搜档网
当前位置:搜档网 › 利用特征线法求解方程u +b·Du+cu=f(x,t)的初值问题

利用特征线法求解方程u +b·Du+cu=f(x,t)的初值问题

利用特征线法求解方程u +b·Du+cu=f(x,t)的初值问题
利用特征线法求解方程u +b·Du+cu=f(x,t)的初值问题

龙源期刊网 https://www.sodocs.net/doc/7a5216042.html,

利用特征线法求解方程u +b·Du+cu=f(x,t)的初值问题

作者:吴建成王平心

来源:《科技视界》2013年第24期

【摘要】本文研究具有初值条件u(x,0)=g(x)的方程u+b·Du+cu=f(x,t)的初值问题。方程u+b·Du+cu=f(x,t)是具有常系数的一阶非齐次线性偏微分方程,这类方程在变分法、质点力学和几何学中都出现过,因此研究这类方程的目的是更好地应用于这些学科。求解这类方程的最基本方法是特征线法。它是把偏微分方程转化为常微分方程或常微分方程组,通过求解这些常微分方程得到所要求的解。本文分别运用特征线法以及特征线法的特殊情况求解了该初值问题,两种方法所得到的解是一致的,都是u(x,t)=g(x-bt)(x+b(u-t),u)du。因此,有了通过特征线法所求得的该初值问题的解的公式,我们可以更好地研究相关的一些实际问题。

【关键词】线性偏微分方程;初值问题;特征线法;常微分方程

0 引言

1)初值问题

其中,c∈R1,b=(b1,b2,…,bn)∈R都是常数。x=(x1,x2,…,xn)是n维空间变量,t是时间变量(x,t)是已知函数。

2)分析

上述初值问题中的方程(1)是一阶非齐次线性偏微分方程,在大多数常微分方程和偏微分方程教程中,一阶偏微分方程通常受到简单的处理,原因之一是具有很明显应用意义的偏微分方程即位势方程、热传导方程和波动方程等都是标准的二阶偏微分方程。实际上,一阶偏微分方程在变分法、质点力学和几何光学中都出现过,在流体力学、空气动力学和其它工程技术等领域有着广泛的应用。例如在种群分析中,个体(不必是生物体,如生产的产品如灯泡、晶体管、食品或更一般的任一类似的物品的集合)根据统计样本随着时间的变化会变得不合格,因此研究一阶偏微分方程有着实际意义。

一阶偏微分方程的特点是:其通解可以通过解一个常微分方程组而得到,称这种求解方法为特征线法[1]。而高阶偏微分方程和一阶偏微分方程组没有这个特点。特征线法是一种重要

又实用的方法,利用该方法证明了半有界弦振动的一维半线性波动方程的间断初边值问题的分片光滑解的全局存在性定理[2];用该方法给出了一类仓库货物储存模型解的递推表达式,并

证明其光滑性从而得到了经典解的唯一性[3];通过运用特征线法,讨论了无粘性Burgers方程

特征方程法求递推数列的通项公式

特征方程法求解递推关系中的数列通项 一、(一阶线性递推式)设已知数列}{n a 的项满足d ca a b a n n +==+11,,其中,1,0≠≠c c 求这个数列的通项公式。 采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程,d cx x +=称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述. 定理1:设上述递推关系式的特征方程的根为0x ,则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +===时当,其中}{n b 是以c 为公比 的等比数列,即01111,x a b c b b n n -==-. 证明:因为,1,0≠c 由特征方程得.10c d x -= 作换元,0x a b n n -=则.)(110011n n n n n n cb x a c c cd ca c d d ca x a b =-=--=--+=-=-- 当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n c b b 当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n (证毕) 下面列举两例,说明定理1的应用. 例1.已知数列}{n a 满足:,4,N ,23 1 11=∈--=+a n a a n n 求.n a 解:作方程.2 3,2310-=--=x x x 则 当41=a 时,.2 1123,1101=+=≠a b x a 数列}{n b 是以3 1-为公比的等比数列.于是.N ,)31(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n 例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数

特征方程特征根法求解数列通项公式

特征方程特征根法求解数列通项公式 一:A(n+1)=pAn+q, p,q为常数. (1)通常设:A(n+1)-λ=p(An-λ), 则λ=q/(1-p). (2)此处如果用特征根法: 特征方程为:x=px+q,其根为x=q/(1-p) 注意:若用特征根法,λ的系数要是-1 例一:A(n+1)=2An+1 , 其中q=2,p=1,则 λ=1/(1-2)= -1那么 A(n+1)+1=2(An+1) 二:再来个有点意思的,三项之间的关系: A(n+2)=pA(n+1)+qAn,p,q为常数 (1)通常设:A(n+2)-mA(n+1)=k[pA(n+1)-mAn], 则m+k=p, mk=q (2)此处如果用特征根法: 特征方程是y×y=py+q(※) 注意: ①m n为(※)两根。 ②m n可以交换位置,但其结果或出现两种截然不同的数列形式,但同样都可以计算An,而且还会有意想不到的惊喜, ③m n交换位置后可以分别构造出两组An和A(n+1)的递推公式,这个时侯你会发现,这是一个关于An和A(n+1)的二元一次方程组,那么不就可以消去A(n+1),留下An,得了,An求出来了。 例二:A1=1,A2=1,A(n+2)= - 5A(n+1)+6An, 特征方程为:y×y= - 5y+6 那么,m=3,n=2,或者m=2,n=3 于是,A(n+2)-3A(n+1)=2[A(n+1)-3A] (1) A(n+2)-2A(n+1)=3[A(n+1)-2A] (2) 所以,A(n+1)-3A(n)= - 2 ^ n (3) A(n+1)-2A(n)= - 3 ^ (n-1) (4) you see 消元消去A(n+1),就是An勒 例三: 【斐波那挈数列通项公式的推导】斐波那契数列:0,1,1,2,3,5,8,13,21…… 如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式: F(0) = 0,F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3) 显然这是一个线性递推数列。 通项公式的推导方法一:利用特征方程 线性递推数列的特征方程为: X^2=X+1 解得 X1=(1+√5)/2, X2=(1-√5)/2. 则F(n)=C1*X1^n + C2*X2^n ∵F(1)=F(2)=1 ∴C1*X1 + C2*X2 C1*X1^2 + C2*X2^2

递归方程解的渐近阶的求法

递归方程解的渐近阶的求法 递归算法在最坏情况下的时间复杂性渐近阶的分析,都转化为求相应的一个递归方程的解的渐近阶。因此,求递归方程的解的渐近阶是对递归算法进行分析的关键步骤。 递归方程的形式多种多样,求其解的渐近阶的方法也多种多样。这里只介绍比较实用的五种方法。 1.代入法这个方法的基本步骤是先推测递归方程的显式解,然后用数学归纳法证明这 一推测的正确性。那么,显式解的渐近阶即为所求。 2.迭代法这个方法的基本步骤是通过反复迭代,将递归方程的右端变换成一个级数, 然后求级数的和,再估计和的渐近阶;或者,不求级数的和而直接估计级数的渐近阶,从而达到对递归方程解的渐近阶的估计。 3.套用公式法这个方法针对形如:T (n)=aT (n / b)+f (n) 的递归方程,给出三种情况 下方程解的渐近阶的三个相应估计公式供套用。 4.差分方程法有些递归方程可以看成一个差分方程,因而可以用解差分方程(初值问 题)的方法来解递归方程。然后对得到的解作渐近阶的估计。 5.母函数法这是一个有广泛适用性的方法。它不仅可以用来求解线性常系数高阶齐次 和非齐次的递归方程,而且可以用来求解线性变系数高阶齐次和非齐次的递归方程,甚至可以用来求解非线性递归方程。方法的基本思想是设定递归方程解的母函数,努力建立一个关于母函数的可解方程,将其解出,然后返回递归方程的解。 本章将逐一地介绍上述五种方法,并分别举例加以说明。 本来,递归方程都带有初始条件,为了简明起见,我们在下面的讨论中略去这些初始条件。 递归方程组解的渐进阶的求法——代入法 用这个办法既可估计上界也可估计下界。如前面所指出,方法的关键步骤在于预先对解答作出推测,然后用数学归纳法证明推测的正确性。 例如,我们要估计T(n)的上界,T(n)满足递归方程: 其中是地板(floors)函数的记号,表示不大于n的最大整数。 我们推测T(n)=O(n log n),即推测存在正的常数C和自然数n0,使得当n≥n0 时有:

史上最全的数列通项公式的求法13种

最全的数列通项公式的求法 数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。本文给出了求数列通项公式的常用方法。 一、直接法 根据数列的特征,使用作差法等直接写出通项公式。 二、公式法 ①利用等差数列或等比数列的定义求通项 ②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式 ?? ?≥???????-=????????????????=-2 1 11n S S n S a n n n 求解. (注意:求完后一定要考虑合并通项) 例2.①已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式. ②已知数列{}n a 的前n 项和n S 满足2 1n S n n =+-,求数列{}n a 的通项公式. ③ 已知等比数列{}n a 的首项11=a ,公比10<

递归方程求解方法综述

递归方程求解方法综述 摘要:随着计算机科学的逐步发展,各种各样的算法相继出现,我们需要对算法进行分析,以选择性能更好的解决方案。算法分析中计算复杂度常用递归方程来表达,因此递归方程的求解有助于分析算法设计的好坏。阐述了常用的3种求解递归方程的方法:递推法、特征方程法和生成函数法。这3种方法基本上可以解决一般规模递归方程的求解问题。 关键词:递归;递推法;特征方程;生成函数 0引言 寻求好的解决方案是算法分析的主要目的,问题的解决方案可能不只一个,好的方案应该执行时间最短,同时占有存储空间最小,故算法分析一般考虑时间复杂性、空间复杂性两方面的参数。在算法分析时我们采用时间耗费函数来表示时间参数,用当问题规模充分大时的时间耗费函数的极限表示时间复杂度。 一般算法对应的时间耗费函数常用递归方程表示,找出递归方程的解,就可以表示其对应算法复杂度的渐进阶,从而比较算法的优劣。因此研究递归方程的解法意义重大。下文将分析并给出常用递归方程的3种解法。 1递归方程的解法 递归方程是对实际问题求解的一种数学抽象,递归的本质在于将原始问题逐步划分成具有相同解题规律的子问题来解决,原始问题与子问题仅在规模上有大小区别,并且子问题的规模比原始问题的

规模要小。对于规模为n的原始问题,我们通常会寻找规模n的问题与规模n-1或者规模n/2的问题之间存在的联系,从而进一步推导出具有递归特性的运算模型。 根据递归方程的一般形式,常用的解法有三种,分别是递推法、公式法及生成函数法。下面就分别来分析其求解过程。 1.1递推法 当递归方程形式简单且阶数较低时,一般可以采用递推法求解,根据一步一步递推找到方程的递推规律,得到方程的解。下面举例说明: t(1)=0 t(n)=2t(n/2)+n2(n≥2) t(n)=2t(n/2)+n2=2(2t(n/22)+(n/2)2)+n2 =22t(n/2)2+2n2/22+n2 =22(2t(n/23)+(n/22)2)+2n2/22+n2 =23(2t(n/23)+22n2/(22)2)+2n2/(22)1+n2… =2kt(n/2k)+∑k-1i=02in2(22)i递推到这里我们就可以发现递 归规律,找到递归出口, t(1)=0,令n=2k 则可以得到如下结果:t(n) =2kt(1) +∑k-1i=0n2(1/2)i)= n2(1-(1/2)k1-1/2)=2n2-2n 上面得到方程的解,我们来分析其对应算法复杂性的渐进阶,根据渐进阶定理有:设有函数f(n),g(n)均是规模n的函数,则o(f(n))+o(g(n))=o(max(f(n), g(n)))。故有t(n)=o(n2)。 1.2公式法

数列通项公式的求法(较全)

常见数列通项公式的求法 公式: 1、 定义法 若数列是等差数列或等比数列,求通公式项时,只需求出1a 与d 或1a 与q ,再代入公式()d n a a n 11-+=或 11-=n n q a a 中即可. 例1、成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{}n b 的345,,b b b ,求数列{}n b 的的通项公式. 练习:数列{}n a 是等差数列,数列{}n b 是等比数列,数列{}n c 中对于任何* n N ∈都有 1234127 ,0,,,,6954 n n n c a b c c c c =-====分别求出此三个数列的通项公式.

2、 累加法 形如()n f a a n n =-+1()1a 已知型的的递推公式均可用累加法求通项公式. (1) 当()f n d =为常数时,{}n a 为等差数列,则()11n a a n d =+-; (2) 当()f n 为n 的函数时,用累加法. 方法如下:由()n f a a n n =-+1得 当2n ≥时,() 11n n a a f n --=-, () 122n n a a f n ---=-, ()322a a f -=, () 211a a f -=, 以上()1n -个等式累加得 ()()()()11+221n a a f n f n f f -=--+ ++ 1n a a ∴=+()()()()1+221f n f n f f --+ ++ (3)已知1a ,()n f a a n n =-+1,其中()f n 可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项. ①若()f n 可以是关于n 的一次函数,累加后可转化为等差数列求和; ②若()f n 可以是关于n 的二次函数,累加后可分组求和; ③若()f n 可以是关于n 的指数函数,累加后可转化为等比数列求和; ④若()f n 可以是关于n 的分式函数,累加后可裂项求和求和. 例2、数列{}n a 中已知111,23n n a a a n +=-=-, 求{}n a 的通项公式.

数列的特征方程

递推数列特征方程的来源与应用 递推是中学数学中一个非常重要的概念和方法,递推数列问题能力要求高,内在联系密切,蕴含着不少精妙的数学思想和数学方法。新教材将数列放在高一讲授,并明确给出“递推公式”的概念:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个公式来表示,那么这个公式叫做数列的递推公式。有通项公式的数列只是少数,研究递推数列公式给出数列的方法可使我们研究数列的范围大大扩展。新大纲关于递推数列规定的教学目标是“了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项”,但从近几年来高考试题中常以递推数列或与其相关的问题作为能力型试题来看,这一目标是否恰当似乎值得探讨,笔者以为“根据递推公式写出数列的前几项”无论从思想方法还是从培养能力上来看,都不那么重要,重要的是学会如何去发现数列的递推关系,学会如何将递推关系转化为数列的通项公式的方法。本文以线性递推数列通项求法为例,谈谈这方面的认识。 关于一阶线性递推数列:),1(,11≠+==+c d ca a b a n n 其通项公式的求法一般采用如下的参数法[1],将递推数列转化为等比数列: 设t c ca a t a c t a n n n n )1(),(11-+=+=+++则 ,令d t c =-)1(,即1 -= c d t , 当1≠c 时可得 )1 (11-+=-++c d a c c d a n n 知数列???? ??-+1c d a n 是以c 为公比的等比数列, 11)1 (1--+=-+∴n n c c d a c d a 将b a =1代入并整理,得()1 1---+=-c d c b d bc a n n n 对于二阶线性递推数列,许多文章都采用特征方程法[2]: 设递推公式为,11-++=n n n qa pa a 其特征方程为02 2=--+=q px x q px x 即, 1、 若方程有两相异根A 、B ,则n n n B c A c a 21+= 2、 若方程有两等根,B A =则n n A nc c a )(21+=

高中数学数列通项公式的求法(方法总结)

(1)主题:求数列通项n a 的常用方法总结 一、 形如:特殊情况:当n+11,n n A B C A a a A =*+*+≠,常用累加法。 (n n a a +-,z 构建等比数列()1y n z *++z ; 的通项公式,进而求得n a 。 二、 形n a a * ;

三、 形 ()x f x =) 情形1:1n n A B a a +=*+型。设λ是不动点方程的根,得数列 {}n a λ-是 以公比为A 的等比数列。 情形2:1*n n n A B C D a a a +*+=+型。 设1λ和2λ 是不动点方程 *A x B x C x D *+=+的两个根; (1)当12λλ≠时,数列n 12n a a λλ??-?? ??-????是以12 A C A C λλ -*-*为公比的等比数列; (2)当12 =λλλ =时,数列1n a λ???? ??-???? 是以2*C A D +为公差的等差数列。 【推导过程:递推式为a n+1= d ca b aa n n ++(c ≠0,a,b,c,d 为常数)型的数列 a n+1-λ= d ca b aa n n ++-λ= d ca c a d b a c a n n +--+ -) )((λλλ,令λ=-λ λc a d b --,可得λ=d c b a ++λλ ……(1)。(1)是a n+1=d ca b aa n n ++中的a n ,a n+1都换成λ后的不动点方程。 ○ 1当方程(1)有两个不同根λ1,λ2时,有 a n+1-λ1= d ca a c a n n +--))((11λλ,a n+1-λ2=d ca a c a n n +--) )((22λλ ∴ 2111λλ--++n n a a =21λλc a c a --?21λλ--n n a a ,令b n =21λλ--n n a a 有b n +1= 2 1 λλc a c a --?b n ○ 2当方程(1)出现重根同为λ时, 由a n+1-λ= d ca a c a n n +--))((λλ得λ-+11n a =))((λλ--+n n a c a d ca =λ c a c -+))((λλλ--+n a c a c d ( “分离常数”)。设c n =λ-n a 1 得c n +1= λ λc a c d -+?c n + λ c a c -】

特征方程

特征方程法求解递推关系中的数列通项 当()f x x =时,x 的取值称为不动点,不动点是我们 在竞赛中解决递推式的基本方法。 典型例子:1n n n aa b a ca d ++=+ 令 ax b x cx d +=+,即2()0cx d a x b +--= , 令此方程的两个根为12,x x , (1)若12x x =,则有111 1 1n n p a x a x +=+-- (其中2c p a d =+) (2)若12x x ≠,则有11 1 122 n n n n a x a x q a x a x ++- -=-- (其中1 2 a cx q a cx -=-)

例题1:设23()27 x f x x -+=-, (1)求函数()y f x =的不动点; (2)对(1)中的二个不动点,()a b a b <, 求使()()f x a x a k f x b x b --=--恒成立的常数k 的值; (3)对由111,()n n a a f a -==(2)n ≥定义的数列{}n a ,求其通项公式n a 。23()27 x f x x -+=- 解析:(1)设函数()f x 的不动点为0x ,则0002327 x x x -+= - 解得012x =-或03x = (2)由231111()1272222238248(3)83 327 x x x x x x x x x x -++---++-===?-++----- 可知使()()f x a x a k f x b x b --=--恒成立的常数18k =。 (3)由(2)可知1111122383n n n n a a a a --+ +=?--,所以数列 123n n a a ??+????-????是以34-为首项,18为公比的等比数列。 则11312()348n n n a a -+ =-?-,则11 911()482311()48n n n a ---=+

【高中数学】特征根法求通项公式

特征方程法 解递推关系中 通项公式 一、(一阶线性递推式)若已知数列}{n a 的项满足d ca a b a n n +==+11,,其中,1,0≠≠c c 求这个数列的通项公式。 采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,这里提出一种易于掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程,d cx x +=称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述. 定理1:设上述递推关系式的特征方程的根为0x ,则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +===时当,其中}{n b 是以c 为公比的等比数列,即01111,x a b c b b n n -==-. 证明:因为,1,0≠c 由特征方程得.10c d x -=作换元,0x a b n n -=则.)(110011n n n n n n cb x a c c cd ca c d d ca x a b =-=--=--+=-=-- 当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n c b b 当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n (证毕) 下面列举两例,说说说说明定理1的应用. 例1.已知数列}{n a 满足:,4,N ,23 1 11=∈--=+a n a a n n 求.n a 解:作方程.2 3,2310-=--=x x x 则 当41=a 时,.2 1123,1101=+=≠a b x a 数列}{n b 是以3 1-为公比的等比数列.于是 .N ,)31(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n 例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数单位。当1a 取何值时,数列}{n a 是常数数列? 解:作方程,)32(i x x +=则.5360i x +-= 要使n a 为常数,即则必须.5 3601i x a +-== 二、(二阶线性递推式) 定理2:对于由递推公式n n n qa pa a +=++12,βα==21,a a 给出的数列{}n a ,方程

不动点(特征方程)法求数列通项

特征方程法求解递推关系中的数列通项 考虑一个简单的线性递推问题. 设已知数列}{n a 的项满足 其中,1,0≠≠c c 求这个数列的通项公式. 采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程,d cx x +=称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述. 定理1.设上述递推关系式的特征方程的根为0x ,则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +===时当, 其中}{n b 是以c 为公比的等比数列,即01111,x a b c b b n n -==-. 证明:因为,1,0≠c 由特征方程得.10c d x -=作换元,0x a b n n -= 则.)(110011 n n n n n n cb x a c c cd ca c d d ca x a b =-=--=--+=-=-- 当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n c b b 当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n (证毕) 下面列举两例,说明定理1的应用. 例1.已知数列}{n a 满足:,4,N ,23 111=∈--=+a n a a n n 求.n a 解:作方程.2 3,23 10-=--=x x x 则 当41=a 时,.2112 3 ,1101= +=≠a b x a 数列}{n b 是以3 1 -为公比的等比数列.于是.N ,)3 1 (2112323,)31(211)3 1 (111 1∈-+-=+-=-=-=---n b a b b n n n n n n 例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数单位. 当1a 取何值时,数列}{n a 是常数数列? 解:作方程,)32(i x x +=则.5 360i x +-= a 1= b a n+1=ca n +d

用特征方程求数列的通项

用特征方程求数列的通项 一、递推数列特征方程的研究与探索 递推(迭代)是中学数学中一个非常重要的概念和方法,递推数列问题能力要求高,内在联系密切,蕴含着不少精妙的数学思想和方法。递推数列的特征方程是怎样来的? (一)、 若数列{}n a 满足),0(,11≠+==+c d ca a b a n n 其通项公式的求法一般采用如下的参数法,将递推数列转化为等比数列: 设t c ca a t a c t a n n n n )1(),(11-+=+=+++则 ,令d t c =-)1(,即1 -= c d t ,当1≠c 时可得 )1 (11-+=-+ +c d a c c d a n n ,知数列? ????? -+1c d a n 是以c 为公比的等比数列, 11)1 (1--+=-+ ∴n n c c d a c d a 将 b a =1代入并整理,得()1 1---+=-c d c b d bc a n n n . 故数列d ca a n n +=+1对应的特征 方程是:x=cx+d (二)、二阶线性递推数列,11-++=n n n qa pa a 仿上,用上述参数法我们来探求数列{}n n ta a ++1的特征:不妨设 )(11-++=+n n n n ta a s ta a ,则11 )(-++-=n n n sta a t s a , 令 ? ??==-q st p t s ( ※) (1)若方程组( ※)有两组不同的实数解),(),,(2211t s t s , 则)(11111-++=+n n n n a t a s a t a , )(12221-++=+n n n n a t a s a t a , 即{}n n a t a 11++、 {}n n a t a 21++分别是公比为1s 、2s 的等比数列,由等比数列通项公式可得 1 1 11211)(-++=+n n n s a t a a t a ①, 1 2 12221)(1-++=+n n n s a t a a t a ②, ∵,21t t ≠由上两式①+②消去1+n a 可得 ()()() n n n s t t s a t a s t t s a t a a 22121221211112..-+--+= . (2)若方程组( ※)有两组相等的解???==21 2 1t t s s ,易证此时11s t -=,则 ())(2112 111111---++=+=+n n n n n n a t a s a t a s a t a

数列通项公式、前n项和求法总结全

一.数列通项公式求法总结: 1.定义法 —— 直接利用等差或等比数列的定义求通项。 特征:适应于已知数列类型(等差或者等比). 例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,2 55a S =.求数列{}n a 的通项公式. 变式练习: 1.等差数列{}n a 中,71994,2,a a a ==求{}n a 的通项公式 2. 在等比数列{}n a 中,212a a -=,且22a 为13a 和3a 的等差中项,求数列{}n a 的首项、公比及前n 项和. 2.公式法 求数列{}n a 的通项n a 可用公式???≥???????-=????????????????=-21 11n S S n S a n n n 求解。 特征:已知数列的前n 项和n S 与n a 的关系 例2.已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。 (1)13-+=n n S n 。 (2)12 -=n s n

变式练习: 1. 已知数列{}n a 的前n 项和为n S ,且n S =2n 2 +n ,n ∈N ﹡,数列{b }n 满足n a =4log 2n b +3,n ∈N ﹡.求n a ,n b 。 2. 已知数列{}n a 的前n 项和2 12 n S n kn =-+(*k N ∈),且S n 的最大值为8,试确定常数k 并求n a 。 3. 已知数列{}n a 的前n 项和*∈+=N n n n S n ,2 2.求数列{}n a 的通项公式。 3.由递推式求数列通项法 类型1 特征:递推公式为 ) (1n f a a n n +=+ 对策:把原递推公式转化为)(1n f a a n n =-+,利用累加法求解。 例3. 已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。

特征方程法求解递推关系中的数列通项

特征方程法求解递推关系中的数列通项 曾建国 当()f x x =时,x 的取值称为不动点,不动点是我们在竞赛中解决递推式的基本方法。 典型例子:1n n n aa b a ca d ++= + 令 ax b x cx d +=+,即2 ()0cx d a x b +--= ,令此方程的两个根为12,x x , (1)若12x x =,则有11111n n p a x a x +=+-- (其中2c p a d =+) (2)若12x x ≠,则有111122 n n n n a x a x q a x a x ++--=-- (其中12a cx q a cx -=-) 例题1:设23 ()27 x f x x -+=-, (1)求函数()y f x =的不动点; (2)对(1)中的二个不动点,()a b a b <,求使()()f x a x a k f x b x b --=--恒成立的常数k 的值; (3)对由111,()n n a a f a -==(2)n ≥定义的数列{}n a ,求其通项公式n a 解析:(1)设函数()f x 的不动点为0x ,则00023 27 x x x -+= - 解得012x =-或03x = (2)由231111 ()1272222238248(3)83327 x x x x x x x x x x -++---++ -= ==?-++----- 可知使()()f x a x a k f x b x b --=--恒成立的常数18k =。 (3)由(2)可知1111122383 n n n n a a a a --++=?--, 所以 123n n a a ??+????-????是以34-为首项,18为公比的等比数列。即 11312()348n n n a a -+=-?-?11 911()482311()48 n n n a ---=+ 例2.已知数列}{n a 满足性质:对于14 N,,23 n n n a n a a ++∈= + 且,31=a 求}{n a 的通项公式. 解:依定理作特征方程,3 24 ++= x x x 变形得,04222=-+x x 其根为.2,121-==λλ 故特征方程有两个相异的根,则有114 1 12342311 142446510 52223 n n n n n n n n n n n n n n a a a a a a a a a a a a a a +++--++---+-====-+++++++++ 即1111 1252n n n n a a a a ++--=-++ 又1 113122325 a a --==++ ∴数列12n n a a ??-??+?? 是以25为首项,15-为公比的等比数列 1121()255 n n n a a --=-+ 1 141()1 (5)455,N.212(5)1()55 n n n n n a n ---+--==∈+---

特征方程推导数列

递推数列特征方程的来源与应用 递推是中学数学中一个非常重要的概念和方法,递推数列问题能力要求高,内在联系密切,蕴含着不少精妙的数学思想和数学方法。新教材将数列放在高一讲授,并明确给出“递推公式”的概念:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个公式来表示,那么这个公式叫做数列的递推公式。有通项公式的数列只是少数,研究递推数列公式给出数列的方法可使我们研究数列的范围大大扩展。新大纲关于递推数列规定的教学目标是“了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项”,但从近几年来高考试题中常以递推数列或与其相关的问题作为能力型试题来看,这一目标是否恰当似乎值得探讨,笔者以为“根据递推公式写出数列的前几项”无论从思想方法还是从培养能力上来看,都不那么重要,重要的是学会如何去发现数列的递推关系,学会如何将递推关系转化为数列的通项公式的方法。本文以线性递推数列通项求法为例,谈谈这方面的认识。 关于一阶线性递推数列:),1(,11≠+==+c d ca a b a n n 其通项公式的求法一般采用如下的参数法[1],将递推数列转化为等比数列: 设t c ca a t a c t a n n n n )1(),(11-+=+=+++则 , 令d t c =-)1(,即1 -=c d t ,当1≠c 时可得 )1 (11-+=-++c d a c c d a n n 知数列??????-+ 1c d a n 是以c 为公比的等比数列, 11)1 (1--+=-+∴n n c c d a c d a 将b a =1代入并整理,得 ()1 1---+=-c d c b d bc a n n n 对于二阶线性递推数列,许多文章都采用特征方程法[2]: 设递推公式为,11-++=n n n qa pa a 其特征方程为02 2=--+=q px x q px x 即, 1、 若方程有两相异根A 、B ,则n n n B c A c a 21+= 2、 若方程有两等根,B A =则n n A nc c a )(21+= 其中1c 、2c 可由初始条件确定。 很明显,如果将以上结论作为此类问题的统一解法直接呈现出来,学生是难以接受

常见递推数列通项公式的求法典型例题及习题

常见递推数列通项公式的求法典型例题及习题 【典型例题】 [例1] b ka a n n +=+1型。 (1)1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-= k b m ∴ }1{-+ k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+ n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。 (1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。 例:已知}{n a 满足11=a ,)1(1 1+= -+n n a a n n 求}{n a 的通项公式。 解: ∵ 11 1)1(11+- =+= -+n n n n a a n n ∴ n n a a n n 1111--= -- 112121---=---n n a a n n 21 3132-- -=---n n a a n n …… 312123-= -a a 2 1112-=-a a

对这(1-n )个式子求和得: n a a n 111- =- ∴ n a n 1 2- = (2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1 ∴ ???=--=-b A B k a A k )1()1( 解得: 1-= k a A ,2)1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列 ∴ 1 1)(-?++=++n n k B A a B An a ∴ B An k B A a a n n --?++=-11)( 将A 、B 代入即可 (3)n q n f =)((≠q 0,1) 等式两边同时除以1 +n q 得q q a q k q a n n n n 1 11+?=++ 令 n n n q a C = 则q C q k C n n 1 1+ =+ ∴ }{n C 可归为b ka a n n +=+1型 [例3] n n a n f a ?=+)(1型。 (1)若)(n f 是常数时,可归为等比数列。 (2)若)(n f 可求积,可用累积约项的方法化简求通项。 例:已知: 311= a ,1 121 2-+-=n n a n n a (2≥n )求数列}{n a 的通项。 解:123537532521232121212233 2211+= ?--?--?+-=???-----n n n n n n n a a a a a a a a a a n n n n n n ΛΛ ∴ 1 211231+= +? =n n a a n

数列之特征方程法+不动点法

递推数列特征方程的来源与应用 浙江省奉化二中 周 衡(315506) 浙江省奉化中学 杨亢尔(315500) 递推是中学数学中一个非常重要的概念和方法,递推数列问题能力要求高,内在联系密切,蕴含着不少精妙的数学思想和数学方法。新教材将数列放在高一讲授,并明确给出“递推公式”的概念:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个公式来表示,那么这个公式叫做数列的递推公式。有通项公式的数列只是少数,研究递推数列公式给出数列的方法可使我们研究数列的范围大大扩展。新大纲关于递推数列规定的教学目标是“了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项”,但从近几年来高考试题中常以递推数列或与其相关的问题作为能力型试题来看,这一目标是否恰当似乎值得探讨,笔者以为“根据递推公式写出数列的前几项”无论从思想方法还是从培养能力上来看,都不那么重要,重要的是学会如何去发现数列的递推关系,学会如何将递推关系转化为数列的通项公式的方法。本文以线性递推数列通项求法为例,谈谈这方面的认识。 关于一阶线性递推数列:),1(,11≠+==+c d ca a b a n n 其通项公式的求法一般采用如下的参数法[1],将递推数列转化为等比数列: 设t c ca a t a c t a n n n n )1(),(11-+=+=+++则 , 令d t c =-)1(,即1 -= c d t ,当1≠c 时可得 )1 (11-+=-++c d a c c d a n n 知数列? ?? ? ??-+ 1c d a n 是以c 为公比的等比数列, 11)1 (1--+=-+ ∴n n c c d a c d a 将 b a =1代入并整理,得 ()1 1---+=-c d c b d bc a n n n 对于二阶线性递推数列,许多文章都采用特征方程法[2]: 设递推公式为,11-++=n n n qa pa a 其特征方程为02 2 =--+=q px x q px x 即, 1、 若方程有两相异根A 、B ,则n n n B c A c a 21+= 2、 若方程有两等根,B A =则n n A nc c a )(21+= 其中1c 、2c 可由初始条件确定。

用特征根方程法求数列通项

特征方程法求解递推关系中的数列通项 当f(x)二X 时,x 的取值称为不动点,不动点是我们在竞赛中解决递推式的基本方法。 aa n ■ b 人 ax ■ b 2 典型例子:a n 1 - 令 x ,即 ex ? (d -a)x —b = 0 ca n +d cx + d 令此方程的两个根为 x , , x 2 1 (1)若x , = x 2,则有 a n^ _x 1 a n — X , a - — X , a — ex , ⑵若X i=X 2,则有—— -=q — -(其中q —) a n 半 一 x 2 a n —X 2 a ~ cx 2 —2x +3 例题1:设f(x)= 2x —7 (i)求函数y = f (x)的不动点;(2 )对(i)中的二个不动点a,b (a ::- b),求使 f (x) _ a = k x _ a 恒成立 f(x)-b x —b 的常数k 的值; 2X 3 ⑶对由a — =1,a n = f (a n 丄)(n_2)定义的数列{a n },求其通项公式a n 。f(x)= 2x —7 解析:⑴设函数f (x)的不动点为x 0,则X o 2X0 3 2x o -7 -2x 3 1 1 / 1、 1 X (x ) x — ⑵由 2X-7 2 2 U 2 -2x+3 3 8x+24 -8(x-3) 8 x -3 2x -7 可知使f (x) -a _k x _a 恒成立的常数 f (x) -b x -b a n 1 31 3(1厂-〕 —2=2 .(丄严,则a 二吐 2 a n -3 4 8 n 「3(—严 4 W a +4 例2?已知数列{a n }满足性质:对于n ?N,a n1 n ,且a^3,求{a n }的通项公式. 2 a n 3 1 P (其中P ) a n - x ! a d 1 解得x 0 或x 0 =3 2 1 + 丄 ,2 k 。(3)由⑵可知an 2 J an 」2,所以数列 8 a 8 a 丄 (3) -为公比的等比数列。则 8

第1章递归方程解的渐近阶的求法

目录 递归方程组解的渐进阶的求法——代入法 (11) 递归方程组解的渐进阶的求法——迭代法 (14) 递归方程组解的渐进阶的求法——套用公式法 (17) 递归方程组解的渐进阶的求法——差分方程法 (3) 递归方程组解的渐进阶的求法——母函数法 (7) 递归方程解的渐近阶的求法 递归方程组解的渐进阶的求法——套用公式法 这个方法为估计形如: T(n)=aT(n/b)+f(n) (6.17) 的递归方程解的渐近阶提供三个可套用的公式。(6.17)中的a≥1和b≥1是常数,f (n)是一个确定的正函数。 (6.17)是一类分治法的时间复杂性所满足的递归关系,即一个规模为n的问题被分成规模均为n/b的a个子间题,递归地求解这a个子问题,然后通过对这a个子间题的解的综合,得到原问题的解。如果用T(n)表示规模为n的原问题的复杂性,用f(n)表示把原问题分成a个子问题和将a个子问题的解综合为原问题的解所需要的时间,我们便有方程(6.17)。 这个方法依据的是如下的定理:设a≥1和b≥1是常数f (n)是定义在非负整数上的一个确定的非负函数。又设T(n)也是定义在非负整数上的一个非负函数,且满足递归方程(6.17)。方程(6.17)中的n/b可以是[n/b],也可以是n/b。那么,在f(n)的三类情况下,我们有T(n)的渐近估计式: 1. 若对于某常数ε>0,有 , 则 ; 2. 若 , 则 ;

3. 若对其常数ε>0,有 且对于某常数c>1和所有充分大的正整数n有af(n/b)≤cf(n),则T(n)=θ(f(n))。 这里省略定理的证明。 在应用这个定理到一些实例之前,让我们先指出定理的直观含义,以帮助读者理解这个定理。读者可能已经注意到,这里涉及的三类情况,都是拿f(n)与作比较。定理直观地告诉我们,递归方程解的渐近阶由这两个函数中的较大者决定。在第一类情况下,函数较大,则T(n)=θ();在第三类情况下,函数f(n)较大,则T(n)=θ(f (n));在第二类情况下,两个函数一样大,则T(n)=θ(),即以n的对数作为因子乘上f(n)与T(n)的同阶。 此外,定理中的一些细节不能忽视。在第一类情况下f(n)不仅必须比小,而且必须是多项式地比小,即f(n)必须渐近地小于与的积,ε是一个正的常 数;在第三类情况下f(n)不仅必须比大,而且必须是多项式地比大,还要满足附加的“正规性”条件:af(n/b)≤cf(n)。这个附加的“正规性”条件的直观含义是a个子间题的再分解和再综合所需要的时间最多与原问题的分解和综合所需要的时间同阶。我们在一般情况下将碰到的以多项式为界的函数基本上都满足这个正规性条件。 还有一点很重要,即要认识到上述三类情况并没有覆盖所有可能的f(n)。在第一类情况和第二类情况之间有一个间隙:f(n)小于但不是多项式地小于;类似地,在第二类情况和第三类情况之间也有一个间隙:f(n)大于但不是多项式地大于。如果函数f(n)落 在这两个间隙之一中,或者虽有,但正规性条件不满足,那么,本定理无能为力。 下面是几个应用例子。 例1考虑 T(n)=9T(n/3)+n0

相关主题