搜档网
当前位置:搜档网 › 初中几何难关攻克

初中几何难关攻克

初中几何难关攻克
初中几何难关攻克

初中几何难关攻克各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢

随着数学教育改革的深入,加强素质教育,走进新课程是当务之急,但初中几何一直是薄弱环节。在部分学生中常流传着“几何!几何!挤破脑壳,学了三年,等于没学”。可见,学生学习几何有许多难点。因此,提高几何素养,显得更加重要。通过分析总结,笔者认为学生在学习几何的过程中要过好以下四关。

一、概念关

初中几何将逻辑性与直观性相结合,由生产生活中的实际几何模型,抽象出数学教材上的几何概念,是九年义务教育教材的一大特色。因此,在教学中应尽可能地让学生先观察几何模型,形成感性认识,在此基础上,再给出数学名称,画出数学图形,定义图形,研究性质。例如:在介绍“直线”这个不加

定义的概念时可分为四步:展示一根拉得很紧的细线,让学生想一下铁路上的铁轨等,给学生一个实际模型的感性认识。给出数学名称,对于以上形象的线叫直线。给出定义:直线是向两方无限延伸的线。直线是描述性定义,只要认识理解“直”与“向两方无限延伸”,它无长短,无粗细,是理想中的直线。图形性质:“直线公理:过两点有且只有一条直线。”可举实例说明。一个概念经过以上四步,学生便会记忆深刻、所学知识落实到位。

二、语言关

几何语言的表现形式有三种:一是图形语言,就是我们研究的几何图形。如角、三角形、梯形等。二是文字语言,就是概念、定理、公理、或一个几何题用文字来表现的语言。三是符号语言:如:“//”“⊥”“△”等。这三种语言在几何中通常是并存的,有时又互相渗透,互相转化。教学中要对学生加强这三种几何语言的基本训练,要求每一位学生不

仅能熟练地表达每一种语言,而且能根据解题或证题的需要,准确地将其中一种语言“翻译”成其它语言形式。对于几何语言的学习,要严谨、准确,尤其是三种几何语言的“互译”要熟练掌握,对于图形、文字、符号的使用要融汇贯通,这是学好几何的关键。

各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢

初中数学几何空间与图形知识点

初中数学《几何空间与图形》知识点 初中数学《几何空间与图形》知识点 A、图形的认识 1、点,线,面 点,线,面:图形是由点,线,面构成的。面与面相交得线,线与线相交得点。点动成线,线动成面,面动成体。 展开与折叠:在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。N棱柱就是底面图形有N条边的棱柱。截一个几何体:用一个平面去截一个图形,截出的面叫做截面。 视图:主视图,左视图,俯视图。 多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。 弧、扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。圆可以分割成若干个扇形。 2、角 线:线段有两个端点。将线段向一个方向无限延长就形成了射线。射线只有一个端点。将线段的两端无限延长就形成了直线。直线没有端点。经过两点有且只有一条直线。 比较长短:两点之间的所有连线中,线段最短。两点之间线段的长度,叫做这两点之间的距离。 角的度量与表示:角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。一度的1/60是一分,一分的1/60是一秒。角的比较:角也可以看成是由一条射线绕着他的端点旋转而成的。一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。 平行:同一平面内,不相交的两条直线叫做平行线。经过直线外一点,有且只有一条直线与这条直线平行。如果两条直线都与第3条直线平行,那么这两条直线互相平行。

中考几何最值问题(含答案)

几何最值问题 一.选择题(共6小题) 1.(2015?孝感一模)如图,已知等边△ABC的边长为6,点D为AC的中点,点E为BC的中点,点P为BD上一点,则PE+PC的最小值为() 3 AE==3, . 2.(2014?鄂城区校级模拟)如图,在直角坐标系中有线段AB,AB=50cm,A、B到x轴的距离分别为10cm和40cm,B点到y轴的距离为30cm,现在在x轴、y轴上分别有动点P、Q,当四边形PABQ的周长最短时,则这个值为() 5050+50

LN=AS==40 MN==50 MN=MQ+QP+PN=BQ+QP+AP=50 =50 3.(2014秋?贵港期末)如图,AB⊥BC,AD⊥DC,∠BAD=110°,在BC、CD上分别找一点M、N,当△AMN周长最小时,∠MAN的度数为()

4.(2014?无锡模拟)如图,∠MON=90°,矩形ABCD的顶点A,B分别在OM、ON上,当B 在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=.运动过程中,当点D到点O的距离最大时,OA长度为() C OE=AE=AB=× AD=BC= DE= ADE==, =

DF=, OA=AD= 5.(2015?鞍山一模)如图,正方形ABCD的边长为4,点E在边BC上且CE=1,长为的线段MN在AC上运动,当四边形BMNE的周长最小时,则tan∠MBC的值是() C D ,连结,此时四 ,连结MN= =, =, ,

PC= PDC==. 6.(2015?江干区一模)如图,△ABC中,CA=CB,AB=6,CD=4,E是高线CD的中点,以CE 为半径⊙C.G是⊙C上一动点,P是AG中点,则DP的最大值为() C BG AD=BD=AB=3 CE=

初中数学几何最值问题综合测试卷(含答案)

初中数学几何最值问题综合测试卷 一、单选题(共6道,每道16分) 1.如图,已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,求∠APB的度数为( ) A.100° B.110° C.140° D.80° 答案:A 解题思路:作定点P关于直线OM,ON的对称点,然后利用两点之间线段最短解题. 试题难度:三颗星知识点:最值问题 2.如图,当四边形PABN的周长最小时,a的值为( ) A. B.1 C.2 D. 答案:A 解题思路:先平移AP或BN使P,N重合,然后作其中一个定点关于定直线l的对称点,然后利用两点之间线段最短解题. 试题难度:三颗星知识点:最值问题 3.如图,已知两点A,B在直线l的异侧,A到直线l的距离AC=6,B到直线l的距离BD=2,CD=3,点

P在直线l上运动,则的最大值为( ) A. B.3 C.1 D.5 答案:D 解题思路:作其中一个定点关于定直线l的对称点,然后利用三角形三边关系解题. 试题难度:三颗星知识点:最值问题 4.如图,直角梯形纸片ABCD中,AD⊥AB,AB=4,AD=2,CD=3,点E,F分别在线段AB,AD上,将△AEF 沿EF翻折,点A的落点记为P.当点P落在直角梯形ABCD内部时,PD的最小值为( ) A.2 B.1 C. D.3 答案:C 解题思路:找运动过程中的不变特征进行转化,转化成求DP+PE+EB的最大值,减少变量,然后利用两点之间线段最短来解题. 试题难度:三颗星知识点:最值问题 5.如图,∠MON=90°,等腰Rt△ABC的顶点A,B分别在OM,ON上,当点B在ON上运动时,点A

初中数学几何基础知识整理

初中数学几何基础知识整理 轴对称 31. 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的中垂线 32. 轴对称图形的对称轴,是任何一对对应点所连线段的中垂线 33. 定理线段垂直平分线上的点到这条线段两个端点的距离相等 34. 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 35. 关于某条直线对称的两个图形是全等形 36. 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 37. 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角) 38. 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 39. 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等 (等角对等边) 40. 等边三角形的各角都相等,并且每一个角都等于 60° 41. 三个角都相等的三角形是等边三角形 42. 有一个角等于 60°的等腰三角形是等边三角形 直角三角形 43. 在直角三角形中,如果一个锐角等于 30°那么它所对的直角边等于斜边的一半

44. 直角三角形斜边上的中线等于斜边上的一半 45. 如果三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形。(新增) 46. 勾股定理直角三角形两直角边 a、b的平方和、等于斜边 c的平方,即a2+b2=c2 47. 勾股定理的逆定理如果三角形的三边长 a、b、c 有关系a2+b2=c2,那么这个三角形是直角三角形 四边形 48. 平行四边形性质定理 1 平行四边形的对角相等 49. 平行四边形性质定理 2 平行四边形的对边相等 50. 平行四边形性质定理 3 平行四边形的对角线互相平分 51. 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形 52. 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形 53. 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形 54. 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形55. 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半 56. 矩形性质定理 1 矩形的四个角都是直角 57. 矩形性质定理 2 矩形的对角线相等 58. 矩形判定定理 1 有三个角是直角的四边形是矩形 59. 矩形判定定理 2 对角线相等的平行四边形是矩形 60. 矩形判定定理 3 有一个角是直角的平行四边形是矩形 61. 菱形性质定理 1 菱形的四条边都相等 62. 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

2018中考数学专题复习 几何最值问题综合课(pdf,无答案)

知识板块 考点一:几何图形中的最小值问题 方法: 1.找对称点求线段的最小值; 步骤:①找已知点的对称点,动点在哪条线上动,就是对称轴; ②连接对称点与另一个已知点; ③与对称轴的交点即是要找的点;通常用勾股定理求线段长; 2.利用三角形三边关系:两边之差小于第三边; 3.转化成其他线段,间接求线段的最小值;例如:用点到直线的距离最短,通过作垂线求最值; 4.用二次函数中开口向上的函数有最小值; 考点二:几何图形中的最大值问题 方法: 1.当两点位于直线的同侧时,与动点所在的直线的交点,这三点在同一直线时,线段差有最大值; 2.当两点位于直线的异侧时,先找对称点,同样三点位于同一直线时,线段差有最大值; 3.利用三角形三边关系:两边之和大于第三边; 4.用二次函数中开口向下的函数有最大值; 例题板块 考点一:几何图形中的最小值问题 例1.如图1,在正方形ABCD 中,E 是AB 上一点,BE=2,AE=3BE ,P 是AC 上一动点,则PB+PE 的最小值是 _________ . 图1 图2 图3 例2.如图2,在锐角△ABC 中,AB=4,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是 . 例3.如图3,点P 是Rt △ABC 斜边AB 上的一点,PE ⊥AC 于E ,PF ⊥BC 于F ,BC=6,AC=8,则线段EF 长的最小值为 ; 第一节 几何最值问题专项

例4.如图,在Rt △ABC 中,AB=BC=6,点E ,F 分别在边AB ,BC 上,AE=3,CF=1,P 是斜边AC 上的一个动点,则△PEF 周长的最小值为 . 图4 图5 例5.如图,在平面直角坐标系中,Rt △OAB 的顶点A 的坐标为(9,0),点C 的坐标为(2,0),tan ∠BOA= A .67 B .231 C. 6 D .193+ 例6.如图6,等腰Rt △ABC 中,∠ACB=90°,AC=BC=4,⊙C 的半径为1,点P 在斜边AB 上,PQ 切⊙O 于点Q ,则切线长PQ 长度的最小值为( ) 图6 图7 图8 例7.如图7,矩形ABCD 中,AB=4,BC=8,E 为CD 的中点,点P 、Q 为BC 上两个动点,且PQ=3,当CQ= _________ 时,四边形APQE 的周长最小. 考点二:几何图形中的最大值问题 例1.已知点A (1,2)、B (4,-4),P 为x 轴上一动点. (1)若|PA |+|PB |有最小值时,求点P 的坐标; (2)若|PB |-|PA |有最大值时,求点P 的坐标. 例2.如图8所示,已知A 11 (,y )2,B 2(2,y )为反比例函数1y x =图像上的两点,动点P (x,0)在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是 .

初中数学几何最值问题典型例题

初中数学几何最值问题 典型例题 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 1.如图:点P 是∠AOB 内一定点,点M 、N 分别在边OA 、OB 上运动,若∠AOB =45°,OP =PMN 的周长的最小值为 . 【分析】作P 关于OA ,OB 的对称点C ,D .连接OC ,OD .则当M ,N 是CD 与OA ,OB 的交点时,△PMN 的周长最短,最短的值是CD 的长.根据对称的性质可以证得:△COD 是等腰直角三角形,据此即可求解. 【解答】解:作P 关于OA ,OB 的对称点C ,D .连接OC ,OD .则当M ,N 是CD 与OA ,OB 的交点时,△PMN 的周长最短,最短的值是CD 的长. ∵PC 关于OA 对称, ∴∠COP =2∠AOP ,OC =OP 同理,∠DOP =2∠BOP ,OP =OD ∴∠COD =∠COP +∠DOP =2(∠AOP +∠BOP )=2∠AOB =90°,OC =OD . ∴△COD 是等腰直角三角形. 则CD OC . 【题后思考】本题考查了对称的性质,正确作出图形,理解△PMN 周长最小的条件是解题的关键. 2.如图,当四边形PABN 的周长最小时,a = .

数学几何解题技巧

初中数学教学中几何解题思路分析 【摘要】平面几何在初中数学中一直占据着很重要的位置。而学生在对几何知识进行学习和掌握的过程中,最重要的一个部分就是能够应用到实践中进行解题。正像美国一位著名的数学家曾经所说过的那样:“数学这门学科,真正的组成部分就是问题和解题,在问题与解题中,解题就是数学的心脏所在。”学生在学习的过程中是否会解题,能否对一定的解题技巧与方法进行掌握对学生学习效果有直接的影响。对教师来说,学生对基本的解题能力进行掌握,也是“双基”教学的一个方面。在数学中对基本的解题方法和技巧进行注意,对学生的学习能力的提高无疑有着重要的促进作用,与此同时还能够对学生良好学习习惯的形成有推动作用。 【关键词】初中数学;教学;几何;解题思路; 对初中的几何教学来说,初中几何中的重要部分是解题技巧与规律教学。尤其是在初中几何的后期与复习阶段,通过对学生的几何解题技巧的培养,能够使学生对知识有系统性的掌握,同时能够培养其对知识进行灵活应用的能力。当然,处了解题技巧与规律的培养,还应该注意对学生思维能力的培养。只有思维能力得到提高,才能更好地掌握解题技巧与规律。下面我们通过具体的实例进行详细分析初中数学几何题的解题思路, 一、初中数学几何的解题技巧 1、对常见的题型与解题方法进行归纳总结 初中的几何题中,其实常见的题型并不多,所以这对经常见的几何题型与解题方法进行归纳与总结,是初中几何解题一个和实用的解题技巧。初中几何,证明题是最常见的,而证明题中,又以线段或角的一些关系的证明最为常见。对线段的关系的证明通常包括相等及其和差关系等的证明。在这些中,相等关系的证明是学生应该进行的基本掌握,对线段相等关系的证明,在思路与方法上常用的包括“三角形全等”、“比例线段”以及“等角对等边”和对中间量的过渡进行选取等思路。在这些方法中,“三角形全等”是最常用的,也是应该掌握的基本解题方法。对线段不等关系则一般常用“线段公理”,而对线段的和差及其它(如倍、分)关系,在解题过程中要注意使用截长、补短等技巧。对常见技巧进行掌握,能有效提高学生的解题效率。 2、注意对辅助线进行添加和使用 在对初中几何进行解题的过程中,除了要对常用的解题方法与规律进行掌握外,还要对辅助线的添加与使用加以关注。在初中几何题中,当直接解题出现障碍使,添加辅助线是常见的解题技巧,往往会让人产生一种“柳暗花明又一村”的感觉。对常见技巧进行掌握,能有效提高学生的解题效率。下面我们通过一道例题详细进行分析几何证明题的解题方法及技巧: 如下图所示,已知:在ABC ?中,?=∠90C ,BC AC =,DB AD =,BF AE =,求证:DF DE =,

在教学中如何运用几何直观

在教学中如何运用几何直观 学生的思维水平止处于具体运算阶段向形式运算阶段过渡,离不开具体事物的支持。几何直观凭借图形的直观性特点将抽象的数学语言与直观的图形语言有机地结合起来,抽象思维同形象思维结合起来,充分展现问题的本质,能够帮助学生打开思维的大门,开启智慧的钥匙,突破数学理解上的难点。 (一)以图连线—搭建桥梁,沟通联系 “在传统领域之间界限的日趋消失是现代数学的特性之一,而几何直观在其间起着联络作用。”某些问题的信息之间,某个知识块之间,代数与几何之间,几何直观使复杂多样的分类变得简单明了。比如俞止强老师的讲座中提到这样个例子:生说自然数就像条射线,它们都有个起点,没有终点,可以无限延长。这位学生惊人的发现无不体现了知识间是相通的,把代数中的自然数概念和空间形式联系起来,不但缩短了知识间的距离,而且还减少记忆容量。 (二)以图促思—渗透数形结合思想 “数无形不直观,形无数难入微”,“数形结合”的思想是重要的数学思想,其实质是使数量关系和空间形式巧妙和谐地结合起来,将抽象的数学语言与直观的图形结合起来。小学数学教材中特别注重这种思想的渗透,借助几何直观,可以把数形结合思想更好地反映出来。通过图形的直观性质来阐明数之间的联系,将许多抽象的数学概念和数量关系形象化、简单化,实现代数问题与图形之间的互相转化,相互渗透,不仅使解题简捷明快,还开拓解题思路,为研究和探求数学问题开辟了条重要的途径。 利用直观的图形,学生能积极地思考图中正方形的面积的变化和算式之间的联系。在此基础上用数学式子表达它的规律。从而发现;n个奇数相加的和等于n×n;再如,教学“连除两步计算问题”时,学校图书室买来200本新书,放在2个书架上,每个书架有4层。平均每层放了多少本书?最初可以出示书架的实物模刑,逐步用长方形的图示代替来说明解决问题的过程。①先算每个书架放了几本?②先算两个书架共有几层? ③先算两个书架的一层共放几本书?以数形结合的方式帮助学生感悟用连除两步计算解决问题的数学本质。借助“形”的直观,能促进小学生形成从“数”和“形”的角度把“数和形”结合起来考虑问题的意识,有机渗透数形结合是一种重要的数学思想。 (三)以图求解—有助于数学方法的再创造 直观是抽象思维问题的信息源,又是途径信息源,它不仅为抽象思维提供信息,而且由于直观形象在认知结构中鲜明性强,可以多思路、

初中数学《几何最值问题》典型例题

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直 线,P为直线l上的一 个动点,求AP+BP的 最小值 A,B为定点,l为定直线, MN为直线l上的一条动线 段,求AM+BN的最小值 A,B为定点,l为定直线, P为直线l上的一个动 点,求|AP-BP|的最大值转化 作其中一个定点关于定 直线l的对称点 先平移AM或BN使M,N 重合,然后作其中一个定 点关于定直线l的对称点 作其中一个定点关于定 直线l的对称点 折 叠 最 值 图形 B' N M C A B 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折, B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD

初二数学几何解题技巧

初二数学几何解题技巧 【知识梳理】 1、几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2、掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3、掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

【专题一】证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。 【专题二】证明直线平行或垂直 在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。 【专题三】证明线段和的问题 (一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。(截长法) (二)延长一较短线段,使延长部分等于另一较短线段,则两较短线段成为一条线段,证明该线段等于较长线段。(补短法)

初中数学几何基本图形+初中数学图形与几何

初中数学几何基本图形初中数学图形与几何导读:就爱阅读网友为您分享以下“初中数学图形与几何”资讯,希望对您有所帮助,感谢您对https://www.sodocs.net/doc/6018405037.html,的支持! 课程简介 初中数学图形与几何 【课程简介】 本模块主要研讨数学课程标准修订稿中“初中数学空间与图形”部分的内容要求,目的是通过研讨,使教师们明确本模块内容的具体要求,并提出教学实施过程中的一些建议。总体分为六个部分: 1. 图形与几何内容结构分析——主要探讨图形与几何部分的整体结构框架和三条主要线索; 2. 图形的性质内容与教学分析——主要探讨图形的性质部分的内容要求、与实验稿的变化以及教学实施中注意的问 1 题; 3. 图形的变化内容与教学分析——主要探讨图形的变化部分的内容要求、与实验稿的变化以及教学实施中注意的问题; 4. 图形与坐标内容与教学分析——主要探讨图形与坐标部分的内容要求、与实验稿的变化以及教学实施中注意的问题; 5. 空间观念与几何直观——主要探讨核心概念空间观念与几何直观的含义,以及在图形与几何的教学中如何培养学生的空间观念与几何直观能力; 6. 推理能力——主要探讨核心概念推理能力的含义,以及在图形与几何的教学中如何培养学生的推理能力。

课程既有理论指导,又有大量的教学实例,同时还有主讲教师间的相互交流,给教师们提供了较为广阔的思考空间。 【学习要求】 1(对“初中数学空间与图形”模块的内容结构和主线有清楚 2 的认识,能够说出这些线索之间的区别与联系; 2(了解图形的性质部分的研究的图形有哪些,认识图形的哪些方面,以及在这部分中是如何认识这些图形的; 3(体会图形的变化是研究图形的又一个途径和角度,明确它的学习意义,了解其内容组成; 4(体会图形与坐标是研究图形的又一个途径和角度,明确它的学习意义,了解其内容组成; 5(能够结合自己的教学实践,举出相应的实例,说明图形的性质、图形的变化和图形与坐标的教学经验和方法; 6(理解核心概念——空间观念、几何直观和推理能力的具体含义,体会它们与知识技能的区别和联系,能够借助具体实例说出培养学生上述能力的途径和方法。 专题讲座 初中数学图形与几何 刘晓玫(首师大数学,教授) 史炳星(北京教育学院,副教授 ) 章巍(河北保定三中分校,高级教师 ) 3 一、图形与几何内容结构分析

全新 中考数学几何知识点全总结

初中几何公式:线 1、同角或等角的余角相等 2、过一点有且只有一条直线和已知直线垂直 3、过两点有且只有一条直线 4、两点之间线段最短 5、同角或等角的补角相等 6、直线外一点与直线上各点连接的所有线段中,垂线段最短 7、平行公理经过直线外一点,有且只有一条直线与这条直线平行 8、如果两条直线都和第三条直线平行,这两条直线也互相平行 初中几何公式:角 9、同位角相等,两直线平行 10、内错角相等,两直线平行 11、同旁内角互补,两直线平行 12、两直线平行,同位角相等 13、两直线平行,内错角相等 14、两直线平行,同旁内角互补 初中几何公式:三角形 15、定理三角形两边的和大于第三边 16、推论三角形两边的差小于第三边 17、三角形内角和定理三角形三个内角的和等于180° 18、推论1 直角三角形的两个锐角互余 19、推论2 三角形的一个外角等于和它不相邻的两个内角的和 20、推论3 三角形的一个外角大于任何一个和它不相邻的内角 21、全等三角形的对应边、对应角相等 22、边角边公理有两边和它们的夹角对应相等的两个三角形全等 23、角边角公理有两角和它们的夹边对应相等的两个三角形全等 24、推论有两角和其中一角的对边对应相等的两个三角形全等 25、边边边公理有三边对应相等的两个三角形全等 26、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等 27、定理1 在角的平分线上的点到这个角的两边的距离相等

28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29、角的平分线是到角的两边距离相等的所有点的集合 初中几何公式:等腰三角形 30、等腰三角形的性质定理等腰三角形的两个底角相等 31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32、等腰三角形的顶角平分线、底边上的中线和高互相重合 33、推论3 等边三角形的各角都相等,并且每一个角都等于60° 34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35、推论1 三个角都相等的三角形是等边三角形 36、推论2 有一个角等于60°的等腰三角形是等边三角形 37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38、直角三角形斜边上的中线等于斜边上的一半 39、定理线段垂直平分线上的点和这条线段两个端点的距离相等 40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42、定理1 关于某条直线对称的两个图形是全等形 43、定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c 47、勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形 初中几何公式:四边形 48、定理四边形的内角和等于360° 49、四边形的外角和等于360° 50、多边形内角和定理n边形的内角的和等于(n-2)×180° 51、推论任意多边的外角和等于360° 52、平行四边形性质定理1 平行四边形的对角相等 53、平行四边形性质定理2 平行四边形的对边相等

初中数学代数几何解题技巧

如何用好题目中的条件暗示 有一类题目,我们在解前面几小题时,其解题思路和方法往往对解后面问题起着很好的暗示作用,现以一次函数中出现的两道题目为例予以说明,供同学们在学习过程中参考。 【例1】直线与x轴、y轴分别交于B、A两点,如图1。 图1 (1)求B、A两点的坐标; (2)把△AOB以直线AB为轴翻折,点O落在平面上的点C处,以BC为一边作等边△BCD。求D点的坐标。 解析:(1)容易求得,A(0,1)。 (2)如图2, 图2 ∵,A(0,1), ∴OB=,OA=1。 ∴在Rt△AOB中,容易求得∠OBA=30° ∵把△AOB以直线AB为轴翻折, ∴∠OBC=2∠OBA=60°,BO=BC。 ∴△OBC是等边三角形 以BC为一边作等边△BCD,则D的落点有两种情形,可分别求得D的坐标为(0,0),。 反思:在求得第(1)小题中B、A两点的坐标分别为B(,0),A(0,1),实质上暗示着Rt△AOB中,OA=1,OB=,即暗示着∠OBA=30°,为解第(2)小题做了很好的铺垫。

【例2】直线与x轴、y轴分别交于A、B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°,且点P(1,a)为坐标系中的一个动点,如图3。 图3 (1)求三解形ABC的面积。 (2)证明不论a取任何实数,三角形BOP的面积是一个常数; (3)要使得△ABC和△ABP的面积相等,求实数a的值。 解析:(1)容易求得:A(,0),B(0,1), ∴。 (2)如图4,连接OP、BP,过点P作PD垂直于y轴,垂足为D,则三角形BOP的面积为,故不论a取任何实数,三角形BOP的面积是一个常数。 图4 (3)如图4,①当点P在第四象限时由第(2)小题中的结果:,和第(3)小题的条件可得: ∴, ∵,

几何直观和空间观念的差异及优秀教学侧重点

几何直观和空间观念地差异及教学侧重点 东北师范大学孔凡哲 东北师范大学第二附属小学王延萍 几何直观作为核心名词,2011年底首次出现在小学阶段(尽管2003年颁布地《普通高中数学课程标准(实验)》早就明确提出了针对“几何直观”地要求“培养和发展学生地…几何直观能力,是高中阶段数学必修系列课程地基本要求”);同时,《义务教育数学课程标准(2011年版)》(《标准(2011年版)》)以下简称首次将几何直观与空间观念、推理能力并列,成为“图形与几何”领域地核心目标地三大组成要素.b5E2R。 几何直观与推理能力差异是显而易见地.但是,几何直观与空间观念究竟是什么关系?在教学中,如何有针对性地培养学生地几何直观与空间观念?这些问题都是小学数学领域亟待理清地问题.本文就此阐述.p1Ean。 一、几何直观与空间观念地含义差异分析 正如《标准(2011年版)》指出地,“直观与推理是图形与几何领域地核心目标”,其中,“空间观念”是指“根据物体特征抽象出几何图形,根据几何图形想象出所描述地实际物体;想象出物体地方位和相互之间地位置关系;描述图形地运动和变化;依据语言描述画出图形等”,“几何直观”是指“利用图形描述和分析数学问题.借助几何直观可以把复杂地数学问题变得简明、形象,有助于探索解决问题地思路,预测结果.特别地,空间观念地培养要贯穿整个数学学习过程中”.DXDiT。 我们认为,“严格意义上讲,这是针对几何直观地作用地解释性说明,而不是针对几何直观地含义地诠释”,即不是针对“几何直观”地明确定义.RTCrp。 对此,我们可以这样定义几何直观: 几何直观是指借助于见到地(或想象出来地)几何图形地形象关系,对数学地研究对象(即空间形式和数量关系)进行直接感知、整体把握地能力.5PCzV。 几何直观有助于将抽象地数学对象直观化、显性化,因而,寻找数学对象地直观模型是有效发挥几何直观地重要环节之一.jLBHr。 作为“图形与几何”地核心名词,几何直观与空间观念分别从不同地角度涵盖了几何学习地重要目标,二者有局部地差异,但是,各有侧重.xHAQX。

人教版初中数学中考几何知识点大全.docx

. 目录 一、形的知??????????????????????????????2 二、平行知点?????????????????????????????3 三、命、定理??????????????????????????????3 四、平移?????????????????????????????????3 五、平面直角坐系知点?????????????????????????4 六、与三角形有关的段??????????????????????????5 七、与三角形有关的角???????????????????????????5 八、多形及其角和???????????????????????????6 九、嵌?????????????????????????????????6 十、全等三角形知点???????????????????????????7 十一、称???????????????????????????????7 十二、勾股定理??????????????????????????????8 十三、四形???????????????????????????????8 十四、旋????????????????????????????????9 十五、知点????????????????????????????10 十六、相似三角形?????????????????????????????13 十七、投影与?????????????????????????????14 十八、尺作??????????????????????????????15

初中中考数学几何知识点大全 直线:没有端点,没有长度 射线:一个端点,另一端无限延长,没有长度 线段:两个端点,有长度 一、图形的认知 1、我们把从实物中抽象出的各种图形统称为几何图形 2、有些几何图形的各部分不都在同一平面,它们是立体图形 3、有些几何图形的各部分都在同一平面,它们是平面图形 4、有些立体图形是由一些平面图形转成的,将它们的表面适当展开,可以展开成平面图形。 这样的平面图形称为相应立体图形的展开图 5、长方体、正文体、圆柱、圆锥、球等都是几何体,简称体 6、包围着体的是面,面有平面和曲面两种。 由若干个多边形所围成的几何体,叫做多面体。 围成多面体的各个多边形叫做多面体的面,两个面的公共边叫做多面体的棱,若干个面的公共顶点叫做多面体的顶点。 注意:各面都是平面的立体图形称为多面体。像圆锥、圆台因为有的面是曲面,而不被称为“多面体”。 圆锥、圆柱、圆台统称为旋转体。立体图形的各个面都是平的面,这样的立体图形称为多面体。 7、经过两点有一条直线,并且只有一条直线。简述为:两点确定一条直线 8、当两条不同的直线有一个公共点时,我们就称这两条直线相交。这个公共点叫做它们的交点 9、两点的所有连线中,线段最短。简单说成:两点之间,线段最短 10、连接两点间的线段的长度,叫做这两点的距离 11、角:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边 12、角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线 13、余角和补角:如果两个角加起来为90,则一个角是另一个角的余角 如果两个角加起来为180,则一个角是另一个角的补角 邻补角 :相邻的补角 14、同角的余角相等,等角的余角相等 同角的补角相等,等角的补角相等 二、平行线知识点 1、对顶角性质:对顶角相等。注意:对顶角的判断 一个角的两边分别是另一个角两边的反向延长线,这两个角是对顶角。 两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶

初中数学最值问题解题技巧,初中几何最值问题方法归纳总结

几何最值问题大一统 追本溯源化繁为简 目有千万而纲为一,枝叶繁多而本为一。纲举则目张,执本而末从。如果只在细枝末节上下功夫,费了力气却讨不了好。学习就是不断地归一,最终以一心一理贯通万事万物,则达自由无碍之化境矣(呵呵,这境界有点高,慢慢来)。 关于几何最值问题研究的老师很多,本人以前也有文章论述,本文在此基础上再次进行归纳总结,把各种知识、方法、思想、策略进行融合提炼、追本溯源、认祖归宗,以使解决此类问题时更加简单明晰。 一、基本图形 所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。 由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。 证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。

二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形。 AD一定,所以D是定点,C是直线 的最短路径,求得当CD⊥AC时最短为 是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。

初中数学几何证明题解题方法--

初中数学几何证明题解题方法--

————————————————————————————————作者:————————————————————————————————日期:

浅谈初中数学几何证明题解题方法 内容摘要:几何证明题的一般结构由已知条件和求证目标组成。做几何证明题的一般步骤:审题,寻找证明的思路,书写证明过程 关键词:几何证明 条件 结论 .执因索果 执果索因 辅助线 初中学生正处于自觉形象思维向逻辑思维的过度阶段,几何证明,是学生逻辑思维的起步。这种思维方式学生刚接触,会遇到一些困难。许多学生在几何证明这里“跌倒了”,丧失了信心,以至于几何越学越糟。为此,我根据自己几年的数学教学实践,就初中数学中几何证明题的一般结构,解题思路进行初步探讨。 学好几何证明,起步要稳,要求学生在学习几何时要扎扎实实,一步一个脚印,在掌握好几何基础知识的同时,还要培养学生的逻辑思维能力。 一、几何证明题的一般结构 初中几何证明题的一般结构由已知条件和求证目标两部分(即前提和结论)组成。已知条件是几何证明的前提,指题目中用文字和符号直接给出的明确条件,也包括所给图形中暗含的条件。求证指题目要求的经过推理最终得出的结论。已知条件是题目既定成立的、毋庸置疑而且必然正确的。求证是几何证明题的最终目标,就是根据题目给出的已知条件,利用数学中的公理、定理、性质,用合理的推理形式推导出的最后结果,而且只能出现在证明过程的最后。 例如:如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M . 求证:△ABC ≌△DCB ; 已知条件:文字给出的有:△ABC 和△DCB ,AB = DC ,AC = DB ,AC 与DB 交于点M 图形给出的有:BC=CB,∠BMA 与∠CMD 是对顶角等等 求证目标是:△ABC ≌△DCB 注意,已知条件除了上面列出的,就没有其它的了,不可随意出现AM=DM ,BN=CN 等等 二、做几何证明题的一般步骤 (一)、审题 审题就是读题,这一步是解决几何证明题的关键,非常重要。许多学生读几何证明题时讲快,常常忽略了题目中蕴含的重要信息。和读其它类型的题有所不同,读几何证明题要求 B A M N

最新初中几何中线段和与差最值问题

初中几何中线段和(差)的最值问题 一、两条线段和的最小值。 基本图形解析: 一)、已知两个定点: 1、在一条直线m 上,求一点P ,使PA+PB 最小; (1)点A 、B 在直线m 两侧: (2)点A 、B 在直线同侧: 2、在直线m 、n 上分别找两点P 、Q ,使PA+PQ+QB 最小。 (1)两个点都在直线外侧: (2)一个点在内侧,一个点在外侧: (3)两个点都在内侧: m m B m A B m n m n n m n n n m

( 4)、台球两次碰壁模型 变式一:已知点A、B位于直线m,n 的内侧,在直线n、m分别上求点D、E点,使得围成的四边形ADEB周长最短. 变式二:已知点A位于直线 m,n 的内侧, 在直线m、n分别上求点P、Q点PA+PQ+QA 周长最短. 二)、一个动点,一个定点: (一)动点在直线上运动: 点B在直线n上运动,在直线m上找一点P,使PA+PB最小(在图中画出点P和点B)1、两点在直线两侧: 2、两点在直线同侧: (二)动点在圆上运动 点B在⊙O上运动,在直线m上找一点P,使PA+PB最小(在图中画出点P和点B) 1、点与圆在直线两侧: m n m n m n m m

2、点与圆在直线同侧: 三)、已知A 、B 是两个定点,P 、Q 是直线m 上的两个动点,P 在Q 的左侧,且PQ 间长度恒定,在直线m 上要求P 、Q 两点,使得PA+PQ+QB 的值最小。(原理用平移知识解) (1)点A 、B 在直线m 两侧: 作法:过A 点作AC ∥m,且AC 长等于PQ 长,连接BC,交直线m 于Q,Q 向左平移PQ 长,即为P 点,此时P 、Q 即为所求的点。 (2)点A 、B 在直线m 同侧: 练习题 1.如图1,∠AOB =45°,P 是∠AOB 内一点,PO =10,Q 、R 分别是OA 、OB 上的动点,求△PQR 周长的最小值为 . 2、如图2,在锐角三角形ABC 中,AB=4 ,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M,N 分别是AD 和AB 上的动点,则BM+MN 的最小值为 . 3、如图3,在锐角三角形ABC 中 , AB=BAC=45,BAC 的平分线交BC 于D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是 。 m m Q Q

(完整)初中数学“最值问题”_集锦

“最值问题”集锦 ●平面几何中的最值问题 (01) ●几何的定值与最值 (07) ●最短路线问题 (14) ●对称问题 (18) ●巧作“对称点”妙解最值题 (22) ●数学最值题的常用解法 (26) ●求最值问题 (29) ●有理数的一题多解 (34) ●4道经典题 (37) ●平面几何中的最值问题 在平面几何中,我们常常遇到各种求最大值和最小值的问题,有时它和不等式联系在一起,统称最值问题.如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率.下面介绍几个简例. 在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。 最值问题的解决方法通常有两种: (1)应用几何性质: ①三角形的三边关系:两边之和大于第三边,两边之差小于第三边; ②两点间线段最短; ③连结直线外一点和直线上各点的所有线段中,垂线段最短; ④定圆中的所有弦中,直径最长。 ⑵运用代数证法: ①运用配方法求二次三项式的最值; ②运用一元二次方程根的判别式。 例1、A、B两点在直线l的同侧,在直线L上取一点P,使PA+PB最小。 分析:在直线L上任取一点P’,连结A P’,BP’,

在△ABP’中AP’+BP’>AB,如果AP’+BP’=AB,则P’必在线段AB上,而线段AB 与直线L无交点,所以这种思路错误。 取点A关于直线L的对称点A’,则AP’= AP, 在△A’BP中A’P’+B’P’>A’B,当P’移到A’B与直线L的交点处P点时 A’P’+B’P’=A’B,所以这时PA+PB最小。 1 已知AB是半圆的直径,如果这个半圆是一块铁皮,ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC的周长最大(图3-91)? 分析本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于AB∥CD,必有AC=BD.若设CD=2y,AC=x,那么只须求梯形ABDC的半周长u=x+y+R的最大值即可.解作DE⊥AB于E,则x2=BD2=AB·BE=2R·(R-y)=2R2-2Ry, 所以 所以求u的最大值,只须求-x2+2Rx+2R2最大值即可. -x2+2Rx+2R2=3R2-(x-R)2≤3R2, 上式只有当x=R时取等号,这时有 所以2y=R=x. 所以把半圆三等分,便可得到梯形两个顶点C,D, 这时,梯形的底角恰为60°和120°. 2 .如图3-92是半圆与矩形结合而成的窗户,如果窗户的周长为8米(m),怎样才能得出 最大面积,使得窗户透光最好? 分析与解设x表示半圆半径,y表示矩形边长AD,则必有2x+2y+πx=8,

相关主题