搜档网
当前位置:搜档网 › 第四节 AT89C51的存储器结构

第四节 AT89C51的存储器结构

第四节 AT89C51的存储器结构
第四节 AT89C51的存储器结构

2.4 AT89C51存贮器结构

与单片机的存储器相关的几个概念:

数据存储器——RAM(Random Access Memory);

程序存储器——ROM(Read Only Memory);

闪速存储器——Flash Memory;

EPROM——(UV)Erazible Programmable ROM;

EEPROM/E2PROM——Electrical Erasable Programmable ROM;

静态存储器SRAM——Static RAM(动态存储器DRAM——Dynamic RAM);

按字节寻址:每个字节(8个位)占一个地址;

按位寻址:有的存储器每一个位就有一个地址。

MCS-51的存储器结构:

1、从物理上分四个区:

A、片内数据存储器(基本型:128字节;增强型256字节);

B、片外数据存储器(可扩展到64K);

C、片内程序存储器(51:4K;52:8K;31:0K);

D、片外程序存储器(可扩展到64K)。

2、从逻辑上分三个地址空间:

A、片内外64K统一的程序存储器;

B、片内128/256字节数据存储器;

C、片外64K数据存储器。

1.程序存贮器

程序存贮器的作用是:主要存放单片机的系统程序、应用程序和表格。

首先把我们用高级语言或汇编语言编写的程序由编译程序变换成二进制数或十六进制数(HEX),再用相应的编程器写入到程序存贮器中,用以控制单片机的工作。

8031内部无程序存贮器,因此在使用这种单片机时必须在片外扩展程序存贮器;AT89C51内部有4KB的程序存贮器,可以用编程器给其写入程序,若其不够用时要进行外扩,外扩最多为64KB。

程序存贮器的使用应注意以下几点:

(1)EA接高电平时程序将从片内程序存贮器开始执行,当PC值超过片内ROM容量时自动转向片外程序存贮器空间执行程序。EA接低电平时,单片机只能执行片外程序存贮器中的程序。AT89C51的EA应接高电平。

(2)程序存贮器的某些单元被固定用于存放中断源的中断服务程序的入口地址。

MCS-51单片机复位后,程序存贮器的内容是0000H,故所有的单片机系统必须从0000H单元开始取指令,执行程序。程序存贮器中的0000H地址是系统程序的启动地址,一般在此单元中存放一条绝对跳转指令,跳向用户的主程序的起始地址。另外还有5个单元具有特殊用途,它们是5个中断源的中断服务程序的入口地址,见表:

通常在这些入口处都放一条绝对跳转指令,其目的是由于两个中断入口间隔仅有8个单元,存放中断服务程序一般是不够的。

程序存贮器分布图(89C51为例)

程序存储器64K ,地址指针为16位的程序计数器PC 。 EA =1,从内部ROM 的4K 开始

访问,PC 值大于0FFFH (4K )时,自

动转向外部程序存储器空间。EA =0,

忽略内部ROM 的4K 空间,CPU 在外部程序存储器空间中取指令。低4K 的程序存储器(某些位8K 或16K ),可以在片内也可以在片外,到底访问内部或外部ROM ,由引脚EA 的电平决定。

PSEN 外部程序存储器读选通信号,

仅当CPU 访问外部ROM 时,由单片机

输出负脉冲。

2.内部数据存贮器

AT89C51内部有128个(增强型的256个)字

节的RAM ,其字节地址为00H~7FH ,作为用户的数

据寄存器和数据缓冲器。片内RAM 的结构如图所示。 地址00H~1FH 的32个单元是4组通用工作寄

存器区,每个区含有8个8位的寄存器,其编号为R0~R7。用户可以通过指令来改变PSW 中的RS0和RS1这两位来切换当前的工作寄存器区,在中断中为实现工作时现场内容保护提供了极大的方便。 地址为20H~2FH 的16个单元可以进行共128位的位寻址(00H —7FH),它们是一位位处理机的存贮器空间。单元中的每一位都有自己的位地址,这

16个单元也可以进行字节寻址。

地址为30H~7FH 的单元为堆栈和数据缓冲区,只能进行字节寻址。 A 、工作寄存器区

片内程序存储器 片外程序存储器 0000H

0000H

4K 字节 0FFFH

0FFFH 1000H

FFH 00H 1FH 20H

2FH

30H 7FH 80H

128字节

地址为00H~1FH 的32个单元是4组通用工作寄存器区,每个区含有8个8位的寄存器,其编号为R0~R7。用户可以通过指令来改变PSW 中的RS0和RS1这两位来切换当前的工作寄存器区,在中断中为实现工作时现场内容保护提供了极大的方便。如果不需要4个工作寄存器区,那么这个区域中多余单元可以作为一般数据缓冲器使用。 B 、位寻址区

MCS-51具有一个位处理机,指令系统中有一个位处理指令的子集,这些指令处理的是一位二进制数。共有211个可寻址位,内部RAM 中由128个,特殊功能寄存器区中有83个。

地址为20H~2FH 的16个单元可以进行共128位的位寻址,它们是一位位处理机的存贮器空间。单元中的每一位都有自己的位地址,这16个单元也可以进行字节寻址。

C 、堆栈和数据缓冲区

地址为30H~7FH 的单元为堆栈和数据缓冲区区,只能进行字节寻址。堆栈原则上可以设在内部RAM (00H~7FH 或00H~FFH )的任意区域,但00H~1FH 和20H~2FH 有别的用途,堆栈一般设在30H~FFH.区间。 3. 特殊功能寄存器(SFR )

FFH

00H

1FH 20H 2FH 30H 7FH

80H 128字节

工作寄存器区0

FFH

00H

1FH 20H 2FH 30H 7FH

80H 128字节

28H

27H 26H 25H 24H 23H 22H 21H 20H 2FH

128

个可按位寻址的位

AT89C51单片机的基本结构和工作原理

AT89C51单片机的主要工作特性: ·内含4KB的FLASH存储器,擦写次数1000次; ·内含28字节的RAM; ·具有32根可编程I/O线; ·具有2个16位可编程定时器; ·具有6个中断源、5个中断矢量、2级优先权的中断结构; ·具有1个全双工的可编程串行通信接口; ·具有一个数据指针DPTR; ·两种低功耗工作模式,即空闲模式和掉电模式; ·具有可编程的3级程序锁定定位; AT89C51的工作电源电压为5(1±0.2)V且典型值为5V,最高工作频率为24MHz. AT89C51各部分的组成及功能: 1.单片机的中央处理器(CPU)是单片机的核心,完成运算和操作控制,主要包括运算器和控制器两部分。

(1)运算器 运算器主要用来实现算术、逻辑运算和位操作。其中包括算术和逻辑运算单元ALU、累加器ACC、B寄存器、程序状态字PSW和两个暂存器等。 ALU是运算电路的核心,实质上是一个全加器,完成基本的算术和逻辑运算。算术运算包括加、减、乘、除、增量、减量、BCD码运算;逻辑运算包括“与”、“或”、“异或”、左移位、右移位和半字节交换,以及位操作中的位置位、位复位等。 暂存器1和暂存器2是ALU的两个输入,用于暂存参与运算的数据。ALU的输出也是两个:一个是累加器,数据经运算后,其结果又通过内部总线返回到累加器;另一个是程序状态字PSW,用于存储运算和操作结果的状态。 累加器是CPU使用最频繁的一个寄存器。ACC既是ALU处理数据的来源,又是ALU运算结果的存放单元。单片机与片外RAM或I/O扩展口进行数据交换必须通过ACC来进行。 B寄存器在乘法和除法指令中作为ALU的输入之一,另一个输入来自ACC。运算结果存于AB寄存器中。 (2)控制器 控制器是识别指令并根据指令性质协调计算机内各组成单元进行工作的部件,主要包括程序计数器PC、PC增量器、指令寄存器、指令译码器、定时及控制逻辑电路等,其功能是控制指令的读入、译码和执行,并对指令执行过程进行定时和逻辑控制。AT89C51单片机中,PC是一个16位的计数器,可对64KB程序存储器进行寻址。复位时PC的内容是0000H. (3)存储器 单片机内部的存储器分为程序存储器和数据存储器。AT89C51单片机的程序存储器采用4KB的快速擦写存储器Flash Memory,编程和擦除完全是电器实现。 (4)外围接口电路 AT89C51单片机的外围接口电路主要包括:4个可编程并行I/O口,1个可编程串行口,2个16位的可编程定时器以及中断系统等。 AT89C51的工作原理: 1.引脚排列及功能 AT89C51的封装形式有PDIP,TQFP,PLCC等,现以PDIP为例。 (1)I/O口线 ·P0口 8位、漏极开路的双向I/O口。 当使用片外存储器及外扩I/O口时,P0口作为低字节地址/数据复用线。在编程时,P0口可用于接收指令代码字节;程序校验时,可输出指令字节。P0口也可做通用I/O口使用,但需加上拉电阻。作为普通输入时,应输出锁存器配置1。P0口可驱动8个TTL负载。 ·P1口 8位、准双向I/O口,具有内部上拉电阻。 P1口是为用户准备的I/O双向口。在编程和校验时,可用作输入低8位地址。用作输入时,应先将输出锁存器置1。P1口可驱动4个TTL负载。 ·P2 8位、准双向I/O口,具有内部上拉电阻。 当使用外存储器或外扩I/O口时,P2口输出高8位地址。在编程和校验时,P2口接收高字节地址和某些控制信号。 ·P3 8位、准双向I/O口,具有内部上拉电阻。 P3口可作为普通I/O口。用作输入时,应先将输出锁存器置1。在编程/校验时,P3口接收某些控制信号。它可驱动4个TTL负载。 (2)控制信号线

外接大容量存储器

外接大容量存储器 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

51单片机访问大容量存储器的实现 时间:2006-09-19 来源: 作者: 点击: 1773 字体大小:【大中小】1 引言 MCS-51系列单片机有着优越的性价比,因此应用面宽,使用量也非常大;然而它只有16位地址线,最大能访问的存储空间为64K,且扩展接口与存储器统一编址,扩展接口会占用大量的地址空间,致使该系列单片机在数据量大的数据采集系统中,存储空间明显不足。 笔者最近在开发一数据采集系统时,经分析、探索,找到了解决的办法。 2 使用大容量存储器的原理 2.1 使扩展接口不占用单片机的存储地址空间 由于MCS-51单片机的扩展接口与存储器统一编址,采用常规的方法扩展接口时会占用大量的地址空间,而多数应用系统均会要求扩展接口<本例有七段LED的段输出口、位输出口、键盘口各一个),为此,使扩展接口不占用单片机的存储地址空间对于要求大容量数据存储器的系统是必要的。 如图1,用P1口的一位,只要确保写数据到显示的段口时,使用一空余<或专门预留)的地址<如0000H),即可使扩展接口不占用单片机的存储地址空间且不会相互干扰、发生冲突,同时还可保证有足够的响应速度。b5E2RGbCAP

2.2 外部数据存储采用大容量存贮芯片,分段使用 如图示,MCS-51的16位地址线作为存储芯片的低位地址,可访问64K 的存储空间(作为一段>;再用P1口的D1、D0位作为存储芯片的高位地址<段地址),则可把存储器分为4段,最大访问能力可达256K<见下表),若使用更多的位,则访问能力可更大。编程时只要确保高位地址

[考研类试卷]计算机专业基础综合(存储器系统的层次结构)模拟试卷2.doc

[考研类试卷]计算机专业基础综合(存储器系统的层次结构)模拟试卷 2 一、单项选择题 1-40小题,每小题2分,共80分。下列每题给出的四个选项中,只有一个选项是最符合题目要求的。 1 下列关于DRAM和SRAM的说法中,错误的是( )。 Ⅰ.SRAM不是易失性存储器,而DRAM是易失性存储器 Ⅱ.DRAM比SRAM集成度更高,因此读写速度也更快 Ⅲ.主存只能由DRAM构成,而高速缓存只能由SRAM构成 Ⅳ.与SRAM相比,DRAM由于需要刷新,所以功耗较高 (A)Ⅱ、Ⅲ和Ⅳ (B)Ⅰ、Ⅲ和Ⅳ (C)Ⅰ、Ⅱ和Ⅲ (D)Ⅰ、Ⅱ、Ⅲ和Ⅳ 2 某机字长32位,主存容量1 MB,按字编址,块长512 B,Cache共可存放16个块,采用直接映射方式,则Cache地址长度为( )。 (A)11位 (B)13位 (C)18位 (D)20位 3 在Cache和主存构成的两级存储体系中,Cache的存取时间是100ns,主存的存取时间是1000ns。如果希望有效(平均)存取时间不超过(;ache存取时间的15%,则Cache的命中率至少应为( )。

(A)90% (B)98% (C)95% (D)99% 4 下列关于Cache写策略的论述中,错误的是( )。 (A)全写法(写直达法)充分保证Cache与主存的一致性 (B)采用全写法时,不需要为Cache行设置“脏位/修改位” (C)写回法(回写法)降低了主存带宽需求(即减少了Cache与主存之间的通信量) (D)多处理器系统通常采用写回法 5 假定用若干个8K×8位的芯片组成一个32K×32位的存储器,则地址41FDH所在芯片的最大地址是( )。 (A)0000H (B)4FFFH (C)5FFFH (D)7FFFH 6 某机器采用四体低位交叉存储器,现分别执行下述操作: (1)读取6个连续地址单元中存放的存储字,重复80次; (2)读取8个连续地址单元中存放的存储字,重复60次; 则(1)、(2)所花时间之比为( )。 (A)1:1

51单片机大容量数据存储器的扩展

郑州航空工业管理学院 《单片机原理与应用》 课程设计说明书 10 级自动化专业 1006112 班级 题目51单片机大容量数据存储器的系统扩展姓名杨向龙学号100611234 指导教师王义琴职称讲师 二О一三年六月十日

目录 一、51单片机大容量数据存储器的系统扩展的基本原理 (4) 二、设计方案 (4) 三、硬件的设计 (5) 3.1 系统的硬件构成及功能 (5) 3.2硬件的系统组成 (5) 3.2.1、W241024A (5) 3.2.2、CPLD的功能实现 (5) 3.2.3、AT89C52简介 (6) 3.2.4、SRAM的功能及其实现 (9) 3.3、基本单片机系统大容量数据存储器系统扩展 (9) 五、结论 (13) 六、参考资料 (13)

51单片机大容量数据存储器的系统扩展 摘要:在单片机构成的实际测控系统中,仅靠单片机内部资源是不行的,单片 机的最小系统也常常不能满足要求,因此,在单片机应用系统硬件设计中首先要解决系统扩展问题。51单片机有很强的外部扩功能, 传统的用IO口线直接控制大容量数据存储器的片选信号的扩展系统存在运行C51编译的程序时容易死机的缺点。文中介绍了一种改进的基于CPLD的51系列单片机大容量数据存储器的扩展方法,包括硬件组成和软件处理方法。 关键字:W241024A、CPLD、AT89C52、SRAM 一、51单片机大容量数据存储器的系统扩展的基本原理 MCS-51 单片机系统扩展时,一般使用P0 口作为地址低8位(与数据口分时复用),而P2口作为地址高8位,它共有16根地址总线,最大寻址空间为64KB。但在实际应用中,有一些特殊场合,例如,基于单片机的图像采集传输系统,程控交换机话单的存储等,需要有大于64KB 的数据存储器。 二、设计方案 在以往的扩展大容量数据存储器的设计中,一般是用单片机的IO口直接控制大容量数据存储器的片选信号来实现,但是这种设计在运行以C51编写的程序(以LARGE 方式编译)时往往会出现系统程序跑飞的问题,尤其是在程序访问大容量数据存储器(如FLASH)的同时系统产生异常(如中断),由于此时由IO 口控制的片选使FLASH 被选中而SRAM 无法被选中,堆栈处理和函数参数的传递无法实现从而导致程序跑飞的现象。文章介绍一种基于CPLD 的大容量数据存储器的扩展系统,避免了上述问题的产生,提高了扩展大容量数据存储器系统的可靠性。该系统MCU 采用89C52,译码逻辑的实现使用了一片EPM7128 CPLD 芯片,系统扩展了一片128K 的SRAM,一片4M 字节的NOR FLASH,以上芯片均为5V 供电。

ARM存储器结构

ARM存储器结构 ARM存储器:片内Flash、片内静态RAM、片外存储器 映射就是一一对应的意思。重映射就是重新分配这种一一对应的关系。 我们可以把存储器看成一个具有输出和输入口的黑盒子。输入量是地址,输出的是对应地址上存储的数据。当然这个黑盒子是由很复杂的半导体电路实现的,具体的实现的方式我们现在不管。存储单位一般是字节。这样,每个字节的存储单元对应一个地址,当一个合法地址从存储器的地址总线输入后,该地址对应的存储单元上存储的数据就会出现在数据总线上面。 普通的单片机把可执行代码和数据存放到存储器中。单片机中的CPU从储器中取指令代码和数据。其中存储器中每个物理存储单元与其地址是一一对应而且是不可变的,UGG boots。 而ARM比较复杂,ARM芯片与普通单片机在存储器地址方面的不同在于:ARM芯片中有些物理存储单元的地址可以根据设置变换。就是说一个物理存储单元现在对应一个地址,经过设置以后,这个存储单元就对应了另外一个地址了(这就是后面要说的重新映射)。例如将0x00000000地址上的存储单元映射到新的地址0x00000007上。CPU存取0x00000007就是存取0x00000000上的物理存储单元。(随便举的例子为了说明道理,没有实际意义) 存储器重新映射(Memory Re-Map) 存储器重新映射是将复位后用户可见的存储器中部分区域,再次映射到其他的地址上。 存储器重新映射包括两个方面:1、Boot Block重新映射(关于Boot Block的相关内容看我博客中的另一篇文章)。2、异常(中断)向量重新映射 Boot Block重新映射:本来Boot Block在片内Flash的最高8KB,但是为了与将来期间相兼容,生产商为了产品的升级换代,在新型芯片中增加内部Flash容量时,不至于因为位于Flash高端的Boot Block的地址发生了变化而改写其代码,整个Boot Block都要被重新映射到内部存储器空间的顶部,即片内RAM的最高8KB。(地址为: 0x7FFFE000~0x7FFFFFFF) 异常(中断)向量重新映射:本来中断向量表在片内Flash的最低32字节,重新映射时要把这32个字节再加上其后的32个字节(后面这32个字节是存放快速中断IRQ的服务程序的)共64个字节重新映射(地址为:0x00000000~0x0000003F)重新映射到的地方有三个:内部Flash高端的64字节空间、内部RAM低端的64字节空间和外部RAM低端的64字节空间,再加上原来的内部Flash低端的64字节空间,异常向量一共可以在四个地方出现。为了对存储器映射进行控制,处理器设置了存储器映射控制寄存器MEMMAP,其控制格式如下图所示:

第3章习题--存储系统

第3章存储系统 一.判断题 1.计算机的主存是由RAM和ROM两种半导体存储器组成的。 2.CPU可以直接访问主存,而不能直接访问辅存。 3.外(辅)存比主存的存储容量大、存取速度快。 4.动态RAM和静态RAM都是易失性半导体存储器。 5.Cache的功能全部由硬件实现。 6.引入虚拟存储器的目的是为了加快辅存的存取速度。 7.多体交叉存储器主要是为了解决扩充容量的问题。 8.Cache和虚拟存储器的存储管理策略都利用了程序的局部性原理。 9.多级存储体系由Cache、主存和辅存构成。 10.在虚拟存储器中,当程序正在执行时,由编译器完成地址映射。 二.选择题 1.主(内)存用来存放。 A.程序 B.数据 C.微程序 D.程序和数据 2.下列存储器中,速度最慢的是。 A.半导体存储器 B.光盘存储器 C.磁带存储器 D.硬盘存储器 3.某一SRAM芯片,容量为16K×1位,则其地址线有。 A.14根 B.16K根 C.16根 D.32根 4.下列部件(设备)中,存取速度最快的是。 A.光盘存储器 B.CPU的寄存器 C.软盘存储器 D.硬盘存储器 5.在主存和CPU之间增加Cache的目的是。 A.扩大主存的容量 B.增加CPU中通用寄存器的数量 C.解决CPU和主存之间的速度匹配 D.代替CPU中的寄存器工作 6.计算机的存储器采用分级存储体系的目的是。 A.便于读写数据 B.减小机箱的体积 C.便于系统升级 D.解决存储容量、价格与存取速度间的矛盾 7.相联存储器是按进行寻址的存储器。 A.地址指定方式 B.堆栈存取方式 C.内容指定方式 D.地址指定与堆栈存取方式结合 8.某SRAM芯片,其容量为1K×8位,加上电源端和接地端后,该芯片的引出线的最少数目应为。 A.23 B.25 C.50 D.20 9.常用的虚拟存储器由两级存储器组成,其中辅存是大容量的磁表面存储器。 A.主存—辅存 B.快存—主存 C.快存—辅存 D.通用寄存器—主存 10.在Cache的地址映射中,若主存中的任意一块均可映射到Cache内的任意一快的位置上,则这种方法称为。 A.全相联映射 B.直接映射 C.组相联映射 D.混合映射 三.填空题

AT89C51的内部结构和功能

AT89C51的内部结构和功能 AT89C51单片机内部主要有以下部件:8031CPU、振荡电路、总线控制部件、中断控制部件、片内Flash存储器、片内RAM、并行I/O接口、定时器和串行I/O接口。 AT89C51单片机内部由CPU、4KB的FPEROM ,128B的RAM,两个16位的定时/计数器T0和T1,4个8位的I/O端P0、P1、P2、P3等组成。在内部含有4KB或8KB可重复编程的Flash存储器,可进行1000次擦写操作。全静态工作为0-24MHZ,有3级程序锁存器,内部含有128-256字节的RAM,有32条可编程I/O口线,2-3个16位定时/计数器,6-8个中断源,通用的串行接口,低电压空闲及电源下降方式。 单片微机内部最核心的部分是CPU。CPU主要功能是产生各种控制信号,控制存储器、输入/输出端口的数据传输、数据的算术运算、逻辑运算以及位操作处理等,CPU按其功能可分为运算器和控制器两部分。控制器由程序计数器PC、指令储存器、指令译码器、实时控制与条件转移逻辑电路等组成。它的功能是对来自存储器中的指令进行译码,通过实时控制电路,在规定的时刻发出各种操作所需的内部和外部的控制信号,使各部分协调工作,完成指令所规定的操作。运算器由算术逻辑器部件ALU、累加器ACC、暂存器、程序状态字寄存器PSW,BCD码运算调整电路等组成。 为了提高数据处理和位操作功能,片内增加了一个通用寄存器B和一些专用寄存器,还增加了位处理逻辑电路的功能。其内部结构如图2-2所示。 图2-2 AT89C51单片机的内部结构图 AT89C51的主要性能包括:AT89C51与MCS—51控制器系列产品兼容,片内有4K可在线重复编程闪速电擦除存储器(Flash Memory),存储器可循环写入/擦除1000次;存储器数据保存时间可达10年;工作电压范围宽:Vcc可由

MCS-51单片机存储器结构

MCS-51单片机在物理结构上有四个存储空间: 1、片内程序存储器 2、片外程序存储器 3、片内数据存储器 4、片外数据存储器 但在逻辑上,即从用户的角度上,8051单片机有三个存储空间: 1、片内外统一编址的64K的程序存储器地址空间(MOVC) 2、256B的片内数据存储器的地址空间(MOV) 3、以及64K片外数据存储器的地址空间(MOVX) 在访问三个不同的逻辑空间时,应采用不同形式的指令(具体我们在后面的指令系统学习时将会讲解),以产生不同的存储器空间的选通信号。 程序内存ROM 寻址范围:0000H ~ FFFFH 容量64KB EA = 1,寻址内部ROM;EA = 0,寻址外部ROM 地址长度:16位 作用:存放程序及程序运行时所需的常数。 七个具有特殊含义的单元是: 0000H ——系统复位,PC指向此处; 0003H ——外部中断0入口 000BH —— T0溢出中断入口

0013H ——外中断1入口 001BH —— T1溢出中断入口 0023H ——串口中断入口 002BH —— T2溢出中断入口 内部数据存储器RAM 物理上分为两大区:00H ~ 7FH即128B内RAM 和SFR区。 作用:作数据缓冲器用。 下图是8051单片机存储器的空间结构图 程序存储器 一个微处理器能够聪明地执行某种任务,除了它们强大的硬件外,还需要它们运行的软件,其实微处理器并不聪明,它们只是完全按照人们预先编写的程序而执行之。那么设

计人员编写的程序就存放在微处理器的程序存储器中,俗称只读程序存储器(ROM)。程序相当于给微处理器处理问题的一系列命令。其实程序和数据一样,都是由机器码组成的代码串。只是程序代码则存放于程序存储器中。 MCS-51具有64kB程序存储器寻址空间,它是用于存放用户程序、数据和表格等信息。对于内部无ROM的8031单片机,它的程序存储器必须外接,空间地址为64kB,此时单片机的端必须接地。强制CPU从外部程序存储器读取程序。对于内部有ROM的8051等单片机,正常运行时,则需接高电平,使CPU先从内部的程序存储中读取程序,当PC值超过内部ROM的容量时,才会转向外部的程序存储器读取程序。 当=1时,程序从片内ROM开始执行,当PC值超过片内ROM容量时会自动转向外部ROM空间。 当=0时,程序从外部存储器开始执行,例如前面提到的片内无ROM的8031单片机,在实际应用中就要把8031的引脚接为低电平。 8051片内有4kB的程序存储单元,其地址为0000H—0FFFH,单片机启动复位后,程序计数器的内容为0000H,所以系统将从0000H单元开始执行程序。但在程序存储中有些特殊的单元,这在使用中应加以注意: 其中一组特殊是0000H—0002H单元,系统复位后,PC为0000H,单片机从0000H 单元开始执行程序,如果程序不是从0000H单元开始,则应在这三个单元中存放一条无条件转移指令,让CPU直接去执行用户指定的程序。 另一组特殊单元是0003H—002AH,这40个单元各有用途,它们被均匀地分为五段,它们的定义如下: 0003H—000AH 外部中断0中断地址区。 000BH—0012H 定时/计数器0中断地址区。

大容量存储设备

第 2 章大容量存储设备- 磁盘阵列 2.1 大容量存储设备的概念 所谓大容量硬盘,在磁盘阵列的概念中,并不是指市场上所卖的9GB, 18GB, 36GB, 90GB,180GB的单个硬盘容量较大叫大容量。而是指将这些单个硬盘透过RAID的技术,按RAID LEVEL组合成更大容量的硬盘。例如从100GB. 800GB或到更大的5000GB(5TB),依单个硬盘的个数,容量,可组合成不同超大容量的磁盘阵列系统,从主机端来看磁盘阵列,是一个超大硬盘,同样的与单个盘一样的可以分不同的区域(LUN) 。此超大硬盘的功能,则要视你所选择的RAID Level的级别,有着不同的功能(可参考Appendix A 的章节)。然而未来市场对容量的需求由目前的Gigabytes(GB)到Terabytes(TB, 1 TB = 1000GB)进而到Petabytes(PB, 1PB = 1000TB),相当于1,000,000,000,000,000个位,也就是10的15次方位元。这种大容量存储已经撑爆SCSI硬盘所能支持的程度,针对存取速度和硬盘数量的提高,显而易见的取代方案只有光纤通道仲裁回路也就是所谓的FC-AL(Fibre Channel Arbitrated Loop),在此我们要强调的Ultra 2, Ultra 3(Ultra 160), Fibre Channel的磁盘阵列所用的CPU不能用以586 CPU为主了,因为速度是一大问题,必须是以Intel i960 RISC CPU为主(主要的理由在前言及第4章都有说明)。硬盘的存储方式就是所谓的动态存储,而磁带机不同,则是有顺序的,由前向后,或由后向前存取因而速度较慢,另外CD-ROM,或MO,虽是属动态存储,但速度仍然较硬盘慢,另外一点由CD-ROM组合成的CD-ROM Server or MO Server只是由一个管理程序所

存储器结构

第四章存储器结构 4.3 存储器容量扩展 微机系统中主存储器通常由若干存储芯片及相应的存储控制组织而成,并通过存储总线(数据总线、地址总线和控制总线)与CPU及其他部件相联系,以实现数据信息、控制信息的传输。由于存储器芯片的容量有限,实际应用中对存储器的字长和位长都会有扩展的要求。 一、存储器字扩展 *字扩展是沿存储字向扩展,而存储字的 位数不变。 *字扩展时,将多个芯片的所有地址输入 端、数据端、读/写控制线分别并联 在一起,而各自的片选信号线则单独 处理。 *4块内存芯片的空间分配为: 第一片,0000H-3FFFH 第二片,4000H-7FFFH 第三片,8000H-BFFFH 第四片,C000H-FFFFH 二、存储器位扩展 *存储器位扩展是沿存储字的位向扩展, 而存储器的字数与芯片的字数相同。 *位扩展时 将多个芯片的所有地址输入端都连接 在一起; 而数据端则是各自独立与数据总线连 接,每片表示一位 *片选信号线则同时选中多块芯片,这些 被选中的芯片组成了一个完整的存储 字。

三、存储器位字扩展 *存储器需要按位向和字向同时扩展,称存储器位字扩展 *对于容量为 M×N 位的存储器,若使用 L×K 位的存储芯片, 那么,这个存储器所需的芯片数量为:(M/L)×(N/K) 块。 P160图4-3-3表示了一个用2114芯片构成的4KB存储器。如下图: *2114芯片是1K×4R 芯片 *用2块2114芯片构成1组(1K×4×2=1K×8) *再有4组构成4K×8(1K×8×4)位的存储器 *共计需用8块2114芯片 这4个组的选择: *使用A0和A11作地址线:经译码后选择4个分组 *使用A0~A9作为组内的寻址信号 *数据总线为D0~D7 ◆存储器容量的扩展方法总结: 字扩展(将多个芯片的所有地址输入端、数据端、读/写控制线分别都连接在一起,选片信号单独处理) 位扩展(数据线独立处理,选片信号选中多块芯片) 字位扩展(分组,每组又有多个芯片),见(PAGE 161)

第7章 存储器分层体系结构 复习要点

第7章存储器分层体系结构复习要点 一、存储器概述和存储器芯片 1. 熟悉随机存取存储器、顺序存取存储器、直接存取存储器、相联存储器、只读存储器、读写存储器、非易失(不挥发)性存储器、易失(挥发)性存储器、静态存储器、动态存储器这些名称的含义。这些类型的存储器在计算机的层次结构存储系统中 按工作性质/存取方式分类: 随机存取存储器(RAM) :每个单元读写时间一样,且与各单元所在位置无关。如:内存。(注:原意主要强调地址译码时间相同。现在的DRAM芯片采用行缓冲,因而可能因为位置不同而使访问时间有所差别。) 顺序存取存储器(SAM):数据按顺序从存储载体的始端读出或写入,因而存取时间的长短与信息所在位置有关。例如:磁带。 直接存取存储器(DAM):直接定位到读写数据块,在读写数据块时按顺序进行。如磁盘。相联存储器(AM/CAM):按内容检索到存储位置进行读写。例如:快表。 按信息的可更改性分类: 读写存储器(Read / Write Memory):可读可写。 只读存储器(Read Only Memory):只能读不能写。 按断电后信息的可保存性分类: 非易失(不挥发)性存储器(Nonvolatile Memory) 信息可一直保留,不需电源维持。(如:ROM、磁表面存储器、光存储器等) 易失(挥发)性存储器(Volatile Memory) 电源关闭时信息自动丢失。(如:RAM、Cache)按功能/容量/速度/所在位置分类: 寄存器(Register)封装在CPU内,用于存放当前正在执行的指令和使用的数据;用触发器

实现,速度快,容量小(几~几十个)。 高速缓存(Cache)位于CPU内部或附近,用来存放当前要执行的局部程序段和数据;用SRAM实现,速度可与CPU匹配,容量小(几MB)。 内存储器MM(主存储器Main (Primary) Memory)位于CPU之外,用来存放已被启动的程序及所用的数据;用DRAM实现,速度较快,容量较大(几GB)。 外存储器AM (辅助存储器Auxiliary / Secondary Storage)位于主机之外,用来存放暂不运行的程序、数据或存档文件;用磁表面或光存储器实现,容量大而速度慢。 2. 层次结构存储系统中的寄存器、高速缓存、内存(主存)、外存它们所在的位置、工作速度、存储容量、成本等的相对大小和大致的数量级。这些存储器和前述各类存储器之间的对应关系。 3. 静态存储器和动态存储器的基本工作机制;动态存储器刷新的概念,按行刷新的含义。最大刷新周期的确定的依据是什么。DRAM的集中刷新、分散刷新和异步刷新的刷新操作与正常访存分别是如何安排的? 4. 了解SDRAM芯片中的突发传输方式 二、存储器容量的扩展及其与CPU的连接 1. 位扩展、字扩展、字位扩展方式,系统存储容量的计算,芯片数的计算,这几种扩展方式下的芯片(组)与片选信号的地址线分配,各芯片(组)的地址范围的计算、划分。片选信号用地址信号表示的逻辑表达式。 三、高速缓冲存储器(cache) 1. 直接映射、全相联映射、组相联映射三种方式映射关系;三种方式下的主存地址与cache 的行、内容之间的对应关系;cache容量的计算方法,注意区分数据区、标记、有效位。 2. CPU对cache的访问时,直接映射采用的是按地址进行查找的方法,而全相联映射采用

ATC单片机的基本结构和工作原理

A T C单片机的基本结构 和工作原理 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

AT89C51单片机的主要工作特性: ·内含4KB的FLASH存储器,擦写次数1000次; ·内含28字节的RAM; ·具有32根可编程I/O线; ·具有2个16位可编程定时器; ·具有6个中断源、5个中断矢量、2级优先权的中断结构; ·具有1个全双工的可编程串行通信接口; ·具有一个数据指针DPTR; ·两种低功耗工作模式,即空闲模式和掉电模式; ·具有可编程的3级程序锁定定位; AT89C51的工作电源电压为5(1±)V且典型值为5V,最高工作频率为24MHz. AT89C51各部分的组成及功能:

1.中央处理器 1.单片机的中央处理器(CPU)是单片机的核心,完成运算和操作控制,主要包括运算器和控制器两部分。 以及位操作中的位置位、位复位等。 暂存器1和暂存器2是ALU的两个输入,用于暂存参与运算的数据。ALU的输出也是两个:一个是累加器,数据经运算后,其结果又通过内部总线返回到累加器;另一个是程序状态字PSW,用于存储运算和操作结果的状态。

累加器是CPU使用最频繁的一个寄存器。ACC既是ALU处理数据的来源,又是ALU运算结果的存放单元。单片机与片外RAM或I/O扩展口进行数据交换必须通过ACC来进行。 B寄存器在乘法和除法指令中作为ALU的输入之一,另一个输入来自ACC。运算结果存于AB寄存器中。 (2)控制器 控制器是识别指令并根据指令性质协调计算机内各组成单元进行工作的部件,主要包括程序计数器PC、PC增量器、指令寄存器、指令译码器、定时及控制逻辑电路等,其功能是控制指令的读入、译码和执行,并对指令执行过程进行定时和逻辑控制。AT89C51单片机中,PC是一个16位的计数器,可对64KB程序存储器进行寻址。复位时PC的内容是0000H. (3)存储器 单片机内部的存储器分为程序存储器和数据存储器。AT89C51单片机的程序存储器采用4KB的快速擦写存储器Flash Memory,编程和擦除完全是电器实现。 (4)外围接口电路 AT89C51单片机的外围接口电路主要包括:4个可编程并行I/O 口,1个可编程串行口,2个16位的可编程定时器以及中断系统等。 AT89C51的工作原理: 1.引脚排列及功能 AT89C51的封装形式有PDIP,TQFP,PLCC等,现以PDIP为例。

单片机大容量数据存储器的扩展

目录 一、 1.1摘要 (2) 1.2关键词 (2) 1.3基本原理 (2) 二、设计方案 (2) 三、硬件设计 (2) 2.1系统的硬件设计及功能 (2) 2.2各元件的功能及作用 (3) 2.3简单大容量数据存储器系统扩展 (8) 三、系统软件设计 (10) 四、结束语 (12) 参考文献 (13)

一、 1.1摘要 在单片机构成的实际测控系统中,仅靠单片机内部资源是不行的,单片机的最小系统也常常不能满足要求,因此,在单片机应用系统硬件设计中首先要解决系统扩展问题。51单片机有很强的外部扩功能,传统的用IO口线直接控制大容量数据存储器的片选信号的扩展系统存在运行C51编译的程序时容易死机的缺点。文中介绍了一种改进的基于CPLD的51系列单片机大容量数据存储器的扩展方法,包括硬件组成和软件处理方法。 1.2关键词 CPLD 数据存储器 EPM7128 1.3基本原理 MCS-51 单片机系统扩展时,一般使用P0 口作为地址低8位(与数据口分时复用),而P2口作为地址高8位,它共有16根地址总线,最大寻址空间为64KB。但在实际应用中,有一些特殊场合,例如,基于单片机的图像采集传输系统,程控交换机话单的存储等,需要有大于64KB 的数据存储器。 二、设计方案 在以往的扩展大容量数据存储器的设计中,一般是用单片机的IO口直接控制大容量数据存储器的片选信号来实现,但是这种设计在运行以C51编写的程序(以LARGE 方式编译)时往往会出现系统程序跑飞的问题,尤其是在程序访问大容量数据存储器(如FLASH)的同时系统产生异常(如中断),由于此时由IO 口控制的片选使FLASH 被选中而SRAM 无法被选中,堆栈处理和函数参数的传递无法实现从而导致程序跑飞的现象。文章介绍一种基于CPLD 的大容量数据存储器的扩展系统,避免了上述问题的产生,提高了扩展大容量数据存储器系统的可靠性。该系统MCU 采用89C52,译码逻辑的实现使用了一片EPM7128 CPLD 芯片,系统扩展了一片128K 的SRAM,一片4M 字节的NOR FLASH,以上芯片均为5V 供电。 三、硬件设计 2.1 系统的硬件构成及功能 W241024A 是128K × 8 位的静态RAM,共需17 根地址线,其A0~A7 接经CPLD 锁存输出的

第6章 存储器层次结构

n局部性原理★ n存储器层次结构☆n高速缓存存储器☆

n到目前为止的计算机模型中,我们假设计算机的存储器系统是一个线性的字节数组,而CPU能够在一个常数时间内访问每个存储器位置。但它没有反映现代系统实际的工作方式。 n实际上,存储器系统是一个具有不同容量、成本和访问时间的存储设备的层次结构。 n如果你的程序需要的数据是存储在CPU寄存器中,那在指令的执行期间,在零个周期内就能访问到它们;如果存储在高速缓存中,需要1~30个周期;如存储在主存中,需要50~200个周期;如存储在磁盘上,需要大约几千万个周期 n作为一个程序员,需要理解存储器层次结构,它对应用程序的性能有着巨大的影响,这是因为计算机程序的一个称为局部性的基本属性引起的。

?不同矩阵乘法核心程序执行相同数量的算术操作,但有不同程度局部性,它们运行时间可以相差20倍 ?本章将介绍基本的存储技术、局部性、高速缓冲存储器等内容。

n局部性原理★ n存储器层次结构☆n高速缓存存储器☆

?RAM(随机访问存储器,Random-Access Memory )–静态RAM (SRAM) ?每个cell使用6个晶体管电路存储一个位 ?只要有电,就会无限期地保存它的值 ?相对来说,对电子噪声等干扰不敏感 ?比DRAM更快、更贵 –动态RAM (DRAM) ?每个cell使用1个电容和1个访问晶体管电路存储一个位 ?每隔10-100 ms必须刷新值 ?对干扰敏感 ?比SRAM慢,便宜 ü拍、太、吉、兆、千、毫、微、纳(毫微)、皮(微微)、飞(毫微微)

?传统DRAM芯片 –所有cell被组织为d个supercell,每个supercell包含了w个cell,一个d×w的DRAM总共存储了dw位信息。supercell被组织成r行c 列的矩阵,即rc=d。

大容量数据存储解决方案

大容量数据存储解决方案 大容量数据存储现状 人类已经步入一个数字化的信息时代,IT在社会生活的各个领域中正处于前所未有的关键地位。IT 部门的各种业务数据的数据量近年来呈几何级增加,这些数据必须存储很长的时间并且确保其可访问性。大量的业务数据保存在非常昂贵的第一层磁盘存储上不是一个明智的选择。虽然存储虚拟化技术有助于通过整合数据存储部分解决这一难题,但是,仔细分析他们的存储使用情况和性能需求,并实施分层的存储体系结构中,组织可以针对存储基础架构与业务需求寻求最佳解决方案。 新技术满足不断增长的存储需求 IT 管理人员的最大挑战之一,是大量数据高效、安全地长期保存,快速和简单管理维护。当下IT管理人员需要关注的主要问题是需要存储的数据的爆炸式增长。 根据"The Digital Universe"预测,"从现在到 2020 年,世界范围内创建和拷贝的数字信息的总量会难以置信的快速增长,各种媒体形式例如声音、电视、电台、电影、文档将不断从模拟存储转换到数字保存,数字宇宙将增长几乎快到 120 万 PB的容量或 1.2 ZB。这种爆炸式的增长意味着到 2020 年,我们的数据总量将比2009年增长44倍。短信、电子邮件、文档、图片、视频、社交网络,等等采用云存储服务和嵌入式的系统进行保存,他们将增长近67倍。虽然人在家里,但工作中还是在移动设备上进行,企业估计有70%的全数字化的信息内容存储在IT部门。因此,IT管理团队肩负着存储系统的基础设施建设以及数据安全保护的重任。 然而,文件的增长速度在很大程度上增加了存储管理员本已沉重和复杂的工作量。据IDC预测,到2020年,全球IT专业存储管理人员的数量增长速度仅为1.4。人才资源紧缺的存储管理员要管理更多的数据,IT部门必须提高运营效率。提升存储效率明显的技术至今已经有云计算、虚拟化技术,它利用虚拟化整合工作负载,提高资源利用率,最大限度地减少昂贵的空闲时间。IT部门还可以动态地分配硬件资源时需要它们的地方,无需过度配置,以满足高峰负荷的需求,综合系统提高IT效率,减少了管理存储系统的维护时间。

单片机AT89C51应用及结构功能

AT89C51单片机功能及应用和来源参考 主要性能参数: 与MCS-51产品指令系统完全兼容 4K字节可重檫写Flash闪速存储器 1000次檫写周期 全静态操作:0HZ-24MHZ 三级加密程序存储器 128*8字节内部RAM 32个可编程I/O口线 2个16位定时/记数器 6个中断源 可编程串行UART通道 低功耗空闲和掉电模式 功能特性概述: AT89C51提供以下标准功能:4K字节Flash闪速存储器,128字节内部RAM,32个I/O口线,两个16位定时/记数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。同时,AT89C51可降至0HZ的静态逻辑操作,并支持两种软件可选的节电工作模式。空闲方式停止CPU的工作,但允许RAM,定时/记数器,串行通信口及中断系统继续工作。掉电方式保存RAM中的内容,但振荡器停止工作直到下一个硬件复位。 AT89C51是美国ATMEL公司生产的低电压,高性能CMOS8位单片机,片内含4k bytes的可反复擦写的只读程序存储器(PEROM)和128 bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器(CPU)和Flash存储单元,功能强大AT89C51单片机可为您提供许多高性价比的应用场合,可灵活应用于各种控制领域。

AT89C51方框图

引脚功能说明 ·Vcc:电源电压 ·GND:地 ·P0 口:P0 口是一组8 位漏极开路型双向I/O 口,也即地址/数据总线复用口。作为输出口用时,每位能吸收电流的方式驱动8个TTL逻辑门电路,对端口写“1”可作为高阻抗输入端用。在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8位)和数据总线复用,在访问期间激活内部上拉电阻。在FIash 编程时,P0口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。 ·P1口:P1是一个带内部上拉电阻的8位双向I/O口,P1的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。FIash编程和程序校验期间,P1接收低8位地址。 ·P2口:P2是一个带有内部上拉电阻的8位双向I/O口,P2的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口,作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。在访问外部程序存储器或16位地址的外部数据存储器(例如执行MOVX@DPTR指令)时,P2口送出高8位地址数据。在访问8 位地址的外部数据存储器(如执行MOVX@RI 指令)时,P2 口线上的内容(也即特殊功能寄存器(SFR)区中R2寄存器的内容),在整个访问期间不改变。Flash编程或校验时,P2亦接收高位地址和其它控制信号 ·P3口:P3口是一组带有内部上拉电阻的8 位双向I/O 口。P3 口输出缓冲级可驱动(吸收或输出电流)4 个TTL逻辑门电路。对P3 口写入“1”时,它们被内部上拉电阻拉高并可作为输入端口。作输入端时,被外部拉低的P3 口将用上拉电阻输出电流(IIL)。 P3口除了作为一般的I/O口线外,更重要的用途是它的第二功能,如下表所示:

大容量存储数据的应用研究

1 绪论 1.1课题的背景与研究意义 随着科学技术的发展,通讯、导弹、航空航天等领域所需要存储的数据在飞速的增长,越来越多的场合需要用到大容量存储数据的解决方案,然而传统的基于硬盘、SD/MMC卡的存储方案,虽然能实现大容量存储数据的功能,但无论是系统成本、体积、功耗、易用性和可靠性等方面都不尽如人意,因此怎样有效的存储大量数据,并且能够保证其高速存取,就成为一个必须要解决的大问题[1]。 存储是数据之家。信息技术的三个最基本概念是处理、传输、存储,任何信息基础的设施与设备都是经过这三者的组合而成的。 对于一个大容量的存储数据系统,人们关注的问题是其纠错能力,传输速度和操作安装的简易性。而其中的关键技术是数据通讯技术。与此同时,对于一个系统,我们还需要考虑扩大存储容量、提高读写速度、减小体积和质量、降低功耗的问题[2]。 因此本课题就是要设计出一套能以较低的成本与功耗,而实现高速的、大容量的、高可靠性的数据存储解决方案。基于本文的具体应用,是在一个数据采集系统中对采集的数据、图像、声音、大容量影音录像的存储;以及对编程的代码、编码、译码、链接、软件类库的存储。 1.2 国内外研究现状 1.2.1国内研究现状 目前我们常用的存储技术有三种:半导体存储(RAM、ROM、Flash)技术的特点是存储速度快,容量小;而磁存储(硬盘、软盘、磁带)技术的特点是容量大,速度慢;光存储(CD、DVD、MO、PC、BD、全息)综合了两者的优点,有高存储密度、高信息输入速率、快速随机存取信息及存储寿命长等特点[3],但还达不到我们所需要的存储容量和速度。我们需要的是一种更加理想的存储技术,采用“固态RAM”,使得容量堪比硬盘,速度堪比内存,并且掉电后不丢失信息。下面将简单的介绍一下近些年国内发展出来的一些存储器: 中国科学院空间科学与应用研究中心是国内最早在卫星上采用固态存储器的单位之一[4],并且在实践5号中率先采用了以SDRAM为介质的固态大容量存储器,使得存储

AT89C51单片机的基本结构

A T89C51单片机的主要工作特性: ·内含4KB 的FLASH 存储器,擦写次数1000次; ·内含28字节的RAM ; ·具有32根可编程I/O 线; ·具有2个16位可编程定时器; ·具有6个中断源、5个中断矢量、2级优先权的中断结构; ·具有1个全双工的可编程串行通信接口; ·具有一个数据指针DPTR; ·两种低功耗工作模式,即空闲模式和掉电模式; ·具有可编程的3级程序锁定定位; AT89C51的工作电源电压为5(1±0.2)V 且典型值为5V,最高工作频率为24MHz. AT89C51各部分的组成及功能: 1. 中央处理器 1.单片机的中央处理器(CPU )是单片机的核心,完成运算和操作控制,主要包括运算器和控制器两部分。 振荡器和时钟电路 数据存储器 128字节 程序存储器 14KB CPU 两个16位定时器 计数器 中断 控制 总线扩展控制器 并行可编程 I/O 口 可编程 串行口 内部总线 外部中断 扩展控制 P0 P1 P2 P3 RXD TXD B 寄存AC 暂存器2 暂存器1 片内ROM 地址寄存器 PC 增量器 程序计数器 指令指令定时PSEN ALE

(1)运算器 运算器主要用来实现算术、逻辑运算和位操作。其中包括算术和逻辑运算单元ALU、累加器ACC、B寄存器、程序状态字PSW和两个暂存器等。 ALU是运算电路的核心,实质上是一个全加器,完成基本的算术和逻辑运算。算术运算包括加、减、乘、除、增量、减量、BCD码运算;逻辑运算包括“与”、“或”、“异或”、左移位、右移位和半字节交换,以及位操作中的位置位、位复位等。 暂存器1和暂存器2是ALU的两个输入,用于暂存参与运算的数据。ALU的输出也是两个:一个是累加器,数据经运算后,其结果又通过内部总线返回到累加器;另一个是程序状态字PSW,用于存储运算和操作结果的状态。 累加器是CPU使用最频繁的一个寄存器。ACC既是ALU处理数据的来源,又是ALU运算结果的存放单元。单片机与片外RAM或I/O扩展口进行数据交换必须通过ACC来进行。 B寄存器在乘法和除法指令中作为ALU的输入之一,另一个输入来自ACC。运算结果存于AB寄存器中。 (2)控制器 控制器是识别指令并根据指令性质协调计算机内各组成单元进行工作的部件,主要包括程序计数器PC、PC增量器、指令寄存器、指令译码器、定时及控制逻辑电路等,其功能是控制指令的读入、译码和执行,并对指令执行过程进行定时和逻辑控制。AT89C51单片机中,PC是一个16位的计数器,可对64KB程序存储器进行寻址。复位时PC的内容是0000H. (3)存储器 单片机内部的存储器分为程序存储器和数据存储器。AT89C51单片机的程序存储器采用4KB的快速擦写存储器Flash Memory,编程和擦除完全是电器实现。 (4)外围接口电路 AT89C51单片机的外围接口电路主要包括:4个可编程并行I/O口,1个可编程串行口,2个16位的可编程定时器以及中断系统等。 AT89C51的工作原理: 1.引脚排列及功能 AT89C51的封装形式有PDIP,TQFP,PLCC等,现以PDIP为例。 (1)I/O口线 ·P0口 8位、漏极开路的双向I/O口。 当使用片外存储器及外扩I/O口时,P0口作为低字节地址/数据复用线。在编程时,P0口可用于接收指令代码字节;程序校验时,可输出指令字节。P0口也可做通用I/O口使用,但需加上拉电阻。作为普通输入时,应输出锁存器配置1。P0口可驱动8个TTL负载。 ·P1口 8位、准双向I/O口,具有内部上拉电阻。 P1口是为用户准备的I/O双向口。在编程和校验时,可用作输入低8位地址。用作输入时,应先将输出锁存器置1。P1口可驱动4个TTL负载。 ·P2 8位、准双向I/O口,具有内部上拉电阻。 当使用外存储器或外扩I/O口时,P2口输出高8位地址。在编程和校验时,P2口接收高字节地址和某些控制信号。 ·P3 8位、准双向I/O口,具有内部上拉电阻。 P3口可作为普通I/O口。用作输入时,应先将输出锁存器置1。在编程/校验时,P3口接收某些控制信号。它可驱动4个TTL负载。 (2)控制信号线

相关主题