1)求变速运动的路程: (2)求变力所作的功; ()?=b a dx x F W ()dt t v s a b ?=

高中数学常见题型解法归纳 求定积分的方法

高中数学常见题型解法归纳 求定积分的方法 【知识要点】 一、曲边梯形的定义 我们把由直线,,0x a x b y ===和曲线()y f x =所围成的图形称为曲边梯形. 二、曲边梯形的面积的求法 分割→近似代替(以直代曲)→求和→取极限 三、定积分的概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点 0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x D (b a x n -D =),在每个小区间[]1,i i x x -上任取一点()1,2,,i i n x =L ,作和式:1 1 ()()n n n i i i i b a S f x x f n ξ==-= ?=∑∑ 如果x D 无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数 ()f x 在区间[,]a b 上的定积分.记为:()b a S f x dx =?, 其中 ? 是积分号,b 是积分上限,a 是积分下限,()f x 是被积函数,x 是积分变量,[,]a b 是积分区间,()f x dx 是被积式. 说明:(1)定积分 ()b a f x dx ? 是一个常数,可以是正数,也可以是负数,也可以是零,即n S 无限趋 近的常数S (n →+∞时)记为 ()b a f x dx ? ,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③ 求和:1 ()n i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑? 四、定积分的性质 根据定积分的定义,不难得出定积分的如下性质: 性质1()()()b b a a kf x dx k f x dx k =??为常数(定积分的线性性质); 性质2 1212[()()]()()b b b a a a f x f x dx f x dx f x dx ±=±? ??(定积分的线性性质);

相关主题