搜档网
当前位置:搜档网 › Accurate Thickness Estimation of a Backfill Grouting layer by CMP Measurement Using GPR

Accurate Thickness Estimation of a Backfill Grouting layer by CMP Measurement Using GPR

Accurate Thickness Estimation of a Backfill Grouting layer  by CMP Measurement Using GPR
Accurate Thickness Estimation of a Backfill Grouting layer  by CMP Measurement Using GPR

Accurate Thickness Estimation of a Backfill Grouting

Layer behind Shield Tunnel Lining by CMP

Measurement using GPR

Hai Liu

Graduate School of Environmental Studies, Tohoku

University, Sendai 980-8576, Japan

liuhai@cneas.tohoku.ac.jp

Xiongyao Xie

Department of Geotechnical Engineering, Tongji University,

Shanghai, 200092, China xiexiongyao@https://www.sodocs.net/doc/7011312716.html,

Motoyuki Sato

Center for Northeast Asian Studies, Tohoku University, Sendai 980-8576, Japan

sato@cneas.tohoku.ac.jp

Abstract —The distribution of a backfill grouting layer behind concrete lining of a shield tunnel is important for evaluation of its stability. In this paper, we proposed to use Common Mid-Point (CMP) method by Ground Penetrating Radar (GPR) to estimate the dielectric permittivity and thickness of the backfill grouting layer.We developed a CMP measurement system with two designed bowtie antennas. Field experiments were carried out in two shield tunnels in Shanghai, China in January 2012. One is the Yangzi River tunnel under operation and the other is the Changjiang Road tunnel under construction. Two datasets were acquired in each tunnel. Frequency wavenumber (FK) filter was applied to suppress the coherent clutter and enhance the hyperbolic reflection signal. A new algorithm of envelope velocity spectrum analysis was proposed for accurate estimation of dielectric permittivity and thickness of the grouting layer from processed CMP profiles.Both the grouting layers behind the tunnel under operation and that under construction can be clearly estimated.The thickness of grouting layer behind the investigated two segments in Yangzi River tunnel were respectively estimated to be 16 cm and 17 cm, a little less than the designed thickness of 20cm. In addition, air void was discovered inside the grouting layer behind one of the lining in Changjiang Road tunnel.This technique provides important information for evaluation of the safety of a tunnel, mitigation of the risk of ground settlement. Keywords-Ground Penetrating Radar (GPR);velocity spectrum;Common Mid-Point (CMP);shield tunnel; layer thickness; backfill grouting

I. I NTRODUCTION

As the rapid urbanization, more and more tunnels are constructed in underground to meet the increasing demand of transportation and preserve our surface environment. Fig.1 shows a current map of the layout of metro lines in Shanghai, China. A metro network of 434 km in a total length comprising 11 lines has been completed by 2011 and it will

expand to 25 lines and 877 km in total length by 2020.

Figure 1. Google map showing the layout of metro lines in Shanghai, China. Two investigated shiled tunnels are marked, namely Yangzi River tunnel and Changjiang Road tunnel under Hupangpu River.

Shield tunneling technique has been progressively adopted for tunnel construction. It allows for the subterraneous construction with little cover, in unstable ground and groundwater, without causing disturbance on the surface or major settlement [1]. For many urban infrastructures like subway, water supply system, sewerage, road tunnel under river, etc. which need to be constructed under severe subsurface condition and heavily built-up area, shield tunneling becomes the best choice [2].

As shown in Fig.2,a tunneling shield is a protective structure used in the excavation of tunnels through soft soil to remain stable.The excavation is made by a rotating cutter-head in the front end. The tunnel is then supported by a segmental lining that is continuously assembled by precast concrete lining segments inside the shield during the advance of the machine. To permit the advance of the shield machine, and for technological reasons, the excavation diameter is bigger than the external diameter of the final lining due to

Proceedings of the 14th International Conference on Ground Penetrating Radar

June 4-8, 2012, Shanghai, China

the thickness of the shield and to the overcutting necessary to permit the advancing of the shield. Therefore, around the lining there is an open space during the machine’s advance. The instantaneous backfilling of the annulus, which is made possible by grouting of cement mortar from grouting pipes at the end of the shield tail, is an operation of paramount importance. It plays a role of protective covering of a tunnel, which can stabilize the tunnel, make the tunnel waterproof and minimize the surface ground settlement and tunnel deformation [2,3]. Nevertheless, the distribution of the backfill grouting mortar cannot be as uniform as design and it is invisible in reality as illustrated in Fig. 3.An in-situ method to measure the distribution of the backfill grout is very important for evaluation of the safety of the tunnel and

mitigation of the risk of ground settlement.

Figure 2. The tunneling shield machine used for the construction of Yangzi River tunnel and Changjiang Road tunnel under Huangpu River in

Shanghai.

Figure 3. Schemaci diagram of the cross section of a shield tunnel.The

tunnel lining is assembled by precast concrete segments. The backfill grouting layer is unevenly distributed between the concrete lining and soil.

Among many geophysical techniques, Ground Penetrating Radar (GPR) proves to be an appropriate solution for detecting the backfill grouting mortar behind a shield tunnel due to its high resolution, fast and continuous data acquisition and adequate depth penetration [4-6]. Usually, GPR works in a common-offset (CO) mode, in which a transmitter-receiver set records the reflected electromagnetic (EM) wave from subsurface interface with dielectric contrast. We can simplify a shield tunnel as a two-layer model. The difference of dielectric property of concrete, mortar and soil makes GPR capable of detecting the reflected radar wave from the backside of segment and mortar/soil interface. The travel-time difference of the reflections from the bottom of a concrete lining and interface between the grouting mortar and soil could be utilized to estimate the thickness of the grouting layer. Nevertheless, the strong interfering scattering and multiple signal generated by the dense steel bar reinforcement embedded in the concrete segment can obscure or even overwhelm the target reflection signal from the mortar/soil interface [7]. It is desired to measure the grout distribution during the construction period, which enables a timely treatment when inadequate grouting or void in the grouting layer is observed. However, early-age mortar has an extremely large dielectric permittivity [6], and it leads to a big dielectric contrast between the concrete lining and grouting motor, which can result in a semi-waveguide inside the lining. EM wave of little energy can penetrate forward into the grouting layer and multi-reflection occurs on the backside of segments.What’s worse, the small dielectric contrast between the grouting motor and the saturated soil behind further weaken the target reflection. All these features greatly increase the difficulty of the task in the construction period. In reality, the mortar/soil interface is difficult to be identified in the CO GPR profile.

In this paper, we propose to use Common Mid-Point (CMP) method for estimation of the distribution of the backfill grouting layer behind a shield tunnel.In CMP method, the transmitter and receiver move apart from a common mid-point and multiple traces are recorded at different antenna offset. Comparing with the conventional CO method, CMP method can suppress the coherent and random noise [8], enhance Signal-to-Clutter Ratio (SCR) [9] by stacking signal at different offset. Moreover,it can estimate the EM velocity of the grouting mortar, which is critical not only for the accurate thickness estimation, but also for the quality characterization of the grouting layer behind the lining. To speed up the data acquisition, we developed a new CMP measurement system using two designed bowtie antennas. To examine its ability to imaging the grouting mortar at different curing age, we acquired four datasets in two field tunnels, one of which is under operation and the other is under construction. We applied a frequency wavenumber (FK) filter to suppress the coherent clutter and enhance the hyperbolic reflection signal. A new algorithm for velocity spectrum analysis of the CMP dataset was also proposed.We show that the dielectric permittivity and layer thickness of the backfill grouting can be accurately estimated.

II. CMP S YSTEM

To achieve the specific penetration requirement of about 1 m for the grouting mortar detection and better resolution, we designed two bowtie antennas as show in Fig. 4.Each antenna has a dimension of 25cm*17cm*8cm. It has a copper shield for minimization of the radiation and reception of EM wave behind the antenna, which is important in the special enclosed environment in a tunnel.

Figure 4. Bowtie antennas with copper shield

Frequency [GHz]

P o w e r [d B ]

(a)

-4

Time [ns]A m p l i t u d e

(b)

Figure 5. Transmission signal of the designed bowtie antenna. (a)

Frequency spectrum and (b) Time domain signal.

Figure 6. CMP measurement system

Fig. 5 shows the transmission signal measured in an anechoic chamber with an antenna separation of 1 m. We can see that this antenna has a broadband characteristic and can work in the frequency band from 250 MHz to 1.5 GHz as shown in Fig. 5(a). From the time domain signal in Fig. 5(b), we could find that the antenna transmits and receives almost a pure short pulse with a low level of ringing component. An antenna delay measurement was also conducted in anechoic chamber putting the antennas face to face. The transmission signal was recorded with distance between antennas ranging from 0.2 m to 1.4 m with a step of 0.1m. The antenna delay was estimated to be 2.02 ns.

As shown in Fig.6,two bowtie antennas were assembled to a wood structure for quick acquisition of a CMP dataset. A rotating shaft can drag the transmitter and receiver apart from the middle through a thin steel wire. The antenna offset could be changed from 21 cm to 138 cm with a step of 2 cm.

III. F IELD E XPERIMENTS

To examine the ability of CMP technique to image grouting mortar at different age, we carried out field experiments in two shield tunnels in Shanghai, China in January 2012, one of which is under operation and the other is under construction. Their locations are shown in Fig.1. Both of them are constructed by the same shield machine.Its diameter equals to 15.43 m, which was a world record at the time. The designs of the concrete lining segment and the composition of the grouting mortar of two tunnels are also the same. The design thicknesses of the lining segment and the grouting layer are respectively 65 cm and 20 cm. Since the tunnel lining is assembled by precast concrete segment, the actual thickness of tunnel lining is known as the design thickness. Thereby, the purpose of the estimation of the layer thickness of the backfill grouting layer is equivalent to determination of the depth of the interface between the grouting layer and soil. $

6KDQJKDL

Shanghai Yangzi River tunnel started to operate in October 2009.It connects the Pudong District in Shanghai and the Changxing island in the estuary of Yangzi River. It has a total length of 8.95 km, 6.97 km of which was constructed by the shield machine under Yangzi River. Its inner space is fully utilized and separated into three parts. Fans locate in the upper section, a six-lane highway occupies the middle section and the lower section accommodates a subway transit, two evacuation passageways and equipment pipes. Our experiment was carried out in one of the passageways and two datasets were acquired with the CMP system centered at the center of Lining #95 and #96. The direction of CMP survey line was in the longitudinal direction of the tunnel. %

6KDQJKDL &KDQJMLDQJ 5RDG 7XQQHO

Shanghai Changjiang Road Tunnel is one of the 18planned road tunnels under Huangpu River, which divides Shanghai city. It was still under construction and it will have a length of 2.8 km. The CMP measurement was conducted at

the haunch of the circular lining. Two datasets were acquired respectively at Lining #387 and #388.

The datasets in both tunnels were recorded in the frequency range from 10 MHz to 3 GHz with a sample number of 201 by Vector Network Analyzer (VNA).

IV. D ATA P ROCESSING

Fig. 7 shows one of the raw CMP profiles, which was acquired at the lining #95 in Shanghai Yangzi River tunnel. The raw dataset has been processed by time-zero correction, spherical exponential compensation gain [10] and a band-pass filter (10-500-2000-3000 MHz).

We could see clearly one hyperbolic event beginning from two-way travel-time of around 12 ns, which is the reflection from the backside of the concrete lining segment. However, the deeper events, especially the target reflection from the interface between the grouting layer and soil, could not be clearly seen. Several back-dipping events appearing in the far offset range are induced by the inclined stirrup steel bars embedded in concrete segment. In order to enhance to hyperbolic reflection event, we used frequency-wavenumber (FK) filter to filter out the coherent clutter [11]. Fig. 8 shows the FK spectrum of the raw CMP profile in dB scale. The energy of the hyperbolic reflection event is confined in the fan-shaped section. A FK filter shown in Fig. 8 was designed to filtered the energy of clutters. The CMP profile after FK filtering is shown in Fig. https://www.sodocs.net/doc/7011312716.html,paring with the raw CMP profile, we could find that FK filtering improves SCR. The reflection from the backside of the segment becomes smooth and clear. More than this, we can see another hyperbolic event beginning at the two-way travel-time of around 20 ns. It is considered to be the reflection from the interface between the grouting layer and soil.

Raw CMP profile

Distance (cm)

T i m e (n s )

Figure 7. Raw CMP profile.

2D Spectrum

F r e q u e n c y [

G

H z ]

Wavenumber [1/m]

0.5

11.522.53-60

-55-50-45-40-35-30-25-20Figure 8. Frequency-wavenumber (FK) spectrum

Wavenumber [1/m]

F r e q u e n c y [

G

H z ]

FK filter

0.5

11.522.530

0.10.20.30.4

0.50.60.70.80.91Figure 9. Designed FK filter

CMP profile

Distance (cm)

T i m e (n s )

Figure 10. CMP profile after FK filtering

V. V ELOCITY S PECTRUM A NALYSIS

Assuming that the subsurface media is homogeneous and horizontally layered, the two-way travel-time of reflected EM wave from a subsurface boundary is a hyperbolic function of the antenna offset as shown in (1).

()L ]W where Y is the radar velocity of medium above the planar reflector, ] is the depth of the horizontal reflector, L [is the antenna offset in the L -th channel.

Velocity spectrum has been commonly used to estimate propagation velocity in seismic data processing and also GPR data processing [12]. It is a robust method which displays the stacked coherency of signal in different channels along the hyperbolic curve defined by a range of trial velocity. The coherency usually is measured by semblance [13] which is computed from real amplitude of radar signal. Semblance is a function of two-way zero-offset travel-time and trial velocity, and the expression is given in (2).

2

12

1

()()

1L L L 1

L L L 6

I 1I W W §·

¨??1|| (2) where ()L L I W is the amplitude of signal acquired in the L -th channel at two-way travel-time L W .

However, GPR signal usually appears to have an oscillating characteristic due to the limited bandwidth restricted by the antenna resonance.Each reflection event will result in several responses, which makes the identification of the reflection events and determination of the arrival time confusing [14,15]. Radar signal can be converted to analytic signal by Hilbert transform. Since the envelope of a radar signal has only one peak, which makes the piking of arrival time of reflection signal simple, we proposed the envelop velocity spectrum, which was calculated from the analytic signal as shown in (3). It could be interpreted by the ratio of the output total power to the input total power [13].

2

12

1

()()

()()

1

L

L

L

L

L 1

L L L L L 6I J 1I J W W W W

|| (3)

where I W and J W are respectively the real part and imaginary part of the analytical signal obtained by Hilbert transform. Figure 11. Velocity spectrum

The calculated envelope velocity spectrum from the FK

filtered CMP profile is shown in Fig.11.Two reflection events of high energy are marked by $ and %. They correspond with the hyperbolic events beginning from the two way travel-time of around 12 ns and 18 ns respectively. We confirm that they are respectively the reflection form the backside of the concrete segment and that from the interface between grouting mortar and soil. By picking the maximum amplitude point of each reflection response in the velocity spectrum, the RMS velocities and two-way zero-offset travel-times of the reflections from the first interface ($) and the second interface (%) are determined respectively from the horizontal axis and vertical axis of the velocity spectrum. For the first layer, that is the concrete segment, the interval velocity int,1Y is the same as the RMS velocity of $as given in (4).

int,1,UPV $Y Y (4)

where

,UPV $Y denotes the RMS velocity of reflection

from the backside of concrete segment.

The thickness of the concrete segment 1

G could be estimated by (5)

1int,1$G Y W (5)

where $W denotes two-way zero-offset travel-time of reflection from the backside of concrete segment.

The interval velocity int,2Y of the second layer, that is the backfill grouting layer, is calculated by Dix equation [16] in

(6).

int,2Y

(6)

where

,UPV %Y denotes the RMS velocity of reflection

from the mortar/soil interface and %W denotes its two-way

zero-offset travel-time.

The thickness of the grouting layer 2G could be estimated by (7).

2int,2()%$G Y W W (7)

VI. R ESULTS

The estimated results of radar velocity and layer thicknesses of the first layer (concrete segment) and the second layer (grouting mortar) at four different tunnel lining are given in Table 1.

Velocity (m/ns)

T i m e (n s )

Velocity Spectrum

5

101520

0.2

0.4

0.6

0.8

A

B

T ABLE I.E STIMATED RADAR VELOCITY AND LAYER THICKNESS.

Velocity (m/ns)Layer thickness

(cm)

/1/2/1/2

Yangzi River Tunnel Lining #950.1050.04160.515.8 Lining #960.1050.04361.417.2

Huangpu River Tunnel Lining #3870.110.1659.329.4 Lining #3880.1050.04760.120.5

/1 and /2 respectively denote the first layer (Segment) and the second layer (Grouting layer).

VII. D ISCUSSION

The radar velocity of the concrete segment at four different lining segments are estimated to be around 0.105 m/ns, which gives the dielectric permittivity of 8.16. This agrees well with a previous study [5]. The thickness estimation results of the lining segments are also almost the same, round 60 cm. The actual thickness of the concrete segment is 65 cm. The small estimation error could be caused by the antenna positioning uncertainty during the experiment. The antenna was moved manually and the antenna offset was overestimated at some points.

The radar velocity of the grouting layer are estimated to be about 0.045 m/ns except at Lining #387 in Huangpu River tunnel, which gives the dielectric permittivity of 44. It means the grouting mortar is fully saturated with groundwater. This is in accordance with the fact that both tunnels are constructed beneath a river. The thicknesses of the grouting layer behind these three linings are respectively estimated to be 15.8 cm, 17.2 cm and 20.5 cm. Comparing with the design thickness of 20 cm, we could conclude that the grouting layer behind Lining #95 and Lining #96 in Yangzi River tunnel is inadequate.At Lining #387 in Changjiang Road tunnel under Huangpu River, the EM velocity of the grouting mortar is estimated to be 0.16 m/ns, which is evidently larger than other three locations. Considering that the EM velocity of air is 0.3 m/ns and the EM velocity of saturated grouting mortar and soil is less than 0.1 m/ns, the abnormal velocity of the grouting layer behind this segment could be caused the air voids remained in the grouting layer. This is reasonable that this segment was assembled several hours after excavation and air void can easily exist in the just grouted mortar during the measurement.

VIII. C ONCLUTSION

In this paper, we proposed to use CMP technique by GPR to image the grouting mortar distribution behind a shield tunnel. We developed a new GPR system, which includes two designed bowtie antennas and it enables fast CMP measurement. Field experiments were carried out in two shield tunnels in Shanghai. FK filter effectively improves SCR and enhances the hyperbolic events in the CMP profile. A new algorithm of envelope velocity spectrum analysis was proposed to estimate dielectric permittivity and thickness of the backfill grouting layer behind the lining segment.The results demonstrate the grouting mortar at different curing age, early age behind a tunnel under construction and old age behind a tunnel under operation, can be estimated. In addition, voids inside the grouting layer could also be identified. This technique will provide important information for evaluation of the safety of the tunnel, mitigation of the risk of ground settlement.

A new generation of CMP measurement system which enables automatic data acquisition and accurate position is going to be developed and more field experiments will be conducted.

A CKNOWLEDGMENT

This work was supported by JSPS Grant-in -Aid for Scientific Research (A) 23246076.

R EFERENCES

[1] B. Maidl, M. Herrenknecht, and L. Anheuser, Mechanised shield

tunnelling: Wiley-VCH, 1996.

[2]Y. Koyama, "Present status and technology of shield tunneling

method in Japan," Tunnelling and Underground Space Technology, vol. 18, pp. 145-159, 2003.

[3] D. Peila, L. Borio, and S. PELIZZA, "The behaviour of a two-

component back-filling grout used in a tunnel-boring machine," Acta Geotechnica Slovenica, vol. 1, pp. 4-15, 2011.

[4] F. Zhang, X. Xie, and H. Huang, "Application of ground penetrating

radar in grouting evaluation for shield tunnel construction,"

Tunnelling and Underground Space Technology, vol. 25, pp. 99-107, 2010.

[5]X. Xie, Y. Liu, H. Huang, J. Du, F. Zhang, and L. Liu, "Evaluation of

grout behind the lining of shield tunnels using ground-penetrating radar in the Shanghai Metro Line, China," Journal of Geophysics and Engineering, vol. 4, p. 253, 2007.

[6]H. Liu and X. Y. Xie, "Dielectric constant tests on soils behind shield

tunnel segment in Shanghai," Yantu Gongcheng Xuebao(Chinese Journal of Geotechnical Engineering), vol. 31, pp. 294-297, 2009. [7]Y. Zhao, J. Wu, X. Xie, J. Chen, and S. Ge, "Multiple suppression in

GPR image for testing back-filled grouting within shield tunnel,"

2010, pp. 1-6.

[8]J. H. Bradford, "Measuring water content heterogeneity using

multifold GPR with reflection tomography," Vadose Zone Journal, vol. 7, pp. 184-193, 2008.

[9]X. Feng, M. Sato, Y. Zhang, C. Liu, F. S. Shi, and Y. H. Zhao, "CMP

Antenna Array GPR and Signal-to-Clutter Ratio Improvement," Ieee Geoscience and Remote Sensing Letters, vol. 6, pp. 23-27, Jan 2009. [10] E. Gloaguen, M. Chouteau, D. Marcotte, and R. Chapuis, "Estimation

of hydraulic conductivity of an unconfined aquifer using cokriging of GPR and hydrostratigraphic data," Journal of Applied Geophysics, vol. 47, pp. 135-152, 2001.

[11]N. Hayashi and M. Sato, "f-k Filter Designs to Suppress Direct

Waves for Bistatic Ground Penetrating Radar," Geoscience and Remote Sensing, IEEE Transactions on, vol. 48, pp. 1433-1444, 2010.

[12]O. Yilmaz, Seismic data analysis: Society of Exploration

Geophysicists, 2001.

[13]N. Neidell and M. Taner, "Semblance and other coherency measures

for multichannel data," Geophysics, vol. 36, p. 482, 1971.

[14] A. D.Booth, R. A.Clark, and T. Murray, "Semblance response to a

ground-penetrating radar wavelet and resulting errors in velocity analysis," Near Surface Geophysics, vol. 8, pp. 235-246, 2010.

[15]H. Liu and M. Sato, "Robust estimation of dielectric constant by GPR

using an antenna array," in Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International, Vancouver, Canada, 2011, pp. 178-181.

[16] C. Dix, "Seismic velocities from surface measurements: Geophysics,

v. 20," 1955.

+RORJUDSKLF UDGDU $ VWUDWHJ\ IRU XQHYHQ VXUIDFHV

/ &DSLQHUL ) )LHVROL

'LSDUWLPHQWR (OHWWURQLFD H 7HOHFRPXQLFD]LRQL

8QLYHUVLWj GL )LUHQ]H

)LUHQ]H ,WDO\

FDSLQHUL#LHHH RUJ

& :LQGVRU

1HZ 5RDG

(DVW +DJERXUQH

'LGFRW 2; /' 8.

FROLQ ZLQGVRU#YLUJLQ QHW

Abstract ?Holographic radar gives a useful image of sub-surface objects under favorable conditions. However when the surface has undulations of many millimeters, or is broken by stones, or elevated areas of harder material, then images are obtained which may well be a partial representation to the surface height, but may obscure the buried objects under investigation. If these are, for example, anti-personnel mines or Improvised Explosive Devices, the consequences could be serious. A simple possible solution is explored here: that is to cover the rough surface with a smoothed layer of appropriate sand. A simulated mine was buried at 40 mm depth in rough sand containing many hard sandstones, several breaking the surface by a centimeter or so. The image was full of detail correlating with the surface structure and largely obscuring the mine. A layer of sand from the same source was then covered over the rough surface and approximately smoothed by a straight edge. The simulated mine became clear.

Keywords-component; RASCAN, holographic radar, uneven surfaces.

, ,1752'8&7,21

+RORJUDSKLF UDGDU > @ LV DQ LPSRUWDQW DGGLWLRQ WR WKH WHFKQLTXHV DYDLODEOH IRU VXEVXUIDFH LQYHVWLJDWLRQ )RU PLQH GHWHFWLRQ > @ EXULHG XWLOLW\ GHWHFWLRQ > @ LQVHFW LQIHVWDWLRQ > @ DQG DUFKDHRORJLFDO VWXGLHV > @ WKH VHQVLWLYLW\ RI KRORJUDSKLF UDGDU WR VPDOO FKDQJHV LQ WKH SKDVH RI WKH UHIOHFWHG UDGDU ZDYHV PDNHV LW FRPSOHPHQWDU\ WR FRQYHQWLRQDO SXOVH HFKR UDGDU 7KH 5$6&$1 V\VWHP > @ GHYHORSHG E\ WKH 5HPRWH 6HQVLQJ /DERUDWRU\ > @ DW %DXPDQ 0RVFRZ 6WDWH 7HFKQLFDO 8QLYHUVLW\ LV XVHG LQ WKH SUHVHQW VWXG\ ,W XVHV ILYH IUHTXHQFLHV IURP WR *+] DQG PHDVXUHV WKH UHIOHFWHG SKDVH IRU ERWK SDUDOOHO DQG FURVV SRODUL]DWLRQV ,Q DLU WKH ZDYHOHQJWK RI WKH UDGLDWLRQ O LV RI RUGHU O F Q ZKHUH F PV LV WKH YHORFLW\ RI OLJKW DQG Q LV WKH IUHTXHQF\ JLYLQJ PP $ PP FKDQJH LQ VXUIDFH KHLJKW WKHUHIRUH OHDGV WR DQ DSSUHFLDEOH SKDVH FKDQJH RI S R 4XLWH D VPRRWK VXUIDFH RU RUGHU PP LV WKHUHIRUH UHTXLUHG WR JLYH D JHQHUDOO\ VPRRWK EDFNJURXQG XSRQ ZKLFK WR REVHUYH EXULHG REMHFWV

,, $ 6,03/( 7(67 (;3(5,0(17

7KH 5$6&$1 ZDV VHW XS LQ WKH EDVHPHQW RI WKH (OHFWURQLFV DQG 7HOHFRPPXQLFDWLRQV 'HSDUWPHQW RI WKH 8QLYHUVLW\ RI )ORUHQFH $ ODUJH VDQG ER[ PP ORQJ PP ZLGH DQG PP GHHS ZDV ILOOHG ZLWK URXJK VDQG FRQWDLQLQJ D ODUJH QXPEHU RI KDUG VDQGVWRQHV PRVW RI ZKLFK KDG D VLPLODU GHQVLW\ WR WKH VDQG 1RWLQJ WKH ZHLJKW ORVV ZKHQ WKH VDQG ZDV KHDWHG LQ DQ RYHQ VKRZHG WKDW WKH VDQG ZDV HVVHQWLDOO\ GU\ ZDWHU FRQWHQW )LJXUH VKRZV WKH H[SHULPHQWDO VHWXS LQ WKH EDVHPHQW RI WKH 'HSDUWPHQW

)LJXUH $ SKRWRJUDSK RI WKH H[SHULPHQWDO VHWXS ,Q ILJXUH LV VKRZQ DQ H[DPSOH SORW RI WKH 3HPSW\′ VDQG ER[ ZKLFK FRQWDLQHG RQO\ VPRRWK VDQG IRU WKH ILUVW PP GHSWK DOWKRXJK WKHUH ZHUH OXPSV DW JUHDWHU GHSWKV 7KH XQLIRUP GLVSOD\ WKURXJKRXW WKLV SDSHU ZLOO EH WKH VXPPHG PRGXOXV LPDJH GHVFULEHG LQ > @

)LJXUH 7KH 5$6&$1 LPDJH RI WKH VDQG SLW FRQWDLQLQJ QR EXULHG REMHFWV 7KH REMHFW RQ WKH WRS OHIW LV D FRSSHU IRLO SRVLWLRQ PDUNHU 7KH FKDQJHV LQ JUD\ OHYHO UHSUHVHQW WKH UHPDLQLQJ VXUIDFH LUUHJXODULWLHV DQG VDQG

LQKRPRJHQLHWLHV

Proceedings of the 14th International Conference on Ground Penetrating Radar

June 4-8, 2012, Shanghai, China

7KLV FRQGHQVHV WKH LPDJHV LQWR RQH E\ VXPPLQJ WKH PRGXOXV RI WKH DPSOLWXGH DW HDFK SL[HO OHVV WKH EDFNJURXQG WDNHQ IURP WKH SHDN RI WKH DPSOLWXGH KLVWRJUDP RYHU WKH ZKROH LPDJH DQG DOVR VXPPLQJ RYHU WKH WZR SRODUL]DWLRQV 7KH JUD\ OHYHOV LQ DOO WKH ILJXUHV RI WKLV SDSHU ZLOO EH IL[HG DW RQH FKRVHQ OHYHO LQ IDFW DW ORJDULWKPLF LQWHUYDOV RYHU IDFWRUV RI WZR 7KHUH LV QR DXWR VFDOLQJ DV XVHG LQ WKH 5$6&$1 30XOWLVFDQ′ GLVSOD\

7KH QH[W H[SHULPHQW XVHG D SODVWLF VWULS RI GLPHQVLRQV PP ORQJ E\ PP ZLGH DQG PP WKLFN 7KLV ZDV SUHVVHG LQWR WKH VDQG VR WKDW LWV WRS ZDV OHYHO ZLWK WKH VXUIDFH 7KHQ LW ZDV UHPRYHG WR OHDYH D GHSUHVVLRQ PP GHHS ZLWK VORSLQJ VLGHV DQG SUHVVHG DJDLQ LQWR WKH VDQG DV VKRZQ LQ ILJXUH

)LJXUH $ERYH LV VHHQ WKH SODVWLF VWULS DQG LWV GHSUHVVLRQ LQWR WKH VDQG VXUIDFH %HORZ WKH 5$6&$1 VXPPHG PRGXOXV LPDJH 5XQ RI WKH VDQG SLW VKRZV WKH VDQG GHSUHVVLRQ DV WKH EULJKW XSSHU KRUL]RQWDO EDQG DQG WKH SODVWLF VWULS DV WKH IHLQW ORZHU EDQG $JDLQ WKH REMHFW RQ WKH WRS OHIW LV D FRSSHU PDUNHU

7KH ILJXUH VKRZV DQ H[WUHPHO\ FOHDU LQGLFDWLRQ RI WKH PP GHSUHVVLRQ LQ WKH VDQG PP LQ DLU FRUUHVSRQGV WR D SKDVH FKDQJH RI S R VR WKDW LW LV QRW DW DOO VXUSULVLQJ WKDW WKH GHSUHVVLRQ DSSHDUV VR EULJKW

1H[W D VLPXODWHG DQWL SHUVRQQHO PLQH ZDV EXULHG LQ WKH VDQG DW D GHSWK RI PP 7KLV ZDV D F\OLQGULFDO SODVWLF ER[ ZLWK D GLDPHWHU RI PP WKLFNQHVV PP VHH )LJXUH ,W ZDV ILOOHG ZLWK JUDQXODWHG VXJDU ZKRVH UHODWLYH GLHOHFWULF FRQVWDQW HVWLPDWHG LQ WKH UDQJH WKDW LV QRW IDU IURP WKDW RI H[SORVLYHV

)LJXUH 7KH PLQH EXULHG DW DERXW PP GHSWK LQ VPRRWKHG VDQG

5XQ

)LJXUH $ERYH LV VHHQ WKH URXJK VWRQ\ VXUIDFH RI WKH VDQG FRYHULQJ WKH PLQH %HORZ LV VHHQ WKH 5$6&$1 VXPPHG PRGXOXV LPDJH UXQ VKRZLQJ PDQ\ FKDQJHV LQ EULJKWQHVV 7KH OLJKW DQG GDUN DUHDV DW OHDVW SDUWO\ FRUUHVSRQG ZLWK WKH PHDVXUHG SHDNV DQG WURXJKV

7KH DUHD RYHU WKH PLQH ZDV FRYHUHG ZLWK OXPSV RI VDQGVWRQH DQG WKHQ OHIW ZLWK D URXJK VXUIDFH DV LOOXVWUDWHG RQ

)LJXUH 3ODVWLF ODQGPLQH VLPXODQW EXULHG DW PP LQ GU\ VDQG

7KH KHLJKWV DQG WURXJKV RI WKH XQGXODWLRQV ZHUH PHDVXUHG DQG WKHLU SRVLWLRQV 7KH GHHSHVW WURXJK ZDV VRPH PP DQG WKH KLJKHVW VXUIDFH PP VR WKDW LW ZDV OHYHO ZLWK WKH VXUIDFH RI WKH VDQG SLW HGJH $ VFDQ ZDV PDGH RYHU WKH VXUIDFH EXW DW D KHLJKW RI PP DERYH WKH KLJKHVW SDUW RI DQ\ VWRQH WR VLPXODWH D URERW VFDQQHU 7KH ORZHU SDUW RI ILJXUH VKRZV WKH VXPPHG PRGXOXV 5$6&$1 LPDJH ,W LV JHQHUDOO\ YHU\ EULJKW VXJJHVWLQJ PDQ\ RYHUODSSLQJ VLJQDOV 7KHUH LV QR SDUWLFXODU LQGLFDWLRQ RI WKH PLQH

7KH QH[W RSHUDWLRQ ZDV WR FRYHU WKH URXJK VWRQ\ VXUIDFH ZLWK D OD\HU RI VPRRWK VDQG DGMXVWHG WR FRYHU WKH SHDNV DQG WURXJKV LQ WKH SUHYLRXV LPDJH 7KLV SURYHG D VLPSOH RSHUDWLRQ DV WKH DPRXQW RI VDQG UHTXLUHG ZDV QRW ODUJH ± DURXQG PO IRU WKH VTXDUH PHWHUV RI VXUIDFH 7KLV FRUUHVSRQGV WR DQ DYHUDJH QHZ VDQG GHSWK RI DERXW PP ,W ZDV VPRRWKHG E\ SXVKLQJ WKH VDQG DFURVV WKH VXUIDFH XVLQJ D VWUDLJKW HGJH IURP RQH HQG WR DQRWKHU DV LQ WKH XSSHU SDUW RI )LJXUH 7KH ORZHU SDUW VKRZV WKH VXPPHG PRGXOXV LPDJH RI WKH VFDQ PP DERYH WKH VPRRWKHG VDQG VXUIDFH 7KH PLQH LV FOHDUO\ VHHQ QHDU WKH FHQWUH RI WKH LPDJH DQG PXFK RI WKH DPSOLWXGH YDULDWLRQ VHHQ LQ ILJXUH KDV GLVDSSHDUHG $ VLPSOH FRQWUROOHG LQGHQWDWLRQ RI VDQG WR PP GHSWK VKRZV WKH FRQVLGHUDEOH VHQVLWLYLW\ RI WKH *+] 5$6&$1 KRORJUDSKLF UDGDU WR VXUIDFH VPRRWKQHVV

&21&/86,216

$ VLPXODWHG SODVWLF PLQH ZDV EXULHG PP GHHS LQ D ODUJH VDQG ER[ DQG FRYHUHG ZLWK URXJK VDQGVWRQHV ZKLFK SDUWLDOO\ SURWUXGHG IURP WKH VXUIDFH WR PDNH D URXJK DQG XQHYHQ VXUIDFH ZLWK D VSUHDG RI DURXQG PP 7KH UHVXOWLQJ LPDJH VFDQQHG DW PP DERYH WKH WRS RI WKLV VXUIDFH VKRZHG D FRPSOH[ SDWWHUQ ZLWK PDQ\ EULJKW DQG GDUN DUHDV DW OHDVW SDUWLDOO\ FRUUHODWLQJ ZLWK WKH VXUIDFH XQGXODWLRQV $ OD\HU RI VLPLODU VDQG ZDV VSUHDG RYHU WKH URXJK VXUIDFH DQG URXJKO\ VPRRWKHG ZLWK D VWUDLJKW HGJH 7KH LPDJH DW PP DERYH WKH VXUIDFH ZDV PXFK LPSURYHG DQG VKRZHG WKH PLQH FOHDUO\

5()(5(1&(6

> @

,YDVKRY 6 , 5D]HYLJ 9 9 9DVLOLHY , $ =KXUDYOHY $ 9 %HFKWHO 7 ' &DSLQHUL / +RORJUDSKLF 6XEVXUIDFH 5DGDU RI 5$6&$1 7\SH 'HYHORSPHQW DQG $SSOLFDWLRQV ,(( -RXUQDO RI VHOHFWHG WRSLFV LQ DSSOLHG

HDUWK REVHUYDWLRQV DQG UHPRWH VHQVLQJ ±

)LJXUH 8SSHU ILJXUH LV DQ H[DPSOH RI WKH VDQG VPRRWKLQJ SUDFWLFH LQ RSHUDWLRQ /RZHU ILJXUH D VLPLODU VFDQ WR ILJXUH ZLWK WKH VPRRWKHG VDQG VXUIDFH VSUHDG RYHU WKH URXJK VWRQ\ VXUIDFH UXQ 7KH PLQH FDQ QRZ EH

VHHQ QHDU WKH FHQWUH RI WKH ILJXUH DV LQ ILJXUH > @

&DSLQHUL / ,YDVKRY 6 %HFKWHO 7 =KXUDYOHY $ )DORUQL 3 :LQGVRU & %RUJLROL * 9DVLOLHY , 6KH\NR $ &RPSDULVRQ RI *35 6HQVRU 7\SHV IRU /DQGPLQH 'HWHFWLRQ DQG &ODVVLILFDWLRQ WK ,QWHUQDWLRQDO &RQIHUHQFH RQ *URXQG 3HQHWUDWLQJ 5DGDU -XQH %LUPLQJKDP 8. ZZZ UVODE UX GRZQORDGV FDSLQHULBHWBDO SGI

> @

,YDVKRY 6 5D]HYLJ 9 9DVLOLHY , =KXUDYOHY $ %HFKWHO 7 &DSLQHUL / )DORUQL 3 /X 7 +RORJUDSKLF 6XEVXUIDFH 5DGDU DV D 'HYLFH IRU 1'7 RI &RQVWUXFWLRQ 0DWHULDOV DQG 6WUXFWXUHV ,QWHUQDWLRQDO 6\PSRVLXP RQ 1RQGHVWUXFWLYH 7HVWLQJ RI 0DWHULDOV DQG 6WUXFWXUHV 0D\ ,VWDQEXO 7XUNH\ ZZZ UVODE UX GRZQORDGV 1'706 SGI > @

%HFKWHO 7 &DSLQHUL / )DORUQL 3 ,QDJDNL 0 =KXUDYOHY $ 5D]HYLJ 5 ,YDVKRY , :LQGVRU & 'HWHFWLRQ RI /DWHQW 'DPDJH IURP ,QVHFW $FWLYLW\ LQ :RRGHQ 6WUXFWXUHV WKURXJK WKH 8VH RI +RORJUDSKLF 6XEVXUIDFH 5DGDU 3,(56 3URFHHGLQJV 0DUFK 0DUUDNHVK 0RURFFR ZZZ UVODE UX GRZQORDGV EHFKWHOBSUHVHQWDWLRQ SGI

> @

&DSLQHUL / )DORUQL 3 %RUJLROL * %XOOHWWL $ 9DOHQWLQL 6 ,YDVKRY 6 =KXUDYOHY $ 5D]HYLJ 9 9DVLOLHY $ 3DUDGLVR 0 ,QDJDNL 0 :LQGVRU & %HFKWHO 7 $SSOLFDWLRQ RI WKH 5$6&$1 +RORJUDSKLF 5DGDU WR &XOWXUDO +HULWDJH ,QVSHFWLRQV $UFKDHRORJLFDO 3URVSHFWLRQ SS

> @5HPRWH 6HQVLQJ /DERUDWRU\ ZHEVLWH ZZZ UVODE UX "ODQJ HQJOLVK

> @

:LQGVRU & * %XOOHWWL $ &DSLQHUL / )DORUQL 3 9DOHQWLQL * %RUJLROL 0 ,QDJDNL 0 %HFKWHO 7 ' %HFKWHO ( =KXUDYOHY $ DQG ,YDVKRY 6 $ 6LQJOH 'LVSOD\ IRU 5$6&$1 IUHTXHQF\ SRODULVDWLRQ +RORJUDSKLF 5DGDU 6FDQV 3,(56 21/,1( 9RO 1R SS

Development of Handheld GPR Using FieldFox Network Analyzer and Its Application in Detecting Structure of Qian Tang River Dike, Hang Zhou, China

) 1 .RQJ

(0 (DUWK &RQVXOWLQJ

2VOR 1RUZD\

.RQJ IDQQLDQ#JPDLO FRP

5 . %KDVLQ

1RUZHJLDQ *HRWHFKQLFDO ,QVWLWXWH

2VOR 1RUZD\

/ = :DQJ < * =KDQJ

,QVWLWXWH RI &RQVWUXFWLRQ

=KHMLDQJ 8QLYHUVLW\

+DQJ =KRX &KLQD

Abstract2 Agilent introduced FieldFox handheld network analyser in 2008. It has many attractive features for GPR engineers, such as wide bandwidth, low power consumption, light weighted and small size. To investigate the performance of using FieldFox as a GPR system, we have made following tests: (1) data acquisition speed tests (2) laboratory model tests (3) field tests. Test results show that a GPR based on Fieldfox is able to make high-resolution detections at different frequency bands. The highest frequency of Fieldfox is 6 GHz. This is a distinct feature comparing with other commercially available GPR systems. The Fieldfox based GPR can be very much suited for non-destructive testing of roads, bridges, river dykes, and testing inside buildings, tunnels etc.

Keywords-step frequency GPR, vector network analysor, handheld GPR, non-destructive testing

, ,1752'8&7,21

9HFWRU QHWZRUN DQDO\]HUV 91$ FDQ PDNH VWHS IUHTXHQF\ PHDVXUHPHQWV ZLWK KLJK SUHFLVLRQ KLJK G\QDPLF UDQJH DQG ZLGH EDQGZLGWK +HQFH WKH\ DUH VRPHWLPHV XVHG DV *35 WUDQVPLWWHUV DQG UHFHLYHUV .RQJ %\ DQG 6DWR HW DO +RZHYHU D 91$ IRU ODERUDWRU\ XVH H J $JLOHQW ( D LV KLJK ZHLJKW NJ ODUJH VL]H [ [ FP DQG ODUJH SRZHU FRQVXPSWLRQ 9$ ZKLFK QHHGV D JHQHUDWRU IRU HOHFWULFDO SRZHU 6XFK D 91$ EDVHG JURXQG SHQHWUDWLQJ UDGDU FDQ RQO\ EH XVHG ZKHUH D FDU FDQ UHDFK

7KH ( $ 91$ SURYLGHV YHFWRU QHWZRUN DQDO\VLV DW IUHTXHQF\ EDQG N+] WR *+] ZLWK HDV\ WR XVH IHDWXUH DQG ORZ FRVW DQG PD\ EH XVHG IRU EXLOGLQJ *35 V\VWHPV :H WKHUHIRUH XVH ( D IRU SHUIRUPDQFH FRPSDULVRQ LQ RXU GLVFXVVLRQV

$JLOHQW LQWURGXFHG )LHOG)R[ KDQGKHOG 91$ LQ 2FWREHU )RU *35 HQJLQHHUV IROORZLQJ IHDWXUHV RI )LHOG)R[ DUH DWWUDFWLYH

?,W FDQ PDNH YHFWRU SKDVH DQG PDJQLWXGH PHDVXUHPHQWV RYHU D ZLGH EDQGZLGWK IURP 0+] WR

*+]

?,W FRQVXPHV RQO\ : HOHFWULFDO SRZHU 7KHUHIRUH WKH EDWWHU\ RSHUDWLRQ PRGH FDQ EH HDVLO\

LPSOHPHQWHG $FFRUGLQJ WR WKH VSHFLILFDWLRQ RQH

VXSSOLHG EDWWHU\ FDQ ZRUN IRU KRXUV

?,W LV OLJKW ZHLJKWHG RQO\ NJ LQFOXGLQJ EDWWHU\ ZLWK D FRPSDFW VL]H PP ZLGWK PP OHQJWK

PP GHSWK

?,W KDV D /$1 SRUW IRU IDVW GDWD WUDQVIHU DQG 6&3, SURJUDPPLQJ WR FRPPXQLFDWH WR DQ DFTXLVLWLRQ

FRPSXWHU

?,W LV D FRPPHUFLDO SURGXFW ZLWK ORZ FRVW

7KH DERYH PHQWLRQHG IHDWXUHV VXSSRUW WKDW )LHOGIR[ LV VXLWDEOH IRU ILHOG XVH 7R HYDOXDWH WKH SRVVLELOLW\ RI XVLQJ )LHOG)R[ DV D *35 V\VWHP WKH IROORZLQJ LQYHVWLJDWLRQV DUH QHHGHG

0HDVXUHPHQW VSHHG

'\QDPLF UDQJH DQG QRLVH OHYHO

$ELOLW\ WR GHWHFW WDUJHWV LQ ILHOG PHDVXUHPHQWV DW GLIIHUHQW IUHTXHQF\ UDQJHV

,W LV UHSRUWHG WKDW D 91$ LV GHYHORSHG E\ 7RKRNX 8QLYHUVLW\ -DSDQ 6DWR HW DO ,W LV DOVR FRPSDFW DQG OLJKW ZHLJKWHG ZLWK VPDOO SRZHU FRQVXPSWLRQ ,I LW FDQ EH FRPPHUFLDOL]HG SHRSOH ZRUNLQJ LQ WKH *35 DUHD FDQ WKHQ KDYH PRUH KDUGZDUH WR FKRRVH WR EXLOG WKHLU RZQ KDQGKHOG VWHS IUHTXHQF\ UDGDU V\VWHPV

,, 0($685(0(17 7,0( $1' 6<67(0 '<1$0,&

5$1*(

,W LV ZHOO NQRZQ WKDW WKH QRLVH SRZHU DW WKH RXWSXW RI D UHFHLYHU LV SURSRUWLRQDO WR WKH UHFHLYHU EDQGZLGWK 7KH DGYDQWDJH RI XVLQJ D VWHS IUHTXHQF\ UDGDU V\VWHP LV WKDW WKH UHFHLYHU EDQGZLGWK VSHFLILHG DV ,)%: LQWHUPHGLDWH IUHTXHQF\ EDQGZLGWK FDQ EH PDGH UDWKHU VPDOO )RU LQVWDQFH RQH FDQ FKRRVH ,)%: +] IRU )LHOGIR[

,W LV DOVR ZHOO NQRZQ WKDW WKH PHDVXUHPHQW WLPH RU VZHHS WLPH LV LQYHUVHO\ SURSRUWLRQDO WR ,)%: 7KLV LV EHFDXVH WKH WUDQVLHQW WLPH IRU WKH UHFHLYHU IURP PHDVXULQJ RQH IUHTXHQF\ WR DQRWKHU IUHTXHQF\ LV LQYHUVHO\ SURSRUWLRQDO WR ,)%: ± D SULQFLSOH RI D OLQHDU V\VWHP

Proceedings of the 14th International Conference on Ground Penetrating Radar

June 4-8, 2012, Shanghai, China

从实践的角度探讨在日语教学中多媒体课件的应用

从实践的角度探讨在日语教学中多媒体课件的应用 在今天中国的许多大学,为适应现代化,信息化的要求,建立了设备完善的适应多媒体教学的教室。许多学科的研究者及现场教员也积极致力于多媒体软件的开发和利用。在大学日语专业的教学工作中,教科书、磁带、粉笔为主流的传统教学方式差不多悄然向先进的教学手段而进展。 一、多媒体课件和精品课程的进展现状 然而,目前在专业日语教学中能够利用的教学软件并不多见。比如在中国大学日语的专业、第二外語用教科书常见的有《新编日语》(上海外语教育出版社)、《中日交流标准日本語》(初级、中级)(人民教育出版社)、《新编基础日语(初級、高級)》(上海译文出版社)、《大学日本语》(四川大学出版社)、《初级日语》《中级日语》(北京大学出版社)、《新世纪大学日语》(外语教学与研究出版社)、《综合日语》(北京大学出版社)、《新编日语教程》(华东理工大学出版社)《新编初级(中级)日本语》(吉林教育出版社)、《新大学日本语》(大连理工大学出版社)、《新大学日语》(高等教育出版社)、《现代日本语》(上海外语教育出版社)、《基础日语》(复旦大学出版社)等等。配套教材以录音磁带、教学参考、习题集为主。只有《中日交流標準日本語(初級上)》、《初級日语》、《新编日语教程》等少数教科书配备了多媒体DVD视听教材。 然而这些试听教材,有的内容为日语普及读物,并不适合专业外语课堂教学。比如《新版中日交流标准日本语(初级上)》,有的尽管DVD视听教材中有丰富的动画画面和语音练习。然而,课堂操作则花费时刻长,不利于教师重点指导,更加适合学生的课余练习。比如北京大学的《初级日语》等。在这种情形下,许多大学的日语专业致力于教材的自主开发。 其中,有些大学的还推出精品课程,取得了专门大成绩。比如天津外国语学院的《新编日语》多媒体精品课程为2007年被评为“国家级精品课”。目前已被南开大学外国语学院、成都理工大学日语系等全国40余所大学推广使用。

语文课程论 名词解释

第一章语文课程与教学的发展沿革 一、古代语文教育教学的内容 原始社会没有严格意义的课程,但语文教育教学的内容已经存在。 奴隶社会有专门的学校和课程:六艺 封建社会以儒家经典为主,基本特点是:先教蒙学读物,集中识字;再学“五经”“四书”,传道明理; 以文选为补充读物和写作范本。 蒙学教材: 1、综合类:《史籀篇》、《仓颉篇》、《急就篇》、《三字经》、《百家姓》、《千字文》等 2、伦理类: 程端蒙的《性理字训》“天理流行,赋予万物,是之为命。人所禀受,莫非至善,是之谓性。” 清代李毓秀《弟子规》“弟子入则孝,出则弟,谨而信,泛爱信,而亲仁。行有余力,则以学文。” 文学教材: 《昭明文选》,宋代谢仿得《文章规范》,清代吴楚材、吴调侯《古文观止》,孙洙《唐诗三百首》等。 3、历史类: 宋代王令《十七史蒙求》;胡寅《续千字文》;朱熹《小学》 4、诗歌类:《千家诗》 5、名物常识类:《幼学琼林》,《龙文鞭影》 6、工具类:《字学举隅》,《文字蒙求》 二、古代语文教育的主要经验 (一)识字教学(二)阅读教学(三)写作教学 1、集中识字,为读写打基础1、熟读、精思、博览1、注重基本功的培养 2、韵文化,便于朗读和记诵2、注重方法习惯的培养:评点法、出入法2、多读、多写、多改 3、注重思想伦理道德的教育3、从模仿入手 4、联系日常生活4、先放后收 5、激发儿童的兴趣 科举制度: 起于隋朝的人才选拔和官吏任用制度。 唐朝科举分两类: 常科:秀才、明经、进士、明书、明法、明算。每年定期举行。 制科:皇帝主持,根据需要临时下令举行。 唐朝进士极盛时每年不超过50人,平常10到20人。进士及第还要经过吏部考试才能授官。 宋代极盛时每年有四五百人,平时也有上百人,进士及第就可授官。 考试内容和方式: 唐朝到宋朝初年:口试、贴经、墨义、策问、诗赋。宋以后主要考经义。 经义:以五经中的文句为题,作文阐明义理。到了元代,则从四书中出题,答案需从朱熹的《四书章句集注》,不得任意发挥。明代中期以后要求文章必须采用八股文的形式。字数和格式有严格的规定。分为“破题、承题、起讲、入手、起股、中股、后股、束股”550字、650字后改为700字。 第二节近现代语文教育 一、中国现代语文教育的兴起时期——语文单独设科(1901——1910) 1904年癸卯学制,标志语文学科的诞生。标志着中国的语文教育由传统向现代的演进,也标志着现代语文教学的兴起。 二、中国现代语文教育体系的形成时期——国语、国文课程标准纲要的制定(1911——1926) 辛亥革命后,中华民国临时政府颁布《普通教育暂行课程标准》,废止小学读经科,将各类学校的“中国文字”、“中国文学”课程更名为“国文”。并且明确了国文课的教学目标:“国文的要旨在于通解普通的语言文字,能自由发表思想;并使略解高深文字,涵养文学之兴趣,兼以启发德志。”为促进了语文教育的发展奠定了基础。三、1920年,北洋政府教育部通令全国,将小学、初中的“国文”改为“国语”,废止旧的国文教科书,采用语体文教科书,自此,文言文一统天下的局面被打破,现代白话文取得了合法的地位,开始占领语文教科书的阵地。第三节当代语文教育 一、语文学科名称的确立 1949年叶圣陶主持华北人民政府教科书编审工作,将新中国实施听说读写教育的学科正式定名为“语文”。这不

集合名词教你分清名词单复数

集合名词-教你分清名词单复数 集合名词 第一类 形式为单数,但意义可以用为单数或复数这类集合名词包括family(家庭)family,team(队),class(班),audience(听众)等, 其用法特点为:若视为整体,表示单数意义;若考虑其个体成员,表示复数意义。 比较并体会:His family is large. 他的家是个大家庭。 His family are all waiting for him. 他的一家人都在等他。 This class consists of 45 pupils. 这个班由45个学生组成。 This class are reading English now. 这个班的学生在读英语。 这个班的学生在读英语。

第二类 形式为单数,但意义永远为复数这类集合名词包括cattle(牛,牲畜)cattle,people(人),police(警察)等, 其用法特点为:只有单数形式, 但却表示复数意义,用作主语时谓语用复数;不与a(n) 连用,但可与the连用(连用)。 如:People will laugh at you. 人们会笑你的。 The police are looking for him. 警察在找他。 Many cattle were killed for this. 就因为这个原因宰了不少牲畜。 注:表示牲畜的头数,用单位词head(单复数同形)。如:five head of cattle 5头牛,fifty (head of) cattle 50头牛 第三类 形式为复数,意义也为复数这类集合名词包括goods(货物), clothes(衣服)等, 其用法特点是:只有复数形式(当然也表示复数意义,用作主语时谓

新视野大学英语全部课文原文

Unit1 Americans believe no one stands still. If you are not moving ahead, you are falling behind. This attitude results in a nation of people committed to researching, experimenting and exploring. Time is one of the two elements that Americans save carefully, the other being labor. "We are slaves to nothing but the clock,” it has been said. Time is treated as if it were something almost real. We budget it, save it, waste it, steal it, kill it, cut it, account for it; we also charge for it. It is a precious resource. Many people have a rather acute sense of the shortness of each lifetime. Once the sands have run out of a person’s hourglass, they cannot be replaced. We want every minute to count. A foreigner’s first impression of the U.S. is li kely to be that everyone is in a rush -- often under pressure. City people always appear to be hurrying to get where they are going, restlessly seeking attention in a store, or elbowing others as they try to complete their shopping. Racing through daytime meals is part of the pace

语文中的名词解释

语文中的名词解释:什么是实词和虚词 一、实词 实词是有实在意义的词,可以独立充当句子成分,一般可以单独回答问题。每一个实词都可以详细解说其词义。现代汉语实词一般名词、动词、形容词、数词、量词、代词六类。也有人认为代词属于虚词,但多数学者认可代词为实词,因为代词虽然很难解释独立语义,但毕竟其指代内容是明确的。无论在现代汉语中还是在文言文中,实词都占有绝对多的数量,因为语言的基本作用是表意,离开有实际意义的实词,这一作用将很难达到。 (一)名词:是表示人、事物或抽象概念名称的词。如:书本、桌子、儿童、雷锋、思维、政治等。 (二)动词:是表示人或事物的动作、存现及发展趋势的词。如:走、跑、思考、学习、有、存在、能、可以等。 (三)形容词:表示人或事物的性质、状态的词,汉语中的形容词可以修饰名词,也可以修饰动词,与英语不同。如:老、好、漂亮、干净、纯洁、飞快。 (四)数词:表示数目的词。如:一、十、第八、每等。 (五)量词:表示人或事物及动作的计量单位的词。量词一般与数词连用构成数量短语。如:个、件、幢、下、次、趟等。 (六)代词:用来指代人、事物、状态、过程的词。如:你、他们、这、彼等。 二、虚词

虚词是没有实在意义的词,一般不能单独充当句子成分(副词例外),不能单独回答问题(少数副词除外)。其存在的价值在于帮助构成句子的语法结构,表示某种语法关系。汉语的虚词主要有六种:副词、助词、连词、介词、叹词、拟声词。无论在现代汉语中,还是在文言文中,虚词的数量都相对较少,但作用却很大。 (一)副词:在句中表示动作、行为、性质、状态的程度、范围、时间、趋向等的词。如:很、非常、一律、也、将来等。在虚词中,副词是唯一能独立作句子成分的词,并且有少数副词(比如“不、没有、也许、大概”等)也可以单独回答问题,具有一定的实词特点。(注:汉语的副词与英语不同,在英语中,修饰动词或形容词的词都是副词,但在汉语中副词可以修饰动词和形容词,形容词同样也可以修饰动词和形容词。) (二)助词:在句中起辅助作用的词。现代汉语中的助词主要有:“的”、“地”、“得”、“着”、“了”、“过”。文言文中助词比较复杂,常见的有“之”、“者”等。 (三)连词:在句中起连接作用的词,连词往往标示词、短语、句子、句群、语段之间的逻辑关系。如:虽然、但是、因此、无论等。连词常常成对搭配使用或与副词搭配使用,如:“因为……所以……”、“即使……也……”、“只有……才……”等。 (四)介词:表示动作对象、时间等的引介关系的词。介词在汉语中比较复杂。如:在、从、对于、关于等。 (五)叹词:表示感叹或惊奇、惊喜、疑虑等语气的词。如:啊、唉、

英语中的集合名词

英语中的集合名词是经常考查的一个考点,它主要涉及集合名词的可数性、单复数意义、主谓一致、恰当的修饰语等。为了便于理解和记忆,我们将一些常考的集合名词分为以下几类,并分别简述其有关用法特点: 这类集合名词包括family (家庭),team (队),class (班),group (组),audience (听众)等,其用法特点为:若视为整体,表示单数意义;若考虑其个体成员,表示复数意义。 His family is large. 他的家是个大家庭。 His family are all waiting for him. 他的一家人都在等他。 This class consists of 45 pupils. 这个班由45个学生组成。 This class are reading English now. 这个班的学生在读英语。 The football team is playing well. 那个足球队打得非常漂亮。 The football team areshavingsbath and are then coming back here for tea. 足球队员们正在洗澡,然后来这里吃茶点。 The family is a very happy one.那个家庭是一个非常幸福的家庭。 That family are very pleased about the news of William's success. 这类集合名词包括cattle(牛,牲畜),people(人),police(警察)等,其用法特点为:只有单数形式, 但却表示复数意义,用作主语时谓语用复数;不与a(n) 连用,但可与the连用(表示总括意义和特指)。如: People will laugh at you. 人们会笑你的。 The police are looking for him. 警察在找他。 Many cattle were killed for this. 就因为这个原因宰了不少牲畜。 注:表示牲畜的头数,用单位词head(单复数同形)。如:

新视野大学英语第三版第二册课文语法讲解 Unit4

新视野三版读写B2U4Text A College sweethearts 1I smile at my two lovely daughters and they seem so much more mature than we,their parents,when we were college sweethearts.Linda,who's21,had a boyfriend in her freshman year she thought she would marry,but they're not together anymore.Melissa,who's19,hasn't had a steady boyfriend yet.My daughters wonder when they will meet"The One",their great love.They think their father and I had a classic fairy-tale romance heading for marriage from the outset.Perhaps,they're right but it didn't seem so at the time.In a way, love just happens when you least expect it.Who would have thought that Butch and I would end up getting married to each other?He became my boyfriend because of my shallow agenda:I wanted a cute boyfriend! 2We met through my college roommate at the university cafeteria.That fateful night,I was merely curious,but for him I think it was love at first sight."You have beautiful eyes",he said as he gazed at my face.He kept staring at me all night long.I really wasn't that interested for two reasons.First,he looked like he was a really wild boy,maybe even dangerous.Second,although he was very cute,he seemed a little weird. 3Riding on his bicycle,he'd ride past my dorm as if"by accident"and pretend to be surprised to see me.I liked the attention but was cautious about his wild,dynamic personality.He had a charming way with words which would charm any girl.Fear came over me when I started to fall in love.His exciting"bad boy image"was just too tempting to resist.What was it that attracted me?I always had an excellent reputation.My concentration was solely on my studies to get superior grades.But for what?College is supposed to be a time of great learning and also some fun.I had nearly achieved a great education,and graduation was just one semester away.But I hadn't had any fun;my life was stale with no component of fun!I needed a boyfriend.Not just any boyfriend.He had to be cute.My goal that semester became: Be ambitious and grab the cutest boyfriend I can find. 4I worried what he'd think of me.True,we lived in a time when a dramatic shift in sexual attitudes was taking place,but I was a traditional girl who wasn't ready for the new ways that seemed common on campus.Butch looked superb!I was not immune to his personality,but I was scared.The night when he announced to the world that I was his girlfriend,I went along

名词解释——语文

四始六义:《诗经》有四始,关于此“四始”各家说法不一:一、一般指“风”﹑“小雅”﹑“大雅”﹑“颂”的首篇。《史记.孔子世家》:“《关雎》之乱以为…风?始,《鹿鸣》为…小雅?始,《文王》为…大雅?始,《清庙》为…颂?始。”二、指“风”﹑“小雅”﹑“大雅”﹑“颂”。《<诗>大序》:“一国之事系一人之本谓之…风?;言天下之事,形四方之风谓之…雅?;雅者正也言王政之所由废兴也政有大小故有…小雅?焉,有…大雅?焉;…颂?者美盛德之形容以其成功告于神明者也。是谓四始,《诗》之至也。”孔颖达疏引郑玄《答张逸》云:“四始…风?也,…小雅?也,…大雅?也,…颂?也。此四者人君行之则为兴,废之则为衰。”三、指“大雅”的《大明》,“小雅”的《四牡》﹑《南有嘉鱼》﹑《鸿雁》。《<诗>大序》:“是谓四始。”孔颖达疏:“《诗纬泛历枢》云:…《大明》在亥水始也;《四牡》在寅木始也;《嘉鱼》在巳火始也;《鸿雁》在申金始也。?……《纬》文因金﹑木﹑水﹑火﹑有四始之义以《诗》文托之。” 《诗经》的“六义”。最早记载于《周礼·春官》,汉代《毛诗序》中明确提出:“故诗有六义焉:一曰风,二曰赋,三曰比,四曰兴,五曰雅,六曰颂。”对于“六义”的解释,有着一个历史发展过程。唐代孔颖达提出了“三体”“三法”的说法,也就是将“六义”分为两组,“风”“雅”“颂”这三者是指体裁,“赋”“比”“兴”这三者是作法。 歌行体:“歌行”是我国古代诗歌的一种体裁,是初唐时期在汉魏六朝乐府诗的基础上建立起来的。刘希夷的《代悲白头吟》与张若虚的《春江花月夜》的出现,可说是这种体裁正式形成的标志。 明代文学家徐师曾在《诗体明辨》中对“歌”、“行”及“歌行”作了如下解释:“放情长言,杂而无方者曰歌;步骤驰骋,疏而不滞者曰行;兼之者曰歌行。” 《辞海》注曰:“行”是乐曲的意思;“歌”与“行”名称虽不同,但并无严格的区别,后来就有“歌行”一体。 风骚:1.指《诗经》和《离骚》。风指《诗经》中的《国风》,骚指《楚辞》中屈原的《离骚》,后来泛指广义文化;在文坛居于领袖地位或在某方面领先叫独领风骚。永明体:永明是南朝齐武帝的年号,“永明体”亦称“新体诗”,这种诗体要求严格四声八病之说,强调声韵格律。这种诗体的出现,对于纠正晋宋以来文人诗的语言过于艰涩的弊病,使创作转向清新通畅起了一定的作用。对“近体诗”的形成产生了重大影响。建安风骨:建安风骨是以曹氏父子为中心形成的文人集团所表现出的共同的文学倾向,他们高扬政治理想,展示强烈个性,具有浓郁的悲剧色彩,展现了东汉末年动荡的时代,形成了慷慨激昂、刚健有力的诗歌风格,所以被称为“建安风骨”,代表人物主要有“三曹”、“七子”和蔡琰等。

新视野大学英语读写教程第一册课文翻译及课后答案

Unit 1 1学习外语是我一生中最艰苦也是最有意义的经历之一。虽然时常遭遇挫折,但却非常有价值。 2我学外语的经历始于初中的第一堂英语课。老师很慈祥耐心,时常表扬学生。由于这种积极的教学方法,我踊跃回答各种问题,从不怕答错。两年中,我的成绩一直名列前茅。 3到了高中后,我渴望继续学习英语。然而,高中时的经历与以前大不相同。以前,老师对所有的学生都很耐心,而新老师则总是惩罚答错的学生。每当有谁回答错了,她就会用长教鞭指着我们,上下挥舞大喊:“错!错!错!”没有多久,我便不再渴望回答问题了。我不仅失去了回答问题的乐趣,而且根本就不想再用英语说半个字。 4好在这种情况没持续多久。到了大学,我了解到所有学生必须上英语课。与高中老师不。大学英语老师非常耐心和蔼,而且从来不带教鞭!不过情况却远不尽如人意。由于班大,每堂课能轮到我回答的问题寥寥无几。上了几周课后,我还发现许多同学的英语说得比我要好得多。我开始产生一种畏惧感。虽然原因与高中时不同,但我却又一次不敢开口了。看来我的英语水平要永远停步不前了。 5直到几年后我有机会参加远程英语课程,情况才有所改善。这种课程的媒介是一台电脑、一条电话线和一个调制解调器。我很快配齐了必要的设备并跟一个朋友学会了电脑操作技术,于是我每周用5到7天在网上的虚拟课堂里学习英语。 6网上学习并不比普通的课堂学习容易。它需要花许多的时间,需要学习者专心自律,以跟上课程进度。我尽力达到课程的最低要求,并按时完成作业。 7我随时随地都在学习。不管去哪里,我都随身携带一本袖珍字典和笔记本,笔记本上记着我遇到的生词。我学习中出过许多错,有时是令人尴尬的错误。有时我会因挫折而哭泣,有时甚至想放弃。但我从未因别的同学英语说得比我快而感到畏惧,因为在电脑屏幕上作出回答之前,我可以根据自己的需要花时间去琢磨自己的想法。突然有一天我发现自己什么都懂了,更重要的是,我说起英语来灵活自如。尽管我还是常常出错,还有很多东西要学,但我已尝到了刻苦学习的甜头。 8学习外语对我来说是非常艰辛的经历,但它又无比珍贵。它不仅使我懂得了艰苦努力的意义,而且让我了解了不同的文化,让我以一种全新的思维去看待事物。学习一门外语最令人兴奋的收获是我能与更多的人交流。与人交谈是我最喜欢的一项活动,新的语言使我能与陌生人交往,参与他们的谈话,并建立新的难以忘怀的友谊。由于我已能说英语,别人讲英语时我不再茫然不解了。我能够参与其中,并结交朋友。我能与人交流,并能够弥合我所说的语言和所处的文化与他们的语言和文化之间的鸿沟。 III. 1. rewarding 2. communicate 3. access 4. embarrassing 5. positive 6. commitment 7. virtual 8. benefits 9. minimum 10. opportunities IV. 1. up 2. into 3. from 4. with 5. to 6. up 7. of 8. in 9. for 10.with V. 1.G 2.B 3.E 4.I 5.H 6.K 7.M 8.O 9.F 10.C Sentence Structure VI. 1. Universities in the east are better equipped, while those in the west are relatively poor. 2. Allan Clark kept talking the price up, while Wilkinson kept knocking it down. 3. The husband spent all his money drinking, while his wife saved all hers for the family. 4. Some guests spoke pleasantly and behaved politely, while others wee insulting and impolite. 5. Outwardly Sara was friendly towards all those concerned, while inwardly she was angry. VII. 1. Not only did Mr. Smith learn the Chinese language, but he also bridged the gap between his culture and ours. 2. Not only did we learn the technology through the online course, but we also learned to communicate with friends in English. 3. Not only did we lose all our money, but we also came close to losing our lives.

新大学日语简明教程课文翻译

新大学日语简明教程课文翻译 第21课 一、我的留学生活 我从去年12月开始学习日语。已经3个月了。每天大约学30个新单词。每天学15个左右的新汉字,但总记不住。假名已经基本记住了。 简单的会话还可以,但较难的还说不了。还不能用日语发表自己的意见。既不能很好地回答老师的提问,也看不懂日语的文章。短小、简单的信写得了,但长的信写不了。 来日本不久就迎来了新年。新年时,日本的少女们穿着美丽的和服,看上去就像新娘。非常冷的时候,还是有女孩子穿着裙子和袜子走在大街上。 我在日本的第一个新年过得很愉快,因此很开心。 现在学习忙,没什么时间玩,但周末常常运动,或骑车去公园玩。有时也邀朋友一起去。虽然我有国际驾照,但没钱,买不起车。没办法,需要的时候就向朋友借车。有几个朋友愿意借车给我。 二、一个房间变成三个 从前一直认为睡在褥子上的是日本人,美国人都睡床铺,可是听说近来纽约等大都市的年轻人不睡床铺,而是睡在褥子上,是不是突然讨厌起床铺了? 日本人自古以来就睡在褥子上,那自有它的原因。人们都说日本人的房子小,从前,很少有人在自己的房间,一家人住在一个小房间里是常有的是,今天仍然有人过着这样的生活。 在仅有的一个房间哩,如果要摆下全家人的床铺,就不能在那里吃饭了。这一点,褥子很方便。早晨,不需要褥子的时候,可以收起来。在没有了褥子的房间放上桌子,当作饭厅吃早饭。来客人的话,就在那里喝茶;孩子放学回到家里,那房间就成了书房。而后,傍晚又成为饭厅。然后收起桌子,铺上褥子,又成为了全家人睡觉的地方。 如果是床铺的话,除了睡觉的房间,还需要吃饭的房间和书房等,但如果使用褥子,一个房间就可以有各种用途。 据说从前,在纽约等大都市的大学学习的学生也租得起很大的房间。但现在房租太贵,租不起了。只能住更便宜、更小的房间。因此,似乎开始使用睡觉时作床,白天折小能成为椅子的、方便的褥子。

大学语文名词解释

1、六义说:源自《毛诗序》,六义说实本于《周礼》,六义为风、雅、颂、赋、比、兴。风即《国风》,主要是各地方民歌;雅包括《大雅》、《小雅》,主要是周王朝京畿地区的歌曲;颂包括《鲁颂》、《商颂》、《周颂》,主要是宗庙祭祀的舞曲。 2、赋比兴:赋、比、兴都是《诗经》常用的艺术表现手法。赋者,直言之也,也就是直接敷陈。比者,以此物比彼物也,也就是比拟。兴者,先言他物以引起所咏之物也,也就是兴发。 3、《楚辞》:战国中晚期产生于南方长江流域楚地的一种新型诗体,以屈原、宋玉等为代表作家,代表作品包括屈原《离骚》、《九歌》、《九章》等,因西汉刘向编辑《楚辞》而得名。 4、初唐四杰:指初唐王勃、杨炯、卢照邻、骆宾王四位诗人,他们的创作活动都基本集中在高宗和武后时期,以出众的文才盛名当时。他们的诗歌都充满进取精神,有慷慨悲凉的感人力量,他们的创作给初唐诗坛吹进清新的空气,为变革齐梁以来的绮靡文风、开创唐诗的新局面有大功。 5、山水田园诗派:山水田园诗派是指以山水或田园为歌咏对象的诗歌流派,为山水诗歌奠定基础的南朝诗人谢灵运,为田园诗开创新局面的是东晋大诗人陶渊明,盛唐山水田园诗的代表主要是王维、孟浩然等。 6、边塞诗派:盛唐时重要诗歌流派,其代表诗人为高适、岑参等人,他们的诗歌多以边塞奇丽风光为描绘对象,也反映了戍边将士的建功立业、思念故土等思想情感,多有慷慨悲凉的情调。 7、韩孟诗派:韩孟诗派是指中唐以韩愈、孟郊为代表的诗歌流派,他们的诗歌进一步发展了杜诗奇崛的一面,力求瑰奇怪谲。他们除追求诗歌的雄奇怪异之美外,还大胆创新,或以散文章法结构诗篇,或在诗中大量使用散文句法,他们的“以文为诗”对宋诗有很大影响。 8、元白诗派:元白诗派是指中唐以元稹、白居易为代表的诗歌流派,他们重写实、尚通俗。他们发起新乐府运动,强调诗歌的惩恶扬善、补察时政的功能,语言方面则力求通俗易解。 9、花间词:花间词是指晚唐后蜀以温庭筠、韦庄为代表的词派,他们的词多以男欢女爱、相思离别为主要内容,其风格是香艳浓丽、婉约缠绵,他们的词大多被收入赵崇祚编辑的词集《花间集》中,故称。 10、豪放词:豪放词是指以苏轼和辛弃疾等爱国词人为代表的词派,他们的词摆脱了词为“艳科”的格局,在词的表现内容、境界方面均有所提高。视野广阔,气象恢宏,语言宏博,不拘音律。 11、婉约词:婉约词是指自花间词以下、以温庭筠、柳永、周邦彦等词人为代表的词派,他们的词表情达意一般崇尚含蓄婉转,充分发挥了词“专主情致”的特点。重儿女情长,委婉含蓄,结构深细缜密,音律婉转和谐,语言圆润清丽。 12、公安派:明代万历年间,以袁宗道、袁宏道、袁中道三兄弟为代表的一个文学流派。

初中英语名词—集合名词

初中英语名词—集合名词 这类集合名词包括family (家庭),team (队),class (班),audience (听众), party,personnel,profession,population,staff,school,team,tribe(部落,部民),union,university等,其用法特点为:若视为整体,表示单数意义;若考虑其个体成员,表示复数意义。比较并体会:His family is large、他的家是个大家庭。His family are all waiting for him、他的一家人都在等他。This class consists of45 pupils、这个班由45个学生组成。This class are reading English now、这个班的学生在读英语。The staff is /are hardworking、The audience were moved to tears、第二类形式为单数,但意义永远为复数这类集合名词包括 cattle(牛,牲畜),people(人),police(警察), clergy,faculty(教职工), herd,mankind,military,militia(民团、民兵),poultry(家禽),swine (猪),vermin,womankind等,其用法特点为:只有单数形式, 但却表示复数意义,用作主语时谓语用复数;不与 a(n) 连用,但可与the连用(表示总括意义和特指)。如:People will laugh at you、人们会笑你的。The police are looking for him、警察在找他。Many cattle were killed for this、

新视野大学英语第一册Unit 1课文翻译

新视野大学英语第一册Unit 1课文翻译 学习外语是我一生中最艰苦也是最有意义的经历之一。 虽然时常遭遇挫折,但却非常有价值。 我学外语的经历始于初中的第一堂英语课。 老师很慈祥耐心,时常表扬学生。 由于这种积极的教学方法,我踊跃回答各种问题,从不怕答错。 两年中,我的成绩一直名列前茅。 到了高中后,我渴望继续学习英语。然而,高中时的经历与以前大不相同。 以前,老师对所有的学生都很耐心,而新老师则总是惩罚答错的学生。 每当有谁回答错了,她就会用长教鞭指着我们,上下挥舞大喊:“错!错!错!” 没有多久,我便不再渴望回答问题了。 我不仅失去了回答问题的乐趣,而且根本就不想再用英语说半个字。 好在这种情况没持续多久。 到了大学,我了解到所有学生必须上英语课。 与高中老师不同,大学英语老师非常耐心和蔼,而且从来不带教鞭! 不过情况却远不尽如人意。 由于班大,每堂课能轮到我回答的问题寥寥无几。 上了几周课后,我还发现许多同学的英语说得比我要好得多。 我开始产生一种畏惧感。 虽然原因与高中时不同,但我却又一次不敢开口了。 看来我的英语水平要永远停步不前了。 直到几年后我有机会参加远程英语课程,情况才有所改善。 这种课程的媒介是一台电脑、一条电话线和一个调制解调器。 我很快配齐了必要的设备并跟一个朋友学会了电脑操作技术,于是我每周用5到7天在网上的虚拟课堂里学习英语。 网上学习并不比普通的课堂学习容易。 它需要花许多的时间,需要学习者专心自律,以跟上课程进度。 我尽力达到课程的最低要求,并按时完成作业。 我随时随地都在学习。 不管去哪里,我都随身携带一本袖珍字典和笔记本,笔记本上记着我遇到的生词。 我学习中出过许多错,有时是令人尴尬的错误。 有时我会因挫折而哭泣,有时甚至想放弃。 但我从未因别的同学英语说得比我快而感到畏惧,因为在电脑屏幕上作出回答之前,我可以根据自己的需要花时间去琢磨自己的想法。 突然有一天我发现自己什么都懂了,更重要的是,我说起英语来灵活自如。 尽管我还是常常出错,还有很多东西要学,但我已尝到了刻苦学习的甜头。 学习外语对我来说是非常艰辛的经历,但它又无比珍贵。 它不仅使我懂得了艰苦努力的意义,而且让我了解了不同的文化,让我以一种全新的思维去看待事物。 学习一门外语最令人兴奋的收获是我能与更多的人交流。 与人交谈是我最喜欢的一项活动,新的语言使我能与陌生人交往,参与他们的谈话,并建立新的难以忘怀的友谊。 由于我已能说英语,别人讲英语时我不再茫然不解了。 我能够参与其中,并结交朋友。

新大学日语阅读与写作1 第3课译文

习惯与礼仪 我是个漫画家,对旁人细微的动作、不起眼的举止等抱有好奇。所以,我在国外只要做错一点什么,立刻会比旁人更为敏锐地感觉到那个国家的人们对此作出的反应。 譬如我多次看到过,欧美人和中国人见到我们日本人吸溜吸溜地出声喝汤而面露厌恶之色。过去,日本人坐在塌塌米上,在一张低矮的食案上用餐,餐具离嘴较远。所以,养成了把碗端至嘴边吸食的习惯。喝羹匙里的东西也象吸似的,声声作响。这并非哪一方文化高或低,只是各国的习惯、礼仪不同而已。 日本人坐在椅子上围桌用餐是1960年之后的事情。当时,还没有礼仪规矩,甚至有人盘着腿吃饭。外国人看见此景大概会一脸厌恶吧。 韩国女性就座时,单腿翘起。我认为这种姿势很美,但习惯于双膝跪坐的日本女性大概不以为然,而韩国女性恐怕也不认为跪坐为好。 日本等多数亚洲国家,常有人习惯在路上蹲着。欧美人会联想起狗排便的姿势而一脸厌恶。 日本人常常把手放在小孩的头上说“好可爱啊!”,而大部分外国人会不愿意。 如果向回教国家的人们劝食猪肉和酒,或用左手握手、递东西,会不受欢迎的。当然,饭菜也用右手抓着吃。只有从公用大盘往自己的小盘里分食用的公勺是用左手拿。一旦搞错,用黏糊糊的右手去拿,

会遭人厌恶。 在欧美,对不受欢迎的客人不说“请脱下外套”,所以电视剧中的侦探哥隆波总是穿着外套。访问日本家庭时,要在门厅外脱掉外套后进屋。穿到屋里会不受欢迎的。 这些习惯只要了解就不会出问题,如果因为不知道而遭厌恶、憎恨,实在心里难受。 过去,我曾用色彩图画和简短的文字画了一本《关键时刻的礼仪》(新潮文库)。如今越发希望用各国语言翻译这本书。以便能对在日本的外国人有所帮助。同时希望有朝一日以漫画的形式画一本“世界各国的习惯与礼仪”。 练习答案 5、 (1)止める並んでいる見ているなる着色した (2)拾った入っていた行ったしまった始まっていた

名词解释题库及答案

1.《诗经》 《诗经》是中国古代诗歌的开端,也是最早的一部诗歌总集。反映了西周初期到春秋中叶约五百年间的社会面貌。《诗经》最初只称为“诗”或“诗三百”,到西汉时,被尊为儒家经典,才称为《诗经》。全篇按《风》、《雅》、《颂》三类编辑。内容丰富,反映了劳动与爱情、战争与徭役、压迫与反抗、风俗与婚姻、祭祖与宴会,甚至天象、地貌、动物、植物等方方面面,是周代社会生活的一面镜子。对后世影响深远。 2.《楚辞》 楚辞是屈原创作的一种新诗体,也是中国文学史上第一部浪漫主义诗歌总集。“楚辞”的名称,西汉初期已有之,至刘向乃编辑成集。原收战国楚人屈原、宋玉等人辞赋共十六篇。后增入《九思》,成十七篇。全书以屈原作品为主,其余各篇也是承袭屈赋的形式。以其运用楚地的文学样式、方言声韵和风土物产等,具有浓厚的地方色彩,故名《楚辞》,对后世诗歌产生深远影响。 3.古文运动 古文运动是指唐代中期以及宋朝提倡古文、反对骈文为特点的文体改革运动。因涉及文学的思想内容,所以兼有思想运动和社会运动的性质。“古文”这一概念由韩愈最先提出。他把六朝以来讲求声律及辞藻、排偶的骈文视为俗下文字,认为自己的散文继承了两汉文章的传统,所以称“古文”。韩愈提倡古文,目的在于恢复古代的儒学道统,将改革文风与复兴儒学变为相辅相成的运动。在提倡古文时,进一步强调要以文明道。除唐代的韩愈、柳宗元外,宋代的欧阳修、王安石、曾巩、苏洵、苏轼、苏辙等人也是其中的代表。 4.《红楼梦》 中国古典四大名著之首,清代作家曹雪芹创作的章回体长篇小说,共一百二十回,是一部具有世界影响力的人情小说作品,举世公认的中国古典小说巅峰之作,中国封建社会的百科全书,传统文化的集大成者。小说以贾、史、王、薛四大家族的兴衰为背景,贾宝玉、林黛玉、薛宝钗的爱情婚姻故事为主线,通过家族悲剧、女儿悲剧及主人公的人生悲剧,揭示出封建末世的危机。《红楼梦》对宫廷官场的黑暗、封建贵族的腐朽等社会现实及道德观念都进行了深刻的批判,具有极其深远的影响。 5.《呐喊》 鲁迅的第一部小说集,1923年8月首次出版。收1918年4月至1922年10月期间的作品共14篇。包括《狂人日记》、《孔乙己》、《故乡》、《阿Q正传》等著名作品。《呐喊》显示了鲁迅对传统文学和外来文艺的有机结合,成功地塑造了一系列典型形象,具有独特的民族风格和民族特色,代表了鲁迅文学创作的最高成就。它的出版,改变了文学革命初期仅有理论建树而创作不丰的局面,

高中英语集合名词的分类梳理

高中英语集合名词的分类梳理 英语中的集合名词是高考经常考查的一个考点,它主要涉及集合名词的可数性、单复数意义、主谓一致、恰当的修饰语等。为了便于理解和记忆,我们将一些常考的集合名词分为以下几类,并分别简述其有关用法特点: 第一类:形式为单数,但意义可以用为单数或复数 这类集合名词包括family(家庭),team(队),class(班),audience(听众)等,其用法特点为:若视为整体,表示单数意义;若考虑其个体成员,表示复数意义。比较并体会: His family is large. 他的家是个大家庭。 His family are all waiting for him. 他的一家人都在等他。 This class consists of 45 pupils. 这个班由45个学生组成。 This class are reading English now. 这个班的学生在读英语。 第二类:形式为单数,但意义永远为复数 这类集合名词包括cattle(牛,牲畜),people(人),police(警察)等,其用法特点为:只有单数形式, 但却表示复数意义,用作主语时谓语用复数;不与a(n) 连用,但可与the连用(表示总括意义和特指)。如: People will laugh at you. 人们会笑你的。 The police are looking for him. 警察在找他。 Many cattle were killed for this. 就因为这个原因宰了不少牲畜。 注:表示牲畜的头数,用单位词head(单复数同形)。如: five head of cattle 5头牛,fifty (head of ) cattle 50头牛

新视野大学英语(第三版)读写教程第二册课文翻译(全册)

新视野大学英语第三版第二册读写课文翻译 Unit 1 Text A 一堂难忘的英语课 1 如果我是唯一一个还在纠正小孩英语的家长,那么我儿子也许是对的。对他而言,我是一个乏味的怪物:一个他不得不听其教诲的父亲,一个还沉湎于语法规则的人,对此我儿子似乎颇为反感。 2 我觉得我是在最近偶遇我以前的一位学生时,才开始对这个问题认真起来的。这个学生刚从欧洲旅游回来。我满怀着诚挚期待问她:“欧洲之行如何?” 3 她点了三四下头,绞尽脑汁,苦苦寻找恰当的词语,然后惊呼:“真是,哇!” 4 没了。所有希腊文明和罗马建筑的辉煌居然囊括于一个浓缩的、不完整的语句之中!我的学生以“哇!”来表示她的惊叹,我只能以摇头表达比之更强烈的忧虑。 5 关于正确使用英语能力下降的问题,有许多不同的故事。学生的确本应该能够区分诸如their/there/they're之间的不同,或区别complimentary 跟complementary之间显而易见的差异。由于这些知识缺陷,他们承受着大部分不该承受的批评和指责,因为舆论认为他们应该学得更好。 6 学生并不笨,他们只是被周围所看到和听到的语言误导了。举例来说,杂货店的指示牌会把他们引向stationary(静止处),虽然便笺本、相册、和笔记本等真正的stationery(文具用品)并没有被钉在那儿。朋友和亲人常宣称They've just ate。实际上,他们应该说They've just eaten。因此,批评学生不合乎情理。 7 对这种缺乏语言功底而引起的负面指责应归咎于我们的学校。学校应对英语熟练程度制定出更高的标准。可相反,学校只教零星的语法,高级词汇更是少之又少。还有就是,学校的年轻教师显然缺乏这些重要的语言结构方面的知识,因为他们过去也没接触过。学校有责任教会年轻人进行有效的语言沟通,可他们并没把语言的基本框架——准确的语法和恰当的词汇——充分地传授给学生。

相关主题