搜档网
当前位置:搜档网 › 密度可控的TiO2纳米线束阵列合_省略_其在量子点敏化太阳能电池上的应用_刘俊_

密度可控的TiO2纳米线束阵列合_省略_其在量子点敏化太阳能电池上的应用_刘俊_

密度可控的TiO2纳米线束阵列合_省略_其在量子点敏化太阳能电池上的应用_刘俊_
密度可控的TiO2纳米线束阵列合_省略_其在量子点敏化太阳能电池上的应用_刘俊_

(完整版)量子点太阳能电池简介

量子点太阳能电池简介 摘要:量子点太阳能电池是第三代太阳能电池,也是目前最尖端、最新的太阳能电池之一,这种电池在使用半导体材料的普通太阳能电池之中,引入了纳米技术与量子力学理论,尽管目前尚没有制作出这种超高转换效率的实用化太阳能电池,但是大量的理论计算和实验研究已经证实,量子点太阳能电池将会在未来的太阳能转换中显示出巨大的发展前景。简述了量子点太阳能电池的物理机理及研究内容。 关键词:量子点,太阳能电池,机理 随着人类面临的环境与能源问题的持续恶化,加强环境保护和开发清洁能源是人类高度关注的焦点。因此,近年来人们对太阳能开发和利用的研究进展极为迅速。作为一种重要的光电能量转换器件,太阳能电池的研究一直受到人们的热切关注。 太阳能电池可以分为两大类:一类是基于半导体p-n结中载流子输运过程的无机固态太阳能电池;另一类则是基于有机分子材料中光电子化学过程的光电化学太阳能电池。单晶GaAs太阳能电池、晶体Si太阳能电池和Si基薄膜太阳能电池属于第一类,而染料敏化太阳能电池和聚合物太阳能电池属于第二类。第一类太阳能电池已经产业化或商业化,而第二类太阳能电池正处于研究与开发之中。目前太阳能电池存在能耗高、光电转换效率低等缺点。尽管人们已采用各种方法使太阳能电池的转换效率得到了一定改善,但尚不能使其大幅度提高。找到一种更有效的途径或对策,使太阳能电池的实际能量转换效率接近其理论预测值,成为材料物理、光伏器件与能源科学的一项重大课题。 量子点是指三维方向尺寸均小于相应物质块体材料激子的德布罗意波长的纳米结构。理论研究指出,采用具有显著量子限制效应和分立光谱特性的量子点作为有源区设计和制作的量子点太阳能电池,可以使其能量转换效率获得超乎寻常的提高,其极限值可以达到66%左右,而目前太阳能电池的主流晶体硅技术的光电转换效率理论上最多仅为30%。尽管目前尚没有制作出这种超高转换效率的实用化太阳能电池,但是大量的理论计算和实验研究已经证实,量子点太阳能电池将会在未来的太阳能转换中显示出巨大的发展前景。 1 量子点太阳能电池的物理机理 人们针对太阳能电池存在的能耗高、光电转换率低等缺点,提出了三套解决方案[1]:1)增加带隙数量,制作多带隙叠层太阳能电池;2)热载流子冷却前进行俘获;3)一个高能光子产生多个电子空穴对或者多个低能光子产生一个高能电子空穴对。目前,方案1已经得到实际应用,后两套方案基于量子点产生的量子限制效应正处于研究之中。 半导体量子点太阳能电池作为第三代太阳能电池具有潜在的优势,它通过以下两个效应可以大大增加光电转换效率:第一个效应是来自具有充足能量的单光子激发产生多激子;第二个效应是在带隙里形成中间带,可以有多个带隙起作用,来产生电子空穴对。这两个效应的产生是因为量子点中的能级量子化。能级量子化还会产生其它效应:减缓热电子-空穴对的冷却;提高电荷载流子之间的俄歇复合过程和库仑耦合;并且对于三维限制的载流子,动量不再是一个好量子数,跃迁过程不必满足动量守恒。提高转换效率的两种基本的方式(增加光电压或者增加光电流)理论上在三维量子点太阳能电池的结构中能够实现。 1.1 量子点多激子太阳能电池的机理

染料敏化太阳能电池

染料敏化太阳能电池 物理科学与技术学院化学物理学交叉培养班张玲玲 2011213434 摘要染料敏化太阳电池主要是模仿光合作用原理,研制出来的一种新型太阳电池,其主要优势是原材料丰富、成本低、工艺技术相对简单,在大面积工业化生产中具有较大的优势,同时所有原材料和生产工艺都是无毒、无污染的,部分材料可以得到充分的回收,对保护人类环境具有重要的意义。本文主要从染料敏化太阳能电池的原理和电解质来进行介绍。 关键词染料敏化太阳能电池原理制备 一、染料敏化太阳能电池的基本结构 染料敏化太阳能电池主要由纳米多孔半导体薄膜、染料敏化剂、氧化还原电解质、电极和导电基底等几部分组成。纳米多孔半导体薄膜通常为金属氧化物(TiO2、SnO2、ZnO等),聚集在有透明导电膜的玻璃板上作为染料敏化太阳能电池的负极。对电极作为还原催化剂,通常在带有透明导电膜的玻璃上镀上铂。敏化染料吸附在纳米多孔二氧化钛膜面上。正负极间填充的是含有氧化还原电对的电解质,最常用的是I3/I-。 图1染料敏化太阳能电池的基本结构 二、染料敏化太阳能电池的工作原理 当太阳光照射在染料敏化太阳能电池上,染料分子中基态电子被激发,激发态染料分子将电子注入到纳米多孔半导体的导带中,注入到导带中的电子迅速富集到导电玻璃面上,传向外电路,并最终回到对电极上。而由于染料的氧化还原

电位高于氧化还原电解质电对的电位,这时处于氧化态的染料分子随即被还原态的电解质还原。然后氧化态的电解质扩散到对电极上得到电子再生,如此循环,即产生电流。电池的最大电压由氧化物半导体的费米能级和氧化还原电解质电对的电位决定。 图2 染料敏化太阳能电池的工作原理示意图 2.1纳米晶多孔薄膜 作为太阳能电池半导体材料,首要条件为光照下性能稳定。考虑到只有禁带宽度Eg ﹥ 3eV 的宽带隙半导体才满足这一条件,因此可以用作DSC 半导体材料的禁带宽度必须大于3eV 。TiO2禁带宽度为3. 2eV ,是性能最优、使用最广泛的DSC 半导体电极材料。所有的太阳能电池都是依靠光电效应将光能转化为电能. 半导体的截止波长由下式计算: g E 1240g =λ 式中: Eg 为半导体禁带宽度,λg 为半导体的截止吸收波长. 则禁带宽度为3eV 半导体材料截止波长为413 nm ,而太阳光主要分布在可见光区域,而可见光光谱范围为390 ~770 nm ,因此基本不能被吸收. 为了使宽带隙半导体材料能够吸收可见光,必须通过某种方法将截止波长红移至红外区. 吸附于半导体表面的染料可以使半导体的吸收边强烈红移。 2.2染料分子

太阳能电池

太阳能电池及材料研究 引言 太阳能是人类取之不尽用之不竭的可再生能源.也是清洁能源,不产生任何的环境污染。在太阳能的有效利用当中;大阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。为此,人们研制和开发了太阳能电池。制作太阳能电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电于转换反应,根据所用材料的不同,太阳能电池可分为:1、硅太阳能电池;2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;3、功能高分子材料制备的大阳能电池;4、纳米晶太阳能电池等。不论以何种材料来制作电池,对太阳能电池材料一般的要求有:1、半导体材料的禁带不能太宽;②要有较高的光电转换效率:3、材料本身对环境不造成污染; 4、材料便于工业化生产且材料性能稳定。基于以上几个方面考虑,硅是最理想的太阳能电池材料,这也是太阳能电池以硅材料为主的主要原因。但随着新材料的不断开发和相关技术的发展,以其它村料为基础的太阳能电池也愈来愈显示出诱人的前景。本文简要地综述了太阳能电池的种类及其研究现状,并讨论了太阳能电池的发展及趋势。 1 硅系太阳能电池 1.1 单晶硅太阳能电池 硅系列太阳能电池中,单晶硅大阳能电池转换效率最高,技术也最为成熟。高性能单晶硅电池是建立在高质量单晶硅材料和相关的成热的加工处理工艺基础上的。现在单晶硅的电地工艺己近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。提高转化效率主要是*单晶硅表面微结构处理和分区掺杂工艺。在此方面,德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制成倒金字塔结构。并在表面把一13nm。厚的氧化物钝化层与两层减反射涂层相结合.通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得的电池转化效率超过23%,是大值可达23.3%。Kyocera公司制备的大面积(225cm2)单电晶太阳能电池转换效率为19.44%,国内北京太阳能研究所也积极进行高效晶体硅太阳能电池的研究和开发,研制的平面高效单晶硅电池(2cm X 2cm)转换效率达到19.79%,刻槽埋栅电极晶体硅电池(5cm X 5cm)转换效率达8.6%。 单晶硅太阳能电池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度降低其成本是非常困难的。为了节省高质量材料,寻找单晶硅电池的替代产品,现在发展了薄膜太阳能电 池,其中多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池就是典型代表。 1.2 多晶硅薄膜太阳能电池 通常的晶体硅太阳能电池是在厚度350~450μm的高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成。因此实际消耗的硅材料更多。为了节省材料,人们从70年代中期就开始在廉价衬底上沉积多晶硅薄膜,但由于生长的硅膜晶粒大小,未能制成有价值的太阳能电池。为了获得大尺寸晶粒的薄膜,人们一直没有停止过研究,并提出了很多方法。目前制备多晶硅薄膜电池多采用化学气相沉积法,包括低压化学气相沉积(LPCVD)和等

优质纳米晶硅薄膜的低温制备技术及其在太阳能电池中的应用进展

收稿日期:2008209211 3基金项目:韩山师范学院青年科研基金资助项目(0503) 作者简介:陈城钊(1975— ),男,广东潮州人,讲师,硕士.第2卷 第4期 材 料 研 究 与 应 用 Vo1.2,No.42008年12月 MA TERIAL S RESEARCH AND APPL ICA TION Dec .2008 文章编号:167329981(2008)0420450205 优质纳米晶硅薄膜的低温制备技术及其 在太阳能电池中的应用进展3 陈城钊1,邱胜桦1,刘翠青1,吴燕丹1,李 平1,余楚迎2,林璇英1,2 (1.韩山师范学院物理与电子工程系,广东潮州 521041;2.汕头大学物理系,广东汕头 515063) 摘 要:纳米晶硅薄膜是集晶体硅材料和氢化非晶硅薄膜优点于一体,可望广泛应用于薄膜太阳能电池、光存储器、发光二极管和薄膜晶体管等光电器件的一种新型功能材料.本文综述低温制备优质纳米晶硅薄膜技术的研究进展及其在薄膜硅太阳能电池上的应用.关键词:纳米晶硅薄膜;太阳能电池;低温制备;进展中图分类号:TM914.4 文献标识码:A 纳米晶硅(nc 2Si ζH )薄膜就是硅的纳米晶粒镶嵌在a 2Si ζH 网络里的一种硅纳米结构.由于它具 有较高的电导率(10-3~10-1Ω-1?cm -1)、宽带隙、高光敏性、高光吸收系数等优良的光电特性而引起学术界的重视.纳米晶硅薄膜同时具备宽带隙和高电导这两种太阳能电池窗口材料所需的优良性质,现已成为研究探索的热门纳米薄膜材料 [1] .除用于 制备薄膜太阳能电池外,在发光二极管、光存储器、隧穿二极管、薄膜晶体管以及单电子晶体管等光电器件方面也有潜在应用 [2] . 1 低温制备纳米晶硅薄膜的技术 为了制备适用于以玻璃为衬底的太阳能电池的 纳米晶硅薄膜,近年来发展了低温(<450℃)制膜技术.按成膜过程可分为两大类:一类是先制备非晶态材料,再固相晶化为纳米晶硅;另一类是直接在玻璃衬底上沉积纳米晶硅薄膜[2] . 1.1 固相晶化法 固相晶化(SPC )法的特点是非晶固体发生晶化的温度低于其熔融后结晶的温度.低造价太阳能电 池的纳米晶薄膜,一般以廉价的玻璃作衬底,以硅烷气为原材料,用PECVD 法沉积a 2Si ∶H 薄膜,然后再用热处理的方法使其转化为纳米晶硅薄膜.这种方法的优点是能制备大面积的薄膜,可进行原位掺杂,成本低,工艺简单,易于批量生产.常规的高温炉退火、金属诱导晶化、快速热退火、区域熔化再结晶等都属于固相晶化法.1.1.1 常规高温炉退火 该方法是在氮气保护下把非晶硅薄膜放入炉腔内退火,使其由非晶态转变为纳米晶态[3].非晶硅晶化的驱动力是晶相相对于非晶相较低的G ibbs 自由能.固相晶化过程主要由晶核的形成及晶核长大两步完成.形核率和生长速率都受温度的影响,所以纳米晶硅薄膜的晶粒尺寸受温度的影响很大.晶硅薄膜的晶粒尺寸除受温度的影响外,与初始非晶硅膜的结构状况也有密切的关系.有研究者采用“部分掺杂法”来增大晶粒尺寸,即在基底上沉积两层膜,下层进行磷掺杂,作为成核层,上层不掺杂,作为晶体生长层,退火后可获得较大的晶粒[4].1.1.2 金属诱导晶化 金属诱导晶化就是在非晶硅薄膜上镀一层金属

量子点敏化太阳能电池

研究生课程考试 小论文 课程名称:光伏材料与器件基础 论文题目: 量子点敏化太阳能电池的研究论文评分标准 论文评语: 成绩: 任课教师: 评阅日期:

目录 摘要 (1) Abstract (1) 1 光敏化太阳能电池 (2) 1.1 染料敏化太阳能电池 (2) 1.2 量子点敏化太阳能电池 (2) 2 量子点敏化太阳能电池的研究背景 (3) 2.1 量子点敏化太阳能电池的结构 (3) 2.1.1 透明导电玻璃 (3) 2.1.2 光电极 (3) 2.1.3 量子点光敏剂 (4) 2.1.4 电解质 (4) 2.1.5 对电极 (5) 2.2 量子点敏化太阳能电池的工作原理 (5) 2.3 量子点敏化太阳能电池的优势 (6) 2.3.1 量子限制效应 (6) 2.3.2 碰撞离化效应与俄歇复合效应 (7) 2.3.3 小带效应 (7) 2.4 量子点敏化太阳能电池的发展现状 (8) 2.5 量子点敏化电极的制备方法 (9) 3 量子点敏化太阳能电池的性能改善 (9) 3.1 量子点敏化太阳能电池研究进展中出现的问题[31] (9) 3.2 提升量子点敏化太阳能电池性能的方法 (10) 3.2.1 防护层处理 (10) 3.2.2 掺杂 (10) 3.2.3 共敏化 (10) 结论 (11) 参考文献 (12)

量子点敏化太阳能电池的研究 摘要:量子点敏化太阳能电池是兼具低成本和高理论转化效率的第三代太阳能电池。量子点敏化太阳能电池发展至今,其效率已经突破了5%,但是与染料敏化电池12%的效率相比还是存在着较大的距离。通过阅读这方面的相关文献,阐述了量子点敏化太阳能电池的结构(TCO、光电极、光敏化剂、电解质和对电极)、工作原理、优势、电极的几种制备方法及发展现状。从电荷复合、量子点的光捕获、光阳极的结构、电解质和对电极5个方面分析了量子点敏化电池效率低下的原因。同时,从方法的角度出发,介绍了防护层处理,掺杂和共敏化三种方法对量子点敏化太阳能电池性能的提升作用。 关键字:量子点敏化、太阳能电池、进展、性能提升 Abstract:Quantum dot-sensitized solar cells are regarded as a potential low-cost and high-efficiency photovoltaic cell as the third generation solar cell.The efficiency of the quantum dot-sensitized solar cells have broken through 5% up to now. But there is a large distance between the efficiency of the quantum dot-sensitized solar cell with that of the dye sensitization solar cell which is 12% . By reading the literature, and expounds the structure (TCO, light electrode, photosensitive agent, electrolyte and the electrode), working principle, advantages , several kinds of preparation methods and the current situation of the quantum dot-sensitized solar cell.Five aspects which are charge recombination, light harvesting, the structure of photoanode, the electrolyte were put forward as the reasons for the low efficiency of the quantum dot-sensitized solar cells. At the same time,from a methodological point of view,three methods that improved the performance of QDSSC as the protective layer processing,doping and cosensitization were introduced. Key words: Quantum dot-sensitized、Solar cell、Progress、Performance improvement

太阳能电池发展现状综述

太阳能电池发展现状综述 摘要:随着社会的发展,传统能源消耗殆尽,能源越来越收到重视。其中发展前景最为广阔的莫过于太阳能。太阳能绿色环保,因此逐渐受到了人们的普遍重视。太阳能已成为新能源领域最具活力的部分,世界各国都致力于发展太阳能。本文主要阐述了太阳能电池的发展历程,太阳能电池的种类,太阳能电池的现状以及发展前景. 关键词:太阳能电池;太阳能电池种类;发展现状; Narration on the Current Situation of Solar Battery Abstract:With the development of society, traditional energy will be used up in a short time.Eneygy are being payed more and more attention.And the solar energy is the most promising.Because of its’environmental protection,it gets widespread attention. Solar energy has become the most vibrant part among the new energy field,and all countrise tried their best to develop solar energy.This article mainly explains the development of solar battery,the types of solar battery,curent situation of solar battery and its’ prospect. Key Words:solar battery; types of solar battery; curent situation of solar battery 1引言 随着经济的发展,能源的重要性日趋凸显。但是石油、煤等不可生起源消耗殆尽,人们开始探索新的能源。太阳能取之不尽用之不竭,因此受到了人们的亲睐。在太阳能电池领域中,太阳能的光电利用是近些年来发展最快、最具活力的研究领域[1].太阳能电池的研制和开发日益得到重视.制作太阳能电池主要是以半导体材料为基础.其工作原理是利用光电材料吸收光能后发生的光电子转化反应。根据所用材料的不同,太阳能电池可分为:①硅太阳能电池;②以无机盐如砷化镓Ⅲ一V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;③纳米晶太阳能电池等。不论以何种材料来制作电池,对太阳能电池材料一般的要求有:①半导体材料的禁带不能太宽;②要有较高的光电转换效率;③材料本身对环境不造成污染;④材料便于工业化生产且材料性能稳定。基于以上几个方面考虑,硅是最理想的太阳能电池材料[2].这也是太阳能电池以硅材料为主的主要原因. 本文简要地综述了太阳能电池发展进程,太阳能电池的种类,以及发展现状,并讨论了太阳能电池的发展趋势。 2太阳能电池现状及其前景

浅谈太阳能电池的发展与应用

浅谈太阳能电池的基本原理与应用 摘要:人类面临着有限常规能源和环境破坏严重的双重压力。特别是煤、石油、天然气等不可再生能源的逐渐枯竭,能源问题已经成为制约社会经济发展的重大问题,研究新能源的开发利用已是当务之急。太阳能作为一种清洁、高效、取用不尽的能源已有尽半个世纪的发展历程。并成为当前各国争相开发利用的一种新能源。太阳能光伏发电的最核心的器件是太阳能电池,太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。为全面的了解太阳能电池的相关知识,本文通过查阅大量资料与新闻信息,综述太阳能电池的发展历程与当前应用情况。重点研究太阳能电池的工作原理,基本结构,主要类型,发展现状及趋势。 关键词:太阳能电池;基本原理;材料; 晶体硅;薄膜太阳能电池;转换效率 引言:由于人类对可再生能源的不断需求。促使人们致力于开发新型能源。太阳在40min内照射带地球表面的能量可供全球目前能源消费的速度使用1年。合理的利用好太阳能将是人类解决能源问题的长期发展战略,是其中最受瞩目的研究热点之一。在太阳能的有效利用中, 太阳能的光电利用是近些年来发展最快、最具活力的研究领域. 太阳能电池的研制和开发日益得到重视. 太阳能电池是利用光电材料吸收光能后发生的光电子转移反应而进行工作的. 根据所用材料的不同, 太阳能电池主要可分为四种类型: ( 1) 硅太阳能电池; ( 2) 多元化合物薄膜太阳能电池; ( 3) 有机物太阳能电池; ( 4) 纳米晶太阳能电池.太阳能电池以硅材料为主的主要原因是其对电池材料的要求: ( 1) 半导体材料的禁带宽度不能太宽; ( 2) 要有较高的光电转换效率; ( 3) 材料本身对环境不造成污染; ( 4) 材料便于工业化生产且材料性能稳定. 随着新材料的不断开发和相关技术的发展, 以其他材料为基础的太阳能电池也愈来愈显示出诱人的前景. 本文简要地综述了太阳能电池的原理、种类及其研究现状, 并讨论了太阳能电池的发展趋势. 1 基本原理 太阳能(Solar Energy),一般是指太阳光的辐射能量。太阳能的利用有被动式利用(光热转换)和光电转换两种方式。太阳能发电一种新兴的可再生能源。太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。 1.1 半导体的简单介绍 半导体材料指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料,这种材料在某个温度范围内随温度升高而增加电荷载流子的浓度,电阻率下降。半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括Ⅲ-Ⅴ族化合物(砷化镓、磷化镓等)、Ⅱ-Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。 在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。在光照和热辐射条件下,其导电性有明显的变化。 1.1.1关于半导体的基本概念 共价键结构:相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。自由电子的形成:在常温下,少数的价电子由于热运动获得足够的能量,挣脱共价键的束缚变成为自由电子。 空穴:价电子挣脱共价键的束缚变成为自由电子而留下一个空位置称空穴。 载流子:运载电荷的粒子称为载流子,包括电子与空穴。 杂质半导体:通过扩散工艺,在本征半导体中掺入少量合适的杂质元素,可得到杂质半导体。 P型半导体:在纯净的硅晶体中掺入三

量子点敏化太阳能电池研究进展_刘晓光

量子点敏化太阳能电池研究进展 111,2* 刘晓光,吕丽丽,田建军 12 (北京科技大学新材料技术研究院,北京 100083;中国科学院北京纳米能源与系统研究所,北京 100083) 摘要:半导体量子点(Quantum Dot,简称QD)因其具有多种优异的光电性能而在太阳能转换方面得到了广泛地应用。量子点敏化太阳能电池(Quantum Dot Sensitized Solar Cell,简称QDSC),因其工艺简单、制造成本低和理论光电转换效率高,被认为是极具发展潜力的新一代太阳能电池。本文介绍了QDSC的基本结构和工作原理、QDSC的转换效率及影响因素、QDSC的研究进展等。另外,我们还对量子点敏化太阳能电池的发展进行了展望。 关键词:量子点;太阳能电池;量子点敏化太阳能电池;研究进展 引言 随着世界经济的快速发展,人们对能源的需求量与日俱增,化石能源作为不可再生能源,已无法满足全球的能源消耗。此外,化石能源的大量使用会造成全球变暖和环境污染等问题。因而,寻求可高效利用并且对环境友好的可再生能源是世界各国的共同目标。太阳能作为一种清洁的可再生能源,已经引起了广泛的关注,被认为是传统能源的最佳替代品。根据所用材料的不同,太阳能 [1] 电池可分为:硅基太阳能电池、化合物薄膜太阳能电池、光电化学太阳能电池、有机太阳能电池和多结太阳能电池等。 量子点,是三维尺寸小于或接近激子波尔半径,具有量子局限效应的准零维纳米粒[2,3] 子。光敏性量子点是一种窄禁带宽度的半 [4][5][6]导体材料,如CdS,CdSe,PbS, [7] InAs等,它可通过吸收一个光子能量产生多个激子或电子-空穴对,即多重激子效应(Multiple Exciton Generation,简称ME G),进而形成多重电荷载流子对,以更加有效地利用太阳能。根据美国物理学家 [8] Shockley和Queisser提出的S-Q极限模型,半导体PN结太阳能电池的光电转换效率极限为31%,如单晶硅、多晶硅太阳能电池等均受限于这一模型。然而以QD为光敏剂构筑的量子点敏化太阳能电池,在MEG效应作用下,则能突破S-Q极限效率模型,具有更高 [9,10] 的理论光电转换效率。并且,QDSC制造成本远低于硅基太阳能电池。因此,QDSC被认为是极具发展潜力的新一代太阳能电池,成为世界范围内研究的热点之一。 1 QDSC的基本结构和工作原理 QDSC是由有机染料敏化太阳能电池(Dye Sensitized Solar Cell,简称DSC)衍生而来,与之不同的是QDSC采用窄禁带宽度的QD取代DSC中的有机染料分子作为电子激发的敏化剂。与有机染料相比,QD不仅 [11~13]具有MEG效应,而且还具有其它优点:(1)QD光谱吸收范围更广,其带隙可以根据其尺寸大小来调节;(2)QD具有比有机染料分子更大的消光系数和光化学稳定性;(3)QD具有大的固有偶极矩,利于激发态电子-空穴的分离。QDSC的工作原理如图1所示,其电池主要是由导电透明电极 (如FTO)、多孔光阳极(如TiO薄膜)、 2 量子点敏化剂(QD)、电解质(如多硫化 物)和对电极(如Cu S)组成。在入射光子 2 的作用下,QD中的电子从价带跃迁到导 带,激发态的电子快速注入到光阳极TiO导 2带中,在FTO玻璃上富集并通过外电路流向 2-对电极,QD中留下的空穴与电解质中 的S

染料敏化纳米晶太阳能电池

技术与市场第18卷第2期2011年 利用光电转换原理的太阳能光伏发电是可再生能源利用的一个重要方向,光伏工业是目前发展最快的产业。在过去五年中,世界光伏电池产业以平均每年30%的速度增长,成为比IT行业发展更快的产业。怎样提高染料敏化纳米晶太阳电池(简称DSSC)的稳定性和转换效率,是关乎该电池实际利用前景的重大课题。虽然目前液态DSSC转换效率已经达到12%左右,固态或准固态DSSC也有6%~7%的报道,但是这离商业化的最佳标准还有很大的距离。本研究目的在于提高DSSC的转换效率和稳定性。 应用范围 从远期看,光伏发电将以分散式电源进入电力市场,并部分取代常规能源;从近期看,光伏发电可以作为常规能源的补充,解决特殊应用领域,如通信、信号电源和边远无电地区民用生活用电需求,从环境保护及能源战略上都具有重大的意义。目前,全世界太阳能电池的生产厂不下几百家,已有100万套光伏系统在运转,2000年,全世界太阳电池的产量达到287.7MW,累计安装量已超过1300M W,预计到2030年,光伏发电在世界的总发电量中将占到5%~20%。光伏发电在许多应用领域都被证明其技术是成熟的,在经济上是合算的。分析表明,在目前光伏电站有效系统功率与输电距离的比值小于100瓦/公里时,建光伏电站较常规电网延伸供电经济。因此,阳光发电是解决我国边远地区和特殊领域供电的重要途径。我国是个发展中国家,地域辽阔,有许多边远省份和经济不发达地区。据统计,目前尚有约900万户、2800万人口还没有用上电,60%的有电县严重缺电。这些地区的农牧民居住分散,远离电网,而且用电水平很低(人均年用电仅为120千瓦时),在10年甚至20年内都不可能靠常规电力解决他们的用电问题,光伏发电则是解决分散农牧民用电的理想途径,市场潜力十分巨大。 主要技术指标 在AM1.5标准模拟太阳光照射下,液态染料敏化纳米晶太阳能电池转换效率达到8.1%,固态染料敏化纳米晶太阳能电池光电转换效率达到4.8%。 市场分析及产业化前景 太阳能作为取之不尽同时又是生态学上纯净的和不改变地球上燃料平衡的能源,有着能源总量大,又容易实现小型化的优点,因此,对它的开发利用在近几十年来越来越受到人们的重视。太阳能利用也将是新世纪经济展望中最具决定性影响的技术领域之一。据欧洲委员会估计,在2010年,世界光伏电池总装机容量将达到14000MWp,而2030年其规模将增加10倍,达到140000M Wp。按目前的市场价,到2030年将创造5040亿美元的价值,这将产生巨大的经济效益。 追求低成本、高光电转换效率是太阳能电池板领域追求的两大目标。为此,无论是企业还是政府,都投入了大量的人力物力进行高效低成本的太阳能电池研究开发。太阳能电池属于典型的高科技产品,为大众提供能源,也是每个太阳能科研工作者的理想。染料敏化纳米晶太阳能电池具有比传统太阳能电池成本更低廉(仅为后者的1/8~1/10)、工艺更简单的特点。若全固态染料敏化纳米晶太阳能电池大面积制作后,效率能稳定在3%左右,完全具有产业化的能力。 投资概算 投资少(小于500万元),工艺简单,环境友好。 合作方式 股份制或共同研发。 单位:武汉大学物理科学与技术学院 地址:湖北武汉武昌珞珈山 邮编:430072 电话:(027)8764278462072113 染料敏化纳米晶太阳能电池 院校成果 119

染料敏化纳米晶薄膜太阳电池

染料敏化纳米晶薄膜太阳电池 * 孟庆波 1,- 林 原2 戴松元 3 (1 中国科学院物理研究所 表面物理国家重点实验室 北京 100080) (2 中国科学院化学研究所 光化学重点实验室 北京 100080) (3 中国科学院等离子体物理研究所 合肥 230031) 摘 要 文章介绍了一种新型的太阳电池)))染料敏化纳米晶薄膜太阳电池的基本工作原理、目前研究的重点和进展以及应用前景和存在的问题.文章指出,这种新型的太阳电池以其制作简单并且具有进一步提高效率和降低成本的潜在优势,可以成为非晶硅太阳电池的有力竞争者.关键词 T iO 2多孔薄膜,染料敏化剂,太阳电池 Dye sensitized solar cells MENG Q ing -Bo 1,- LIN Yuan 2 DAI Song -Yuan 3 (1 S tate K ey L abor atory f or Su rf ace Ph ysics,Institu te of Physics,Chinese A ca demy of Sciences,Beijing 100080,China)(2 K e y L aboratory of Photochemistry ,I n stitute of Chemistry,Chine se A c ademy of S ciences,Beijing 100080,China) (3 Institute of Plasma Ph ysics,Chine se Academy of S ciences,H e f ei 230031,China ) Abstract We describe the basic principle and applicat ion prospec t s of a new t ype of solar cell,dye sensit ized nanocrystalline t hin f ilm cells,which are quite different from traditional P -N junction solar cells.T hey are easy t o produce,and w ith furt her improved efficiency and lower produc t ion c ost s promise t o rival current amorphous silicon solar c ells. Key words nano -sized T iO 2porous films,dye,solar cell * 国家高技术研究发展计划(批准号:2002AA302403)资助项目; 中国科学院/百人计划0资助项目 2003-07-23收到初稿,2003-10-30修回- 通讯联系人.E -mail:qb meng@ap h https://www.sodocs.net/doc/7c2861006.html, 1 引言 1991年和1993年,瑞士的M ichael Gr Ytzel 教授先后在Nature [1]和Journal of the American Chemical Society [2]上发表论文,报道了一种全新的太阳电池)))染料敏化纳米晶薄膜太阳电池.它制作方法简单,成本低,光电转换效率超过了10%.这一转换效率可以和非晶硅太阳能电池相比,并且也是目前唯一可以和非晶硅电池竞争的候选者.而这种基于纳米半导体晶体材料(T iO 2等)和工艺的新型电池因具有进一步提高效率和降低成本的潜在优势而一直得到高度重视,染料敏化纳米晶薄膜太阳电池已经成为太阳电池研究领域的一个新的热点[3)29].国家科技部对这种新型太阳电池的研究也非常重视,在国家重点基础研究发展计划和国家高技术研究发展计划中分别立项给予支持.我国的科学工作者在这一研究领域也做了大量具有自己特色的基础研究工 作.本文侧重介绍染料敏化纳米晶薄膜太阳能电池的基本原理、目前研究的重点和进展、应用前景和存在的问题等. 2 基本原理 2.1 染料敏化纳米晶薄膜太阳电池的结构及工作 原理 染料敏化纳米晶薄膜太阳电池主要由以下几部分组成:透明导电玻璃(TCO)、纳米(TiO 2)多孔半导体薄膜、染料光敏化剂、电解质和反电极.在太阳电池中,光电转换过程通常可分为光激发产生电子空穴对、电子空穴对的分离、向外电路的输运等三个

优质纳米晶硅薄膜的低温制备技术及其在太阳能电池中的应用进展陈城钊

收稿日期:2008-09-11 *基金项目:韩山师范学院青年科研基金资助项目(0503)作者简介:陈城钊(1975)),男,广东潮州人,讲师,硕士. 第2卷 第4期材 料 研 究 与 应 用 V o1.2,N o.42008年12月 M A T ERIA L S RESEA RCH A ND AP PL ICAT ION Dec .2008 文章编号:1673-9981(2008)04-0450-05 优质纳米晶硅薄膜的低温制备技术及其 在太阳能电池中的应用进展 * 陈城钊1 ,邱胜桦1 ,刘翠青1 ,吴燕丹1 ,李 平1 ,余楚迎2 ,林璇英 1,2 (1.韩山师范学院物理与电子工程系,广东潮州 521041; 2.汕头大学物理系,广东汕头 515063)摘 要:纳米晶硅薄膜是集晶体硅材料和氢化非晶硅薄膜优点于一体,可望广泛应用于薄膜太阳能电池、光存储器、发光二极管和薄膜晶体管等光电器件的一种新型功能材料.本文综述低温制备优质纳米晶硅薄膜技术的研究进展及其在薄膜硅太阳能电池上的应用.关键词:纳米晶硅薄膜;太阳能电池;低温制备;进展中图分类号:T M 914.4 文献标识码:A 纳米晶硅(nc -Si z H )薄膜就是硅的纳米晶粒镶嵌在a -Si z H 网络里的一种硅纳米结构.由于它具 有较高的电导率(10-3~10-18-1#cm -1)、宽带隙、高光敏性、高光吸收系数等优良的光电特性而引起学术界的重视.纳米晶硅薄膜同时具备宽带隙和高电导这两种太阳能电池窗口材料所需的优良性质,现已成为研究探索的热门纳米薄膜材料[1].除用于制备薄膜太阳能电池外,在发光二极管、光存储器、隧穿二极管、薄膜晶体管以及单电子晶体管等光电器件方面也有潜在应用 [2] . 1 低温制备纳米晶硅薄膜的技术 为了制备适用于以玻璃为衬底的太阳能电池的纳米晶硅薄膜,近年来发展了低温(<450e )制膜技术.按成膜过程可分为两大类:一类是先制备非晶态材料,再固相晶化为纳米晶硅;另一类是直接在玻璃衬底上沉积纳米晶硅薄膜[2].1.1 固相晶化法 固相晶化(SPC)法的特点是非晶固体发生晶化的温度低于其熔融后结晶的温度.低造价太阳能电 池的纳米晶薄膜,一般以廉价的玻璃作衬底,以硅烷气为原材料,用PECVD 法沉积a -Si B H 薄膜,然后再用热处理的方法使其转化为纳米晶硅薄膜.这种方法的优点是能制备大面积的薄膜,可进行原位掺杂,成本低,工艺简单,易于批量生产.常规的高温炉退火、金属诱导晶化、快速热退火、区域熔化再结晶等都属于固相晶化法.1.1.1 常规高温炉退火 该方法是在氮气保护下把非晶硅薄膜放入炉腔内退火,使其由非晶态转变为纳米晶态 [3] .非晶硅晶 化的驱动力是晶相相对于非晶相较低的Gibbs 自由 能.固相晶化过程主要由晶核的形成及晶核长大两步完成.形核率和生长速率都受温度的影响,所以纳米晶硅薄膜的晶粒尺寸受温度的影响很大.晶硅薄膜的晶粒尺寸除受温度的影响外,与初始非晶硅膜的结构状况也有密切的关系.有研究者采用/部分掺杂法0来增大晶粒尺寸,即在基底上沉积两层膜,下层进行磷掺杂,作为成核层,上层不掺杂,作为晶体生长层,退火后可获得较大的晶粒[4].1.1.2 金属诱导晶化 金属诱导晶化就是在非晶硅薄膜上镀一层金属

量子点在太阳能电池中的应用进展

量子点在太阳能电池中的应用进展 摘要 本文介绍了量子点纳米晶体特殊的物理性质,多种制备方法,以及在太阳能电池材料中的应用. 关键词:量子点;制备;太阳能电池 引言 随着人口的急剧增长及工业化的快速发展与能源的大量使用,目前化石能源即将消耗殆尽,此时人们在积极寻找可替代化石能源的二次能源,太阳能作为其中不可忽视的一员,受到广泛瞩目.目前,占据市场主要份额的晶体硅基太阳能电池的光电转化效率已经高达10 %-20 %,但是原料高纯硅造价昂贵,这促使人们再次寻找可以替代硅的材料.研究发现通过量子点敏化提高金属氧化物对光的吸收,可有效的使光照射在量子点表面上产生的电子转移到金属氧化物上,理论研究表明其能量转化效率的极限值可达66%左右,大大改善其光学性能. 本文主要介绍了量子点的多种制备方法及其独特的光学和电学性质在太阳能电池材料上的应用.其制备方法包括: 金属有机化合物热分解法,均匀沉淀法,溶胶-凝胶法,连续离子层吸附反应(SILAR)法,化学浴沉积法(CBD)和电沉积法(EPD)等. 一.量子点的特性 量子点是一种0维的纳米材料,由于自身体积小与普通材料,物理性质也不同于普通大尺寸材料. 量子限域效应,是指当颗粒尺寸减小到与电子的De Broglie波长和激子玻尔半径相近时,电子在三维空间内的运动受到限制,使得电子的输运不能顺利进行,相互干扰性会增强,电子的能级由连续的能级变为分立的能级,能级之间的带隙变宽。随着尺寸的减小,能隙会变宽,出现激子强吸收,激子也会蓝移,即由最低能量向高能方向移动,并引起吸收光谱向短波方向移动.半导体纳米粒子与体材料相比,在吸收光谱上由原来宽的吸收变为窄而高的特征吸收峰.由于量子尺寸效应的影响,随着的尺寸减小,它的能级发生改变,带隙会变宽,纳米颗粒发

太阳能电池的原理及制作

太阳能电池的原理及制作 太阳能是人类取之不尽用之不竭的可再生能源。也是清洁能源,不产生任何的环境污染。在太阳能的有效利用当中;大阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。 制作太阳能电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电于转换反应,根据所用材料的不同,太阳能电池可分为:1、硅太阳能电池;2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;3、功能高分子材料制备的大阳能电池;4、纳米晶太阳能电池等。 一、硅太阳能电池 1.硅太阳能电池工作原理与结构 太阳能电池发电的原理主要是半导体的光电效应,一般的半导体主要结构如下: 图中,正电荷表示硅原子,负电荷表示围绕在硅原子旁边的四个电子。 当硅晶体中掺入其他的杂质,如硼、磷等,当掺入硼时,硅晶体中就会存在着一个空穴,它的形成可以参照下图: 图中,正电荷表示硅原子,负电荷表示围绕在硅原子旁边的四个电子。而黄色的表示掺入的硼原子,因为硼原子周围只有3个电子,所以就会产生入图所示的蓝色的空穴,这个空穴因为没有电子而变得很不稳定,容易吸收电子而中和,形成P(positive)型半导体。 同样,掺入磷原子以后,因为磷原子有五个电子,所以就会有一个电子变得非常活跃,形成N(negative)型半导体。黄色的为磷原子核,红色的为多余的电子。如下图。

N型半导体中含有较多的空穴,而P型半导体中含有较多的电子,这样,当P型和N型半导体结合在一起时,就会在接触面形成电势 差,这就是PN结。 当P型和N型半导体结合在一起时,在两 种半导体的交界面区域里会形成一个特殊的薄 层),界面的P型一侧带负电,N型一侧带正电。 这是由于P型半导体多空穴,N型半导体多自由电子,出现了浓度差。N区的电子会扩散到P区,P区的空穴会扩散到N区,一旦扩散就形成了一个由N指向P的“内电场”,从而阻止扩散进行。达到平衡后,就形成了这样一个特殊的薄层形成电势差,这就是PN结。 当晶片受光后,PN结中,N型半导体的空穴往P型区移动,而P型区中的电子往N 型区移动,从而形成从N型区到P型区的电流。然后在PN结中形成电势差,这就形成了电源。(如下图所示)

太阳能电池材料的发展及应用

太阳能电池材料的发展及应用 材料研1203 Z 石南起新材料(或称先进材料)是指那些新近发展或正在发展之中的具有比传统材料的性能更为优异的一类材料。新材料是指新近发展的或正在研发的、性能超群的一些材料,具有比传统材料更为优异的性能。新材料技术则是按照人的意志,通过物理研究、材料设计、材料加工、试验评价等一系列研究过程,创造出能满足各种需要的新型材料的技术。 随着科学技术发展,人们在传统材料的基础上,根据现代科技的研究成果,开发出新材料。新材料按组分为金属材料、无机非金属材料(如陶瓷、砷化镓半导体等)、有机高分子材料、先进复合材料四大类。按材料性能分为结构材料和功能材料。21 世纪科技发展的主要方向之一是新材料的研制和应用。新材料的研究,是人类对物质性质认识和应用向更深层次的进军。 功能材料是指那些具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,特殊的物理、化学、生物学效应,能完成功能相互转化,主要用来制造各种功能元器件而被广泛应用于各类高科技领域的高新技术材料。 功能材料是新材料领域的核心,是国民经济、社会发展及国防建设的基础和先导。它涉及信息技术、生物工程技术、能源技术、纳米技术、环保技术、空间技术、计算机技术、海洋工程技术等现代高新技术及其产业。功能材料不仅对高新技术的发展起着重要的推动和支撑作用,还对我国相关传统产业的改造和升级,实现跨越式发展起着重要的促进作用。 功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。世界各国均十分重视功能材料的研发与应用,它已成为世界各国新材料研究发展的热点和重点,也是世界各国高技术发展中战略竞争的热点。在全球新材料研究领域中,功能材料约占85%。我国高技术 (863)计划、国家重大基础研究[973] 计划、国家自然科学基金项目中均安排了许多功能材料技术项目(约占新材料领域70%比例),并取得了大量研究成果。 1、能源材料 太阳能电池材料是新能源材料研究开发的热点,IBM公司研制的多层复合太阳能

相关主题