搜档网
当前位置:搜档网 › Decolorization and COD reduction of dyeing wastewater from a cotton textile mill using thermolysis a

Decolorization and COD reduction of dyeing wastewater from a cotton textile mill using thermolysis a

Decolorization and COD reduction of dyeing wastewater from a cotton textile mill using thermolysis a
Decolorization and COD reduction of dyeing wastewater from a cotton textile mill using thermolysis a

Treatment of composite wastewater of a cotton textile mill

by thermolysis and coagulation

Pradeep Kumar,B.Prasad,I.M.Mishra,Shri Chand?

Department of Chemical Engineering,Indian Institute of Technology Roorkee,Roorkee247667,India

Abstract

Catalytic thermal treatment(thermolysis)accompanied with coagulation was used for the removal of COD and color of composite wastewater

from a cotton textile mill.CuSO4,FeSO4,FeCl3,CuO,ZnO and PAC were used as catalytic agents during thermolysis.Homogeneous copper sulphate

at a mass loading of6kg/m3was found to be the most active.Similarly during coagulation aluminum potassium sulphate[KAl(SO4)2·16H2O]at a coagulant concentration of5kg/m3was found to be the best among the other coagulants tested,namely,commercial alum,FeSO4,FeCl3and

PAC.During thermolysis,a reduction in COD and color of composite wastewater of about77.9and92.85%,respectively,was observed at pH12.

Coagulation of fresh composite waste using aluminum potassium sulphate resulted in88.62%COD reduction and95.4%color reduction at pH8.

Coagulation of the supernatant obtained after treatment by catalytic thermolysis resulted in overall reduction of97.3%COD and close to100%

color reductions at pH8at a lesser coagulant concentration of3kg/m3.

The results reveal that the application of coagulation after thermolysis is most effective in removing nearly100%of COD and color at a lower

dose of coagulant.The sludge thus produced would contain lower inorganic mass coagulant and can be used as a solid fuel with high calori?c

value of about16MJ/kg,close to that of Indian coal.

Keywords:Textile wastewater;Composite wastewater;COD reduction;Color reduction

1.Introduction

Textile industry is one of the largest industries in India and pointed attention is being directed towards pollution of water caused by the textile mills and dyestuff industries.Water pol-lution by the cotton textile mills is mainly attributable to the various waste streams coming out of the wet processing oper-ations like desizing,scouring,bleaching,mercerizing,dyeing and https://www.sodocs.net/doc/7113847062.html,ually each of these waste streams from the var-ious units is merged into one common stream called composite ef?uent which is imparted necessary treatment before being discharged into the receiving body[1–5].Textile processing employs a variety of chemicals depending on the nature of the raw material and product.Some of these chemicals are enzymes, detergents,dyes,acids,sodas and salts[6].

?Corresponding author.Tel.:+911332285217;fax:+91133226535.

E-mail address:schanfch@iitr.ernet.in(S.Chand).

Many attempts have been made to treat textile wastewa-ter using conventional wastewater treatment methods such as chemical coagulation,electrochemical oxidation,?ltration and biological treatment[7–10].Chemical coagulation is not effec-tive for the removal of color.Activated carbon adsorption has the associated cost and dif?culty of the regeneration process and a high waste disposal cost.Advanced oxidation processes such as ozonation,UV and ozone/UV combined oxidation,photo catal-ysis(UV/TiO2),Fenton reactive and ultrasonic oxidation are not economically feasible.Biological methods cannot be applied to most textile wastewaters due to the toxicity of most commercial dyes to the organisms used in the process[11–15].

Thermolysis with wet air oxidation or coagulation has been proposed in recent years in the author’s laboratory as an effective method to treat various industrial wastewaters.Thermal pretreat-ment(thermolysis)is a chemical process by which a substance is decomposed into other substances by use of heat.A maxi-mum reduction in COD and BOD observed for alcohol distillery ef?uent were70and83%,respectively.For pulp and paper mill ef?uent,the COD and color reductions were63.3and92.5%,

Nomenclature

A?ltration area(m2)

AGR atmospheric pressure glass reactor

BOD biochemical oxygen demand(mg/l)

C concentration of slurry(kg/m3)

C w catalyst mass loading(kg/m3)

C0initial solids concentration(kg/m3)

CC coagulants concentration(kg/m3)

CCC critical chemical concentration(kg/m3)

COD chemical oxygen demand(mg/l)

E activation energy(kJ/mol)

PCU platinum cobalt unit

R universal gas constant

R m?lter medium resistance(m?1)

RM rapid mixing

SM slow mixing

S change in entropy(J/mol K)

t r treatment time(h)

T temperature(?C)

v f volumetric?ow rate(m3/s)

Greek symbols

αaverage cake resistance(m/kg)

μviscosity of the?ltrate(Pa s)

respectively[16–18],whereas for textile desizing wastewater the corresponding values were71.6and87.2%,respectively[19]. The objective of this study is to investigate the effectiveness of thermolysis accompanied with coagulation with respect to the variations in parameters,such as,temperature,pH and cata-lysts/coagulant dose on the COD and color reduction ef?ciencies of the textile mill composite wastewater.

2.Materials and methods

2.1.Substrate

The ef?uent was obtained from a textile mill located in Ghaziabad,UP,India.The COD of the composite ef?uent was 1960mg/l.To maintain the characteristics of composite ef?uent, the sample was stored at4?C in a deep freezer.

For pretreatment step,the composite ef?uent was used with-out any dilution.The?ltrate(having a reduced COD)obtained after pretreatment step was used for coagulation.The charac-teristics of the untreated composite wastewater are given in Table1.

2.2.Chemicals

All of the chemicals used as coagulants/catalysts were of analytical reagent grade.CuSO4·5H2O and CuO were procured from s.d.Fine Chemicals Ltd.,Mumbai,India,whereas,ZnO, FeCl3and FeSO4·7H2O were obtained from Qualigens Fine Chemicals,Mumbai,India.Ammonia solution and aluminum Table1

Characteristics of composite wastewater

S.no.Parameters Value

1Total dissolved solids964.81

2Total iron(as Fe) 1.81

3Chlorides(as Cl)650

4BOD,3days at20?C420

5Oil and grease221.29

6Sulphate(as SO4)164.47

7Copper(as Cu)0.653

8Manganese(as Mn)0.46

9Zinc(as Zn)0.116

10COD1960

11Color2250(PCU)

12pH7

All values except pH and color are in mg/l.

potassium sulphate[KAl(SO4)2·16H2O]were procured from Ranbaxy Fine Chemicals Ltd.,Mumbai and PAC was obtained from Vam Organics Ltd.,Gajraula,UP,India.

2.3.Analytical methods

The COD value was assayed with an Aqualytic,Ger-many COD analyzer.The Standard Dichromator Closed Re?ux Method(APHA-1989)was used.The color measurement fol-lowed the Pt–Co(Hazen)unit method.To determine the color in Pt–Co unit,a light of470nm was used in a Hanna HI93727color meter(Hanna Instruments,Singapore).The concentration of Cu ion in the substrate(pretreated ef?uent)was measured by Avanta GBC,Australia atomic absorption spectrometer.Elemental ana-lyzer model Vario EL III by Elementar,Germany,was used for elemental(C,H,N and S)analysis.The ash content(proxi-mate analysis)was determined by Bureau of Indian Standards IS:1350(Part-I)-1984.Thermal analysis(TGA/DTGA/DTA) of the wastewater and residue left after the thermolysis and coagulation was carried out using a TG analyzer(Pyris Dia-mond,Perkin-Elmer).Filtration for all the treated ef?uent was done using Millipore?ltration assembly using0.45?m?lters [18–22].The pH was measured using an Orion,U.S.A.make pH meter.

2.4.Experimental procedure

2.4.1.Thermolysis(thermochemical pretreatment)

The thermolysis studies were conducted in a three-necked 0.5dm3atmospheric pressure glass reactor(AGR).The glass reactor is equipped with a vertical condenser,heating man-tle,magnetic stirrer and a sample withdrawal assembly.Digital temperature indicator-cum-controller was used to measure and control the temperature.The temperature of the reaction mixture during thermal pretreatment operations was maintained between 60and95?C.The amount of wastewater(COD0=1960mg/l) taken in each run was300ml.The catalytic agents in desired concentration were used during the operation.Five milliliters of the sample was withdrawn at a de?nite interval of time and analyzed for its COD and color.The composite wastewater was preheated in the AGR from the ambient temperature(T0)to the

treatment temperature(T R).The preheating period(θ)varied with the T R.Therefore,the time of start of treatment was con-sidered as the“zero time”when the T R was attained after the preheating of the wastewater from T0.The oven-dried residue was analyzed for its C,H,N,S and ash content.The initial pH of the wastewater was varied between2and12by using either 0.1N HCl or0.1N NaOH.

2.4.2.Jar test

Jar-test experiments were conducted in a series of six grad-uated glass cylinders for5min rapid mixing(RM)at80rpm followed by30min slow mixing(SM)at40rpm and30min settling[23,24].

This experiment was aimed to study the settling characteris-tics as well as reduction in COD and color of the?nal ef?uent. Effect of initial pH on settling behavior was also studied.

3.Results and discussion

3.1.Thermolysis process

3.1.1.Effect of pH

Fig.1(a)shows the effect of initial pH at25?C on the COD and color reduction of composite wastewater by thermolysis using various catalysts,such as CuSO4,FeSO4,FeCl3,CuO, ZnO and PAC(also without catalyst)at a mass loading of 6kg/m3.Different initial pH values maintained during the exper-iments were2,4,6,8,10and12,and the reaction was conducted at95?C for4h.A portion of the resulting mixture after treat-ment was taken out and centrifuged for10min at a speed of 10,000rpm.The supernatant was separated and its COD was measured.The?gure shows an identical trend of increasing per-cent COD reduction with increase in the value of initial pH from 1to12for all the catalysts.The reduction in COD was faster up to pH8in comparison to rate of reduction in the pH range 8–12.A maximum COD reduction of77.9%was obtained using CuSO4as catalyst at pH12.The?nal pH after the treatment was also measured and a decrease in pH was observed in all the cases.The reduction in pH after the treatment has been shown in Table2.The decrease in pH may be due to the dissociation into sulphate/chloride ions as the case may be and also the forma-tion of lower carboxylic acids.The sulphate/chloride ions after combining with H+ions present in wastewater form H2SO4/HCl which reduces the pH of the solution.The carboxylic acids

are Fig.1.(a)Effect of pH0on COD reduction of the composite wastewater by thermolysis.COD0=1960mg/l,T R=95?C,P=atmospheric,t r=4h and C w=6kg/m3.(b)Effect of pH0on color reduction of the composite wastewa-ter by thermolysis.COD0=1960mg/l,T R=95?C,P=atmospheric,t r=4h and C w=6kg/m3.

Table2

Effect of catalyst on the reduction of pH after treatment of composite wastewater

pH pH reduction after treatment with pH reduction after treatment

without catalyst CuSO4FeSO4·16H2O FeCl3CuO ZnO PAC

2 1.95 1.65 1.85 1.1

3 1.72 1.62 1.98

4 3.6

5 2.94 3.14 3.3

6 3.75 3.83 3.95

6 5.42 5.92 5.64 5.86 5.5

7 5.62 5.90

88.547.957.627.737.547.867.98

109.029.129.249.929.649.579.99

1210.9610.5410.7410.5411.6411.5211.85

formed out of the degradation of high molecular weight hydro-carbons.The initial pH adjustment of the composite waste has been found to reduce the COD of the solution.A value of pH 12yielded in a precipitation of the solution (at room temperature)with about 22%COD reduction in supernatant.When the com-posite waste at pH 12was thermally heated without any catalyst,the COD decrease observed was 34.5%.This clearly shows that the thermal pretreatment has better effect on precipitation than change in pH.

Fig.1(b)shows the effect of different catalysts as well as initial pH on percent color reduction of composite wastewater.The reaction conditions were same as in the previous case.For all the catalysts the percent color reduction increases with increase in pH.The increase was fast initially whereas at pH 10onwards,it was nearly constant.The reduction in COD without catalyst was much lower in comparison to the reduction using a catalyst.CuSO 4has been the best catalyst giving 92.85%color reduction at pH 12.

3.1.2.Effect of temperature

Fig.2shows the effect of treatment temperature on the COD and color reduction at pH 12.The concentration of catalyst used was 2kg/m 3and temperature varied from 60to 95?C.The increase in temperature does not increase the reduction in color appreciably.The reduction in COD,however,was found to increase with temperature,giving a maximum of 72.9%reduc-tion at 95?C.The maximum color removal at these conditions was 85.54%.

3.1.3.Mass loading

The effect of catalyst mass loading on the COD as well as color reduction of composite wastewater (initial COD =1960mg/l and color 2250Pt–Co)was observed during thermochemical pretreatment at 95?C and 4h duration as

shown

Fig. 2.Effect of temperature on COD and color reduction of the com-posite wastewater by catalytic thermolysis.COD 0=1960mg/l,t r =4h,P =atmospheric,pH 012and C w =2kg/m 3

.

Fig. 3.Effect of catalyst (copper sulphate)concentration on COD and color reduction of the composite wastewater.COD 0=1960mg/l,t r =4h,P =atmospheric,pH 012and T R =95?C.

in Fig.3.CuSO 4,being the best among all the catalysts,was chosen for further studies.The catalyst mass loading was varied from 1to 12kg/m 3while the initial pH was adjusted at 12for all the experimental runs.With 1kg/m 3copper sulphate mass load-ing a 62.5%reduction in COD was observed which increased to 77.9%at catalyst mass loading 6kg/m 3.Further increase in cat-alyst mass loading did not increase the COD reduction.The %color reduction under similar conditions increased from 83.65%at 1kg/m 3to 92.85%at 6kg/m 3.

3.1.

4.TGA and DTA of sludge

The TGA,DTA and DTGA curves were obtained for the precipitated sludge at 10?C/min heating rate and 200ml/min air ?ashing rate and are presented in Fig.4(a).The nature of TGA trace shows dehydration and volatilization (removal of volatiles)of the sample up to a temperature of 180?C losing about 93.17%of its weight.Between 180and 240?C the residue oxidizes losing about 20%of its original weight.The peak rate of weight loss at T max =227?C is 5mg/min.The oxidation is found uniform and exothermic with a heat evolution of 889MJ/kg.The peak of exotherm being at a temperature of T p =242?C.The oxidation of the residue seems to become slower between 240and 366?C,losing weight of about 10%with a marginal heat of exothermic reaction of 119MJ/kg at the peak temperature 326?C.The oxidation continued at very slow rate from 366to 990?C,losing a maximum weight of only less than 7%,leaving the ash fraction of ~44.1%as the residue.

Fig.4(b)shows the TG,DTA and DTG traces of the com-posite wastewater under similar heating conditions.In contrast to the TGA behavior of the precipitate,the composite wastew-ater TG traces shows only about 0.62%decrease in weight up to 82?C.However,there has been a sudden drop in the weight of about 11%from 82to 117?C on account of vaporization of volatiles and moisture.

Fig.4.(a)TGA–DTA of composite wastewater sludge.Sample weight:10.89g and atmosphere:air at200ml/min.(b)TGA–DTA of composite wastewater.Sample weight:10.89g and atmosphere:air at200ml/min.

The maximum rate of weight loss of0.5mg/min at 106?C was observed with an endothermic heat requirement of 365MJ/kg recorded at the peak temperature of107?C.The rate of weight loss from117?C onwards was extremely slow up to 699?C losing weight of only7%.Beyond699?C there has been a steady weight loss of about20%up to890?C.The maximum rate of weight loss of about0.35mg/min was observed at around 870?C.This might be due to the molecular level rearrangement.

The comparison of the thermal analysis of the two residues (precipitate as well as composite wastewater)shows that the precipitate obtained after thermolysis gets oxidized at a higher temperature range than that of the composite wastewater.This may be due to the presence of more stable compounds formed during thermolysis in presence of copper catalysts.

The thermal degradation data(TGA,DTA and DTGA)were analyzed using the kinetic models available in the literature [25–27].The overall thermal degradation characteristics can be represented by a one-way transport diffusion model assuming a ?rst-order irreversible reaction of the organics in the precipitate. The reaction rate constant,k,through the use of the theory of the active complex[25,28]can be written as

k=

χek B T

h

exp

S

R

exp

?

E

RT

(1)

whereχis the transmission coef?cient(1.0for mono molecular reaction),e the Neper’s number(2.7183),k B the Boltzmann’s constant,h the Plank’s constant,T the absolute temperature and S is the change in entropy for the active complex formation from the reactant.Eq.(1)may be modi?ed with the help of Arrhenius equation to give

A=

χek B T

exp

S

(2)

Table3

Kinetic parameters calculated for the solid residue left after treatment with copper sulphate from the one-way transport diffusion kinetics(D1)and Ginstling–Brounstein diffusion(GB)model

Parameters Models

D1GB

n11

A(min?1) 4.977 6.89×10?13

E(kJ mol?1)120.28120.84

k(min?1)0.01280.0014

S(J mol?1K?1)?250.52?250.79

H(kJ mol?1)117.131117.69

G(kJ mol?1)212.017212.688

P s8.19×10147.92×1014

r210.892

or

S=R

ln A?

lnχek B T

h

(3)

The change of the enthalpy H and Gibbs free energy G for the active complex formation and S can be calculated at DTG peak temperature using the equations:

E= H+RT(4) G= H?T S(5) The DTG peak temperature characterizes the highest rate of the process and,therefore,is its most important para-meter.

The steric factor for a particular temperature zone of degra-dation of the precipitate may be given by P=exp( S/R)[25]. This factor allows estimating whether the degradation taking place in the selected zone is slow or fast.If value of P is closer to unity for the selected zone,than that for the other zone,it is inferred that the degradation in the selected zone is faster than that for the other zone.The best-?t values of the kinetic parameters from the one-way transport diffusion kinetics(D1) and Ginstling–Brounstein diffusion model[25,27]are given in Table3.

3.1.5.Settling characteristics of the precipitate in the treated ef?uent

Several approximate methods have been reported for the cal-culation of the compression zone depth in continuous thickeners [29–32].For various methods which have been suggested for calculating compression zone height in continuous thickeners from the batch sedimentation data[33–36],it is preferable to use the method proposed by Richardson et al.[29]to design a continuous thickener based on single batch sedimentation test.

In order to see the effect of pH on the settling char-acteristics of the precipitate obtained after treatment with CuSO4,three different pH,i.e.,pH4,6and10were main-tained in a100ml measuring cylinder.The settling rate was observed to be higher for pH10than that of pH4,proba-bly due to the bigger size and more compact aggregated

?ocs.Fig. 5.Settling characteristics of composite wastewater after thermoly-sis using CuSO4as catalyst.COD0=1960mg/l,T=ambient temperature, P=atmospheric and C w=5kg/m3.

Fig.5shows the behavior of treated ef?uent during sedimenta-tion.

The calculation of sedimentation velocity(u c),concentration C(t),and the sedimentation?ux were done using the Kynch the-ory[29].The sedimentation velocity(u c)was found as the slope of the tangent at a given solids concentration,C.The concen-tration of sludge at a time t was determined using following relationship:

C=

C0(total height)

height of suspension after time t

The concentration of the solids required in the under?ow,C u, for the ef?uents treated at pH4,6and10were found to be14,17and20kg m?3,respectively.The maximum value of[{(1/C)?(1/C u)}/u c]was thus determined as0.078×106, 0.183×105and0.08×105at pH4,6and10,https://www.sodocs.net/doc/7113847062.html,ing these values,the area of the sedimentation tank for any ef?uent ?ow rate can,thus,be calculated as

A=

v f C0[(1/C)?(1/C u)]

u c

The settling of the ef?uent treated at a higher pH is faster than that treated at a lower pH.Thus an increase in the treat-ment temperature will bring down substantially the area of the sedimentation tank.From Fig.5,it can also be seen that the set-tling rate is very fast during the zone settling region at pH10. The settling rate becomes very slow,as the solids settling enter compression region.It is also seen that the compression region for the pH10settled sludge is much denser(more than twice) than that for the pH4settled sludge.

3.1.6.Filterability

The gravity?ltration characteristics of the slurry were carried out at room temperature on an ordinary?lter paper sup-

Fig.6.Effect of pH0on the?lterability of the composite wastewater after ther-molysis using CuSO4as catalyst.COD0=1960mg/l,T=ambient temperature, P=atmospheric and C w=5kg/m3.

ported on a B¨u chner funnel,under constant pressure?ltra-tion.

The change in the hydrostatic head was assumed to be neg-ligible.The?ltrate volume obtained as a function of time was observed and a plot between t/ V and V was drawn for the ef?uents treated at different pH.The plot in Fig.6shows a linear relationship.Thus,it is clear that the?lterability of the treated ef?uent gets improved with an increase in the initial pH.pH10 seems to offer least resistance to?ltration.The?ltration resis-tances for the?lter media as well as the?lter cake were obtained using the?ltration equation[36]:

d t

d V

=k p V+β(6) where

k p=

Cαμ

A(? p)(7)

and

β=

μR m

A(? p)(8)

where k p(slope)andβ(intercept)were determined by the plot of Eq.(6)as shown in Fig.6.These values ofαand R m were calculated from k p andβand are presented in Table4.Table5

Elemental analysis of composite wastewater and precipitate formed as a result of thermal pretreatment with CuSO4

Material C(%)H(%)N(%)S(%)Heating value of

residue(MJ/kg) Composite

wastewater

10.65 3.0130.007.0947.2 Precipitate14.320.280.00 5.04516.0 Supernatant 2.9750.1690.00 4.887–

Indian coal 4.887 5.010.80 1.7020.90

Table6

Proximate analysis(moisture-free basis)of composite wastewater and precipi-tate formed as a result of thermal pretreatment with CuSO4

Material Ash(%)V olatile matter(%)Fixed carbon(%) Composite wastewater46.037.0 5.0

Precipitate41.643.69.2

Typical values of speci?c cake resistance for different sludge’s are given by Barnes et al.[38].Pulp and paper mill ef?uent characteristics are given by Garg et al.[17],whereas alcohol distillery waste characteristics are presented by Lele et al.[37].

The reported values for other ef?uents are higher than those shown in Table4for textile mill ef?uent.The difference can be ascribed to several factors like treatment conditions,morpholog-ical and?oc characteristics of the sludge,which may be different for the textile mill ef?uent.

3.1.7.Elemental and compositional characterization of the sludge and composite wastewater

The C,H,N,S and proximate analyses of the settled precip-itate and the composite wastewater,respectively,are presented in Tables5and6.The heating values of the precipitate and the composite wastewater are also given and compared with those of Indian coal.The elemental analysis shows that there are enhancements in carbon and hydrogen composition in the precipitate and that its heating value compares well with that of Indian coal.

The carbonaceous load of the treated wastewater after?l-tration has gone down considerably as the supernatant is much leaner in carbon and hydrogen composition.The proximate anal-ysis,as shown in Table6,indicates considerably lower ash content in the precipitate than that in the composite wastewater and considerably higher?xed carbon content in the precipitate than that in the composite wastewater.

Table4

Filterability of the slurry:effect of the initial pH(pH0)a

pH0k p(×10?12s/m6)β(×10?6s/m3)C(kg/m3)μ(×103Pa s)α(×10?10m/kg)R m(×10?8m?1) 40.50.9 1.65 1.8310.67 4.53

60.12 1.0 1.61 1.85 2.36 4.98

100.710.4 1.69 1.80 1.34 2.04

a A=6.358×10?3m2.

4.Coagulation

https://www.sodocs.net/doc/7113847062.html,bined effect of catalytic thermal pretreatment followed by coagulation

Fig.7(a)and (b)shows COD as well as color reduction,respectively,during coagulation of the fresh composite wastew-ater.The coagulants used include aluminum potassium sulphate,commercial alum,FeSO 4,FeCl 3and PAC.A general trend of increase in COD reduction with increase in pH (from 2to 12)was observed.The major increase was from pH 4to 10.PAC and FeSO 4,however,did not follow this trend.The

curve

Fig.7.(a)Effect of pH 0on COD reduction of the composite wastewater by using different coagulants.COD 0=1960mg/l,t r =1h,P =atmospheric and C w =5kg/m 3.(b)Effect of pH 0on color reduction of the composite wastewater by using different coagulants.COD 0=1960mg/l,t r =1h,P =atmospheric and C w =5kg/m 3.

showing COD reduction without any coagulant,however,shows 48.9%reduction only.By pH adjustment,the decrease in COD at alkaline condition is much higher than those in the acidic condition.

A similar trend with color reduction was also obtained in both the cases.Aluminum potassium sulphate was best coagulant giving 84–88%COD reduction and about 95%color reduction at pH 8.

The effect of coagulants concentration (CC)on COD and color reduction of the composite waste at pH 8were studied.For a number of coagulants,pH 8happens to be the optimum pH for both COD and color reduction.The results show a sharp increase in percent reductions with increase in coagulant dose from 1to 5kg/m 3.Beyond this,there was almost no change.Coagulant dose 5kg/m 3may thus be called as critical coagulant concentration (CCC).At coagulant dose 5kg/m 3and pH 08,the maximum COD and color reduction were 88.62and 95.4%,respectively.

In another series of runs,coagulation (using aluminum potas-sium sulphate)was carried out to the supernatant obtained from the catalytic thermal pretreatment (using CuSO 4).Fig.8depicts %COD and color reductions and compares the results of coagulation with/without thermal pretreatment.Coagulation has signi?cant effect on further increasing the percent COD and color reductions when it is applied after thermolysis.An increase in COD reduction of about 20%(from 78.15to 97.3%)is achieved when coagulation is applied to the thermally pre-treated ef?uent.A similar result on the color reduction indicates about 12.5%(from 87.59to 100%)increase.The results thus show that the thermolysis (using CuSO 4)followed by coagula-tion (using aluminum potassium sulphate)is the most effective method of treatment of composite wastewater of a cotton tex-tile mill giving close to 100%reduction of COD as well as

color.

Fig.8.Reduction of COD and color with time by coagulation (coagu-lant =aluminum potassium sulphate,pH 08,T =18?C,C w =3kg/m 3).

5.Conclusions

The present study deals with the treatment of textile mill ef?u-ent using catalytic thermal treatment(thermolysis)followed by coagulation.The thermolysis process was carried out in pres-ence of several catalysts:CuSO4,FeSO4,FeCl3,CuO,ZnO and PAC.Among these copper sulphate was found to be the best giving about77.9%COD as well as92.85%color reduc-tion,respectively,at a catalyst concentration of6kg/m3,pH12 and95?C.The settling rate of the slurry was also observed and was found to be strongly in?uenced by treatment pH.The slurry obtained after treatment by thermolysis at pH10set-tled much faster in comparison to slurries obtained at other pH.The?lterability of the treated ef?uent is also strongly dependant on the initial pH.pH10was adjudged to be the best in giving highest?ltration rate.During coagulation alu-minum potassium sulphate is found to be the best among other coagulants(commercial alum,FeSO4,FeCl3and PAC)used resulting in88.62%COD reduction and95.4%color reduction, respectively,at pH8and a coagulant concentration of5kg/m3. Coagulation applied to clear?uid(supernatant)obtained after catalytic thermal treatment(at above mentioned operating con-ditions except at a lower coagulant concentration of3kg/m3) resulted in overall reduction of97.3%COD and close to100%of color.

During catalytic thermal treatment using copper sulphate as catalyst,the copper gets leached out and the residue obtained is rich in copper.This residue can be blended with organic manure to be used in agriculture.

Thermolysis followed by coagulation has been found to be the most effective in removing almost100%COD as well as color at a lower dose(3kg/m3)of coagulant.The sludge thus produced would contain lower inorganic mass coagulant and also can be used as a solid fuel with high calori?c value of about 16MJ/kg,close to that of Indian coal.

References

[1]S.C.Bhatia,Handbook of Industrial Pollution,vol.II,CBS Publications,

New Delhi,2002,p.531.

[2]A.Pela,E.Tokat,Color removal from cotton textile industry wastewater

in an activated sludge system with various additives,Water Res.36(2002) 2920–2925.

[3]A.B.Pia,J.A.Roca-Mendoza,L.R.Alcover,A.I.Clar,M.I.I.Clar,M.I.A.

Miranda,Comparison between nano?ltration and ozonation of biologically treated textile wastewater for its reuse in the industry,Desalination157 (2003)81–86.

[4]W.G.Kuo,Decolorizing dye wastewater with Fenton’s reagent,Water Res.

26(7)(1992)881.

[5]S.H.Lin,C.M.Lin,Treatment of textile waste ef?uents by ozonation and

chemical coagulation,Water Res.27(12)(1993)1743.

[6]M.M.Aslam,M.A.Baig,I.Hassan,I.A.Qazi,M.Malik,H.Saeed,Tex-

tile wastewater characterization and reduction of its COD and BOD by oxidation,EJEAF Che3(6)(2004)804–811.

[7]S.Kim,C.Park,T.H.Kim,J.Lee,S.W.Kim,COD reduction and decol-

orization of textile ef?uent using a combined process,J.Biosci.Bioeng.

95(1)(2003)102–105.

[8]S.H.Lin,C.F.Peng,Continuous treatment of textile wastewater by com-

bined coagulation,electrochemical oxidation and activated sludge,Water Res.30(1996)587–592.

[9]M.Rossini,J.G.Garrido,M.Galluzo,Optimization of the

coagulation–?occulation treatment:in?uence of rapid mix parameters, Water Res.33(8)(1999)1817–1826.

[10]S.H.Lin,C.F.Peng,Treatment of textile wastewater by electrochemical

method,Water Res.28(2)(1994)277.

[11]O.T.Can,et al.,Treatment of the textile wastewater by combined electro-

coagulation,Chemosphere62(2006)181–187.

[12]Y.S.Shen,D.K.Wang,Development of photoreactor design equation for

the treatment of dye wastewater by UV/H2O2process,J.Hazard.Mater.

89(2002)267–277.

[13]L.C.Rasorio,G.E.Abel,I.L.Marta,Photo degradation of an azo dye of

the textile industry,Chemosphere48(2002)393–399.

[14]L.Stanislaw,S.Monika,Z.Renata,Biodegradation,decolorization and

detoxi?cation of textile wastewater enhanced by advanced oxidation pro-cesses,J.Biotechnol.89(2001)175–184.

[15]I.A.Arslan,A.B.Isil,W.B.Detlef,Advanced oxidation of a reactive dye-

bath ef?uent:comparison of O3,H2O2/UV-C and TiO2/UV-A processes, Water Res.36(2002)1143–1154.

[16]P.K.Chaudhari,I.M.Mishra,S.Chand,Catalytic thermal treatment(cat-

alytic thermolysis)of a biodigester ef?uent of an alcohol distillery plant, Ind.Eng.Chem.Res.44(2005)5518–5525.

[17]A.Garg,I.M.Mishra,S.Chand,Thermochemical precipitation as a pre-

treatment step for the chemical oxygen demand and color removal from pulp and paper mill ef?uent,Ind.Eng.Chem.Res.44(2005)2016–2026.

[18]A.Garg,S.Chand,I.M.Mishra,Catalytic wet oxidation of the pretreated

synthetic pulp and paper mill ef?uent under moderate condition,Chemo-sphere66(2007)1799–1805.

[19]P.Kumar,B.Prasad,I.M.Mishra,S.Chand,Catalytic thermal treatment

of desizing wastewater,J.Hazard.Mater.149(2007)26–34.

[20]L.Lei,X.Hu,G.Chen,J.F.Porter,P.L.Yue,Wet air oxidation of desiz-

ing wastewater from textile industry,Ind.Eng.Chem.Res.39(2000) 2896–2901.

[21]S.Meric,H.Selcuk,V.Belgiorno,Acute toxicity removal in textile?nish-

ing wastewater by Fenton’s oxidation,ozone and coagulation–?occulation processes,Water Res.39(2005)1147–1153.

[22]H.Selcuk,Decolorization and detoxi?cation of textile wastewater by

ozonation and coagulation processes,Dyes Pigments64(2005)217–222.

[23]V.Bali,B.Karagozoglu,Performance comparison of Fenton process,ferric

coagulation and H2O2/pyridine/Cu(II)system for decolorization of remo-zol turquoise blue G-133,Dyes Pigments(2006)1–8.

[24]T.H.Kim,C.Park,J.Lee,E.B.Shin,S.Kim,Pilot scale treatment of tex-

tile wastewater by combined process(?uidized bio?lm process–chemical coagulation–electrochemical oxidation),Water Res.36(2002)3979–3988.

[25]L.T.Vlaev,I.G.Markovska,L.A.Lyubchev,Non-isothermal kinetics of

pyrolysis of rice husk,Thermochim.Acta1(2003)406.

[26]M.J.Sa?,I.M.Mishra,B.Prasad,Global degradation kinetics of pine

needles in air,Thermochim.Acta155(2004)412.

[27]P.B.Gangavati,M.J.Sa?,A.Singh,B.Prasad,I.M.Mishra,Pyrolysis and

thermal oxidation kinetics of sugar mill press mud,Thermochim.Acta428 (1–2)(2005)63–70.

[28]J.Sestak,Thermochemical Properties of Solids,Academica,Prague,

1984.

[29]J.F.Richardson,J.H.Harker,J.R.Backhurst,Coulson and Richard-

son’s Chemical Engineering,Particle Technology&Separation Processes, vol.2,5th ed.,Elsevier,a division of Reed Elsevier India Pvt.Ltd., 2003.

[30]A.S.Foust,L.A.Wenzel,C.W.Clump,L.Maus,L.B.Anderson,Principles

of Unit Operations,Wiley,NY,1960.

[31]H.Merta,J.Ziolo,Calculation of thickener area and depth based on the

rate of batch-settling test,Chem.Eng.Sci.40(1985)1301.

[32]B.Fitch,Kynch theory and compression zones,AIChE J.29(1983)

940.

[33]R.Font,Calculation of the compression zone height in continuous thick-

eners,AIChE J.36(1990)3.

[34]R.Font,P.Garc′?a,M.Rodriguez,Sedimentation test of metal hydroxides:

hydrodynamics and in?uence of pH colloids and surfaces A,Physicochem.

Eng.Aspects157(1999)73.

[35]https://www.sodocs.net/doc/7113847062.html,rue, E.V orobiev,Floc size estimation in iron induced coag-

ulation using sedimentation data,Int.J.Miner.Process.1(2003) 1629.

[36]W.L.MaCabe,J.C.Smith,P.Harriot,Unit Operations of Chemical Engi-

neering,6th ed.,McGraw Hill,New York,2001.[37]S.S.Lele,P.J.Rajadhyaksha,J.B.Joshi,Ef?uent treatment for alcohol dis-

tillery:thermal pretreatment with energy recovery,Environ.Prog.8(1989) 245.

[38]D.Barnes,P.J.Bliss,B.W.Gould,H.R.Vallentine,Water Wastewater

Engineering Systems,Pitman Publishing Inc.,New York,1981.

COD在线检测仪使用说明书

COD在线检测仪使用说明书 目录 一、 JHC-Ш型CODcr在线检测仪使用说明书 (3) 1. 主要技术指标 (3) 2. 有机化合物的测定国标方法 (4) 3. 仪器结构简介 (5) 4. COD自动检测仪工作步骤 (6) 5. 各子系统功能工况祥解 (9) 6. 微机控制系统原理 (11) 7. 主菜单选择及功能 (12) 8. 仪器维护与保养 (13) 9. 仪器故障显示及处理 (14) 二、 COD 在线分析仪试剂配比 (15) 三、易损易耗件一览表 (16) 一、主要技术参数与特点 1.技术参数 测量范围(mg/L):30~950(扩展型1000~4000或4000~10000) 测量误差:≤±10% 重复误差:≤±5% 适用环境温度:5~40℃ 电源电压(v) :220±10% 功率(kw):1.5 主机类型:日本三菱公司原装PLC 显示方式:彩色触摸显示屏 打印机:16位微打(并行口) 数据远传接口:RS232,Modem 注:根据GB11914-89国家标准,检测COD在50mg/L以下的水样时,需要用低浓度标准溶液。其测量误差大于本指标。 2.技术特点: ⑴仪器测试原理、方法、步骤完全符合国家标准,检测数据准确可靠。 ⑵仪器主机采用三菱PLC、彩色触摸屏,图形画面活泼多彩,生动直观,全中文显示,一目了然,操作更方便。 ⑶仪器具有较强的远程通讯功能。通过电话线或无线电与远程终端联系。 ⑷仪器若发生故障,现场主机会自动拨通值班电话,向终端计算机报告故障情况。终端计算机可随时拨通现场电话与现场主机通讯,监控现场仪器的工作情况,调取现场主机一月内任意时间的检测数据结果。 ⑸仪器采用全气动移液、定量、加液结构,解决了强腐蚀性药剂对自控元器件的影响,使系统运行更可靠。 ⑹仪器集水样采集与COD检测于一体,回流消解采用独特的风冷加静止水套冷却方式,无需自来水水源,使现场应用更为方便。 ⑺由PLC控制的精密注射泵完成氧化还原滴定的数据计量,由光电信号准确测得滴定终点,

快速密闭催化消解法测定COD

快速密闭催化消解法(含光度法) 1.方法原理 本方法在经典重铬酸钾一硫酸消解体系中加入助催化剂硫酸铝钾与钼酸铵。同时密封消解过程是在加压下进行的,因此大大缩短了消解时间,消解后测定化学需氧量的方法,既可以采用滴定法,亦可采用光度法。 2.方法的适用范围 本方法可以测定地表水、生活污水、工业废水(包括高盐废水)的化学需氧量。水样因其化学需氧量值有高有低,因此在消解时应选择不同浓度的重铬酸钾消解液进行消解。 参考下表选择消解液。 COD值不同的水样应选择不同浓度重铬酸钾消解液 3.水样的采集与保存 水样采集后,应加入硫酸将pH调至<2,以抑制微生物活动。样品应尽快分析,必要时应在40℃冷藏保存,并在48h内测定。 4.仪器 ①具密封塞的加热管:50ml。 ②锥形瓶:150ml。 ③酸式滴定管:25ml(或分光光度计)。 ④恒温定时加热装置。 5.试剂 ①重铬酸钾标准溶液(1/6K2CrO7=0.1000mol/L);称取经120℃烘干2h的基准或优级纯

K2CrO74.903g,用少量水溶解,移入1000ml容量瓶中,用水稀释至标线,摇匀。 ②硫酸亚铁铵标准洛液[(NH4)2Fe(SO4)2·6H2O]=0.1mol/L;称取39.2g分析纯(NH4)2Fe(SO4)2·6H2O溶解水中,加入20.0ml浓硫酸,冷却后移入1000ml容量瓶中,用水稀释至标线,临用前用0.1000mol的K2CrO7标准溶液标定。 ③消解液:称取19.6g重铬酸钾,50.0g硫酸铅钾,10.0g的钼酸铵,溶解于500ml水中,加入200ml浓硫酸,冷却后,转移至l000ml容量瓶中,用水稀释至标线。该溶液重铬酸钾浓度约为0.4mol/L ( C=1/6K2CrO7)。 另外分别称取9.8g、2.45g重铬酸钾(硫酸铝钾、钼酸铵称取量同上),按上述方法分别配制重铬酸钾浓度约为0.2mol/L、0.05mol/L的消解液用于测定不同COD值的水样。 ④Ag2SO4-H2SO4催化剂:称取8.8g分析纯Ag2SO4,溶解于1000ml浓硫酸中。 ⑤邻菲啰啉指示剂:称取0.695g分析纯FeSO4·7H20和1.4850g邻菲啰啉溶解于水,稀释至100ml,贮于棕色瓶中待用。 ⑥掩蔽剂:称取10.0g分析纯HgSO4,溶解于100mI 10%硫酸中。 6.步骤 准确吸取3.00ml水样,置于50ml具密封塞的加热管中,加入1ml掩蔽剂,混匀。然后加入3.0ml消解液和5ml催化剂,旋紧密封盖,混匀。然后将加热器接通电源,待温度达到165℃时,再将加热管放入加热器中,打开计时开关,经7min,待液体也达到165℃时,加热器会自动复零计时。待加热器工作15min之后会自动报时。取出加热管,冷却后用硫酸亚铁铵标准溶液滴定,同时做空白实验。 7.计算 COD(O2,mg/L)=V0?V1·C×8×1000 V2 式中:VO---滴定空白时硫酸亚铁铵标准溶液用量(ml);

微波消解法测定-COD

实验六微波消解法测定COD 1. 实验目的 掌握COD测定仪装置测量污水中COD(Cr)的办法。 2.原理 微波消解COD测定仪,采用硫酸一重铬酸钾消解体系,利用微波作用于反应内部引起分子间产生高摩擦作用所产生的热量来消解产品。 3.仪器的主要技术性能及结构 本仪器由主机、密封消解罐组成。 密封法测量范围:COD(Cr): 10~800mg/L, COD (Cr)>800mg/L(稀释测定); 消解时间:能同时消解数个水样(3~9个任意),耗时不超过30分钟。 4.测试方法与步骤 4.1 试剂的选用与配置 (1 )重铬酸钾溶液 重铬酸钾消解液(用于密封消解法):0.25N,称取经过120度烘干2小时的分析纯重铬酸钾12.259 克,溶于约500ml 蒸馏水中,边搅拌边缓慢加入浓硫酸100ml,冷却后移入1000ml容量瓶中,加入30克固体硫酸汞(用于测定低氯离子或无氯离子时可不加),并用蒸馏水稀释至刻度。 重铬酸钾标准液,0.25N (用于非密封微回流法和标定):称取经过120度烘干2小时的基准纯或分析纯12.259克,置于1000ml容量瓶中,并用蒸馏水稀释至刻度。 (2)试亚铁灵指示溶液:分别称取1.485 克邻菲罗玲和0.695 克硫酸亚铁溶于水中,稀释至100ml,贮于棕色瓶内。 (3)硫酸亚铁铵标准溶液,约0.1N,准确浓度应在使用的当天用重铬酸钾标准液标定。 配制方法:取39.5 克分析纯的六水硫酸亚铁铵溶于蒸馏水中,边搅拌边缓慢加入20ml浓硫酸,冷却后移入1000ml容量瓶中,并稀释至刻度。 标定方法:量取5.00ml 重铬酸钾标准溶液,稀释至大约45 毫升。加入10 毫升浓硫酸,冷却后,加入2 滴试亚铁灵指示剂,用硫酸亚铁铵滴定,溶液的颜色由黄色经蓝绿色至红褐色即为终点。 C= ( 0.250X5.00 ) /V

COD在线监测仪管理制度

COD在线监测仪管理制度 一、设施故障预防: 1、在线监控系统必须设有专人专管,有专门的操作维护管理制度。 2、在线监测仪器、设备和工具应分类放置,妥善保管,使用完毕后的仪器、 设备应清理、清洁并恢复到原位。 3、离开在线监测仪房前,必须认真检查电源、水源、门窗,确保COD在线 监测仪的安全。 4、建立在线仪器运行状态台帐及维护记录。 5、建立在线仪采样管每日冲洗制度,并做好记录。 6、要建立企业自校制度,每周进行一次校准,如发现问题要及时查找原因, 正确解决。 7、每年由国家认证资质的监测机构对监控设备进行一次比校,发现问题及时 解决。 8、每年由通过国家认证资质的质量监督机构进行一次校对。 二、应急措施: 1、COD在线自动监测仪发生意外事故时,应迅速切断电源、水源等,立即 采取有效措施,及时处理和上报单位领导及部门领导。 2、部门领导及技术人员进场处理故障后,也不能排除故障时,应及时向供货 厂家联系,供货厂家接到通知后,4小时内响应,24小时内到达现场。3、COD在线系统出现故障停止运行时,要及时向环保部门报告并立即进行 维修,同时加强人工监测次数。

COD在线监测仪岗位责任 一、操作人员具有良好的职业道德,坚持实事求是的科学态度和一丝不拘的工作 作风。遵守COD在线监测系统的一切规章和制度,不得违规操作。 二、仪器设备使用人员,必须先经过技术培训才能上机操作,并按要求认真填写 仪器仪表运行记录。 三、熟练掌握本岗位监测分析技术、熟悉岗位技术规范方法等,确保监测数据准 确,并及时向有关部门提供监测结果。 四、有规范的数据保存系统,数据由专门的软件系统处理保存,可以任意调阅历 史和当前数据。 五、爱护仪器设备、节约水电,及时地完成每天的监测仪房的清洁工作,保持室 内卫生,做好安全检查。

COD快速消解分光光度法

COD快速消解分光光度法标准曲线的绘制 组别:第一组 组员:学号 王悦:2012200855 宋丹:2012200850 杨荣:2012200841 杨安琪:2012200851 姜梦楠:2012200845 闫心瞳:2012200847

实验报告 一、实验目的 1.根据COD快速消解分光光度法,利用COD标准浓度溶液,绘制出吸光度与COD值之间的标准曲线。 2.学习COD快速消解分光光度法的原理,掌握其测定方法。 二、实验原理 在已知浓度的COD标准溶液试样中,加入已知量的重铬酸钾溶液,在强硫酸介质中,以硫酸银作为催化剂,经过高温消解后,用分光光度法可以测定COD值。 1.1mol邻苯二甲酸氢钾可以被30mol重铬酸钾完全氧化,其化学需氧量相当于30mol 的氧(1/2O)。因此,可以利用邻苯二甲酸氢钾配置已知浓度的COD标准溶液。 2.重铬酸钾能够氧化邻苯二甲酸氢钾,当试样中COD值为100~1000mg/L时,其被还原产生的三价铬(Cr3+)可以在600nm±20nm波长处测定吸光度,则试样中的COD值与三价铬(Cr3+)的吸光度的增加值成正比例关系。 3.当试样中COD值为15~250mg/L时,重铬酸钾未被还原的六价铬(Cr6+)和被还原的三价铬(Cr3+)可以在440nm±20nm波长处测定总吸光度,则试样中COD值与总吸光度的减少值成正比例关系。 三、实验药品与仪器 (一)实验药品 1.蒸馏水、去离子水等,浓硫酸,硫酸(1+9)溶液,10g/L硫酸银-硫酸溶液,0.24g/L 硫酸汞溶液 2.重铬酸钾标准溶液、邻苯二甲酸氢钾 (二)实验仪器 1.烧杯、移液管、容量瓶、玻璃棒、滴管等 2.消解管、消解仪、分光光度计 四、实验条件 1.本实验选取高量程(测定上限1000mg/L)COD标准系列溶液: COD值分别为100mg/L、200mg/L、400mg/L、600mg/L、800mg/L和1000mg/L。 2.根据高量程COD标准系列溶液,确定重铬酸钾标准溶液的浓度为c(1/6K2Cr2O7)=0.500mol/L。

COD在线监测仪

系统概述: 通过高温高压环境下水样、重铬酸钾、硫酸银(作为催化剂使直链脂肪族化合物氧化更充分)和浓硫酸所形成的混合溶液中的Cr(VI)被还原成Cr(Ⅲ),从而使得该混合物溶液的颜色发生改变,溶液颜色的改变程度与所测水样化学需氧量(COD)的溶度成对应关系仪器通过光电比色便可直接测定出水样的COD值。水样中的氯离子是主要干扰物质,COD-8000型COD 在线监测仪可通过添加氯化汞络合水样的氯离子来消除氯的干扰。 系统特点: 水样预处理装置采用免维护设计,可确保预处理装置维护周期超过半年时间; 化学消解时间可以调整,测定过程及结果满足相关国发标准; 可调定量取样装置,确保仪器通过调整试剂用量和取样量来准确测量各种水样; 试剂取用采用非接触式注射泵,避免试剂直接腐蚀试剂泵,可大大延长核心部件寿命、降低用户使用成本; 全进口器件及创新的分析流路设计和试剂配方保证了极高的测量重现性,目前测量重现性可达到5%; COD在线监测仪全自动运行,无需人员值守,可实现自动调零、自动校准、自动测量、自动清洗、自动维护、自我保护、自动恢复等智能化功能; 在线监测方式多样化,可实现人工随时测量、自动定时测量、自动周期性测量等测定方式;自动漏液预警功能,当出现试剂泄露时,仪器自动预警,提示用户进行维护。 技术参数: 测量方法:重铬酸钾高温消解,比色测定; 测试量程:0~100/1000/30000mg/L; 准确度:10%; 重复性:5%; 相应时间(>90%):自动判定,最小6min; 测试方式:定时、等间隔、手动; 试剂消耗:每次测量不超过2ml; 维护方式:自维护,用户维护间隔>5个月; 自我监测:自我监测泄漏;仪器状态自我诊断; 模拟输出:4—20mA模拟输出; 数据传输方式:RS232,RS485,RPRS; 显示:8寸彩色触摸屏,分辨率为800*600; 数据存储:五年有效数据; 消解温度:175℃; 工作温度:+0℃+40℃; 电源:200V AC±10%/50-60Hz; 功耗:约100W; 尺寸:500mm*1650mm*321mm; 重量:约70KG;

COD快速测定方法分析

COD快速测定方法分析 摘要:对污水中的COD(化学需氧量)进行测定,是评价水质被还原性质污染程度的一个重要指标。针对标准COD测定方法存在的不足,文章对重铬酸钾法、密封消解法以及HACH快速测定法三种方法与标准测定法进行了对比分析,希望能够得出取代標准法对污水COD进行测定的快速方法。 标签:污水;COD;快速测定 1 实验设计 1.1 主要仪器和试剂 本实验采用的主要仪器包括恒温烘箱、250ml碘量瓶、50ml滴定管、移液管、HACH公司消解器和比色计以及其它常用仪器。 1.2 实验方法设计 (1)重铬酸钾快速测定法[1]:根据GB/T11914-1989标准进行操作,首先将10ml种鸽酸价加入混合均匀的水样中,在强酸介质下以银盐作为催化剂沸腾回流消解样品,样品冷却之后放入试亚铁灵作为指示剂,并利用硫酸亚铁铵对水样中剩余的重铬酸钾进行滴定,根据重铬酸钾的消耗量对污水中COD的浓度进行计算。 (2)密封消解法[2]:在250ml锥形瓶中依次准确加入均匀水样5ml、重铬酸钾标准溶液5ml以及硫酸-硫酸银溶液7.5ml。然后利用少量的二次蒸馏水对锥形瓶口内壁进行冲洗,将其稀释至100ml,摇匀之后密封,放入155℃的恒温烘箱,消解过程持续40min,然后取出锥形瓶冷却至室温,最后加入2~3滴试亚铁灵指示剂,并通过硫酸亚铁铵标准溶液进行滴定。 (3)HACH快速测定法:根据HACH仪器的说明书进行具体操作。 2 COD快速测定方法对比 2.1 重铬酸钾快速法 采用国家推荐标准GB/T11914-1989,锅炉用水与冷却水分析方法——重铬酸钾快速COD测定法,对污水进行COD测定试验,表1给出了该方法与标准COD测定方法的对比数据。 从表1中的数据可以看出,重铬酸钾快速测定法与标准测定方法的绝对差值小于5mg/L,相对误差在允许范围内。相对于标准测定方法,利用重铬酸钾快速法主要是增加酸及催化剂的用量,从而缩短回流时间并提高重铬酸钾的氧化率,

快速消解分光光度法测COD

快速消解分光光度法测COD 化学需氧量(Chemical Oxygen Demand,COD)是在一定条件下,经重铬酸钾氧化处理,水样中的溶解性物质和悬浮物所消耗的重铬酸钾相对应的氧的质量浓度,1mol重铬酸钾(1/6 K2Cr2O7)相当于1mol 氧(1/2O)。[1]化学需氧量(COD) 是反映水体受有机物等还原性物质污染的综合性指标之一[2]。传统的重铬酸钾法是在水样中加入以知量的重铬酸钾溶液,并在强酸介质下以银盐作为催化剂,经沸腾回流2h,最后用硫酸亚铁溶液滴定[3,4]。快速消解分光光度法[1]实验原理基本相同,在工艺上做了改进,将样品在密封罐中于165℃下消解 15min,再在600nm下测其吸光度。相比于传统的测定方法,快速消解分光光度法具有耗时短,灵敏度高等优点。 造纸黑液由于具有高COD值、高碱性、高色度的特征,是造成水污染的关键所在,同时也是企业进行污水治理的难点[5]。黑液中含有大量的木质素,对黑液的资源化利用的一个重要方面就是提取黑液的木质素并加以利用。从黑液中分离木质素的方法,概括起来说主要有三种:①降低黑液的PH值,使碱木质素沉淀析出;②在黑液中加入电解质,破坏木质素的胶体性质,使其沉淀;③采用超滤注分离。降低PH值酸析木质素是处理造纸黑液的传统工艺,但由于粘度大,分离负荷大,难于应用[6,7,8]。本文在酸析基础上加入一定絮凝剂,寻求一种能简单过滤分离的工艺,同时采用最新的快速消解分光光度法测定滤液的COD 值作为评价指标。 1 材料与方法 1.1 材料 取自洋浦金海浆纸黑液 浓硫酸、重铬酸钾、硫酸银、硫酸汞(均为分析纯) T6新悦分光光度计、三信PHS-3C PH计、飞鸽牌离心机、自制过滤装置、容量瓶、烧杯、量筒等

COD在线监测仪日常维护

COD在线监测仪日常维护 化学需氧量(COD或CODcr)是指在一定严格的条件下,水中的还原性物质在外加的强氧化剂的作用下,被氧化分解时所消耗氧化剂的数量,以氧的mg/L表示。化学需氧量反映了水中受还原性物质污染的程度,这些物质包括有机物、亚硝酸盐、亚铁盐、硫化物等,但一般水及废水中无机还原性物质的数量相对不大,而被有机物污染是很普遍的,因此,COD可作为有机物质相对含量的一项综合性指标。 工作原理是污水在氧化剂、催化剂及高温的作用下,产生完全的氧化还原反应。水样冷却后再在比色计下测量其氧化还原反应量。从而计算出COD浓度值。 使用注意事项: 1.日常的检查 主要包括检查仪器工作是否正常,比如进出管路是否通畅,有无泄漏,并保持仪器的清洁,尤其是对转动部分和易损件要定期检查和更换,防止其损坏造成泄漏而腐蚀仪器。 2.试剂的更换 重铬酸钾和硫酸一硫酸银属于强腐蚀性试剂,并且在工作现场容易挥发和吸潮,所以应定期更换。更换周期依据使用情况而定,一般至少3个月更换一次。 3. 防护性检修 由于蠕动泵管吸取强腐蚀性试剂,所以应3个月更换一次。测量室和反应室应每年至少彻底检查清洗检修一次。

4.日常校准 除程序设定的自动零循环校准外,在第一次使用、更换试剂或防护性检修之后要进行零点和标准溶液的校正。采用实验室制备的蒸馏水作为零点校准液,校准过程与测量循环过程相同,校准后保留新零点的参数,并对工作曲线进行校准。 5.出厂参数设置 仪器在出厂时虽然已经设定了原始的工作曲线,但因使用场所不同,原有工作曲线往往不能满足任何监测场合,所以应该对其工作曲线进行定期的校核。可由实验室配制COD标准溶液进行校核,校准过程与测量循环过程相同,校核后更改有关界面参数,对工作曲线进行校准。 6.安装环境 要保证COD在线测定仪安装场所的温度、湿度恒定,必要时需要安装空调等加热、制冷和除湿设施。同时使用独立的稳压电源。 7.仪器暂停 仪器暂停使用时,要用蒸馏水彻底清洗后排空,再依次关闭进出口阀门和电源,重新启用时用新试剂进行彻底清洗,并对工作曲线进行较准。

COD消解的主要方法

COD消解的主要方法 重铬酸盐法 化学需氧量测定的标准方法以我国标准GB11914《水质化学需氧量的测定重铬酸盐法》和国际标准ISO6060《水质化学需氧量的测定》为代表,该方法氧化率高,再现性好,准确可靠,成为国际社会普遍公认的经典标准方法。然而这一经典标准方法还是存在不足之处:回流装置占的实验空间大,水、电消耗较大,试剂用量大,操作不便,难以大批量快速测定。 高锰酸钾法 以高锰酸钾作氧化剂测定COD,所测出来的称为高锰酸钾指数。高锰酸钾指数是指在一定条件下,以高锰酸钾为氧化剂,处理水样时所消耗的氧量,以氧的mg/L来表示。水中部分有机物及还原性无机物均可消耗高锰酸钾。因此,高锰酸钾指数常作为水体受有机物污染程度的综合指标。水样加入硫酸使呈酸性后,加入一定量的高锰酸钾溶液,并在沸水浴中加热反应一定的时间。剩余的高锰酸钾加入过量草酸钠溶液还原,再用高锰酸钾溶液回滴过量的草酸钠,通过计算求出高锰酸盐指数。 分光光度法 以经典标准方法为基础,重铬酸钾氧化有机物物质,六价铬生成三价铬,通过六价铬或三价铬的吸光度值与水样COD值建立的关系,来测定水样COD值。采用上述原理,国外最主要代表方法是美国环保局EPA.Method0410.4《自动手动比色法》、美国材料与试验协会ASTM:D1252—2000《水的化学需氧量的测定方法B—密封消解分光光度法》和国际标准ISO15705—2002《水质化学需氧量(COD)的测定小型密封管法》。我国是国家环保总局统一方法《快速密闭催化消解法(含分光度法)》。 快速消解法 经典的标准方法是回流2h法,人们为提高分析速度,提出各种快速分析方法。上述方法同经典标准方法相比,消解体系硫酸酸度由9.0mg/l提高到10.2mg/l,反应温度由150℃提高到165℃,消解时间由2h减少到10min~15min。二是改变传统的靠导热辐射加热消解的方式,而采用微波消解技术提高消解反应速度的方法。由于微波炉种类繁多,功率不一,很难试验出统一功率和时间,以求达到最好的消解效果。微波炉的价格也很高,较难制订统一的标准方法。 快速消解分光光度法 化学需氧量(COD)测定方法无论是回流容量法、快速法还是光度法,都是以重铬酸钾为氧化剂,硫酸银为催化剂,硫酸汞为氯离子的掩蔽剂,在硫酸酸性条件测定COD消解体系为基础的测定方法。在此基础,人们为达到节省试剂减少能耗、操作简便、快速、准确可靠为目的开展了大量研究工作。该方法具有占用空间小,能耗小,试剂用量小,废液减到最小程度,能耗小,操作简便,安全稳定,准确可靠,适宜大批量测定等特点,弥补了经典标准方法的不足。

COD在线监测仪安装施工方案

COD在线监测仪管线施工方案 根据COD在线监测仪安装方案制定本施工方案,分三部分进行施工。 1. 利用现在DN25的污水缓排管线,作为分析仪的排放管线。再重新施工一条DN50的污水缓排管线。 2. 分析仪污水入口管线 3. 我公司污水间歇性排放,为保证分析仪器随时采到污水样,所以要对污水管线进行改动,改动位置在站房北侧,改造方式:把直管段改成U型管,改动长度约2米,底部留DN20倒淋球阀。 一、主要施工方法及技术措施: 1、不锈钢管道旧管线的拆除,原伴热线利旧不得拆除。不锈钢管线采用切割片先将管道割断,然后由人工将管道拆除。 2、拆卸下的管道,应及时将其清理出场,否则,新管道将无场地进行预制工作。 3、新管道预制时,将管道在地面按原管线走向一字排开,预制时,应根据现场实际情况定位。 4、供安装的不锈钢管及管件在使用前进行外观检查,表面不得有裂缝、重皮等缺陷。 5、管子安装前应进行一般清洗,除去油污及其他污物。 6、不锈钢管严禁使用氧-乙炔割刀,应采用锯床、手锯、砂轮切割机、等离子切割机等进行管道切割,砂轮片应选用专用砂轮片。 7、不锈钢管采用焊接连接,配件采用压制件,由于不锈钢为奥氏体不锈钢,采用的焊接方式为氩电联焊。选用的焊条及焊丝规格为:焊条牌号E308, 焊丝钢号JQ.H0Cr21Ni10 ER308

8、管道应在支架固定好后安装,管子不得与碳钢支架及原伴热管线直接接触,应在管道与支架之间垫入不锈钢片、不含氯离子的塑料片木块和橡胶板。 9、根据输送介质和工作温度的不同,法兰垫片应按规范要求选用非金属垫片或金属垫片,非金属垫片的氯离子含量不得超过50*10-6。 10、管道安装完毕后,应按设计或规范要求进行试压,采取水压试验时水的氯离子含量不得超过25*10-6。 11.入口管线:从污水U型主管底部引DN20的不锈钢管线至站房内,在站房内设DN20的Y型管道过滤器,过滤器后切断阀阀后变径,预留DN15丝头,分析仪进水管线施工完毕。 12.入口管线:需要有伴热,伴热来源于站房的采暖管线,现有采暖管线稍有改动即可实现,但是为了避免因伴热原因致使进入仪器的水样温度过高,而损坏仪器,施工时伴热管线与进水管线要保留5cm的距离。 二、保证项目质量的措施 1、机动部须对采购的材料进行验收。 2、焊接材料必须具有“产品质量证明书”。焊条使用前须在烘箱内烘焙,温度应在350度,恒温120度下保温。焊条取出后须放在保温筒内,焊接时,作到随用随取。 3、实行工程质量目标管理,对重要部位设控制点。 4、机动部在施工前应向施工队伍进行技术交底,并作好相应的记录。 5、施工队严格执行特种工持证上岗制度,施工中认真自检、互检和专检。 6、项目部应认真作好原始记录和完整的竣工资料。 三、保证施工安全的措施 1、参加施工的有关人员必须严格隆邦公司有关的安全规程、条例。 2、严格遵守现场安全生产纪律,设置明显的安全生产,消防保卫标志,严格

常压微波消解法测定COD

常压微波消解法测定COD - 噪声固废环评监测 简介:采用家用微波炉、利用炉外循环冷凝回流进行了常压下微波消解测定环境水样中COD的研究,方法简便、快速、准确度高,对环境水样的测定结果与标准方法相符。关键字:常压微波消解COD 环境水样1试验装置与方法常压微波消解装置见图1。 1.1试剂配制重铬酸钾标准溶液:称取预先在120℃下烘干2h的基准重铬酸钾12.258g溶于水中转入1L容量瓶,用水定容,则C(1/6K2Cr2O7)=0.2500mol/L;试亚铁灵指示剂:称取1.485g邻菲罗啉、0.695g硫酸亚铁(FeSO4·7H2O)溶于水中,转入100mL容量瓶中,用水定容;硫酸亚铁铵标准溶液(0.1mol/L):称取39.5g硫酸亚铁铵[(NH4)2Fe(SO4)2·6H2O]溶于水中,加入20mL浓硫酸,冷却后转入1 L容量瓶中用水定容,临用前用重铬酸钾溶液标定;硫酸—硫酸银溶液:于500mL浓硫酸中加入7g硫酸银,放置1~2d后使用;COD标准溶液:基准邻苯二甲酸氢钾在110℃下烘干2h后于干燥器中冷却,称取0.2552g再用水溶解并定容于1L容量瓶中,则为300mg/L的COD标准溶液,用时现配1.2试验方法取10.00mL 的COD标准溶液(或环境水样)于锥形瓶中,加入5.00mL重铬酸钾标准溶液,再缓缓加入20.0mL硫酸—硫酸银溶液,轻摇使之混合均匀后置于微波炉内,于低档功率(190W)下加热4min,冷至室温后用30mL蒸馏水冲洗冷凝管内壁,取出锥形瓶加入3滴试亚铁灵指示剂,用硫酸亚铁铵标准溶液滴定至溶液颜色由蓝绿色变为红褐色即为终点。同时吸取10.00mL蒸馏水按上述方法做试剂空白。由下式计算水

COD在线监测分析仪的操作使用、维护规程

在线COD分析仪操作规程 本规程适用于哈希水质分析仪器(上海)有限公司CODmax plus sc型化学需氧量在线自动监测仪的操作使用及维护保养。 一、仪表概况: 1、仪表名称:COD水质分析仪。 2、仪表型号:CODmax plussc型化学需氧量在线监测仪。 3、仪表位号:AT-00302。 4、制造厂家:美国哈希公司。 5、工作温度:2~40℃。 6、技术指标: (1)电源要求:220V AC,50HZ。 (2)准确度:±8.0%。 (3)重复性:3.0%。 (4)仪表测量范围:0---200mg/l。 (5)串行口:RS232。 (6)消解时间:可选择5--120Min多种间隔。 (7)检测原理:重络酸钾氧化--光度法。 (8)清洗方式:自动清洗。 (9)标定方式:自动标定。

(10)零点漂移:±5mg/l(24小时)。 (11)量程漂移:±10mg/l(24小时)。 二、溶液配制: 1、硫酸汞溶液 下列步骤是为了防止被污染的化合物引起的干扰,这些干扰可能会影响COD的测量。 (1)往1升的量杯中投入100克物质B(硫酸汞(Ⅱ)ACS)。 (2)然后缓慢地加入800毫升纯净水,使用磁力搅拌器搅拌此悬浮液,搅拌2小时。 (3)用抽滤器(烧结玻璃滤器D1)进行抽滤,量杯中就剩下了黄色的沉淀。 (4)现在往量杯中再次缓慢加入800毫升蒸馏水重复冲洗循环。

(5)使用磁力搅拌器搅拌2小时后,用抽滤器(烧结玻璃滤器D1)抽滤。第二次冲洗循环获得的抽滤水用于确定COD 浓度,根据中国标准实验室COD 测定方法。 2、 重铬酸钾溶液 (1)首先往1升的量杯中加入700毫升的蒸馏水。 (2)用磁力搅拌器进行搅拌期间,往其中小心地加入95毫升的物质A (硫酸,95~97%ACS )。 (3)一直搅拌直至溶液冷却到环境温度。 (4 )继续搅拌同时往溶液中投入80克的物质B (重铬酸钾ACS )。 (5)待重铬酸钾完全溶解后(溶液澄清),加入纯净水至1升。 3、硫酸

消解法测COD步骤

消解法测COD步骤 1、将所取水样稀释到COD含量在150mg/l到1500mg/l之间。(厌 氧池和调节池稀释一百倍,硝化池稀释2倍) 2、准确量取2ml稀释过的水样于消解管中,再加入0.05g硫酸汞 与水样混匀(若水样氯离子含量高,加0.2g硫酸汞)。 3、准确量取3ml专用氧化剂加入水样中并混合均匀。 4、打开消解仪电源,调整好消解时间和消解温度(先打开仪器电 源,按一下时间,然后按向上的箭头调到30min,然后按确定;再按温度,这个时候温度显示165℃,直接按确定,仪器就开始升温)仪器升温过程中将加有水样和药剂的消解管盖好拧紧后放入消解仪中。 5、仪器升温到设定温度并发出“滴滴”声音时,按下“消解”键, 开始消解。 6、仪器达到设定消解时间并发出“滴滴”声音时,按下“停止” 键,仪器停止加热,待仪器温度降到100度以下时,打开保护盖,将消解管取出,冷却到室温后,进行测定。 7、打开分光光度计电源,仪器预热30分钟后,调整波长为620nm, 按“1”键选择光度测量,调整为零吸光度。 8、按分光光度计ESC键,再按2键,选择1“E3”,按ESC键, 将消解好的水样,倒入比色皿中,放入分光光度计的光路中,盖上盖子,按“START”仪器自动显示出溶液cod浓度。 9、将分光光度计显示的浓度值乘以稀释倍数,得出所测水样的浓

度。 注意事项: 1、消解管的盖子一定要拧紧,如果发现盖子无法拧紧必须更换。 2、进行消解时,仪器的保护盖一定要盖好,不要在消解过程中取 下保护盖。 3、所用的专用氧化剂为浓硫酸配制,操作时注意安全,最好戴手 套操作。 4、待温度降到100度以下时再取出消解管,防止烫伤。

几种COD在线监测仪的介绍和对比

关于中水回用COD测定仪选型的分析 首先介绍几种COD在线监测仪的介绍和对比 若干COD在线监测仪性能比较 测定仪类型 CODCr法CODMn法UV计电化学法TOC法性能比较 测量精度±5%±5%±3%±5%±3% 可靠性MTBF 较低较低很高较高很高 日常使用费用很高较高较低很高很低 购置成本较低较低适中很高较高 应用范围较广很小较小很广很广 1、CODCr法 CODCr法指使用重铬酸钾做氧化剂,在一定条件下氧化水样中的有机物,通过光度计或电极测算出消耗氧化剂的量,进一步换算出COD值。 其测定仪主要有三种技术原理: (1)重铬酸钾消解-光度测量法; (2)重铬酸钾消解-库仑滴定法; (3)重铬酸钾消解-氧化还原滴定法。 2、CODMn法 CODMn法即高锰酸盐指数分析仪的主要技术原理有二种: (1)高锰酸盐氧化-化学测量法; (2)高锰酸盐氧化-电流/电位滴定法。 3、UV计法 UV计法用于表征水质COD,即水样中特定的溶解态有机物对特定波长(254nm)的紫外光有较强吸收,在测量吸光度后再通过相关性可转换成COD值。它比较适用于无悬浮颗粒、成份稳定、无色透明的水体,在日本已得到较广泛的应用,但在欧美各国尚未得到主管部门的认可。 由于众多污水中含有乙醇、糖类、有机酸等不具有紫外吸光性的有机物,使UV计法的应用范围受到很大限制。 4、电化学法 电化学法是根据电极与水样接触后引起氧化还原反应,其电流的变化与有机物的浓度相关,间接测量出COD值。 该类分析仪主要有二种技术原理: (1)羟基及臭氧氧化-电化学测量法; (2)臭氧氧化-电化学测量法。

5、TOC法 TOC法即总有机碳分析仪是将处理后的定量水样燃烧,完全氧化其中的有机成份,再使用红外法测定其生成的CO2浓度,直接得出TOC值,进而通过相关性转换成COD值。该分析仪是专为实现自动控制而发展起来的,在欧美、日本和澳大利亚等国的应用已很广泛。 其主要技术原理有四种: (1)(催化)燃烧氧化-非分散红外光度法(NDIR法)(GB13193-91); (2)UV催化-过硫酸盐氧化-NDIR法; (3)UV-过硫酸盐氧化-离子选择电极法(ISE)法; (4)加热-过硫酸盐氧化-NDIR法; 从不同的角度,对以上5种方法的对比分析: 从原理上讲,方法(1)是国标方法,但方法(2)-(4)在欧美等国也有所运用。 从分析性能上讲,由于TOC法利用高温燃烧氧化,有机物氧化率几乎达到100%,因此更能精确地表达水样中有机物含量。性能可靠的在线TOC仪完全能够满足污染源在线自动监测的要求,并且由于其检测限较低,应用于地表水或低浓度污水的自动监测也是可行的。另外,在线TOC仪的分析周期很短只需5分钟。 从仪器结构上讲,除增加了无机碳去除单元外,各类在线TOC仪的管路系统一般比在线COD仪简单一些,可靠性因此也大大提高。 从对环境的影响方面讲,TOC法省去了昂贵的试剂,没有了铬、汞的二次污染问题。从维护的难易程度上讲,由于TOC法所采用的试剂种类剂量少,泵管系统较简洁,又具有自动清洗功能,因此维护周期较长,维护工作量也较小。 我污水处理车间使用的三台在线COD仪,一台为UV法,另外两台为CODCr法(清水池的为重铬酸钾消解-光度测量法;中水回用的为重铬酸钾消解-氧化还原滴定法。) 以铬法为主的CODCr在线自动监测仪器的弊端: a.)2005年前已安装的CODcr在线仪器至今还有多少在运行?一个不争的事实是:CODcr在线仪器因其岐化管路设计,不可避免地出现易堵塞、维护量大,数据捕捉率不高等难以克服的问题。 b.)测量过程用时较长,基本一个测量周期最短都在一个小时左右,对于指导生产上有滞后性。 c.)运行成本高,以2小时1次测量作为测算基点,1年运行下来,单是试剂费用就要达到3~4万元,于企业不利。 d.)由于CODcr在线仪器很难长期稳定运行,数据捕捉率低 UV法具有明显适于应用在线监控的特点。首先UV法的紫外吸收过程在数秒中便可完成,数据处理器具有快速的数据处理速度,加上样品池的冲洗时间,1分钟左右便可完成一个测量过程,这是其它COD测量方法不可比拟的优点;其次UV法双波长测量对水样具有的干扰可以进行补偿测量并在结果中进行扣除,基本上不需要对水样进行预处理;监测过程不用标准物质校准,定期运用国标重铬酸钾法测量的待测样品调校转换系数,实现低费用在线运行。

COD在线监测仪高温燃烧法

C O D在线监测仪高温 燃烧法 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

常见C O D在线监测仪原理及性能分析水质化学需氧量(COD)是我国颁布的环境水质标准的主要监测指标之一,它反映了水体受还原性物质污染的程度。由于有机物是主要的还原性污染物,所以化学需氧量(COD)可作为衡量水质受有机物污染程度的综合指标,被广泛地应用于污水中有机物含量的测定,是评价水体污染程度的重要参数。 根据国家标准GB 11914-89和国际标准ISO6060规定,COD定义是指水样用重铬酸钾作氧化剂进行化学氧化后,用滴定法测定消耗的氧化剂 。如以高锰酸钾作氧化剂,则测定量,相对应氧的质量浓度,简称COD Cr 。因氧化条件如氧化剂种类、反应温度、反结果称为高锰酸盐指数COD Mn 应时间、催化剂等因素影响,测定值会有很大变化。因此,有很多专家抨击和质疑这一指标,但受监测手段和历史原因制约,目前我国一般还是用COD来表达水质有机物污染程度。但其标准的实验方法试剂消耗量大,而且非常费时,从而出现了以下几种主要的COD测定仪:几种COD在线监测仪综合性能比较 1、COD 法(COD在线监测仪) Cr 法指使用重铬酸钾做氧化剂,在一定条件下氧化水样中的有机 COD Cr 物,通过光度计或电极测算出消耗氧化剂的量,进一步换算出COD值。

其测定仪主要有三种技术原理: (1)重铬酸钾消解-光度测量法; (2)重铬酸钾消解-库仑滴定法; (3)重铬酸钾消解-氧化还原滴定法。 从原理上讲,方法(3)更接近国标方法,方法(2)也是推荐使用的方法。而方法(1)较多采用在快速COD测定仪上。 从分析性能上讲,由于水样中部分有机物很难被氧化剂氧化,有的甚至根本不能氧化。因此,该类在线COD仪难以应用于高氯污水、强碱污水、浓度大幅变动污水及地表水的自动监测,其测量范围一般在30~2000 mg/l,仅能满足部分污染源在线自动监测的需要。另外,采用消解-氧化还原滴定法、消解-光度法的仪器的分析周期一般较长,需要60分钟左右。 从对环境的影响方面讲,重铬酸钾消解-氧化还原滴定法有铬、汞的二次污染问题,废液需用大量水进行稀释处理。而TOC法、UV计法和电化学法(不包括库仑滴定法)则不存在二次污染问题。 从维护的难易程度上讲,由于消解-氧化还原滴定法、消解-光度法所采用的试剂种类较多,泵管系统很复杂,因此在试剂的更换以及泵管的更换维护方面非常烦琐,维护周期比采用TOC法、UV计法和电化学原理的仪器要短很多,试剂费用和维护工作量都很大。 法 2、COD Mn COD 法即高锰酸盐指数分析仪的主要技术原理有二种: Mn (1)高锰酸盐氧化-化学测量法;

COD在线监测仪(高温燃烧法)

常见COD在线监测仪原理及性能分析 水质化学需氧量(COD)是我国颁布的环境水质标准的主要监测指标之一,它反映了水体受还原性物质污染的程度。由于有机物是主要的还原性污染物,所以化学需氧量(COD)可作为衡量水质受有机物污染程度的综合指标,被广泛地应用于污水中有机物含量的测定,是评价水体污染程度的重要参数。 根据国家标准GB 11914-89和国际标准ISO6060规定,COD定义是指水样用重铬酸钾作氧化剂进行化学氧化后,用滴定法测定消耗的氧化剂量,相对应氧的质量浓度,简称COD Cr。如以高锰酸钾作氧化剂,则测定结果称为高锰酸盐指数COD Mn。因氧化条件如氧化剂种类、反应温度、反应时间、催化剂等因素影响,测定值会有很大变化。因此,有很多专家抨击和质疑这一指标,但受监测手段和历史原因制约,目前我国一般还是用COD来表达水质有机物污染程度。但其标准的实验方法试剂消耗量大,而且非常费时,从而出现了以下几种主要的COD测定仪: 几种COD在线监测仪综合性能比较 1、COD Cr法(COD在线监测仪) COD Cr法指使用重铬酸钾做氧化剂,在一定条件下氧化水样中的

有机物,通过光度计或电极测算出消耗氧化剂的量,进一步换算出COD值。 其测定仪主要有三种技术原理: (1)重铬酸钾消解-光度测量法; (2)重铬酸钾消解-库仑滴定法; (3)重铬酸钾消解-氧化还原滴定法。 从原理上讲,方法(3)更接近国标方法,方法(2)也是推荐使用的方法。而方法(1)较多采用在快速COD测定仪上。 从分析性能上讲,由于水样中部分有机物很难被氧化剂氧化,有的甚至根本不能氧化。因此,该类在线COD仪难以应用于高氯污水、强碱污水、浓度大幅变动污水及地表水的自动监测,其测量范围一般在30~2000 mg/l,仅能满足部分污染源在线自动监测的需要。另外,采用消解-氧化还原滴定法、消解-光度法的仪器的分析周期一般较长,需要60分钟左右。 从对环境的影响方面讲,重铬酸钾消解-氧化还原滴定法有铬、汞的二次污染问题,废液需用大量水进行稀释处理。而TOC法、UV 计法和电化学法(不包括库仑滴定法)则不存在二次污染问题。 从维护的难易程度上讲,由于消解-氧化还原滴定法、消解-光度法所采用的试剂种类较多,泵管系统很复杂,因此在试剂的更换以及泵管的更换维护方面非常烦琐,维护周期比采用TOC法、UV计法和电化学原理的仪器要短很多,试剂费用和维护工作量都很大。

COD试题

判断题 1、化学需氧量快速消解分光光度法与经典标准重铬酸盐法相比,增加了消解体系的酸度,提高了消解温度,缩短了消解反应时问,加之取样量少,消耗化学试剂少(试剂纯度的要求高一些),可以同时快速测定多个样品,使得该方法更适宜于野外和应急监测。( ) 正确 2、对于化学需氧量在100 mg/L以上的水样,化学需氧量快速消解分光光度法测定的结果与国家标准法的结果更为接近,其相对(偏)误差较小,而对于化学需氧量在100 mg/L以下水样的测定,结果的相对(偏)误差就比较大,(往往)有时会超过20%。( ) 正确 3、化学需氧量快速消解分光光度法的实验用水为新制备的去离子水或蒸馏水,应符合GB/T6682二级水的相关要求。( ) 错误 4、化学需氧量快速消解分光光度法在600 nm±20 nm处测试时,溶液中含锰(硫酸盐形式)会形成红色物质,引起正偏差;而在440 nm±20 nm处,含锰溶液的影响就比较小。试样中的有机氮通常转化成铵离子,铵离子不被重铬酸钾氧化。( ) 正确 5、化学需氧量快速消解分光光度法测定化学需氧量,在酸性重铬酸钾条件下,一些芳香烃类有机物、吡啶等化合物很容易氧化,其氧化率较高。( ) 错误 6、化学需氧量快速消解分光光度法测定化学需氧量时,可在当天配制并使用硫酸银一硫酸溶液(可当天使用)。( ) 错误 7、配制(1+9)硫酸溶液时,应将900ml水沿烧杯壁慢慢加入到100ml 硫酸中,搅拌混匀,冷却备用。( ) 错误

8、化学需氧量快速消解分光光度法测定化学需氧量时,采集的水样应保存在洁净的塑料瓶中。( ) 错误 9、快速消解分光光度法测定化学需氧量时,水样中含有氯离子,会对测定结果产生干扰,可加入适量HgS04(消除)以减少干扰。( ) 正确 10、在用快速消解分光光度法测定化学需氧量过程中,如消解管中溶液颜色呈现绿色,说明水样的取样量合适,可继续进行实验。( )错误 11、某分析人员量取浓度为0.0250mol/L的重铬酸钾标准溶液 10.00ml,标定硫代硫酸钠溶液时,用去硫代硫酸钠溶液10.08ml,该硫代硫酸钠溶液的浓度为0.0248mol/L。()正确 12、氯离子含量大于500mg/L 的废水即为高氯废水。()错误 13、用碘化钾碱性高锰酸钾法测定化学需氧量时,若水样中含有亚硝酸盐,则在酸化前应先加入4%叠氮化钠溶液将其分解。若水样中不存在亚硝酸盐,则可不加该试剂。()正确 14、《高氯废水化学需氧量的测定碘化钾碱性高锰酸钾法》(HJ/T 132—2003)中的K值表示碘化钾碱性高锰酸钾法测定的样品需氧量与重铬酸盐法测定的样品需氧量的比值。()正确 15、碘化钾碱性高锰酸钾法测定水中化学需氧量的过程中,加 0.05mol/L高锰酸钾溶液10.00ml并摇匀后,将碘量瓶立即放入沸水浴中加热30min(从水浴重新沸腾起计时),沸水浴液面要低于反应

在线COD分析仪

在线cod分析仪 COD 中文名称:化学需氧量,COD是一种常用的评价水体污染程度的综合性指标,是指利用化学氧化剂(如重铬酸钾)将水中的还原性物质(如有机物)氧化分解所消耗的氧量。它反映了水体受到还原性物质污染的程度。由于有机物是水体中最常见的还原性物质,因此,COD在一定程度上反映了水体受到有机物污染的程度。COD越高,污染越严重。我国《地表水环境质量标准》规定,生活饮用水源COD浓度应小于15毫克/升,一般景观用水COD 浓度应小于40毫克/升。 意义 水中的还原性物质有各种有机物、亚硝酸盐、硫化物、亚铁盐等。但主要的是有机物。因此,化学需氧量(COD)又往往作为衡量水中有机物质含量多少的指标。化学需氧量越大,说明水体受有机物的污染越严重。化学需氧量(COD)的测定,随着测定水样中还原性物质以及测定方法的不同,其测定值也有不同。 目前应用最普遍的是酸性高锰酸钾氧化法与重铬酸钾氧化法。高锰酸钾(K2MnO4)法,氧化率较低,但比较简便,在测定水样中有机物含量的相对比较值时,可以采用。重铬酸钾(K2Cr2O7)法,氧化率高,再现性好,适用于测定水样中有机物的总量。

有机物对工业水系统的危害很大。含有大量的有机物的水在通过除盐系统时会污染离子交换树脂,特别容易污染阴离子交换树脂,使树脂交换能力降低。有机物在经过预处理时(混凝、澄清和过滤),约可减少50%,但在除盐系统中无法除去,故常通过补给水带入锅炉,使炉水pH值降低。有时有机物还可能带入蒸汽系统和凝结水中,使pH降低,造成系统腐蚀。在循环水系统中有机物含量高会促进微生物繁殖。因此,不管对除盐、炉水或循环水系统,COD都是越低越好,但并没有统一的限制指标。在循环冷却水系统中COD(DmnO4法)>5mg/L时,水质已开始变差。 测定方法 ⑴重铬酸钾标准法一、原理:在水样中加如一定量的重铬酸钾和催化剂硫酸银,在强酸性介质中加热回流一定时间,部分重铬酸钾被水样中可氧化物质还原,用硫酸亚铁铵滴定剩余的重铬酸钾,根据消耗重铬酸钾的量计算COD的值。 ⑵紫外吸收转换方法 常规有机物对紫外光的吸收符合比耳-朗伯定律的原理,用一束紫外光(UV)测定总的吸收(有机物+浊度),同时用另一束可见光(ⅥS)测定浊度吸收,经计算机自动处理后扣除了浑浊度的影响,最后得出准确的纯有机物的吸收,并推算出有机物的含量,通过固定的系数确定COD数字。

相关主题