搜档网
当前位置:搜档网 › FLUENT常用的湍流模型及壁面函数处理

FLUENT常用的湍流模型及壁面函数处理

FLUENT常用的湍流模型及壁面函数处理
FLUENT常用的湍流模型及壁面函数处理

FLUENT常用的湍流模型及壁面函数处理

本文内容摘自《精通CFD工程仿真与案例实战》。实际上也是帮助文档的翻译,英文好的可直接参阅帮助文档。

FLUENT中的湍流模型很多,有单方程模型,双方程模型,雷诺应力模型,转捩模型等等。这里只针对最常用的模型。

1、湍流模型描述

2、湍流模型的选择

有两种方法处理近壁面区域。一种方法,不求解粘性影响内部区域(粘性子层及过渡层),使用一种称之为“wall function”的半经验方法去计算壁面与充分发展湍流区域之间的粘性影响区域。采用壁面函数法,省去了为壁面的存在而修改湍流模型。

另一种方法,修改湍流模型以使其能够求解近壁粘性影响区域,包括粘性子层。此处使用的方法即近壁模型。(近壁模型不需要使用壁面函数,如一些低雷诺数模型,K-W湍流模型是一种典型的近壁湍流模型)。

所有壁面函数(除scalable壁面函数外)的最主要缺点在于:沿壁面法向细化网格时,会导致使数值结果恶化。当y+小于15时,将会在壁面剪切力及热传递方面逐渐导致产生无界错误。然而这是若干年前的工业标准,如今ANSYS FLUENT采取了措施提供了更高级的壁面格式,以允许网格细化而不产生结果恶化。这些y+无关的格式是默认的基于w方程的湍流模型。对于基于epsilon方程的模型,增强壁面函数(EWT)提供了相同的功能。这一选项同样是SA模型所默认的,该选项允许用户使其模型与近壁面y+求解无关。(实际上是这样的:K-W方程是低雷诺数模型,采用网格求解的方式计算近壁面粘性区域,所以加密网格降低y+值不会导致结果恶化。k-e方程是高雷诺数模型,其要求第一层网格位于湍流充分发展区域,而此时若加密网格导致第一层网格处于粘性子层内,则会造成计算结果恶化。这时候可以使用增强壁面函数以避免这类问题。SA模型默认使用增强壁面函数)。

只有当所有的边界层求解都达到要求了才可能获得高质量的壁面边界层数值计算结果。这一要求比单纯的几个Y+值达到要求更重要。覆盖边界层的最小网格数量在10层左右,最好能达到20层。还有一点需要注意的是,提高边界层求解常常可以取得稳健的数值计算结果,因为只需要细化壁面法向方向网格。与增加精度向伴随的是计算开销的增加。对于非结构网格,建议划分10~20层棱柱层网格以提高壁面边界层的预测精度。棱柱层厚度应当被设计为保证有15层或更多网格节点。这可以在获得计算结果后,通过查看边界层中心的最大湍流粘度,该值提供了边界层的厚度(最大值的两倍位置即边界层的边)。棱柱层大于边界层厚度是必要的,否则棱柱层会限制边界层的增长。

一些建议:(1)对于epsilon方程,使用enhanced壁面函数。(2)若壁面函数有助于epsilon方程,则可以使用scalable壁面函数。(3)对于基于w 方程的模型,使用默认的增强壁面函数。(4)SA模型,使用增强壁面处理。

以上内容翻译自Fluent理论文档P121。

1、标准壁面函数

ANSYS FLUENT中的标准壁面函数是基于launder与spalding的工作,在工业上有广泛的应用。

在标准壁面函数中,用得比较多的变量为y*,y*的下限为15,低于此值,将会导致结果精度恶化。

标准壁面函数用于以下模型:k-epsilon模型与reynolds stress模型。这两个模型均为高雷诺数模型。

2、Scalable壁面函数

该壁面函数是14.0新加的,以前的版本中没有的。也是CFX软件中默认的湍流壁面函数。

该壁面函数能避免在y*<15时计算结果恶化,该壁面函数对于任意细化的网格,能给出一致的解。当网格粗化使y*>11时,该壁面函数的表现与标准壁面函数一致。

scalable壁面函数的目的在于联合使用标准壁面方法以强迫使用对数律。

该功能是通过使用限制器y*=max(y*,y*limit)来实现的,其中y*limit=11.225。

3、非平衡壁面函数

非平衡壁面函数的特点:(1)用于平均速度的launder及spalding的对数律对于压力梯度效应敏感。(2)采用双层概念以计算临壁面单元的湍流动能。对于平均温度及组分质量分数则与标准壁面函数处理方式相同。

非平衡壁面函数考虑了压力梯度效应,因此对于涉及到分离、再附着、及撞击等平均速度与压力梯度相关且变化迅速的复杂流动问题,推荐使用些壁面函数。但是非平衡壁面函数不适合于低雷诺流动问题。

非平衡壁面函数适用于高雷诺流动问题,适用于以下湍流模型:(1)K-epsilon模型(2)reynolds stress transport模型。

4、壁面函数方法的局限

对于大多数壁面边界流动问题,标准壁面函数能给出合理的预测。非平衡壁面函数考虑了压力梯度效应,扩展了标准壁面函数的功能。但是一些流动问题不适合使用壁面函数,否则可能导致不合理的解。如以下一些情况:(1)低雷诺数流动或近壁面效应(例如小缝出流、高粘性低速流动问题)(2)通过壁面的大量沸腾

(3)大的压力梯度导致的边界层分离

(4)强体力(如旋转圆盘附近的流动、浮力驱动流动)

(5)近壁区域高度三维流动(如ekman螺旋流动、高度歪斜的3D边界层)若模型中出现了以上的情况,则必须使用近壁模型。ANSYS FLUENT中提供了增强壁面处理以应对这些情况。这一方法能够用于K-epsilon模型及RSM模型。

5、增强壁面处理(EWT)

不依赖于壁面法则,对于复杂流动尤其是低雷诺数流动问题很适合。该方法要求近壁面网格很密,y+接近于1。

对于epsilon方程的近壁面处理结合了双层模型。若近壁面网格足够密以致于可以求解粘性子层时(通常第一节点y+接近于1),增强壁面处理与传统的双层区域模型一致。然而,要求近壁区域网格足够细化是会大大增加对计算资源的需求(网格会很密很多)。

增强壁面函数可用于以下湍流模型:

(1)所有的基于epsilon的湍流模型(不包括二次RSM模型)

(2)所有的w模型

(3)对于SA模型,这一选项不可用。然而,这一模型对于壁面函数(y*>15)及粘性子层网格(y*<2)是一致的。处于中间的网格应当被避免,因为会降低计算精度。换句话说,对于SA模型,要么y*>15,要么y*<2。

第三章,湍流模型

第三章,湍流模型 第一节, 前言 湍流流动模型很多,但大致可以归纳为以下三类: 第一类是湍流输运系数模型,是Boussinesq 于1877年针对二维流动提出的,将速度脉动的二阶关联量表示成平均速度梯度与湍流粘性系数的乘积。即: 2 1 21 x u u u t ??=-μρ 3-1 推广到三维问题,若用笛卡儿张量表示,即有: ij i j j i t j i k x u x u u u δρμρ32 -??? ? ????+ ??=''- 3-2 模型的任务就是给出计算湍流粘性系数t μ的方法。根据建立模型所需要的微分方程的数目,可以分为零方程模型(代数方程模型),单方程模型和双方程模型。 第二类是抛弃了湍流输运系数的概念,直接建立湍流应力和其它二阶关联量的输运方程。 第三类是大涡模拟。前两类是以湍流的统计结构为基础,对所有涡旋进行统计平均。大涡模拟把湍流分成大尺度湍流和小尺度湍流,通过求解三维经过修正的Navier-Stokes 方程,得到大涡旋的运动特性,而对小涡旋运动还采用上述的模型。 实际求解中,选用什么模型要根据具体问题的特点来决定。选择的一般原则是精度要高,应用简单,节省计算时间,同时也具有通用性。 FLUENT 提供的湍流模型包括:单方程(Spalart-Allmaras )模型、双方程模型(标准κ-ε模型、重整化群κ-ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟。 湍流模型种类示意图 第二节,平均量输运方程 包含更多 物理机理 每次迭代 计算量增加 提的模型选 RANS-based models

雷诺平均就是把Navier-Stokes 方程中的瞬时变量分解成平均量和脉动量两部分。对于速度,有: i i i u u u '+= 3-3 其中,i u 和i u '分别是平均速度和脉动速度(i=1,2,3) 类似地,对于压力等其它标量,我们也有: φφφ'+= 3-4 其中,φ表示标量,如压力、能量、组分浓度等。 把上面的表达式代入瞬时的连续与动量方程,并取平均(去掉平均速度i u 上的横线),我们可以把连续与动量方程写成如下的笛卡儿坐标系下的张量形式: 0)(=?? +??i i u x t ρρ 3-5 () j i j l l ij i j j i j i i u u x x u x u x u x x p Dt Du -?? +???????????? ????-??+????+??-=ρδμρ32 3-6 上面两个方程称为雷诺平均的Navier-Stokes (RANS )方程。他们和瞬时Navier-Stokes 方程有相同的形式,只是速度或其它求解变量变成了时间平均量。额外多出来的项j i u u ''-ρ是雷诺应力,表示湍流的影响。如果要求解该方程,必须模拟该项以封闭方程。 如果密度是变化的流动过程如燃烧问题,我们可以用法夫雷(Favre )平均。这样才可以求解有密度变化的流动问题。法夫雷平均就是出了压力和密度本身以外,所有变量都用密度加权平均。变量的密度加权平均定义为: ρρ/~ Φ=Φ 3-7 符号~表示密度加权平均;对应于密度加权平均值的脉动值用Φ''表示,即有: Φ''+Φ=Φ~ 。很显然,这种脉动值的简单平均值不为零,但它的密度加权平均值等于零,即: 0≠Φ'', 0=Φ''ρ Boussinesq 近似与雷诺应力输运模型 为了封闭方程,必须对额外项雷诺应力j i u u -ρ进行模拟。一个通常的方法是应用Boussinesq 假设,认为雷诺应力与平均速度梯度成正比,即: ij i i t i j j i t j i x u k x u x u u u δμρμρ)(32 ??+-??? ? ????+??=''- 3-8 Boussinesq 假设被用于Spalart-Allmaras 单方程模型和ε-k 双方程模型。Boussinesq 近似 的好处是与求解湍流粘性系数有关的计算时间比较少,例如在Spalart-Allmaras 单方程模型中,只多求解一个表示湍流粘性的输运方程;在ε-k 双方程模型中,只需多求解湍动能k 和耗散率ε两个方程,湍流粘性系数用湍动能k 和耗散率ε的函数。Boussinesq 假设的缺点是认为湍流粘性系数t μ是各向同性标量,对一些复杂流动该条件并不是严格成立,所以具有其应用限制性。

fluent湍流设置

湍流边界条件设置 在流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。在FLUENT 中可以使用的湍流模型有很多种。在使用各种湍流模型时,哪些变量需要设定,哪些不需要设定以及如何给定这些变量的具体数值,都是经常困扰用户的问题。本小节只讨论在边界上设置均匀湍流参数的方法,湍流参数在边界上不是均匀分布的情况可以用型函数和UDF(用户自定义函数)来定义,具体方法请参见相关章节的叙述。 在 大多数情况下,湍流是在入口后面一段距离经过转捩形成的,因此在边界上设置均匀湍流条件是一种可以接受的选择。特别是在不知道湍流参量的分布规律时,在边 界上采用均匀湍流条件可以简化模型的设置。在设置边界条件时,首先应该定性地对流动进行分析,以便边界条件的设置不违背物理规律。违背物理规律的参数设置 往往导致错误的计算结果,甚至使计算发散而无法进行下去。 在Turbulence Specification Method (湍流定义方法)下拉列表中,可以简单地用一个常数来定义湍流参数,即通过给定湍流强度、湍流粘度比、水力直径或湍流特征长在边界上的值来定义流场边界上的湍流。下面具体讨论这些湍流参数的含义,以保证在设置模型时不出现违背流动规律的错误设置: (1)湍流强度(Turbulence Intensity) 湍流强度I的定义为:I=Sqrt(u’*u’+v’*v’+w’*w’)/u_avg (8-1) 上式中u',v' 和w' 是速度脉动量,u_avg是平均速度。 湍流强度小于1%时,可以认为湍流强度是比较低的,而在湍流强度大于10%时,则可以认为湍流强度是比较高的。在来流为层流时,湍流强度可以用绕流物体的几何特征粗略地估算出来。比如在模拟风洞试验的计算中,自由流的湍流强度可以用风洞的特征长度估计出来。

Fluent后处理(DOC)

第四章Fluent后处理 利用FLUENT 提供的图形工具可以很方便的观察CFD 求解结果,并得到满意的数据和图形,用来定性或者定量研究整个计算。本章将重点介绍如何使用这些工具来观察您的计算结果。 1 生成基本图形 在FLUENT中能够方便的生成网格图、等值线图、剖面图,速度矢量图和迹线图等图形来观察计算结果。下面将介绍如何产生这些图形。 一、生成网格图 生成网格或轮廓线视图的步骤 (1)打开网格显示面板 菜单:Display –〉Grid... 图4-1 网格显示对话框 (2)在表面列表中选取表面。点击表面列表下的Outline 按钮来选择所有“外”表面。如果所有的外表面都已经处于选中状态,单击该按钮将使所有外表面处于未选中的状态。点击表面列表下的Interior 按钮来选择所有“内”表面。同样,如果所有的内表面都已经处于选中状态,单击该按钮将使所有内表面处于未选中的状态。 (3)根据需要显示的内容,可以选择进行下列步骤: 1)显示所选表面的轮廓线,在图4-1所示的对话框中进行如下设置:在Options 项选择Edges,在Edge Type 中选择Outline。 2)显示网格线,在Options 选择Edges,在Edge Type 中选择ALL。 3)绘制一个网格填充图形,在Options 选择Faces。显示选中面的网格节点,在Options 选择Nodes。

(4)设置网格和轮廓线显示中的其它选项。 (5)单击Display 按钮,就可以在激活的图形窗口中绘制选定的网格和轮廓线。 二、绘制等值线和轮廓图 生成等值线和轮廓的步骤: 通过图4-2 所示的等值线对话框来生成等值线和轮廓。 菜单:Display –〉Contours... 图4-2 等值线对话框 生成等值线或轮廓的基本步骤如下: (1) 在Contours Of 下拉列表框中选择一个变量或函数作为绘制的对象。首先在上面的列表中选择相关分类;然后在下面的列表中选择相关变量。 (2) 在Surfaces 列表中选择待绘制等值线或轮廓的平面。对于2D情况,如果没有选取任何面,则会在整个求解对象上绘制等值线或轮廓。对于3D情况,至少需要选择一个表面。 (3) 在Levels 编辑框中指定轮廓或等值线的数目。最大数为100。 (4) 如果需要生成一个轮廓视图,请在Option 中选中Draw Profiles 选项。在轮廓选项对话框中(如图4-3),可以如下定义轮廓:

FLUENT中文全教程1-250

FLUENT 教程 赵玉新 I、目录 第一章、开始 第二章、操作界面 第三章、文件的读写 第四章、单位系统 第五章、读入和操作网格 第六章、边界条件 第七章、物理特性 第八章、基本物理模型 第九章、湍流模型 第十章、辐射模型 第十一章、化学输运与反应流 第十二章、污染形成模型 第十三章、相变模拟 第十四章、多相流模型 第十五章、动坐标系下的流动 第十六章、解算器的使用 第十七章、网格适应 第十八章、数据显示与报告界面的产生 第十九章、图形与可视化 第二十章、Alphanumeric Reporting 第二十一章、流场函数定义 第二十二章、并行处理 第二十三章、自定义函数 第二十四章、参考向导 第二十五章、索引(Bibliography) 第二十六章、命令索引 II、如何使用该教程 概述 本教程主要介绍了FLUENT 的使用,其中附带了相关的算例,从而能够使每一位使用 者在学习的同时积累相关的经验。本教程大致分以下四个部分:第一部分包括介绍信息、用户界面信息、文件输入输出、单位系统、网格、边界条件以及物理特性。第二和第三部分包含物理模型,解以及网格适应的信息。第四部分包括界面的生成、后处理、图形报告、并行处理、自定义函数以及FLUENT 所使用的流场函数与变量的定义。 下面是各章的简略概括 第一部分: z开始使用:本章描述了FLUENT 的计算能力以及它与其它程序的接口。介绍了如何对具体的应用选择适当的解形式,并且概述了问题解决的大致步骤。在本章中,我们给出

了一个可以在你自己计算机上运行的简单的算例。 z使用界面:本章描述了用户界面、文本界面以及在线帮助的使用方法。同时也提供了远程处理与批处理的一些方法。(请参考关于特定的文本界面命令的在线帮助) z读写文件:本章描述了FLUENT 可以读写的文件以及硬拷贝文件。 z单位系统:本章描述了如何使用FLUENT 所提供的标准与自定义单位系统。 z读和操纵网格:本章描述了各种各样的计算网格来源,并解释了如何获取关于网格的诊断信息,以及通过尺度化(scale)、分区(partition)等方法对网格的修改。本章还描述了非一致(nonconformal)网格的使用. z边界条件:本章描述了FLUENT 所提供的各种类型边界条件,如何使用它们,如何定义它们and how to define boundary profiles and volumetric sources. z物理特性:本章描述了如何定义流体的物理特性与方程。FLUENT 采用这些信息来处理你的输入信息。 第二部分: z基本物理模型:本章描述了FLUENT 计算流体流动和热传导所使用的物理模型(包括自然对流、周期流、热传导、swirling、旋转流、可压流、无粘流以及时间相关流)。以及在使用这些模型时你需要输入的数据,本章也包含了自定义标量的信息。 z湍流模型:本章描述了FLUENT 的湍流模型以及使用条件。 z辐射模型:本章描述了FLUENT 的热辐射模型以及使用条件。 z化学组分输运和反应流:本章描述了化学组分输运和反应流的模型及其使用方法。本章详细的叙述了prePDF 的使用方法。 z污染形成模型:本章描述了NOx 和烟尘的形成的模型,以及这些模型的使用方法。 第三部分: z相变模拟:本章描述了FLUENT 的相变模型及其使用方法。 z离散相变模型:本章描述了FLUENT 的离散相变模型及其使用方法。 z多相流模型:本章描述了FLUENT 的多相流模型及其使用方法。 z Flows in Moving Zones(移动坐标系下的流动):本章描述了FLUENT 中单一旋转坐标系,多重移动坐标系,以及滑动网格的使用方法。 z Solver 的使用:本章描述了如何使用FLUENT 的解法器(solver)。 z网格适应:本章描述了explains the solution-adaptive mesh refinement feature in FLUENT and how to use it 第四部分: z显示和报告数据界面的创建:本章描述了explains how to create surfaces in the domain on which you can examine FLUENT solution data z图形和可视化:本章描述了检验FLUENT 解的图形工具 z Alphanumeric Reporting:本章描述了如何获取流动、力、表面积分以及其它解的数据。 z流场函数的定义:本章描述了如何定义FLUENT 面板内出现的变量选择下拉菜单中的流动变量,并且告诉我们如何创建自己的自定义流场函数。 z并行处理:本章描述了FLUENT 的并行处理特点以及使用方法 z自定义函数:本章描述了如何通过用户定义边界条件,物理性质函数来形成自己的FLUENT 软件。 如何使用该手册 z根据你对CFD 以及FLUENT 公司的熟悉,你可以通过各种途径使用该手册 对于初学者,建议如下:

Fluent 学习心得

Fluent 学习心得 仅仅就我接触过得谈谈对fluent的认识,并说说哪些用户适合用,哪些不适合fluent对我来说最麻烦的不在里面的设置,因为我本身解决的就是高速流动可压缩N-S方程,而且本人也是学力学的,诸如边界条件设置等概念还是非常清楚的同时我接触的流场模拟,都不会有很特别的介质,所以设置起来很简单。 对我来说,颇费周折的是gambit做图和生成网格,并不是我不会,而是gambit对作图要求的条件很苛刻,也就是说,稍有不甚,就前功尽弃,当然对于计算流场很简单的用户,这不是问题。有时候好几天生成不了的图形,突然就搞定了,逐渐我也总结了一点经验,就是要注意一些小的拐角地方的图形,有时候做布尔运算在图形吻合的地方,容易产生一些小的面最终将导致无法在此生成网格,fluent里面的计算方法是有限体积法,而且我觉得它在计算过程中为了加快收敛速度,采取了交错网格,这样,计算精度就不会很高。同时由于非结构网格,肯定会导致计算精度的下降,所以我一贯来认为在fluent里面选取复杂的粘性模型和高精度的格式没有任何意义,除非你的网格做的非常好。 而且fluent5.5以前的版本(包括5。5),其物理模型,(比如粘性流体的几个模型)都是预先设定的,所以,对于那些做探索性或者检验新方法而进行的模拟,就不适合用。 同时gambit做网格,对于粘性流体,特别是计算湍流尺度,或者做热流计算来说其网格精度一般是不可能满足的,除非是很小的计算区域。所以,用fluent做的比较复杂一点的流场(除了经典的几个基本流场)其计算所得热流,湍流,以及用雷诺应力模拟的粘性都不可能是准确的,这在物理上和计算方法已经给fluent判了死刑,有时候看到很多这样讨论的文章,觉得大家应该从物理和力学的本质上考虑问题。 但是,fluent往往能计算出量级差不多的结果,我曾经做了一个复杂的飞行器热流计算,高超音速流场,得到的壁面热流,居然在量级上是吻合的,但是,从计算热流需要的壁面网格精度来判断,gambit所做的网格比起壁面网格所满足的尺寸的要大了至少2个数量级,我到现在还不明白fluent是怎么搞的。 综上,我觉得,如果对付老板的一些工程项目,可以用fluent对付过去,但是如果真的做论文,或者需要发表文章,除非是做一些技术性工作,比如优化计算一般用fluent是不适合的。我感觉fluent做力的计算是很不错的,做流场结构的计算,即使得出一些涡,也不是流场本身性质的反应,做低速流场计算,fluent的优势在于收敛速度快,但是低速流场计算,其大

FLUENT中常用的湍流模型

The Spalart-Allmaras模型 对于解决动力漩涡粘性,Spalart-Allmaras 模型是相对简单的方程。它包含了一组新的方程,在这些方程里不必要去计算和剪应力层厚度相关的长度尺度。Spalart-Allmaras 模型是设计用于航空领域的,主要是墙壁束缚流动,而且已经显示出很好的效果。在透平机械中的应用也愈加广泛。 在原始形式中Spalart-Allmaras 模型对于低雷诺数模型是十分有效的,要求边界层中粘性影响的区域被适当的解决。在FLUENT中,Spalart-Allmaras 模型用在网格划分的不是很好时。这将是最好的选择,当精确的计算在湍流中并不是十分需要时。再有,在模型中近壁的变量梯度比在k-e模型和k-ω模型中的要小的多。这也许可以使模型对于数值的误差变得不敏感。想知道数值误差的具体情况请看5.1.2。 需要注意的是Spalart-Allmaras 模型是一种新出现的模型,现在不能断定它适用于所有的复杂的工程流体。例如,不能依靠它去预测均匀衰退,各向同性湍流。还有要注意的是,单方程的模型经常因为对长度的不敏感而受到批评,例如当流动墙壁束缚变为自由剪切流。 标准k-e模型 最简单的完整湍流模型是两个方程的模型,要解两个变量,速度和长度尺度。在FLUENT中,标准k-e模型自从被Launder and Spalding提出之后,就变成工程流场计算中主要的工具了。适用范围广、经济,有合理的精度,这就是为什么它在工业流场和热交换模拟中有如此广泛的应用了。它是个半经验的公式,是从实验现象中总结出来的。 由于人们已经知道了k-e模型适用的范围,因此人们对它加以改造,出现了RNG k-e模型和带旋流修正k-e 模型。k-ε模型中的K和ε物理意义:k是紊流脉动动能(J),ε是紊流脉动动能的耗散率(%);k越大表明湍流脉动长度和时间尺度越大,ε越大意味着湍流脉动长度和时间尺度越小,它们是两个量制约着湍流脉动。 RNG k-e模型 RNG k-e模型来源于严格的统计技术。它和标准k-e模型很相似,但是有以下改进: ?RNG模型在e方程中加了一个条件,有效的改善了精度。 ?考虑到了湍流漩涡,提高了在这方面的精度。 ?RNG理论为湍流Prandtl数提供了一个解析公式,然而标准k-e模型使用的是用户提供的常数。 ?然而标准k-e模型是一种高雷诺数的模型,RNG理论提供了一个考虑低雷诺数流动粘性的解析公式。这些公式的效用依靠正确的对待近壁区域 这些特点使得RNG k-e模型比标准k-e模型在更广泛的流动中有更高的可信度和精度。 带旋流修正的k-e模型 带旋流修正的k-e模型是近期才出现的,比起标准k-e模型来有两个主要的不同点。 ?带旋流修正的k-e模型为湍流粘性增加了一个公式。 ?为耗散率增加了新的传输方程,这个方程来源于一个为层流速度波动而作的精确方程。 术语“realizable”,意味着模型要确保在雷诺压力中要有数学约束,湍流的连续性。带旋流修正的k-e模型直接的好处是对于平板和圆柱射流的发散比率的更精确的预测。而且它对于旋转流动、强逆压梯度的边界层流动、流动分离和二次流有很好的表现。带旋流修正的k-e模型和RNG k-e模型都显现出比标准k-e模型在强流线弯曲、漩涡和旋转有更好的表现。由于带旋流修正的k-e模型是新出现的模型,所以现在还没有确凿的证据表明它比RNG k-e模型有更好的表现。但是最初的研究表明带旋流修正的k-e模型在所有k-e模型中流动分离和复杂二次流有很好的作用。带旋流修正的k-e模型的一个不足是在主要计算旋转和静态流动区域时不能提供自然的湍流粘度。这是因为带旋流修正的k-e模型在定义湍流粘度时考虑了平均旋度的影响。这种额外的旋转影响已经在单一旋转参考系中得到证实,而且表现要好于标准k-e模型。由于这些修改,把它应用于多重参考系统中需要注意。 标准k-ω模型 标准k-ω模型是基于Wilcox k-ω模型,它是为考虑低雷诺数、可压缩性和剪切流传播而修改的。Wilcox k-ω模型预测了自由剪切流传播速率,像尾流、混合流动、平板绕流、圆柱绕流和放射状喷射,因而可以应用于墙壁束缚流动和自由剪切流动。标准k-e模型的一个变形是SST k-ω模型,它在FLUENT中也是可用的,将在10.2.9中介绍它。 剪切压力传输(SST)k-ω模型

FLUENT基础知识总结

FLUENT基础知识总结 仅仅就我接触过得谈谈对fluent的认识,并说说哪些用户适合用,哪些不适合fluent对我来说最麻烦的不在里面的设置,因为我本身解决的就是高速流动可压缩N-S方程,而且本人也是学力学的,诸如边界条件设置等概念还是非常清楚的同时我接触的流场模拟,都不会有很特别的介质,所以设置起来很简单。 对我来说,颇费周折的是gambit做图和生成网格,并不是我不会,而是gambit 对作图要求的条件很苛刻,也就是说,稍有不甚,就前功尽弃,当然对于计算流场很简单的用户,这不是问题。有时候好几天生成不了的图形,突然就搞定了,逐渐我也总结了一点经验,就是要注意一些小的拐角地方的图形,有时候做布尔运算在图形吻合的地方,容易产生一些小的面最终将导致无法在此生成网格,fluent里面的计算方法是有限体积法,而且我觉得它在计算过程中为了加快收敛速度,采取了交错网格,这样,计算精度就不会很高。同时由于非结构网格,肯定会导致计算精度的下降,所以我一贯来认为在fluent里面选取复杂的粘性模型和高精度的格式没有任何意义,除非你的网格做的非常好。 而且fluent5.5以前的版本(包括5。5),其物理模型,(比如粘性流体的几个模型)都是预先设定的,所以,对于那些做探索性或者检验新方法而进行的模拟,就不适合用。 同时gambit做网格,对于粘性流体,特别是计算湍流尺度,或者做热流计算来说其网格精度一般是不可能满足的,除非是很小的计算区域。所以,用fluent 做的比较复杂一点的流场(除了经典的几个基本流场)其计算所得热流,湍流,以及用雷诺应力模拟的粘性都不可能是准确的,这在物理上和计算方法已经给fluent判了死刑,有时候看到很多这样讨论的文章,觉得大家应该从物理和力学的本质上考虑问题。 但是,fluent往往能计算出量级差不多的结果,我曾经做了一个复杂的飞行器热流计算,高超音速流场,得到的壁面热流,居然在量级上是吻合的,但是,从计算热流需要的壁面网格精度来判断,gambit所做的网格比起壁面网格所满足的尺寸的要大了至少2个数量级,我到现在还不明白fluent是怎么搞的。 综上,我觉得,如果对付老板的一些工程项目,可以用fluent对付过去,但是如果真的做论文,或者需要发表文章,除非是做一些技术性工作,比如优化计算一般用fluent是不适合的。 我感觉fluent做力的计算是很不错的,做流场结构的计算,即使得出一些涡,也不是流场本身性质的反应,做低速流场计算,fluent的优势在于收敛速度快,但是低速流场计算,其大多数的着眼点在于对流场结构的探索,所以计算得到的结果就要好好斟酌一下了,高速流场的模拟中,一般着眼点在于气动力的结果,

湍流边界条件参数的设置

2011-8-30蓝色流体|流体专业论坛专注流体 - Pow… 标题: [fluent相关]湍流边界条件参数的设置 作者: ifluid 时间: 2009-4-14 15:02 标题: 湍流边界条件参数的设置 在流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。在FLUENT 中可以使用的湍流模型 有很多种。在使用各种湍流模型时,哪些变量需要设定,哪些不需要设定以及如何给定这些变量的具 体数值,都是经常困扰用户的问题。本小节只讨论在边界上设置均匀湍流参数的方法,湍流参数在边 界上不是均匀分布的情况可以用型函数和UDF(用户自定义函数)来定义,具体方法请参见相关章节的 叙述。 在大多数情况下,湍流是在入口后面一段距离经过转捩形成的,因此在边界上设置均匀湍流条件是一种可以接受的选择。特别是在不知道湍流参量的分布规律时,在边界上采用均匀湍流条件可以简 化模型的设置。在设置边界条件时,首先应该定性地对流动进行分析,以便边界条件的设置不违背物 理规律。违背物理规律的参数设置往往导致错误的计算结果,甚至使计算发散而无法进行下去。在 Turbulence Specification Method (湍流定义方法)下拉列表中,可以简单地用一个常数来定义湍 流参数,即通过给定湍流强度、湍流粘度比、水力直径或湍流特征长在边界上的值来定义流场边界上 的湍流。下面具体讨论这些湍流参数的含义,以保证在设置模型时不出现违背流动规律的错误设置: (1)湍流强度(Turbulence Intensity) 湍流强度I的定义为: I=Sqrt(u’*u’+v’*v’+w’*w’)/u_avg 上式中u',v' 和w' 是速度脉动量,u_av g是平均速度。 湍流强度小于1%时,可以认为湍流强度是比较低的,而在湍流强度大于10%时,则可以认为湍流强 度是比较高的。在来流为层流时,湍流强度可以用绕流物体的几何特征粗略地估算出来。比如在模拟 风洞试验的计算中,自由流的湍流强度可以用风洞的特征长度估计出来。在现代的低湍流度风洞中, 自由流的湍流强度通常低于0.05%。 内流问题进口处的湍流强度取决于上游流动状态。如果上游是没有充分发展的未受扰流动,则进口处可以使用低湍流强度。如果上游是充分发展的湍流,则进口处湍流强度可以达到几个百分点。如 果管道中的流动是充分发展的湍流,则湍流强度可以用公式(8-2)计算得到,这个公式是从管流经验公 式得到的: I=u’/u_avg=0.16*Re_DH^-0.125 其中Re_DH是Hy draulic Diameter(水力直径)的意思,即式(8-2)中的雷诺数是以水力直径为特 征长度求出的。 (2)湍流的长度尺度与水力直径 湍流能量主要集中在大涡结构中,而湍流长度尺度l则是与大涡结构相关的物理量。在充分发展的管流中,因为漩涡尺度不可能大于管道直径,所以l 是受到管道尺寸制约的几何量。湍流长度尺度l 与管道物理尺寸L关系可以表示为: l = 0.07L 式中的比例因子0.07是充分发展管流中混合长的最大值,而L则是管道直径。在管道截面不是圆形 时,L可以取为管道的水力直径。

fluent图形后处理技巧

在图的图的标题栏上右键,先在page setup中选择color,然后选copy to clipboard 就可以了,不用截图。 你可以这样子,没必要colormap一定非得在左边,是吧?如果你的模型是扁长型的话,你可以这样子:在fluent中display>options ,在option panel中的右下角,在colormap alignment 中选bottom。然后在显示的图形界面中将图放大,并将其拖到靠近colormap的地方,再继续我之前帖子中的操作就可以了。 数据可以在显示图形时调整好,然后不要关闭调整好的窗口,连续导入不同的数据进行显示就可以了..或者可以采用tecplot来进行后处理,图片会漂亮些.... File-hardcopy-调整一下即可 不用改,复制到word里背景直接就变成白色了 生成图片使用file下的hardcopy命令,有一个选项是背景色翻转,你虽然看到的是黑色,输出图片背景是白色 的。还有一种方式就是显示也希望是白色背景,使用命令display>set>colors>background 把gambit的背景变成白色 在edit的default的graphic的windows-background-color中把black修改成white,然后modify f luent中默认的图形背景颜色为黑色,这对于要发表的图形很不利,因此很多人希望背景为白色,那么可以使用如下命令:Lf ile-》hardcopy设置格式选择为jpg,color选项之后save那么图形就是希望的白色背景。我发现似乎转化成jpg之后没有运行时候显示的清晰,略微模糊一些,大家可以实验其他设置选择,以求得最好的效果zV>3}D另外可以在控制台命令行输入display/set/color回车之后就显示哪些可以设置的选择,敲进比如background之后就可以改变了,提醒一下单纯改变背景为黑色会使得legnd变成一个梯子,其数字会消失。you should change foreground from white to black .this can be done at he same dislay/set/colors> as the background.p<> 好怎么去掉FLUENT图形显示的黑色背景,一般都建议用抓图后反色背景。另外还有数据显示范围比较小,数据显示相同,色轴没有差别的情况。 本人通过摸索,发现这两个问题可以直接在FLUENT里设置。

fluent使用基本步骤

fluent使用基本步骤 步骤一:网格 1.读入网格(*.msh) File →Read →Case 读入网格后,在窗口显示进程 2.检查网格 Grid →Check Fluent对网格进行多种检查,并显示结果。注意最小容积,确保最小容积值为正。 3.显示网格 Display →Grid ①以默认格式显示网格 能够用鼠标右键检查边界区域、数量、名称、类型将在窗口显示,本操作关 于同样类型的多个区域情形专门有用,以便快速区别它们。 4.网格显示操作 Display →Views (a)在Mirror Planes面板下,axis (b)点击Apply,将显示整个网格 (c)点击Auto scale, 自动调整比例,并放在视窗中间 (d)点击Camera,调整目标物体位置 (e)用鼠标左键拖动指标钟,使目标位置为正 (f)点击Apply,并关闭Camera Parameters 和Views窗口 步骤二:模型 1. 定义瞬时、轴对称模型

Define →models→Solver (a)保留默认的,Segregated解法设置,该项设置,在多相运算时使用。 (b)在Space面板下,选择Axisymmetric (c)在Time面板下,选择Unsteady 2. 采纳欧拉多相模型 Define→Models→Multiphase (a) 选择Eulerian作为模型 (b)假如两相速度差较大,则需解滑移速度方程 (c)假如Body force比粘性力和对流力大得多,则需选择implicit body force 通过考虑压力梯度和体力,加快收敛 (d)保留设置不变

fluent经验总结

1什么叫松弛因子?松弛因子对计算结果有什么样的影响?它对计算的收敛情况又有什 么样的影响? 1、亚松驰(Under Relaxation):所谓亚松驰就是将本层次计算结果与上一层次结果的差值作适当缩减,以避免由于差值过大而引起非线性迭代过程的发散。用通用变量来写 出时,为松驰因子(Relaxation Factors)。《数值传热学-214》 2、FLUENT中的亚松驰:由于FLUENT所解方程组的非线性,我们有必要控制的变化。一般用亚松驰方法来实现控制,该方法在每一部迭代中减少了的变化量。亚松驰最简 单的形式为:单元内变量等于原来的值加上亚松驰因子a与变化的积, 分离解算器使用亚松驰来控制每一步迭代中的计算变量的更新。这就意味着使用分离解算器解的方程,包 括耦合解算器所解的非耦合方程(湍流和其他标量)都会有一个相关的亚松驰因子。在FLUENT中,所有变量的默认亚松驰因子都是对大多数问题的最优值。这个值适合于很多问题,但是对于一些特殊的非线性问题(如:某些湍流或者高Rayleigh数自然对流问题),在计算开始时要慎重减小亚松驰因子。使用默认的亚松驰因子开始计算是很好的习惯。如 果经过4到5步的迭代残差仍然增长,你就需要减小亚松驰因子。有时候,如果发现残差 开始增加,你可以改变亚松驰因子重新计算。在亚松驰因子过大时通常会出现这种情况。 最为安全的方法就是在对亚松驰因子做任何修改之前先保存数据文件,并对解的算法做几 步迭代以调节到新的参数。最典型的情况是,亚松驰因子的增加会使残差有少量的增加, 但是随着解的进行残差的增加又消失了。如果残差变化有几个量级你就需要考虑停止计算 并回到最后保存的较好的数据文件。注意:粘性和密度的亚松驰是在每一次迭代之间的。 而且,如果直接解焓方程而不是温度方程(即:对PDF计算),基于焓的温度的更新是要进行亚松驰的。要查看默认的亚松弛因子的值,你可以在解控制面板点击默认按钮。对于 大多数流动,不需要修改默认亚松弛因子。但是,如果出现不稳定或者发散你就需要减小 默认的亚松弛因子了,其中压力、动量、k和e的亚松弛因子默认值分别为0.2,0.5,0.5和0.5。对于SIMPLEC格式一般不需要减小压力的亚松弛因子。在密度和温度强烈耦合 的问题中,如相当高的Rayleigh数的自然或混合对流流动,应该对温度和/或密度(所用 的亚松弛因子小于1.0)进行亚松弛。相反,当温度和动量方程没有耦合或者耦合较弱时,流动密度是常数,温度的亚松弛因子可以设为1.0。对于其它的标量方程,如漩涡,组分,PDF变量,对于某些问题默认的亚松弛可能过大,尤其是对于初始计算。你可以将松弛因子设为0.8以使得收敛更容易。 SIMPLE与SIMPLEC比较 在FLUENT中,可以使用标准SIMPLE算法和SIMPLEC(SIMPLE-Consistent)算法,默认是SIMPLE算法,但是对于许多问题如果使用SIMPLEC可能会得到更好的结果,尤其是可以应用增加的亚松驰迭代时,具体介绍如下: 对于相对简单的问题(如:没有附加模型激活的层流流动),其收敛性已经被压力速

(整理)FLUENT边界条件(2)—湍流设置.

FLUENT边界条件(2)—湍流设置 (fluent教材—fluent入门与进阶教程于勇第九章) Fluent:湍流指定方法(Turbulence Specification Method) 2009-09-16 20:50 使用Fluent时,对于velocity inlet边界,涉及到湍流指定方法(Turbulence Specification Method),其中一项是Intensity and Hydraulic Diameter (强度和水利直径),本文对其进行论述。 其下参数共两项, (1)是Turbulence Intensity,确定方法如下: I=0.16/Re_DH^0.125 (1) 其中Re_DH是Hydraulic Diameter(水力直径)的意思,即式(1)中的雷诺数是以水力直径为特征长度求出的。 雷诺数 Re_DH=u×DH/υ(2) u为流速,DH为水利直径,υ为运动粘度。 水利直径见(2)。 (2)水利直径 水力直径是水力半径的二倍,水力半径是总流过流断面面积与湿周之比。 水力半径 R=A/X (3) 其中,A为截面积(管子的截面积)=流量/流速 X为湿周(字面理解水流过各种形状管子外圈湿一周的周长) 例如:方形管的水利半径 R=ab/2(a+b) 水利直径 DH=2×R (4) 举例如下: 如果水流速度u=10m/s,圆形管路直径2cm,水的运动粘度为1×10-6 m2/s。 则 DH=2×3.14*r^2/(2*3.14*r)=2*3.14*0.01^2/(3.14*0.02)=0.01 r为圆管半径 Re_DH=u×DH/υ=10*0.02/10e-6=20000 I=0.16/Re_DH^0.125=0.16/20000^0.125=0.0463971424017634≈5%

Fluent 湍流模型小结

Fluent 湍流模型小结湍流模型目前计算流体力学常用的湍流的数值模拟方法主要有以下三种: 直接模拟(direct numerical&Oσλαση; simulation, DNS) 直接数值模拟(DNS)特点在湍流尺度下的网格尺寸内不引入任何封闭模型的前提下对Navier-Stokes方程直接求解。这种方法能对湍流流动中最小尺度涡进行求解,要对高度复杂的湍流运动进行直接的数值计算,必须采用很小的时间与空间步长,才能分辨出湍流中详细的空间结构及变化剧烈的时间特性。基于这个原因,DNS目前仅限于相对低的雷诺数中湍流流动模型。另外,利用DNS模型对湍流运动进行直接的数值模拟对计算工具有很高的要求,计算机的内存及计算速度要非常的高,目前DNS模型还无法应用于工程数值计算,还不能解决工程实际问题。 大涡模拟(large&Oσλαση; eddy simulation, LES) 大涡模拟(LES)是基于网格尺度封闭模型及对大尺度涡进行直接求解N-S方程,其网格尺度比湍流尺度大,可以模拟湍流发展过程的一些细节,但其计算量仍很大,也仅用于比较简单的剪切流运动及管流。大涡模拟的基础是:湍流的脉动与混合主要是由大尺度的涡造成的,大尺度涡是高度的非各向同性,而且随流动的情形而异。大尺度的涡通过相互作用把能量传递给小尺度的涡,而小尺度的涡旋主要起到耗散能量的作用,几乎是各向同性的。这些对涡旋的认识基础就导致了大涡模拟方法的产生。Les大涡模拟采用非稳态的N-S方程直接模拟大尺度涡,但不计算小尺度涡,小涡对大涡的影响通过近似的模拟来考虑,这种影响称为亚格子Reynolds应力模型。大多数亚格子Reynolds模型都是将湍流脉动所造成的影响用一个湍流粘性系数,既粘涡性来描述。LES对计算机的容量和CPU的要求虽然仍然很高,但是远远低于DNS方法对计算机的要求,因而近年来的研究与应用日趋广泛。 应用Reynolds时均方程(Reynolds-averaging&Oσλαση; equations)的模拟方法 许多流体力学的研究和数值模拟的结果表明,可用于工程上现实可行的湍流模拟方法仍然是基于求解Reynolds时均方程及关联量输运方程的湍流模拟方法,即湍流的统观模拟方法。统观模拟方法的基本思想是用低阶关联量和平均流性质来模拟未知的高阶关联项,从而封闭平均方程组或关联项方程组。虽然这种方法在湍流理论中是最简单的,但是对工程应用而言仍然是相当复杂的。即便如此,在处理工程上的问题时,统观模拟方法仍然是最有效、最经济而且合理的方法。在统观模型中,使用时间最长,积累经验最丰富的是混合长度模型和K-E模型。其中混合长度模型是最早期和最简单的湍流模型。该模型是建立在层流粘性和湍流粘性的类比、平均运动与湍流的脉动的概念上的。该模型的优点是简单直观、无须增加微分方程。缺点是在模型中忽略了湍流的对流与扩散,对于复杂湍流流动混合长度难以确定。 到目前为止,工程中应用最广泛的是k-ε模型。另外针对k-ε模型的不足之处,许多学者通过对K-E模型的修正和发展,开始采用雷诺应力模型(DSM)和代数应力模型(ASM)。近年来,DSM模型已用来预报燃烧室及炉内的强旋及浮力流动。很多情况下能够给出优于k-ε模型的结果。但是该模型也有不足之处,首先它对工程预报来说太复杂,其次经验系数太多难以确定,此外,对压力应变项的模拟还有争议。更主要的是,尽管这一模型考虑了各种应变效应,但是其总精度并不总是高于其它模型,这些缺点导致了DSM模型没有得到广泛的应用。总之,虽然从本质上讲DSM模型和ASM模型比k-ε模型对湍流流场的模拟更加合理,但DSM和ASM中仍然采用精度不高的E方程,模型中常数的通用性还没有得到广泛的验证,边界条件不好给定,计算也比较复杂。正因为如此,目前用计算解决湍流问题时仍然采用比较成熟的K-E模型。 需要注意的是: 1、大涡模拟有自己的亚格子封闭模型,这和k-ε模型完全是两回事。LES的亚格子模型表

FLUENT中湍流参数的定义

FLUENT 中湍流参数的定义 2011-07-28 10:46:03| 分类:默认分类|举报|字号订阅 流场的入口、出口和远场边界上,用户需要定义流场的湍流参数。在FLUENT 中可以使用的湍流模型有很多种。在使用各种湍流模型时,哪些变量需要设定,哪些不需要设定以及如何给定这些变量的具体数值,都是经常困扰用户的问题。本小节只讨论在边界上设置均匀湍流参数的方法,湍流参数在边界上不是均匀分布的情况可以用型函数和UDF(用户自定义函数)来定义,具体方法请参见相关章节的叙述。 在大多数情况下,湍流是在入口后面一段距离经过转捩形成的,因此在边界上设置均匀湍流条件是一种可以接受的选择。特别是在不知道湍流参量的分布规律时,在边界上采用均匀湍流条件可以简化模型的设置。在设置边界条件时,首先应该定性地对流动进行分析,以便边界条件的设置不违背物理规律。违背物理规律的参数设置往往导致错误的计算结果,甚至使计算发散而无法进行下去。 在Turbulence Specification Method (湍流定义方法)下拉列表中,可以简单地用一个常数来定义湍流参数,即通过给定湍流强度、湍流粘度比、水力直径或湍流特征长在边界上的值来定义流场边界上的湍流。下面具体讨论这些湍流参数的含义,以保证在设置模型时不出现违背流动规律的错误设置: (1)湍流强度(Turbulence Intensity)

湍流强度I的定义为: I=Sqrt(u’*u’+v’*v’+w’*w’)/u_avg (8-1) 上式中u',v' 和w' 是速度脉动量,u_avg是平均速度。 湍流强度小于1%时,可以认为湍流强度是比较低的,而在湍流强度大于10%时,则可以认为湍流强度是比较高的。在来流为层流时,湍流强度可以用绕流物体的几何特征粗略地估算出来。比如在模拟风洞试验的计算中,自由流的湍流强度可以用风洞的特征长度估计出来。在现代的低湍流度风洞中,自由流的湍流强度通常低于0.05%。 内流问题进口处的湍流强度取决于上游流动状态。如果上游是没有充分发展的未受扰流动,则进口处可以使用低湍流强度。如果上游是充分发展的湍流,则进口处湍流强度可以达到几个百分点。如果管道中的流动是充分发展的湍流,则湍流强度可以用公式(8-2)计算得到,这个公式是从管流经验公式得到的: I=u’/u_avg=0.16*Re_DH^-0.125 (8-2) 其中Re_DH是Hydraulic Diameter(水力直径)的意思,即式(8-2)中的雷诺数是以水力直径为特征长度求出的。 (2)湍流的长度尺度与水力直径 湍流能量主要集中在大涡结构中,而湍流长度尺度l则是与大涡结构相关的物理量。在充分发展的管流中,因为漩涡尺度不可能大于管道直径,所以l 是受到管道尺寸制约的几何量。湍流长度尺度l 与管道物理尺寸L 关系可以表示为: l = 0.07L (8-3)

FLUENT学习经验总结(狠珍贵,学长传授)

1对于刚接触到FLUENT新手来说,面对铺天盖地的学习资料和令人难读的FLUENT help,如何学习才能在最短的时间内入门并掌握基本学习方法呢? 答:学习任何一个软件,对于每一个人来说,都存在入门的时期。认真勤学是必须的,什么是最好的学习方法,我也不能妄加定论,在此,我愿意将我三年前入门FLUENT心得介绍一下,希望能给学习FLUENT的新手一点帮助。 由于当时我需要学习FLUENT来做毕业设计,老师给了我一本书,韩占忠的《FLUENT流体工程仿真计算实例与应用》,当然,学这本书之前必须要有两个条件,第一,具有流体力学的基础,第二,有FLUENT 安装软件可以应用。然后就照着书上二维的计算例子,一个例子,一个步骤地去学习,然后学习三维,再针对具体你所遇到的项目进行针对性的计算。不能急于求成,从前处理器GAMBIT,到通过FLUENT进行仿真,再到后处理,如TECPLOT,进行循序渐进的学习,坚持,效果是非常显著的。如果身边有懂得FLUENT的老师,那么遇到问题向老师请教是最有效的方法,碰到不懂的问题也可以上网或者查找相关书籍来得到答案。另外我还有本《计算流体动力学分析》王福军的,两者结合起来学习效果更好。 2 CFD计算中涉及到的流体及流动的基本概念和术语:理想流体和粘性流体;牛顿流体和非牛顿流体;可压缩流体和不可压缩流体;层流和湍流;定常流动和非定常流动;亚音速与超音速流动;热传导和扩散等。A.理想流体(Ideal Fluid)和粘性流体(Viscous Fluid): 流体在静止时虽不能承受切应力,但在运动时,对相邻的两层流体间的相对运动,即相对滑动速度却是有抵抗的,这种抵抗力称为粘性应力。流体所具备的这种抵抗两层流体相对滑动速度,或普遍说来抵抗变形的性质称为粘性。粘性的大小依赖于流体的性质,并显著地随温度变化。实验表明,粘性应力的大小与粘性及相对速度成正比。当流体的粘性较小(实际上最重要的流体如空气、水等的粘性都是很小的),运动的相对速度也不大时,所产生的粘性应力比起其他类型的力如惯性力可忽略不计。此时我们可以近似地把流体看成无粘性的,这样的流体称为理想流体。十分明显,理想流体对于切向变形没有任何抗拒能力。这样对于粘性而言,我们可以将流体分为理想流体和粘性流体两大类。应该强调指出,真正的理想流体在客观实际中是不存在的,它只是实际流体在某些条件下的一种近似模型。 B.牛顿流体(Newtonian Fluid)和非牛顿流体(non-Newtonian Fluid): 日常生活和工程实践中最常遇到的流体其切应力与剪切变形速率符合下式的线性关系,称为牛顿流体。而切应力与变形速率不成线性关系者称为非牛顿流体。图2-1(a)中绘出了切应力与变形速率的关系曲线。其中符合上式的线性关系者为牛顿流体。其他为非牛顿流体,非牛顿流体中又因其切应力与变形速率关系特点分为膨胀性流体(Dilalant),拟塑性流体(Pseudoplastic),具有屈服应力的理想宾厄流体(Ideal Bingham Fluid)和塑性流体(Plastic Fluid)等。通常油脂、油漆、牛奶、牙膏、血液、泥浆等均为非牛顿流体。非牛顿流体的研究在化纤、塑料、石油、化工、食品及很多轻工业中有着广泛的应用。图2-1(b)还显示出对于有些非牛顿流体,其粘滞特性具有时间效应,即剪切应力不仅与变形速率有关而且与作用时间有关。当变形速率保持常量,切应力随时间增大,这种非牛顿流体称为震凝性流体(Rheopectic Fluid)。当变形速率保持常量而切应力随时间减小的非牛顿流体则称为触变性流体(Thixotropic Fluid)。 C.可压缩流体(Compressible Fluid)和不可压缩流体(Incompressible Fluid): 在流体的运动过程中,由于压力、温度等因素的改变,流体质点的体积(或密度,因质点的质量一定),或多或少有所改变。流体质点的体积或密度在受到一定压力差或温度差的条件下可以改变的这个性质称为压缩性。真实流体都是可以压缩的。它的压缩程度依赖于流体的性质及外界的条件。例如水在100个大气压下,容积缩小0.5%,温度从20°变化到100°,容积降低4%。因此在一般情况下液体可以近似地看成不可压的。但是在某些特殊问题中,例如水中爆炸或水击等问题,则必须把液体看作是可压缩的。气体的压缩性比液体大得多,所以在一般情形下应该当作可压缩流体处理。但是如果压力差较小,运动速度较小,并且没有很大的温度差,则实际上气体所产生的体积变化也不大。此时,也可以近似地将气体视为不可压缩的。 在可压缩流体的连续方程中含密度,因而可把密度视为连续方程中的独立变量进行求解,再根据气体的状态方程求出压力。不可压流体的压力场是通过连续方程间接规定的。由于没有直接求解压力的方程,不可压流体的流动方程的求解具有其特殊的困难。 D. 层流(Laminar Flow)和湍流(Turbulent Flow):

相关主题