搜档网
当前位置:搜档网 › 第2章 第4节 氢原子光谱与能级结构

第2章 第4节 氢原子光谱与能级结构

第2章 第4节 氢原子光谱与能级结构
第2章 第4节 氢原子光谱与能级结构

第4节氢原子光谱与能级结构

[先填空]

1.氢原子光谱的特点

(1)从红外区到紫外区呈现多条具有确定波长的谱线;Hα~Hδ的这n个波长数值成了氢原子的“印记”,不论是何种化合物的光谱,只要它里面含有这些波长的光谱线,就能断定这种化合物里一定含有氢.

(2)从长波到短波,Hα~Hδ等谱线间的距离越来越小,表现出明显的规律性.

2.巴尔末公式

1

λ=R(1

22-1

n2)(n=3,4,5,…),其中R叫做里德伯常量,数值为R=1.096 775

81×107 m-1.

[再判断]

1.氢原子光谱是不连续的,是由若干频率的光组成的.(√)

2.由于原子都是由原子核和核外电子组成的,所以各种原子的原子光谱是相同的.(×)

3.由于不同元素的原子结构不同,所以不同元素的原子光谱也不相同.(√) [后思考]

氢原子光谱有什么特征,不同区域的特征光谱满足的规律是否相同?

【提示】氢原子光谱是分立的线状谱.它在可见光区的谱线满足巴耳末公式,在红外和紫外光区的其他谱线也都满足与巴耳末公式类似的关系式.[核心点击]

的有________条.

【解析】在氢原子光谱中,电子从较高能级跃迁到n=2能级发光的谱线属于巴尔末线系.因此只有由n=3能级跃迁至n=2能级的1条谱线属巴尔末线系.

【答案】 1

2.根据巴耳末公式,指出氢原子光谱巴耳末线系的最长波长和最短波长所对应的n,并计算其波长.

【解析】对应的n越小,波长越长,故当n=3时,氢原子发光所对应的波长最长.

当n=3时,1

λ1=1.10×10

?

?

?

?

?

1

22-

1

32m-

1

解得λ1=6.55×10-7 m.

当n=∞时,波长最短,1

λ=R?

?

?

?

?

1

22-

1

n2=R×

1

4,

λ=4

R=

4

1.1×107

m=3.64×10-7 m.

【答案】当n=3时,波长最长为6.55×10-7 m

当n =∞时,波长最短为3.64×10-7 m

巴尔末公式的应用方法及注意问题

(1)巴尔末公式反映氢原子发光的规律特征,不能描述其他原子.

(2)公式中n 只能取整数,不能连续取值,因此波长也是分立的值.

(3)公式是在对可见光区的四条谱线分析时总结出的,在紫外区的谱线也适用.

(4)应用时熟记公式,当n 取不同值时求出一一对应的波长λ.

玻 尔 理 论 对 氢 光 谱 的 解 释

[先填空]

1.理论推导

按照玻尔原子理论,氢原子的电子从能量较高的能级跃迁到n =2的能级上

时,辐射出的光子能量应为hν=E n -E 2,根据氢原子的能级公式E n =E 1n 2可得E 2

=E 122,由此可得hν=-E 1? ????122-1n 2,由于c =λν,所以上式可写成1λ=-E 1hc ? ????122-1n 2,把这个式子与巴尔末公式比较,可以看出它们的形式是完全一样的,并且R =-E 1hc ,计算出-E 1hc

的值为1.097×107 m -1与里德伯常量的实验值符合得很好.这就是说,根据玻尔理论,不但可以推导出表示氢原子光谱规律性的公式,而且还可以从理论上来计算里德伯常量的值.

由此可知,氢原子光谱的巴尔末系是电子从n =3,4,5,6,…能级跃迁到n =2的能级时辐射出来的.其中H α~H δ在可见光区.

2.玻尔理论的成功与局限性

1.玻尔理论是完整的量子化理论.(×)

2.玻尔理论成功的解释了氢原子光谱的实验规律.(√)

3.玻尔理论不但能解释氢原子光谱,也能解释复杂原子的光谱.(×)

[后思考]

玻尔理论的成功和局限是什么?

【提示】成功之处在于引入了量子化的观念,局限之处在于保留了经典粒子的观念,把电子的运动看做是经典力作用下的轨道运动.

[核心点击]

1.成功方面

(1)运用经典理论和量子化观念确定了氢原子的各个定态的能量并由此画出能级图.

(2)处于激发态的氢原子向低能级跃迁辐射出光子,辐射光子的能量与实际符合的很好,由于能级是分立的,辐射光子的波长也是不连续的.

(3)不仅成功地解释了氢光谱的巴尔末系,计算出了里德伯常数,而且,玻尔理论还预言了当时尚未发现的氢原子的其他光谱线系,这些线系后来相继被发现,也都跟玻尔理论的预言相符.

2.局限性及原因

(1)局限性:成功地解释了氢原子光谱的实验规律,但不能解释稍复杂原子的光谱现象.

(2)原因:保留了经典粒子的观念,把电子的运动仍然看作经典力学描述下的轨道运动.

3.(多选)关于经典电磁理论与氢原子光谱之间的关系,下列说法正确的是() 【导学号:64772032】

A.经典电磁理论不能解释原子的稳定性

B.根据经典电磁理论,电子绕原子核转动时,电子会不断释放能量,最后被吸附到原子核上

C.根据经典电磁理论,原子光谱应该是连续的

D.氢原子光谱彻底否定了经典电磁理论

【解析】 根据经典电磁理论,电子绕原子核转动时,电子会不断释放能量最后被吸附到原子核上,原子不应该是稳定的,并且发射的光谱应该是连续的.氢原子光谱并没有完全否定经典电磁理论,是引入了新的观念.

【答案】 ABC

4.氢原子光谱的巴耳末系中波长最长的光波的波长为λ1,波长次之为λ2,则λ1λ2

=________. 【解析】 由1λ=R ? ????122-1n 2得:当n =3时,波长最长,1λ1

=R ? ????122-132,当n =4时,波长次之,1λ2=R ? ????122-142,解得:λ1λ2

=2720. 【答案】 2720

5.已知氢原子光谱中巴尔末线系第一条谱线H α的波长为6 565 A 0,求: 【导学号:64772033】

(1)试推算里德伯常量的值;

(2)利用巴尔末公式求其中第四条谱线的波长和对应光子的能量.(1 A 0=10-10 m)

【解析】 (1)巴尔末系中第一条谱线为n =3时,

即1λ1

=R (122-132) R =365λ1=365×6 565×10-10

m -1=1.097×107 m -1. (2)巴尔末系中第四条谱线对应n =6,

则1λ4

=R (122-162) λ4=368×1.097×107 m =4.102×10-7 m E =hν=h ·c λ4

=6.63×10-34×3×108

4.102×10-7

J

=4.85×1019 J.

【答案】(1)1.097×107 m-1

(2)4.102×10-7 m 4.85×1019 J

氢原子光谱线是最早发现、研究的光谱线1.氢光谱是线状的、不连续的,波长只能是分立的值.

2.谱线之间有一定的关系,可用一个统一的公式表达:1

λ=R(

1

m2-

1

n2)

式中m=2对应巴尔末公式:1

λ=R(

1

22-

1

n2),(n=3,4,5,…).其谱线称为巴

尔末线系,是氢原子核外电子由高能级跃迁至n=2的能级时产生的光谱,其中Hα~Hδ在可见光区.由于光的频率不同,其颜色不同.

m=1对应赖曼系

即赖曼系(在紫外区)

1

λ=R(1

12-1

n2),(n=2,3,4,…)

m=3对应帕邢系即帕邢系(在红外区)

1

λ=R(1

32-1

n2),(n=4,5,6,…)

学业分层测评(七)

(建议用时:45分钟)

[学业达标]

1.关于原子光谱,下列说法中正确的是() A.每种原子处在不同温度下发光的光谱不同B.每种原子处在不同的物质中的光谱不同C.每种原子在任何条件下发光的光谱都相同

D.两种不同的原子发光的光谱可能相同

【解析】每种原子都有自己的结构,只能发出由内部结构决定的自己的特征谱线,不会因温度、物质不同而改变,C正确.

【答案】 C

2.(多选)有关氢原子光谱的说法正确的是() 【导学号:64772097】

A.氢原子的发射光谱是连续谱

B.氢原子光谱说明氢原子只发出特定频率的光

C.氢原子光谱说明氢原子能级是分立的

D.氢原子光谱线的频率与氢原子能级的能量差无关

【解析】原子的发射光谱是原子跃迁时形成的,由于原子的能级是分立的,所以氢原子的发射光谱是线状谱,原子发出的光子的能量正好等于原子跃迁时的能级差,故氢原子只能发出特定频率的光,综上所述,选项D、A错,B、C对.【答案】BC

3.对于巴尔末公式下列说法正确的是() 【导学号:64772098】

A.所有氢原子光谱的波长都与巴尔末公式相对应

B.巴尔末公式只确定了氢原子光谱的可见光部分的光的波长

C.巴尔末公式确定了氢原子光谱的一个线系的波长,其中既有可见光,又有紫外光

D.巴尔末公式确定了各种原子光谱中的光的波长

【解析】巴尔末公式只确定了氢原子光谱中一个线系波长,不能描述氢原子发出的各种波长,也不能描述其他原子的发光,A、D错误;巴尔末公式是由当时巳知的可见光中的部分谱线总结出来的,但它适用于整个巴尔末线系,该线系包括可见光和紫外光,B错误,C正确.

【答案】 C

4.利用光谱分析的方法能够鉴别物质和确定物质的组成成分,关于光谱分析下列说法正确的是()

A.利用高温物体的连续谱就可鉴别其组成成分

B.利用物质的线状谱就可鉴别其组成成分

C.高温物体发出的光通过某物质后的光谱上的暗线反映了高温物体的组成成分

D.同一种物质的线状谱与吸收光谱上的暗线,由于光谱的不同,它们没有关系

【解析】由于高温物体的光谱包括了各种频率的光,与其组成成分无关,故A错误;某种物质发射的线状谱中的明线与某种原子发出的某频率的光有关,通过这些亮线与原子的特征谱对照,即可确定物质的组成成分,B正确;高温物体发出的光通过物质后某些频率的光被吸收而形成暗线,这些暗线与通过的物质有关,C错误;某种物质发出某种频率的光,当光通过这种物质时它也会吸收这种频率的光,因此线状谱中的亮线与吸收光谱中的暗线相对应,D错误.正确选项是B.

【答案】 B

5.(多选)关于巴耳末公式1

λ=R?

?

?

?

?

1

22-

1

n2的理解,正确的是()

A.此公式是巴耳末在研究氢原子光谱特征时发现的

B.公式中n可取任意值,故氢原子光谱是连续谱

C.公式中n只能取大于或等于3的整数值,故氢原子光谱是线状谱

D.巴耳末公式只确定了氢原子发光中的一个线系的波长,不能描述氢原子发出的其他线系的波长

【解析】此公式是巴耳末在研究氢原子光谱在可见光区的14条谱线中得到的,只适用于氢原子光谱的巴耳末线系分析,且n只能取大于或等于3的整数,因此λ不能取连续值,故氢原子光谱是线状谱,A、C、D正确.

【答案】ACD

6.(多选)以下论断中正确的是()

A.按经典电磁理论,核外电子受原子核库仑引力,不能静止只能绕核运转,

电子绕核加速运转,不断地向外辐射电磁波

B .按经典理论,绕核运转的电子不断向外辐射能量,电子将逐渐接近原子核,最后落入原子核内

C .按照卢瑟福的核式结构理论,原子核外电子绕核旋转,原子是不稳定的,说明该理论不正确

D .经典电磁理论可以很好地应用于宏观物体,但不能用于解释原子世界的现象

【解析】 卢瑟福的核式结构没有问题,主要问题出在经典电磁理论不能用来解释原子世界的现象;按照玻尔理论,原子核外的电子在各不连续的轨道上做匀速圆周运动时并不向外辐射电磁波,故A 、B 、D 正确,C 错误.

【答案】 ABD

7.氢原子第n 能级的能量为E n =E 1n 2,其中E 1是基态能量.当氢原子由第4

能级跃迁到第2能级时,发出光子的频率为ν1;若氢原子由第2能级跃迁到基态,

发出光子的频率为ν2,则ν1ν2

=________. 【解析】 根据氢原子的能级公式,hν1=E 4-E 2=E 142-E 122=-316E 1

hν2=E 2-E 1=E 122-E 112=-34E 1

所以ν1ν2

=31634

=14. 【答案】 14

8.有一群处于n =4能级上的氢原子,已知里德伯常量R =1.097×107 m -1,则:

(1)这群氢原子发光的光谱有几条?几条是可见光?

(2)根据巴尔末公式计算出可见光中的最大波长是多少?

【解析】 (1)这群氢原子的能级图如图所示,由图可以判断出,这群氢原

子可能发生的跃迁共有6种,所能发出的光谱共有6条,其中有2条是可见光.

(2)根据巴尔末公式1

λ=R?

?

?

?

?

1

22-

1

n2得,当n=3时,波长最大,代入数据得λ

=6.563×10-7 m.

【答案】(1)62(2)6.563×10-7 m

[能力提升]

9.如图2-4-1甲所示是a,b,c,d四种元素的线状谱,图乙是某矿物质的线状谱,通过光潽分析可以了解该矿物质中缺乏的是()

图2-4-1

①a元素②b元素③c元素④d元素

A.①②B.③④

C.①③D.②④

【解析】对比图(甲)和图(乙)可知,图(乙)中没有b,d对应的特征谱线,所以在矿物质中缺乏b,d两种元素.

【答案】 D

10.氢原子从第4能级跃迁到第2能级发出蓝光,那么当氢原子从第5能级跃迁到第2能级应发出() 【导学号:64772099】

A.X射线B.红光

C.黄光D.紫光

【解析】氢原子从第5能级跃迁到第2能级发出的光在可见光范围内,且比蓝光的频率更大.在为E5-E2=hν2>E4-E2=hν1.由此可知,只能是紫光,故D正确.

【答案】 D

11.在可见光范围内,氢原子光谱中波长最长的2条谱线所对应的基数为n. 【导学号:64772034】

(1)它们的波长各是多少?

(2)其中波长最长的光对应的光子能量是多少?

【解析】 (1)谱线对应的n 越小,波长越长,故当n =3时,氢原子发光所对应的波长最长.

当n =3时,1λ1

=1.10×107×(122-132) m -1 解得λ1=6.5×10-7 m.

当n =4时,1λ2

=1.10×107×(122-142) m -1 解得λ2=4.8×10-7 m.

(2)n =3时,对应着氢原子巴尔末系中波长最长的光,设其波长为λ,因此

E =hν=h c λ=6.63×10-34×3×1086.5×10-7

J =3.06×10-19 J. 【答案】 (1)6.5×10-7 m 4.8×10-7 m

(2)3.06×10-19 J

12.氢原子光谱除了巴尔末系外,还有赖曼系、帕邢系等,其中帕邢系的公式为1λ=R ? ??

??132-1n 2(n =4,5,6,…),R =1.10×107 m -1.若已知帕邢系的氢原子光谱在红外线区域,求:

(1)n =6时,对应的波长;

(2)帕邢系形成的谱线在真空中的波速为多少?n =6时,传播频率为多大?

【解析】 (1)由帕邢系公式1λ=R ? ??

??132-1n 2, 当n =6时,得λ=1.09×10-6 m.

(2)帕邢系形成的谱线在红外区域,而红外线属于电磁波,在真空中以光速传播,故波速为光速c =3×108 m/s ,

由v =λT =λν,

得ν=v λ=c λ=3×1081.09×10-6 Hz =2.75×1014 Hz.

【答案】(1)1.09×10-6 m (2)3×108 m/s 2.75×1014 Hz

高考经典课时作业15-2 原子结构、氢原子光谱

高考经典课时作业15-2 原子结构、氢原子光谱 (含标准答案及解析) 时间:45分钟 分值:100分 1.(2011·高考天津卷)下列能揭示原子具有核式结构的实验是( ) A .光电效应实验 B .伦琴射线的发现 C .α粒子散射实验 D .氢原子光谱的发现 2.关于巴耳末公式1λ =R ????122-1n 2的理解,下列说法正确的是( ) A .所有氢原子光谱的波长都可由巴耳末公式求出 B .公式中n 可取任意值,故氢原子光谱是连续谱 C .公式中n 只能取不小于3的整数值,故氢原子光谱是线状谱 D .公式不但适用于氢原子光谱的分析,也适用于其他原子光谱的分析 3.(2012·高考北京卷)一个氢原子从n =3能级跃迁到n =2能级,该氢原子( ) A .放出光子,能量增加 B .放出光子,能量减少 C .吸收光子,能量增加 D .吸收光子,能量减少 4.(2012·高考江苏卷)如图所示是某原子的能级图,a 、b 、c 为原子跃迁所发出的三种波长 的光.在下列该原子光谱的各选项中,谱线从左向右的波长依次增大,则正确的是( ) 5.氢原子的核外电子由离原子核较远的轨道跃迁到离核较近的轨道上时,下列说法中正确 的是( ) A .氢原子的能量增加 B .氢原子的能量减少 C .氢原子要吸收一定频率的光子 D .氢原子要放出一定频率的光子 6.(2011·高考大纲全国卷)已知氢原子的基态能量为E 1,激发态能量E n =E 1/n 2,其中n = 2,3,….用h 表示普朗克常量,c 表示真空中的光速.能使氢原子从第一激发态电离的光子的最大波长为( ) A .-4hc 3E 1 B .-2hc E 1 C .-4hc E 1 D .-9hc E 1 7.(2012·高考四川卷)如图为氢原子能级示意图的一部分,则氢原子( )

高中物理第2章原子结构4氢原子光谱与能级结构学案鲁科版选修

第4节氢原子光谱与能级结构 [目标定位]1.知道氢原子光谱的实验规律,了解巴尔末公式及里德伯常量.2.理解玻尔理论对氢原子光谱规律的解释. 一、氢原子光谱 1.氢原子光谱的特点: (1)从红外区到紫外区呈现多条具有确定波长的谱线; (2)从长波到短波,H α~H δ等谱线间的距离越来越小,表现出明显的规律性. 2.巴尔末公式: 1 λ =R ? ?? ??1-1n 2(n =3,4,5,…)其中R 叫做里德伯常量,其值为R =1.096 775 81×107 m -1 . 二、玻尔理论对氢原子光谱的解释 1.巴尔末系 氢原子从n ≥3的能级跃迁到n =2的能级得到的线系. 2.玻尔理论的局限性 玻尔理论解释了原子结构和氢原子光谱的关系,但无法计算光谱的强度,对于其他元素更为复杂的光谱,理论与实验差别很大. 一、氢原子光谱的实验规律 1.氢原子的光谱 从氢气放电管可以获得氢原子光谱,如图1所示. 图1 2.氢原子光谱的特点:在氢原子光谱图中的可见光区内,由右向左,相邻谱线间的距离越来越小,表现出明显的规律性. 3.巴尔末公式 (1)巴尔末对氢原子光谱的谱线进行研究得到了下面的公式: 1 λ =R (1-1 n 2) n =3,4,5…该公式称为巴尔末公式. (2)公式中只能取n ≥3的整数,不能连续取值,波长是分立的值. 4.赖曼线系和帕邢线系:氢原子光谱除了存在巴尔末线系外,还存在其他一些线系.例

如: 赖曼线系(在紫外区):1λ=R ? ????112-1n 2(n =2,3,4,…) 帕邢线系(在红外区):1λ=R ? ?? ??132-1n 2(n =4,5,6,…) 例1关于巴耳末公式1λ=R (1-1 n 2)的理解,下列说法正确的是() A .所有氢原子光谱的波长都可由巴耳末公式求出 B .公式中n 可取任意值,故氢原子光谱是连续谱 C .公式中n 只能取不小于3的整数值,故氢原子光谱是线状谱 D .公式不但适用于氢原子光谱的分析,也适用于其他原子光谱的分析 答案C 解析只有氢原子光谱中可见光波长满足巴耳末公式,氢原子光谱在红外和紫外光区的其他谱线不满足巴耳末公式,满足的是与巴耳末公式类似的关系式,A 、D 错;在巴耳末公式中的n 只能取不小于3的整数,不能连续取值,波长也只能是分立的值,故氢原子光谱不是连续谱而是线状谱,B 错,C 对. 二、玻尔理论对氢原子光谱的解释 1.理论导出的氢光谱规律:按照玻尔的原子理论,氢原子的电子从能量较高的轨道n 跃迁到能量较低的轨道2时辐射出的光子能量hν=E n -E 2,又E n =E 1E 2 ,E 2=E 1 ,由此可得hν= -E 1? ?? ??1-1n 2,由于ν=c λ,所以上式可写作1λ=-E 1hc ? ?? ??1-1n 2,此式与巴尔末公式比较,形 式完全一样.由此可知,氢光谱的巴尔末线系是电子从n =3,4,5,…等能级跃迁到n =2的能级时辐射出来的. 2.玻尔理论的成功之处 (1)运用经典理论和量子化观念确定了氢原子的各个定态的能量,并由此画出了氢原子的能级图. (2)处于激发态的氢原子向低能级跃迁辐射出光子,辐射光子的能量与实际符合得很好,由于能级是分立的,辐射光子的波长是不连续的. (3)导出了巴尔末公式,并从理论上算出了里德伯常量R 的值,并很好地解释甚至预言了氢原子的其他谱线系. (4)能够解释原子光谱,每种原子都有特定的能级,原子发生跃迁时,每种原子都有自己的特征谱线,即原子光谱是线状光谱,利用光谱可以鉴别物质和确定物质的组成成分. 例2氢原子光谱的巴尔末公式是1λ =R ? ?? ??1-1n 2(n =3,4,5,…),对此,下列说法正确的是() A .巴尔末依据核式结构理论总结出巴尔末公式

氢原子光谱

摘要:本实验用光栅光谱仪对氢原子光谱进行测量,测得了氢原子光谱巴尔末线系的波长, 求出了里德伯常数。最后对本实验进行了讨论。 关键词:氢原子光谱,里德伯常数,巴尔末线系 正文 一、引言 光谱线系的规律与原子结构有内在的联系,因此,原子光谱是研究原子结构的一种重要方法。1885年巴尔末总结了人们对氢光谱测量的结果,发现了氢光谱的规律,提出了著名的巴尔末公式,氢光谱规律的发现为玻尔理论的建立提供了坚实的实验基础,对原子物理学和量子力学的发展起过重要作用。1932年尤里(H. C. Uery )根据里德伯常数随原子核质量不同而变化的规律,对重氢赖曼线系进行摄谱分析,发现氢的同位素——氘的存在。通过巴尔末公式求得的里德伯常数是物理学中少数几个最精确的常数之一,成为检验原子理论可靠性的标准和测量其他基本物理常数的依据。 WGD-3型光栅光谱仪用于近代物理实验中的氢原子光谱实验,一改以往在摄谱仪上用感光胶片记录的方法,而使光谱仪既可在微机屏幕上显示,又可打印成谱图保存,实验结果准确明了。 二、实验目的 1、熟悉光栅光谱仪的性能和用法; 2、用光栅光谱仪测量氢原子光谱巴尔末系数的波长,求里德伯常数; 三、实验原理 氢原子光谱 氢原子光谱是最简单、最典型的原子光谱。用电激发氢放电管(氢灯)中的稀薄氢气(压力在102Pa 左右),可得到线状氢原子光谱。瑞士物理学家巴尔末根据实验结果给出氢原子光谱在可见光区域的经验公式 2 024 H n n λλ=?- 式中H λ为氢原子谱线在真空中的波长,ι0=364.57nm 是一经验常数;n 取3,4,5等整数。 若用波数表示,则上式变为 式中H R 称为氢的里德伯常数。 根据玻尔理论,对氢和类氢原子的里德伯常数的计算,得 ??? ??-==221211~n R v H H H λ)/1()4(23202 42M m ch z me R z += πεπ

2019第2章第4节氢原子光谱与能级结构语文

第4节氢原子光谱与能级结构 理解玻尔理论对氢原子光谱规律的解.2) 释.(重点 )(难点3.了解玻尔理论的局限性.谱子光氢原] 先填空[ 氢原子光谱的特点1.个波长~H的这n(1)从红外区到紫外区呈现多条具有确定波长的谱线;Hδα只要它里面含有这些波数值成了氢原子的“印记”,不论是何种化合物的光谱,长的光谱线,就能断定这种化合物里一定含有氢.等谱线间的距离越来越小,(2)从长波到短波,H~H表现出明显的规律性.δα2.巴尔末公式1111.096 775 叫做里德伯常量,数值为,其中RR=,…)(-=R(n=3,4,5)22λn217-. 81×10 m] 再判断[) .氢原子光谱是不连续的,是由若干频率的光组成的.1(√.由于原子都是由原子核和核外电子组成的,所以各种原子的原子光谱是2) ×相同的.() (由于不同元素的原子结构不同,3.所以不同元素的原子光谱也不相同.√] 后思考[ 氢原子光谱有什么特征,不同区域的特征光谱满足的规律是否相同?它在可见光区的谱线满足巴耳末公【提示】氢原子光谱是分立的线状谱.式,在红外和紫外光区的其他谱线也都满足与巴耳末公式类似的关系式.] 核心点击[页 1 第

111) ,…n=3,4,5,6-=R()(22λn2 巴尔末公式17-m10只能取整数,最小值为3,里德伯常量R=1.10×式中n 巴尔末线系的14条谱线都处于可见光区1对应的=3时,值越大,对应的波长λ越短,即n在巴尔末线系中n规2波长最长律除了巴尔末系,氢原子光谱在红外区和紫外区的其他谱线也都满足3与巴尔末公式类似的关系式能级自发跃迁至低能级发出的谱线中属于巴尔末线系=3一群氢原子由1.n ________条.的有能级发光的谱线=2【解析】在氢原子光谱中,电子从较高能级跃迁到n条谱线属巴尔末线能级的1能级跃迁至n=2属于巴尔末线系.因此只有由n=3 系.1 【答案】.根据巴耳末公式,指出氢原子光谱巴耳末线系的最长波长和最短波长所2 ,并计算其波长.对应的n时,氢原子发光所对应的3n越小,波长越长,故当n=【解析】对应的波长最长.111??17-??m×1.10=×10当n=3时,-22 32λ??17m.λ=6.55×10解得-11111??-??R×,=n当=∞时,波长最短,=R22n2λ4??447=λ103.64m=×=m. - 7R101.1×7-m ×时,波长最长为=当【答案】n36.5510页 2 第 7-m 10=∞时,波长最短为3.64×当n巴尔末公式的应用方法及注意问题 (1)巴尔末公式反映氢原子发光的规律特征,不能描述其他原子. (2)公式中n只能取整数,不能连续取值,因此波长也是分立的值. (3)公式是在对可见光区的四条谱线分析时总结出的,在紫外区的谱线也适用. (4)应用时熟记公式,当n取不同值时求出一一对应的波长λ. 玻尔理论对氢光谱的解释 [先填空] 1.理论推导 按照玻尔原子理论,氢原子的电子从能量较高的能级跃迁到n=2的能级上E1时,辐射出的光子能量应为hν=E-E,根据氢原子的能级公式E=可得E222nn n -E11111E????11--????,所以上式可写成=,由于c=λν,=由此

08物理《原子物理》(参考答案)

以下是本人经过网络和书本查证的出的答案,每题都经过仔细分析与 查找,如有纰漏请指出。 ——From GK 原子物理学习题 一、选择题 (1)进行卢瑟福理论实验验证时发现小角散射与实验不符这说明:D A、原子不一定存在核式结构; B、散射物太厚; C、卢瑟福理论是错误的; D、小角散射时一次散射理论不成立。 (2)用相同能量的α粒子束和质子束分别与金箔(bó)正碰,测量金原子核半径的上限。问用质子束所得结果是用α粒子束所得结果的几倍?B A、1/4 ; B、1/2 ; C、1 ; D、2 。 (3)在α粒子散射实验中,若把α粒子换成质子,要想得到α粒子相同的角分布,在散射物不变条件下则必须使:D A、质子的速度与α粒子的相同; B、质子的能量与α粒子的相同; C、质子的速度是α粒子的一半; D、质子的能量是α粒子的一半。 (4)在金箔引起的α粒子散射实验中,每10000个对准金箔的α粒子中发现有4个粒子被散射到角度大于5°的范围内.若金箔的厚度增加到4倍,那么被散射的α粒子会有多少?A A、16 ; B、8 ; C、4 ; D、2 。 (5)欲使处于激发态的氢原子发出Hα线,则至少需提供多少能量(eV)?B A、13.6 ; B、12.09 ; C、10.2 ; D、3.4 。 (6)由玻尔氢原子理论得出的第一玻尔半径a0的数值是:B A、5.29×10-10m ; B、0.529×10-10m ; C、5.29×10-12m; D、529×10-12m 。(7)氢原子赖曼系的线系限波数为R,则氢原子的电离电势为:D A、3Rhc/4 ; B、Rhc; C、3Rhc/4e; D、Rhc/e。 (8)弗兰克—赫兹实验使用的充气三极管是在:B A、相对阴极来说板极上加正向电压,栅极(shān jí)上加负电压; B、板极相对栅极是负电压,栅极相对阴极是正电压; C、板极相对栅极是正电压,栅极相对阴极是负电压; D、相对阴极来说板极加负电压,栅极加正电压。 (9)假设氦(hài)原子的一个电子已被电离,如果还想把另一个电子电离,若以eV为单位至少需提供的能量为:A A、54.4 ; B、-54.4 ; C、13.6 ; D、3.4 。 (10)一次电离的氦离子H e+处于第一激发态(n=2)时电子的轨道半径为:B A、0.53?10-10m; B、1.06?10-10m ; C、2.12?10-10m ; D、0.26?10-10m。(11)单个f电子总角动量量子数的可能值为:D A、j =3,2,1,0 ; B、j=±3 ; C、j= ±7/2 , ± 5/2 ; D、j= 5/2 ,7/2 (12)锂(lǐ)原子光谱由主线系、第一辅线系、第二辅线系及柏(bǎi)格曼系组成.这些谱线系中全部谱线在可见光区只有:B A、主线系; B、第一辅线系; C、第二辅线系; D、柏格曼系。

关于氢原子光谱的超精细结构的研究

关于氢原子光谱的超精细结构的研究 摘要:本文通过介绍原子核的结构、原子核的自旋以及核磁矩,讨论了氢原子光谱的超精细结构的产生原因并介绍了相关公式推导。 关键词:光谱;氢原子;超精细结构 原子核的结构 1、原子核 自卢瑟福提出原子的核式模型以来,原子就被分为两部分来处理:一是处于原子中心的原子核,一是绕核运动的电子。除了原子核的质量和电荷外,原子核的其他性质对原子的影响是相当微小的,核外电子的行为对原子核的性质也几乎毫无关系。原子和原子核是物质结构泾渭分明的两个层次。 2、原子核的结构 发现中子之前,人们知道的“基本”粒子只有两种:电子和质子。物理学家开始时有把原子核当做质子和电子的组成体的想法,但一开始就遇到了不可克服的困难。因为假如原子核由质子和电子所组成,那么,我们将无法解释核的自旋,且推导出来的原子核内电子的能量与实验结果不符。在查德威克发现中子之后,海森堡很快就提出了原子核由质子和中子所组成的假说。海森堡把质子和中子统称为核子,并把中子和质子看做核子的两个不同状态。 原子核的自旋以及核磁矩 1、电子自旋 在乌仑贝克和古兹米特提出电子自旋之前,泡利为了解释原子光谱的超精细结构,就提出了原子核作为一个整体必须有自旋的假设。但是,只有在查德威克发现中子之后,人们才理解自旋的起源。实验发现,中子和质子都是费米子,具有的固有角动量(自旋)与电子一样。既然原子核式中子和质子所组成,它的自旋就应该是中子和质子的轨道角动量和自旋之和。我们研究的“原子核的自旋”,都是指原子核基态的自旋。 2、核磁矩 除了核子的自旋磁矩外,我们还要考虑轨道磁矩。下面给出自核自旋的核磁矩的表示式。类似于原子磁矩的表示式,核磁矩和核自旋角动量I成正比。 μI = g IμN I 在磁场中,核自旋磁矩与磁场相互作用所产生的附加能量为 U = -μI ?B = -g IμN Bm I 因为m I有2I+1个值,所以有2I+1个不同的附加能量,于是就发生赛曼能级分裂,一条核能级在磁场中就分裂为2I+1条,相邻两条分裂能级间的能量差为 上述对核自旋磁矩与磁场的相互作用的讨论是下面研究氢原子光谱的超精细结构的基础。 氢原子的超精细结构光谱 最初讨论原子中的电子运动时,只考虑电子和原子核之间的库仑相互作用,后来随着实验水平的提高,人们发现了H的谱线并不是一条,由此引入电子自旋的概念,从而产生了了氢原子的精细结构。

2014届高考物理 15-2原子结构、氢原子光谱领航规范训练

2014届高考物理领航规范训练:15-2原子结构、氢原子光谱 1.(2011·高考天津卷)下列能揭示原子具有核式结构的实验是( ) A.光电效应实验B.伦琴射线的发现 C.α粒子散射实验D.氢原子光谱的发现 解析:光电效应实验说明光的粒子性,伦琴射线的发现说明X射线是一种比光波波长更短的电磁波,氢原子光谱的发现促进了氢原子模型的提出.故C正确. 答案:C 2.关于巴耳末公式1 λ=R? ? ?? ? 1 22 - 1 n2的理解,下列说法正确的是( ) A.所有氢原子光谱的波长都可由巴耳末公式求出 B.公式中n可取任意值,故氢原子光谱是连续谱 C.公式中n只能取不小于3的整数值,故氢原子光谱是线状谱 D.公式不但适用于氢原子光谱的分析,也适用于其他原子光谱的分析 解析:巴耳末公式是经验公式,只适用于氢原子光谱,公式中n只能取n≥3的整数,故C正确. 答案:C 3.(2012·高考北京卷)一个氢原子从n=3能级跃迁到n=2能级,该氢原子( ) A.放出光子,能量增加B.放出光子,能量减少 C.吸收光子,能量增加D.吸收光子,能量减少 解析:根据玻尔原子理论知,氢原子从高能级n=3向低能级n=2跃迁时,将以光子形式放出能量,放出光子后原子能量减少,故B选项正确. 答案:B 4.(2012·高考江苏卷)如图所示是某原子的能级图,a、b、c为原子跃迁所发出的三种波长 的光.在下列该原子光谱的各选项中,谱线从左向右的波长依次增大,则正确的是( )

解析:由h ν=h c λ=E 初-E 末可知该原子跃迁前后的能级差越大,对应光线的能量越大, 波长越短.由图知a 对应光子能量最大,波长最短,c 次之,而b 对应光子能量最小,波长最长,故C 正确. 答案:C 5.氢原子的核外电子由离原子核较远的轨道跃迁到离核较近的轨道上时,下列说法中正确 的是( ) A .氢原子的能量增加 B .氢原子的能量减少 C .氢原子要吸收一定频率的光子 D .氢原子要放出一定频率的光子 解析:氢原子的核外电子离原子核越远,氢原子的能量(包括动能和势能)越大.当氢原子的核外电子由离原子核较远的轨道跃迁到离核较近的轨道上时,原子的能量减少,氢原子要放出一定频率的光子.显然,选项B 、D 正确. 答案:BD 6.(2011·高考大纲全国卷)已知氢原子的基态能量为E 1,激发态能量E n =E 1/n 2 ,其中n = 2,3,….用h 表示普朗克常量,c 表示真空中的光速.能使氢原子从第一激发态电离的光子的最大波长为( ) A .-4hc 3E 1 B .-2hc E 1 C .-4hc E 1 D .-9hc E 1 解析:依题意可知第一激发态能量为E 2=E 1 22,要将其电离,需要的能量至少为ΔE =0 -E 2=h ν,根据波长、频率与波速的关系c =νλ,联立解得最大波长λ=-4hc E 1 ,C 正确. 答案:C 7.(2012·高考四川卷)如图为氢原子能级示意图的一部分,则氢 原 子( ) A .从n =4能级跃迁到n =3能级比从n =3能级跃迁到n =2能级辐射出电磁波的波长长 B .从n =5能级跃迁到n =1能级比从n =5能级跃迁到n =4能级辐射出电磁波的速度大

第4节氢原子光谱与能级结构

光电效应、原子结构、原子构练习题 (适用于高中物理各种版本教材) 一、光电效应 1、概念:在光(电磁波)的照射下,从物体表面逸出的 的现象称为光电效应,这种电子被称之为 。使电子脱离某种金属所做功的 ,叫做这种金属的逸出功,符号为W 0。 2、规律: 提出的“光子说”解释了光电效应的基本规律,光子的能量与频率的关系为 。 ①截止频率:当入射光子的能量 逸出功时,才能发生光电效应,即:0____W hv ,也就是入射光子的频率必须满足v ≥ ,取等号时的______0=ν即为该金属的截止频率(极限频率); ②光电子的最大初动能:_________k m =E ,由此可知,对同一重金属,光电子的最大初动能随着入射光的频率增加而 ,随着入射光的强度的增加而 ,光电子从金属表面逸出时的动能应分布在 范围内。 3、实验:装置如右图,其中 为阴极,光照条件下发出光电子; 为 阳极,吸收光电子,进而在电路中形成 ,即电流表的示数。 ①当A 、K 未加电压时,电流表 示数; ②当加上如图所示 向电压时,随着电压的增大,光电流趋于一个饱和值, 即 ;当电压进一步增大时,光电流 。 ③当加上相反方向的电压( 向电压)时,光电流 ;当反向电压达 到某一个值时,光电流减小为0,这个反向电压U c 叫做 ,即使最有可能 到达阳极的光电子刚好不能到达阳极的反向电压,则关于U c 的动能定理方程 为 。 【练习1】某同学用同一装置在甲、乙、丙光三种光的照射 下得到了三条光电流与电压之间的关系曲线,如右图所示。则可 判断出( ) A .甲光的频率大于乙光的频率 B .乙光的波长大于丙光的波长 C .乙光对应的截止频率大于丙光的截止频率 D .甲光对应的光电子最大初动能大于丙光的光电子最大初 动能 二、原子结构 1、物理学史: 通过对 的研究,发现了电子,从而认识到原子是 有内部结构的; 基于 实验中出现的少数α粒子发生 散射,提出了原子的核式结构模型; 在1913年把物理量取值分立(即量子化)的观念应用到原子系统,提出了自己的原子模型,很好的解释了氢原子的 。 2、波尔理论: ①原子的能量是量子化的,这些量子化的能量值叫做 ;原子能量最低的状态叫做 ,其他较高的能量状态叫做 ; ②原子在不同能量状态之间可以发生 ,当原子从高能级E m 向低能级E n 跃迁时 光子,原子从低能级E n 向高能级E m 跃迁时 光子,辐射或吸收的光子频率必须满足 。 ③原子对电子能量的吸收:动能 两个能级之差的电子能量能被吸收,

高中物理原子结构光谱氢原子光谱教师用书教科版

3.光谱氢原子光谱 学习目标知识脉络 1.了解光谱、连续谱、线状谱等 概念.(重点) 2.知道光谱分析及应用.(重点) 3.知道氢原子光谱的规律.(重 点、难点) 光谱和光谱分析 [先填空] 1.光谱 复色光分解为一系列单色光,按波长长短的顺序排列成一条光带,称为光谱. 2.分类 (1)连续谱:由波长连续分布的彩色光带组成的光谱. (2)发射光谱:由发光物质直接产生的光谱. (3)吸收光谱:连续光谱中某些特定频率的光被物质吸收而形成的谱线. (4)线状谱:由分立的谱线组成的光谱. (5)原子光谱:对于同一种原子,线状谱的位置是相同的,这样的谱线称为原子光谱. 3.光谱分析 (1)定义:利用原子光谱的特征来鉴别物质和确定物质的组成部分. (2)优点:灵敏度、精确度高. [再判断] 1.各种原子的发射光谱都是连续谱.(×) 2.不同原子的发光频率是不一样的.(√) 3.线状谱和连续谱都可以用来鉴别物质.(×) [后思考] 为什么用棱镜可以把各种颜色的光展开? 【提示】不同颜色的光在棱镜中的折射率不同,因此经过棱镜后的偏折程度也不同.

1.光谱的分类 2.光谱分析的应用 (1)应用光谱分析发现新元素; (2)鉴别物体的物质成分;研究太阳光谱时发现了太阳中存在钠、镁、铜、锌、镍等金属元素; (3)应用光谱分析鉴定食品优劣; (4)探索宇宙的起源等. 1.对原子光谱,下列说法正确的是( ) A.原子光谱是不连续的 B.原子光谱是连续的 C.由于原子都是由原子核和电子组成的,所以各种原子的原子光谱是相同的 D.各种原子的原子结构不同,所以各种原子的原子光谱也不相同 E.分析物质发光的光谱,可以鉴别物质中含哪些元素 【解析】原子光谱为线状谱,A正确,B错误;各种原子都有自己的特征谱线,故C 错误,D正确;据各种原子的特征谱线进行光谱分析可鉴别物质组成,E正确.故A、D、E. 【答案】ADE 2.关于光谱和光谱分析,下列说法正确的是( ) A.太阳光谱和白炽灯光谱是线状谱 B.霓虹灯和煤气灯火焰中燃烧的钠蒸气产生的光谱是线状谱 C.进行光谱分析时,可以利用线状谱,不能用连续谱

最新人教版高中物理试题 专题练习41 原子结构 氢原子光谱

专题练习(四十一)原子结构氢原子光谱 1.(2011·上海高考)卢瑟福利用α粒子轰击金箔嘚实验研究原子结构,正确反映实验结果嘚示意图是( ) 3.(20 12·北京高考)一个氢原子从n=3能级跃迁到n=2能级,该氢原子( ) A.放出光子,能量增加 B.放出光子,能量减少 C.吸收光子,能量增加 D.吸收光子,能量减少 解析:氢原子由高能级跃迁到低能级要放出光子,能量减少;由低能级跃迁到高能级要吸收光子,能量增加,氢原子从n=3能级跃迁到n=2能级,即从高能级向低能级跃迁,则要放出光子,能量减少,故A、C、D错误,B正确. 答案:B

4.(2011·四川高考)氢原子从能级m 跃迁到能级n 时辐射红光嘚频率为ν1,从能级n 跃迁到能级k 时吸收紫光嘚频率为ν2,已知普朗克常量为h ,若氢原子从能级k 跃迁到能级m ,则( ) A .吸收光子嘚能量为hν1+hν2 B .辐射光子嘚能量为hν1+hν2 C .吸收光子嘚能量为hν2-hν1 D .辐射光子嘚能量为hν2-hν1 解析:由题意可知:E m -E n =hν1,E k -E n =hν2.因为紫光嘚频率大于红光嘚频率,所以ν2>ν1,即k 能级嘚能量大于m 能级嘚能量,氢原子从能级k 跃迁到能级m 时向外辐射能量,其值为E k -E m =hν2-hν1,故只有D 项正确. 答案:D 5.(2011·大纲全国高考)已知氢原子嘚基态能量为E 1,激发态能量E n =E 1/n 2,其中n =2,3,….用h 表示普朗克常量,c 表示真空中嘚光速.能使氢原子从第一激发态电离嘚光子嘚最大波长为 ( ) A .-4hc 3E 1 B .-2hc E 1 C .-4hc E 1 D .-9hc E 1 . 解析:处于第一激发态时n =2,故其能量E 2=E 14,电离时释放嘚能量ΔE=0-E 2=-E 1 4,而 光子能量ΔE=hc λ,则解得λ=-4hc E 1 ,故C 正确,A 、B 、D 均错. 答案:C 6.(2012·江苏高考)如图所示是某原子嘚能级图,a 、b 、c 为原子跃迁所发出嘚三种波长嘚光.在下列该原子光谱嘚各选项中,谱线从左向右嘚波长依次增大,则正确嘚是( )

高中物理 第2章 原子结构 第4节 氢原子光谱与能级结构教师用书 鲁科版选修3-5

第4节氢原子光谱与能级结构 学习目标知识脉络 1.了解氢原子光谱的特点,知道巴尔末公式 及里德伯常量.(重点) 2.理解玻尔理论对氢原子光谱规律的解 释.(重点) 3.了解玻尔理论的局限性.(难点) 氢原子光谱 [先填空] 1.氢原子光谱的特点 (1)从红外区到紫外区呈现多条具有确定波长的谱线;Hα~Hδ的这n个波长数值成了氢原子的“印记”,不论是何种化合物的光谱,只要它里面含有这些波长的光谱线,就能断定这种化合物里一定含有氢. (2)从长波到短波,Hα~Hδ等谱线间的距离越来越小,表现出明显的规律性. 2.巴尔末公式 1λ=R( 1 22 - 1 n2 )(n=3,4,5,…),其中R叫做里德伯常量,数值为R=1.09677581×107m -1. [再判断] 1.氢原子光谱是不连续的,是由若干频率的光组成的.(√) 2.由于原子都是由原子核和核外电子组成的,所以各种原子的原子光谱是相同的.(×) 3.由于不同元素的原子结构不同,所以不同元素的原子光谱也不相同.(√) [后思考] 氢原子光谱有什么特征,不同区域的特征光谱满足的规律是否相同? 【提示】氢原子光谱是分立的线状谱.它在可见光区的谱线满足巴耳末公式,在红外和紫外光区的其他谱线也都满足与巴耳末公式类似的关系式. [核心点击]

氢光谱 巴尔末公式 1 λ=R (122-1 n 2)(n =3,4,5,6,…) 式中n 只能取整数,最小值为3,里德伯常量R = 1.10×107 m -1 规律 1 巴尔末线系的14条谱线都处于可见光区 2 在巴尔末线系中n 值越大,对应的波长λ越短,即n =3时,对应的波长最长 3 除了巴尔末系,氢原子光谱在红外区和紫外区的其他谱线也都满足与巴尔末公式类似的关系式 1.一群氢原子由n =3能级自发跃迁至低能级发出的谱线中属于巴尔末线系的有________条. 【解析】 在氢原子光谱中,电子从较高能级跃迁到n =2能级发光的谱线属于巴尔末线系.因此只有由n =3能级跃迁至n =2能级的1条谱线属巴尔末线系. 【答案】 1 2.根据巴耳末公式,指出氢原子光谱巴耳末线系的最长波长和最短波长所对应的n ,并计算其波长. 【解析】 对应的n 越小,波长越长,故当n =3时,氢原子发光所对应的波长最长. 当n =3时, 1 λ1=1.10×107 ×? ?? ??122-132m -1 解得λ1=6.55×10-7 m. 当n =∞时,波长最短,1λ=R ? ????122-1n 2=R ×14 , λ=4R =4 1.1×10 7 m =3.64×10-7 m. 【答案】 当n =3时,波长最长为6.55×10-7 m 当n =∞时,波长最短为3.64×10-7 m 巴尔末公式的应用方法及注意问题 (1)巴尔末公式反映氢原子发光的规律特征,不能描述其他原子. (2)公式中n 只能取整数,不能连续取值,因此波长也是分立的值. (3)公式是在对可见光区的四条谱线分析时总结出的,在紫外区的谱线也适用. (4)应用时熟记公式,当n 取不同值时求出一一对应的波长λ. 玻 尔 理 论 对 氢 光 谱 的 解 释

高中物理第2章第4节氢原子光谱与能级结构学案鲁科版选修35053138

高中物理第2章第4节氢原子光谱与能级结构学案鲁科 版选修35053138 氢原子光谱与能级结构 1.氢原子光谱的特点之一是从红外区到紫外区呈现 多条具有确定波长的谱线Hα、Hβ、Hγ、Hδ等,这 些谱线可以帮助我们判断化合物中是否含有氢。 2.氢原子光谱的特点之二是从长波到短波,Hα~ Hδ等谱线间的距离越来越小,表现出明显的规律 性,即1 λ=R? ? ?? ? 1 22 - 1 n2( n=3,4,5,6,…)。 3.玻尔理论的成功之处是引入了量子化的概念,解释了原子结构和氢原子光谱的关系。但在推导过程中仍采用了经典力学的方法,因此是一种半经典的量子论。

1.氢原子光谱的特点 (1)从红外区到紫外区呈现多条具有确定波长的谱线;H α~H δ的这几个波长数值成了氢原子的“印记”,不论是何种化合物的光谱,只要它里面含有这些波长的光谱线, 就能断定这种化合物里一定含有氢。 (2)从长波到短波,H α~H δ等谱线间的距离越来越小,表现出明显的规律性。 2.巴尔末公式 1 λ=R ? ?? ??122-1n 2(n =3,4,5,…),其中R 叫做里德伯常量,数值为R =1.096_775_81×107_m -1 。 3.玻尔理论对氢光谱的解释 (1)理论推导 按照玻尔原子理论,氢原子的电子从能量较高的能级跃迁到n =2的能级上时,辐射出 的光子能量应为hν=E n -E 2,根据氢原子的能级公式E n =E 1n 2可得E 2=E 1 22,由此可得hν=- E 1? ?? ??122-1n 2,由于c =λν,所以上式可写成1λ=-E 1hc ? ????122-1n 2,把这个式子与巴尔末公式比 较,可以看出它们的形式是完全一样的,并且R =-E 1hc ,计算出-E 1hc 的值为1.097×107 m -1 与里德伯常量的实验值符合得很好。这就是说,根据玻尔理论,不但可以推导出表示氢原子光谱规律性的公式,而且还可以从理论上来计算里德伯常量的值。 由此可知,氢原子光谱的巴尔末系是电子从n =3,4,5,6,…能级跃迁到n =2的能级时辐射出来的。其中H α~H δ在可见光区。 (2)玻尔理论的成功和局限性 成功 之处 冲破了能量连续变化的束缚,认为能量是量子化的 根据量子化能量计算光的发射频率和吸收频率 局限性 利用经典力学的方法推导电子轨道半径,是一种半经典的量子论 1.自主思考——判一判 (1)氢原子光谱是不连续的,是由若干频率的光组成的。(√)

氢原子光谱

氢(氘)原子光谱 侯建强 (南京大学匡亚明学院理科强化部2010级,学号:101242015) 1.引言 光谱线系的规律与原子结构有内在的联系,因此,原子光谱是研究原子结构的一种重要方法。1885年巴尔末总结了人们对氢光谱测量的结果,发现了氢光谱的规律,提出了著名的巴尔末公式,氢光谱规律的发现为玻尔理论的建立提供了坚实的实验基础,对原子物理学和量子力学的发展起过重要作用。1932年尤里根据里德伯常数随原子核质量不同而变化的规律,对重氢赖曼线系进行摄谱分析,发现氢的同位素氘的存在。通过巴尔末公式求得的里德伯常数是物理学中少数几个最精确的常数之一,成为检验原子理论可靠性的标准和测量其他基本物理常数的依据。 2.实验目的 (1)熟悉光栅光谱仪的性能和用法; (2)用光栅光谱仪测量氢原子光谱巴尔末系数的波长,求里德伯常数。 3.实验原理 1.氢原子光谱 氢原子光谱是最简单、最典型的原子光谱。用电激发氢放电管(氢灯)中的稀薄氢气(压力在102Pa 左右),可得到线状氢原子光谱。瑞士物理学家巴尔末根据实验结果给出氢原子光谱在可见光区域的经验公式 42 2 0-=n n H λλ (1) 式中λH 为氢原子谱线在真空中的波长。 λ0=364.57nm是一经验常数。 n取3,4,5等整数。 若用波数表示,则上式变为 ??? ? ?-==22 1211~n R v H H H λ (2) 式中RH 称为氢的里德伯常数。 根据玻尔理论,对氢和类氢原子的里德伯常数的计算,得 )/1()4(23202 42M m ch z me R z += πεπ (3) 式中M为原子核质量,m为电子质量,e 为电子电荷,c 为光速,h 为普朗克常数,ε0为真空介电常数,z 为原子序数。 当M →∞时,由上式可得出相当于原子核不动时的里德伯常数(普适的里德伯常数) 3202 42)4(2ch z me R πεπ= ∞ (4) 所以

2019-2020年高中物理 第2章 原子结构 2.4 氢原子光谱与能级结构教案 鲁科版选修3-5

2019-2020年高中物理第2章原子结构 2.4 氢原子光谱与能级结构教案 鲁科版选修3-5 三维教学目标 1、知识与技能 (1)了解光谱的定义和分类; (2)了解氢原子光谱的实验规律,知道巴耳末系; (3)了解经典原子理论的困难。 2、过程与方法:通过本节的学习,感受科学发展与进步的坎坷。 3、情感、态度与价值观:培养我们探究科学、认识科学的能力,提高自主学习的意识。 教学重点:氢原子光谱的实验规律。 教学难点:经典理论的困难。 教学方法:教师启发、引导,学生讨论、交流。 教学用具:投影片,多媒体辅助教学设备。 (一)引入新课 粒子散射实验使人们认识到原子具有核式结构,但电子在核外如何运动呢?它的能量怎样变化呢?通过这节课的学习我们就来进一步了解有关的实验事实。 (二)进行新课 1、光谱(结合课件展示) 早在17世纪,牛顿就发现了日光通过三棱镜后的色散现象,并把实验中得到的彩色光带叫做光谱。(如图所示) 光谱是电磁辐射(不论是在可见光区域还是在不可见光区域)的波长成分和强度分布的记录。有时只是波长成分的记录。 (1)发射光谱 物体发光直接产生的光谱叫做发射光谱。 发射光谱可分为两类:连续光谱和明线光谱。 问题:什么是连续光谱和明线光谱?(连续分布的包含有从红光到紫光各种色光的光谱叫做连续光谱。只含有一些不连续的亮线的光谱叫做明线光谱。明线光谱中的亮线叫谱线,各条谱线对应不同波长的光) 炽热的固体、液体和高压气体的发射光谱是连续光谱。例如白炽灯丝发出的光、烛焰、炽热的钢水发出的光都形成连续光谱。如图所示。 稀薄气体或金属的蒸气的发射光谱是明线光谱。明线光谱是由游离状态的原子发射的,

备考2019年高考物理一轮复习习题:第十三章 第1讲 原子结构 氢原子光谱 含解析

第1讲原子结构氢原子光谱 板块一主干梳理·夯实基础 【知识点1】氢原子光谱Ⅰ 1.原子的核式结构 (1)电子的发现:英国物理学家J.J.汤姆孙发现了电子. (2)α粒子散射实验:1909~1911年,英国物理学家卢瑟福和他的助手进行了用α粒子轰击金箔的实验,实验发现绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但有少数α粒子发生了大角度偏转,偏转的角度甚至大于90°,也就是说它们几乎被“撞”了回来. (3)原子的核式结构模型:在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转. 2.光谱 (1)光谱 用光栅或棱镜可以把各种颜色的光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱. (2)光谱分类 有些光谱是一条条的亮线,这样的光谱叫做线状谱.有的光谱是连在一起的光带,这样的光谱叫做连续谱. (3)氢原子光谱的实验规律 巴耳末线系是氢原子光谱在可见光区的谱线,其波长公式1 λ=R? ? ? ? 1 22- 1 n2,(n=3,4,5,…),R 是里德伯常量,R=1.10×107 m-1,n为量子数. 【知识点2】氢原子的能级结构、能级公式Ⅰ 1.玻尔理论 (1)定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量. (2)跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=E m-E n.(h是普朗克常量,h=6.63×10-34 J·s) (3)轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应.原子的定态是不连续的,因此电子的可能轨道也是不连续的. 2.基态和激发态 原子能量最低的状态叫基态,其他能量较高的状态叫激发态. 3.氢原子的能级图

原子物理学复习资料

原子物理学总复习指导 名词解释:光谱,氢原子线系,类氢离子,电离电势,激发电势,原子空间取向量子化,原子实极化,轨道贯穿,有效电荷数,电子自旋,磁矩,旋磁比, 拉莫尔进动,拉莫尔频率,朗德g因子,电子态,原子态,塞曼效应,电子组态,LS耦合,jj耦合,泡利原理,同科电子,元素周期表,壳层,原子基态,洪特定则,朗德间隔定则 数据记忆:电子电量,质量,普朗克常量,玻尔半径,氢原子基态能量,里德堡常量,hc,?c,玻尔磁子,精细结构常数,拉莫尔进动频率 著名实验的内容、现象及解释:α粒子散射实验,光电效应实验,夫兰克—赫兹实验,施特恩—盖拉赫实验,碱金属光谱的精细结构,塞曼效应,反常塞曼效应, 理论解释:(汤姆逊原子模型的不合理性),卢瑟福核式模型的建立、意义及不足,玻尔氢原子光谱理论的建立、意义及不足,元素周期表 计算公式:氢原子光谱线系,玻尔理论能级公式、波数公式,角动量表达式及量子数取值(l,s,j),LS耦合原子态,jj耦合原子态,朗德间隔定则,g因子,塞曼效应,原子基态 谱线跃迁图:精细结构,塞曼效应;电子态及组态、原子态表示,选择定则, 1.同位素:一些元素在元素周期表中处于同一地位,有相同原子序数,这些元素别称为同位素。 2.类氢离子:原子核外只有一个电子的离子,这类离子与氢原子类似,叫类氢离子。 3.电离电势:把电子在电场中加速,如使它与原子碰撞刚足以使原子电离,则加速时跨过的电势差称为电离 电势。 4.激发电势:将初速很小的自由电子通过电场加速后与处于基态的某种原子进行碰撞,当电场电压升到一定 值时,发生非弹性碰撞,加速电子的动能转变成原子内部的运动能量,使原子从基态激发到第一激发态,电场这一定值的电压称为该种原子的第一激发电势 5.原子空间取向量子化:在磁场或电场中原子的电子轨道只能取一定的几个方向,不能任意取向,一般的说, 在磁场或电场中,原子的角动量的取向也是量子化的。 6.原子实极化:当价电子在它外边运动时,好像是处在一个单位正电荷的库伦场中,当由于价电子的电场的 作用,原子实中带正电的原子核和带负电的电子的中心会发生微小的相对位移,于是负电的中心不再在原子核上,形成一个电偶极子,这就是原子实的极化。 7.轨道贯穿:当电子处在原子实外边那部分轨道时,原子实对它的有效电荷数Z是1,当电子处在穿入原子实

原子结构、氢原子光谱

学案正标题 一、考纲要求 1.知道两种原子结构模型,会用玻尔理论解释氢原子光谱. 2.掌握氢原子的能级公式并能结合能级图求解原子的跃迁问题. 二、知识梳理 1.原子的核式结构 (1)1909~1911年,英国物理学家卢瑟福进行了α粒子散射实验,提出了原子的核式结构模型. (2)α粒子散射实验 ①实验装置:如下图所示; ②实验结果:α粒子穿过金箔后,绝大多数沿原方向前进,少数发生较大角度偏转,极少数偏转角度大于90°,甚至被弹回. (3)核式结构模型:原子中心有一个很小的核,叫做原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间绕核旋转. 2.氢原子光谱 氢原子光谱线是最早被发现、研究的光谱线,这些光谱线可用一个统一的公式表示:=R n=3,4,5,… 3.玻尔的原子模型 (1)玻尔理论 ①轨道假设:原子中的电子在库仑引力的作用下,绕原子核做圆周运动,电子绕核运动的可能轨道是不连续的; ②定态假设:电子在不同的轨道上运动时,原子处于不同的状态.因而具有不同的能量,即原子的能量是不连续的.这些具有确定能量的稳定状态称为定态,在各个定态中,处于基态的原子是稳定的,不向外辐射能量; ③跃迁假设:原子从一个能量状态向另一个能量状态跃迁时要放出或吸收一定频率的光子,光子的能量等于这两个状态的能量差,即hν=E m-E n. (2)几个概念 ①能级:在玻尔理论中,原子各个状态的能量值; ②基态:原子能量最低的状态; ③激发态:在原子能量状态中除基态之外的其他能量较高的状态; ④量子数:原子的状态是不连续的,用于表示原子状态的正整数. (3)氢原子的能级和轨道半径

高中物理 第2章 原子结构 第4节 氢原子光谱与能级结构教师用书 鲁科版选修3-5

第4节氢原子光谱与能级结构 [先填空] 1.氢原子光谱的特点 (1)从红外区到紫外区呈现多条具有确定波长的谱线;Hα~Hδ的这n个波长数值成了氢原子的“印记”,不论是何种化合物的光谱,只要它里面含有这些波长的光谱线,就能断定这种化合物里一定含有氢. (2)从长波到短波,Hα~Hδ等谱线间的距离越来越小,表现出明显的规律性. 2.巴尔末公式 1λ=R( 1 22 - 1 n2 )(n=3,4,5,…),其中R叫做里德伯常量,数值为R=1.09677581×107m -1. [再判断] 1.氢原子光谱是不连续的,是由若干频率的光组成的.(√) 2.由于原子都是由原子核和核外电子组成的,所以各种原子的原子光谱是相同的.(×) 3.由于不同元素的原子结构不同,所以不同元素的原子光谱也不相同.(√) [后思考] 氢原子光谱有什么特征,不同区域的特征光谱满足的规律是否相同? 【提示】氢原子光谱是分立的线状谱.它在可见光区的谱线满足巴耳末公式,在红外和紫外光区的其他谱线也都满足与巴耳末公式类似的关系式. [核心点击]

其他谱线也都满足与巴尔末公式类似的关系式 1.一群氢原子由n =3能级自发跃迁至低能级发出的谱线中属于巴尔末线系的有________条. 【解析】 在氢原子光谱中,电子从较高能级跃迁到n =2能级发光的谱线属于巴尔末线系.因此只有由n =3能级跃迁至n =2能级的1 条谱线属巴尔末线系. 【答案】 1 2.根据巴耳末公式,指出氢原子光谱巴耳末线系的最长波长和最短波长所对应的n ,并计算其波长. 【解析】 对应的n 越小,波长越长,故当n =3时,氢原子发光所对应的波长最长. 当n =3时,1λ1=1.10×107 ×? ????122-132m -1 解得λ1=6.55×10-7 m. 当n =∞时,波长最短, 1λ=R ? ????122-1n 2=R ×14, λ=4 R = 41.1×10 7 m =3.64×10-7 m. 【答案】 当n =3时,波长最长为6.55×10-7 m 当n =∞时,波长最短为3.64×10-7 m 巴尔末公式的应用方法及注意问题 (1)巴尔末公式反映氢原子发光的规律特征,不能描述其他原子. (2)公式中n 只能取整数,不能连续取值,因此波长也是分立的值. (3)公式是在对可见光区的四条谱线分析时总结出的,在紫外区的谱线也适用. (4)应用时熟记公式,当n 取不同值时求出一一对应的波长λ.

相关主题