搜档网
当前位置:搜档网 › iTOP4412开发板-Bluetooth移植文档

iTOP4412开发板-Bluetooth移植文档

iTOP4412开发板-Bluetooth移植文档
iTOP4412开发板-Bluetooth移植文档

LINUX文件系统制作详细

Linux文件系统制作流程 关键词:ARM Linux yaffs文件系统移植 Linux文件系统简介 Linux支持多种文件系统,包括ext2、ext3、vfat、ntfs、iso9660、jffs、romfs和nfs等,为了对各类文件系统进行统一管理,Linux引入了虚拟文件系统VFS(Virtual File System),为各类文件系统提供一个统一的操作界面和应用编程接口。 Linux下的文件系统结构如下: Linux启动时,第一个必须挂载的是根文件系统;若系统不能从指定设备上挂载根文件系统,则系统会出错而退出启动。之后可以自动或手动挂载其他的文件系统。因此,一个系统中可以同时存在不同的文件系统。 不同的文件系统类型有不同的特点,因而根据存储设备的硬件特性、系统需求等有不同的应用场合。在嵌入式Linux应用中,主要的存储设备为RAM(DRAM,

SDRAM)和ROM(常采用FLASH存储器),常用的基于存储设备的文件系统类型包括:jffs2,yaffs,cramfs,romfs,ramdisk,ramfs/tmpfs等。 >基于FLASH的文件系统 Flash(闪存)作为嵌入式系统的主要存储媒介,有其自身的特性。Flash的写入操作只能把对应位置的1修改为0,而不能把0修改为1(擦除Flash就是把对应存储块的内容恢复为1),因此,一般情况下,向Flash写入内容时,需要先擦除对应的存储区间,这种擦除是以块(block)为单位进行的。 闪存主要有NOR和NAND两种技术(简单比较见附录)。Flash存储器的擦写次数是有限的,NAND闪存还有特殊的硬件接口和读写时序。因此,必须针对Flash 的硬件特性设计符合应用要求的文件系统;传统的文件系统如ext2等,用作Flash的文件系统会有诸多弊端。 在嵌入式Linux下,MTD(Memory Technology Device,存储技术设备)为底层硬件(闪存)和上层(文件系统)之间提供一个统一的抽象接口,即Flash的文件系统都是基于MTD驱动层的(参见上面的Linux下的文件系统结构图)。使用MTD 驱动程序的主要优点在于,它是专门针对各种非易失性存储器(以闪存为主)而设计的,因而它对Flash有更好的支持、管理和基于扇区的擦除、读/写操作接口。 顺便一提,一块Flash芯片可以被划分为多个分区,各分区可以采用不同的文件系统;两块Flash芯片也可以合并为一个分区使用,采用一个文件系统。即文件系统是针对于存储器分区而言的,而非存储芯片。 1.jffs2 JFFS文件系统最早是由瑞典Axis Communications公司基于Linux2.0的内核为嵌入式系统开发的文件系统。JFFS2是RedHat公司基于JFFS开发的闪存文件系统,最初是针对RedHat公司的嵌入式产品eCos开发的嵌入式文件系统,所以JFFS2也可以用在Linux,uCLinux中。 Jffs2:日志闪存文件系统版本2(Journalling Flash FileSystem v2) 主要用于NOR型闪存,基于MTD驱动层,特点是:可读写的、支持数据压缩的、基于哈希表的日志型文件系统,并提供了崩溃/掉电安全保护,提供“写平衡”支持等。缺点主要是当文件系统已满或接近满时,因为垃圾收集的关系而使jffs2的运行速度大大放慢。 目前jffs3正在开发中。关于jffs系列文件系统的使用详细文档,可参考MTD补丁包中mtd-jffs-HOWTO.txt。 jffsx不适合用于NAND闪存主要是因为NAND闪存的容量一般较大,这样导致jffs为维护日志节点所占用的内存空间迅速增大,另外,jffsx文件系统在

【最新文档】移植法案例word版本 (5页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除! == 本文为word格式,下载后可方便编辑和修改! == 移植法案例 篇一:发明创造技巧——移植法.doc 龙源期刊网 .cn 发明创造技巧——移植法 作者:银月 来源:《发明与创新(学生版)》201X年第06期 把大家已经知道的原理,已有的物品或方法等,移植运用(来自:WwW. : 移植法案例 )到自己的发明上,得到一项新的发明,这种方法叫做移植法。这种技术 性移植是发明创造的一条重要途径。下面例举两个利用了移植法的小发明; 充气太阳灶 太阳能对人们极有吸引力,但目前的太阳灶造价高,工艺复杂,又笨重(50千 克左右),调节也麻烦,野外工作和旅游时携带不方便。发明者在调查研究的基 础上,明确了主攻方向:简化太阳灶的制作工艺,减轻重量,减少材料消耗, 降低成本,获取最大的功率。他们首先把两片圆形塑料薄膜边缘粘结,充气后 就膨胀成一个抛物面,再在反光面上贴上真空镀铝涤纶不干胶片。用打气筒向 内打气,改变里面气体压强,随着打气的多少,上面一层透明膜向上凸起,反 光面向下凹,可以达到自动会聚反射光线的目的。这种“无基板充气太阳灶” 只有4千克重,拆装方便,便于携带。 该发明实际上是多种移植的结果:发明者把充气玩具的技术,日常商品商标的 不干胶贴片,凸透镜似的抛物面结构,移植到新的太阳灶上来,把光学、流体 力学的原理等知识,移植到太阳灶的设计上,从而成功地完成了小发明。 蜡烛灯 蜡烛是人们常用的一种照明工具,但烛焰怕风,烛体不易固定,亮度不能控制。怎样改进这些缺点呢?湖北监利中学的柳国弘同学先考虑固定烛体与防风,他将蜡烛插在一个铁筒中,罩上一个玻璃罩。他联想到卡口式灯泡的固定方式,并 借用到蜡烛灯上,安了个弹簧以使烛焰保持在灯罩的最佳中心位置。

文件系统移植

嵌入式linux内核上文件系统的移植 实验目的:在已经能运行的内核上架构文件系统 其实,虽然 root_qtopia 这个文件系统的GUI 是基于Qtopia 的,但其初始化启动过程 却是由大部分由busybox 完成,Qtopia(qpe)只是在启动的最后阶段被开启。由于默认的内核命令行上有 init=/linuxrc, 因此,在文件系统被挂载后,运行的第一个程 序是根目录下的linuxrc。这是一个指向/bin/busybox 的链接,也就是说,系统起来后运行的 第一个程序也就是busybox 本身。 这种情况下,busybox 首先将试图解析/etc/inittab 来获取进一步的初始化配置信息(参 考busybox 源代码init/init.c 中的parse_inittab()函数)。而事实上,root_qtopia 中并没有/et c/inittab 这个配置文件,根据busybox 的逻辑,它将生成默认的配置 实验过程: 一、获取yaffs2源代码 现在大部分开发板都可以支持 yaffs2 文件系统,它是专门针对嵌入式设备,特别是使用nand flash 作为存储器的嵌入式设备而创建的一种 文件系统,早先的yaffs 仅支持小页(512byte/page)的nand flash,现 在的开发板大都配备了更大容量的nand flash,它们一般是大页模式 (2K/page),使用yaffs2 就可以支持大页的nand flash,下面是yaffs2 的移植详细步骤。 在https://www.sodocs.net/doc/6e18248149.html,/node/346 可以下载到最新的yaffs2 源代码,需要使用git工具( 安装方法见本手册第一章),在命令行输入:#git clone git://https://www.sodocs.net/doc/6e18248149.html,/yaffs2 稍等片刻,就可以下载到最新的yaffs2 的源代码目录,本光盘中也有单独的yaffs2 源代码包( 文件名为:yaffs2-src-20100329.tar.gz)

MMS&WAP移植文档

MMS&WAP移植报告 本次在6219平台上移植的是移软的MMS&WAP。在正式开始移植之前我们先确定了移植移软的MMS&WAP所要求的硬件和软件资源,进行了可行性分析、需求分析,然后进入设计阶段,最后是测试阶段,整个过程严格的按照软件工程的迭代模型来执行。 第一步,创建TASK 在custom_config.h里面定义TASK ID ----INDX_CUSTCMS,这里创建的task数不能大于16,定义三个模块附属于这个TASK,三个模块分别为MOD_CMSMMS、MOD_CMSWAP、MOD_CMSMAP(用户定义的模块数也不能大于16)。 在custom_config.c里面 完成task到模块id的映射,并实现创建task的函数,给定任务优先级212。const comptask_info_struct custom_comp_config_tbl[ MAX_CUSTOM_TASKS ] = { /* INDX_CUSTOM1 */ {"CUST1", "CUST1 Q", 210, 1024, 10, 0, #ifdef CUSTOM1_EXIST custom1_create, KAL_FALSE}, #else NULL, KAL_FALSE}, #endif /* INDX_CUSTOM2 */ {"CUST2", "CUST2 Q", 211, 1024, 10, 0, #ifdef CUSTOM2_EXIST custom2_create, KAL_FALSE}, #else NULL, KAL_FALSE}, #endif //Jo++ 05-05-16 added the Index_CustCMS /* INDX_CUSTCMS */ {"CUSTCMS", "CUSTCMS Q", 212, 1024, 30, 100, #ifdef CUSTCMS_EXIST //Jo++ 需事先定义 customCMS_create, KAL_FALSE}, #else NULL, KAL_FALSE}, #endif //Jo-- }; 第二步,修改makefile,在原mtk工程中添加进去wap mms模块。

Tiny6410_Uboot移植步骤详解

Uboot_for_Tiny6410_移植步骤详解 一、设计要求 1.目的 1)掌握U-boot剪裁编写 2)掌握交叉编译环境的配置 3)掌握U-boot的移植 2.实现的功能 1)U-boot编译成功 2)移植U-boot,使系统支持从NAND FLASH启动 二、设计方案 1.硬件资源 1)ARM处理器:ARM11芯片(Samsung S3C6410A),基于ARM1176JZF-S核设 计,运行频率533Mhz,最高可达 667Mhz 2)存储器:128M DDR RAM,可升级至 256M;MLC NAND Flash(2GB) 3)其他资源:具有三LCD接口、4线电阻 触摸屏接口、100M标准网络接口、标准DB9 五线串口、Mini USB2.0接口、USB Host 1.1、3.5mm音频输入输出口、标准TV-OUT

接口、SD卡座、红外接收等常用接口;另外 还引出4路TTL串口,另1路TV-OUT、 SDIO2接口(可接SD WiFi)接口等;在板的 还有蜂鸣器、I2C-EEPROM、备份电池、A D 可调电阻、8个中断式按键等。 2.软件资源 1)arm-linux-gcc-4.5.1(交叉编译) 2)u-boot-2010.09.tar.gz arm-linux-gcc-4.5.1-v6-vfp-20101103.t gz 三、移植过程 1.环境搭建 1)建立交叉编译环境 2)去这2个网站随便下载都可以下载得到最 新或者你想要的u-boot。( https://www.sodocs.net/doc/6e18248149.html,/batch.viewl ink.php?itemid=1694 ftp://ftp.denx.de/pub/u-boot/ )

根文件系统移植

实验五根文件系统移植 实验目的: 通过本次实验,使大家学会根文件系统移植的具体步骤,并对根文件系统有更近一步的感官认识。让同学理解由于根文件系统是内核启动时挂在的第一个文件系统,那么根文件系统就要包括Linux启动时所必须的目录和关键性的文件,任何包括这些Linux 系统启动所必须的文件都可以成为根文件系统。 实验硬件条件: 1、实验PC机一台,TINY6410开发板一台 2、电源线,串口线,数据线。 实验软件条件: 1、VMware Workstation, 2、Ubuntu10.04 3、mktools-20110720.tar.gz 4、busybox-1.13.3-mini2440.tgz, 5、SecureCRT以及dnw烧写工具 实验步骤: 一、实验步骤 1.进入rootfs目录,查看压缩文件,具体操作指令如下:

2.发现有两个压缩文件夹,分别进行解压: 3.tar xvzf busybox-1.13.3-mini2440.tgz, 4.tar xvzf mktools-20110720.tar.gz,解压完成后, 5.查看文件夹#ls

二、实验步骤 1.修改架构,编译器#cd busybox-1.13.3/ 2.进入后查看#ls 3.#gedit Makefile 4.修改 164行 CROSS_COMPILE ?=arm-linux- 5.修改190行 ARCH ?= arm 6.保存后,退出!

三、实验步骤 1.修改配置 #make menuconfig 2.若出现如下提示

3.需调整到最大化。

4.把Busybox Settings -----→>Build Option ------→> Build BusyBox as astatic binary (no shared libs) 选择上,其他的默认即可。 然后一直退出,保存即可 5.接着执行 make接着执行 make install 6.最终生成的文件在_install 中 #cd _install

eMwin 移植 文档飞利浦 恩智浦

uC/GUI(emWin)的应用与移植 当你开始使用emWin进行编程时,通常遵循以下的步骤: 第1步:配置emWin 第一步通常是通过修改头文件LCDConf.h来配置emWin。LCDConf.h中的宏定义描述了LCD显示部分硬件特性;根据你的具体情况修改这些宏定义(例如显示屏的长、宽,每像素点用几位表示,LCD控制器的类型等参数)。 第2步:定义LCD的底层驱动函数 底层函数包括对LCD(控制器)的初始化函数,LCD显示缓冲区的读写函数等,完成对LCD显示硬件的直接操作。 对于映射在系统存储器上的LCD,对显示缓冲区的操作仅需要在LCDConf.h中进行定义就可以了。但对于采用I/O端口/缓冲区操作的LCD,就必须定义相应的接口函数了。 第3步:编译,链接和测试例子代码 emWin对于单任务和多任务环境下的应用都提供了例子代码。在编程之前,对这些例子代码进行编译、链接和测试,使你能够初步了解这些代码的使用。 第4步:修改例子程序 对例子代码作少量的修改。逐步添加一些额外的指令,例如显示不同大小的文字,显示多行等等,从而进一步理解代码的应用。 第5步:emWin的多任务应用,加入到你的操作系统中 如果你的系统有可能多个任务同时对显示进行操作,这时就要用到GUITask.C文件中的GUI_MAXTASK 和GUI_OS宏。 第6步:采用emWin编写你自己的应用 到这一步你应该对怎样使用emWin有一个清楚的了解了。考虑如何采用emWin提供的函数来构建你的应用,并通过阅读手册来获得各函数更详细的功能和使用上的信息。 emWin的移植 移植是指对emWin进行配置和修改,使它能够在你的目标系统上运行。参考第3.4节中的第一步和第二步,移植工作主要是针对配置头文件中的宏定义进行修改。 这些宏包括: 1. LCD宏,定义了显示的尺寸和一些可选择的特性(例如镜像,等等)

UBoot移植详解

u-boot 移植步骤详解 1 U-Boot简介 U-Boot,全称Universal Boot Loader,是遵循GPL条款的开放源码项目。从FADSROM、8xxROM、PPCBOOT逐步发展演化而来。其源码目录、编译形式与Linux内核很相似,事实上,不少U-Boot源码就是相应的Linux内核源程序的简化,尤其是一些设备的驱动程序,这从U-Boot源码的注释中能体现这一点。但是U-Boot不仅仅支持嵌入式Linux 系统的引导,当前,它还支持NetBSD, VxWorks, QNX, RTEMS, ARTOS, LynxOS嵌入式操作系统。其目前要支持的目标操作系统是OpenBSD, NetBSD, FreeBSD,4.4BSD, Linux, SVR4, Esix, Solaris, Irix, SCO, Dell, NCR, VxWorks, LynxOS, pSOS, QNX, RTEMS, ARTOS。这是U-Boot中Universal的一层含义,另外一层含义则是U-Boot除了支持PowerPC系列的处理器外,还能支持MIPS、x86、ARM、NIOS、XScale等诸多常用系列的处理器。这两个特点正是U-Boot项目的开发目标,即支持尽可能多的嵌入式处理器和嵌入式操作系统。就目前来看,U-Boot对PowerPC系列处理器支持最为丰富,对Linux的支持最完善。其它系列的处理器和操作系统基本是在2002年11 月PPCBOOT 改名为U-Boot后逐步扩充的。从PPCBOOT向U-Boot的顺利过渡,很大程度上归功于U-Boot的维护人德国DENX软件工程中心Wolfgang Denk[以下简称W.D]本人精湛专业水平和持着不懈的努力。当前,U-Boot项目正在他的领军之下,众多有志于开放源码BOOT LOADER移植工作的嵌入式开发人员正如火如荼地将各个不同系列嵌入式处理器的移植工作不断展开和深入,以支持更多的嵌入式操作系统的装载与引导。 选择U-Boot的理由: ①开放源码; ②支持多种嵌入式操作系统内核,如Linux、NetBSD, VxWorks, QNX, RTEMS, ARTOS, LynxOS; ③支持多个处理器系列,如PowerPC、ARM、x86、MIPS、XScale; ④较高的可靠性和稳定性; ④较高的可靠性和稳定性; ⑤高度灵活的功能设置,适合U-Boot调试、操作系统不同引导要求、产品发布等; ⑥丰富的设备驱动源码,如串口、以太网、SDRAM、FLASH、LCD、NVRAM、EEPROM、RTC、键盘等; ⑦较为丰富的开发调试文档与强大的网络技术支持; 2 U-Boot主要目录结构 - board 目标板相关文件,主要包含SDRAM、FLASH驱动; - common 独立于处理器体系结构的通用代码,如内存大小探测与故障检测;

FATFS文件系统移植和应用

FATFS文件系统的移植 作者:LJ 时间:2010年11月12日 随着信息技术的发展,目前常用文件系统主要有微软的FAT12、FAT16、FAT32、NTES文件系统,以及Linux系统的EXT2、EXT3等。由于Windows操作系统的广泛应用,当前很多嵌入式产品中用的最多的还是FAT文件系统。所以,选择一款容易移植和使用,并且占用资源少而功能全面的文件系统就显得非常重要了。 FATFS文件系统是一个完全免费且开源的FAT文件系统模块,由小日本工程师编写,它支持FAT12、FAT16和FAT32文件系统,专门为小型的嵌入式系统而设计。模块用标准的C语言编写,可以很容易地移植到各种硬件平台。 在“驱动程序”文件夹中有一个“FatFs R0.07c”文件夹,这是官方提供的FATFS文件系统的源码和文档,版本为R0.07c。打开“doc”文件夹下的“00index_e.html”英文网页文档,里面有FATFS文件系统的全部API函数说明,相对应的应用实例和如何编写硬件接口程序的说明。如果您的英文不怎么好,建议您先装一个有道词典,使用屏幕取词功能,能帮助我们阅读和理解。“00index_j.html”则是日文版的网页,毕竟是小日本写的。“src”文件夹存放有FATFS文件系统源码,下面是该文件夹下各个文件或文件夹存放的内容说明:“ff.h”文件:FATFS文件系统的配置和API函数声明; “ff.c”文件:FATFS源码;

“diskio.h”文件:FATFS与存储设备接口函数的声明; “diskio.c”文件:FATFS与存储设备接口函数; “integer.h”文件:FATFS用到的所有变量类型的定义; “option”文件夹:存放一些外接函数,下一实例有实际的讲解; “00readme.txt”文件:FATFS版本及相关信息说明; 编译工程,没有通过,根据编译信息提示在“diskio.c”文件中在几个函数没有定义。这很正常,因为我们还没有编写文件系统与存储设备的接口函数。下面来分析“diskio.c”文件中各个函数的功能:“DSTATUS disk_initialize ( BYTE drv )”是存储媒介的初始化函数,由于我们使用的是SD卡,所以实际上是对SD卡的初始化; “DSTATUS disk_status ( BYTE drv )”状态检测函数,检测是否支持当前的存储设备,支持返回0; “DRESULT disk_read (BYTE drv, BYTE *buff, DWORD sector, BYTE count)”是读扇区函数,drv是要读扇区的存储媒介号,*buff 存储读取的数据,sector是读数据的开始扇区,count是要读的扇区数。在SD卡的驱动程序中,分别提供了读一个扇区和读多个扇区的函数。当count == 1时,用读一个扇区函数;当 count > 1时,用读多个扇区的函数,这样提高了文件系统读效率。操作成功返回0。 “DRESULT disk_write(BYTE drv, BYTE *buff, DWORD sector, BYTE count)”写扇区函数,drv是要写扇区的存储媒介号,*buff存储写入的数据,sector是写开始扇区,count是要写的扇区数。同样在SD卡的驱动程序中,分别提供了写一个扇区和写多个扇区的函数。

白桦的移植技术-最新文档资料

白桦的移植技术 随着现代城市对景观环境的不断提高,大树移植以其优化城市绿地结构,改善城市绿地景观等特点逐渐被采用。白桦枝叶扶疏,姿态优美,尤其是树干修直,洁白雅致,十分引人注目,是园林绿化的优选树种。这几年,我们在移植白桦的过程时总结了以下几个技术要点。 、前期准备 1)掌握白桦特性、生态习性及苗木地、种植地的土壤等 环境因素。 2)准备好必须的机械设施(如吊车,运输车等)、人力 及辅助材料,运输路线,并制定合理的起运栽植方案。 3)号苗及苗木处理:选择生长强健,无病虫害的、符合 绿化设要求的苗木,预先进行疏枝及修剪,修剪时剪口必须平滑,截面尽量缩小,修剪2 公分以上的枝条,剪口应涂沫防腐剂(涂白调和漆或石灰乳)。 4)白桦栽植穴的处理:如白桦树穴除考虑土坨大小外, 还要预留出人工坑内作业空间,树穴基部土壤保持水平。新换的土,一定要将虚土夯实并用水下沉,以防止土壤不平白桦放入后发生倾斜。 二、起运栽植 1、时间

栽植白桦的时间根据北方的气候条件选在3 月20日到4 月 10 日。此时白桦还在休眠,树液尚未流动。白桦移植应做到随 2、起苗 这次移栽的白桦树胸径在距地面一米三处达到20 厘米左右,按着技术规定,根系要保证不小于胸径的10-12 倍,这次我们起的树坨直径是2 米,土坨的高度为直径的0.6 倍。土坨要完好、平整。土坨形似苹果,底部不超过土坨直径的三分之一。起挖前以白桦树干为中心,按规定尺寸划出圆圈,在圈外挖60-80 厘米的操作沟,至规定深度,挖时先去表土,见表土为准,再行下挖,挖时遇粗根必须用锯锯断再削平,不得硬铲,以免造成散 坨。修坨,用铣将所留土坨修成上大下小呈截头圆锥型的土球。 收底,土球底部不应留的过大,一般为土球直径的1/3 左右。土球修成圆形之后,立即用预先湿润的草包将土球围住,并用湿润的草绳横腰绕, 7-10 圈,捆紧。将围腰草绳捆好后就开始包扎土球,一般需要2-3 人同时操作。用草绳包土球时,将双股草绳的一头系在树干基部,然后从土球上部往下绕过土球底部,从土球的对面再绕上去,将草绳每隔5-8 绕1 圈,这样从上绕到下,再从下绕到上,反复缠绕,就能将整个土球包住。拉草绳的人每拉一次草绳就用小木锤顺着草绳前进的方向锤好土球肩部的草绳,使草绳紧紧套住底部。土球包好以后,将草绳拴绕在树干的根基处,并在土球腰部密集绕捆草绳 10-14 圈,在腰箍上打成

i.MX6UL -- Linux系统移植过程详解(最新的长期支持版本)

i.MX6UL -- Linux系统移植过程详解(最新的长期支持版本) ?开发平台:i.MX 6UL ?最新系统: u-boot2015.04 + Linux4.1.15_1.2.0 ?交叉编译工具:dchip-linaro-toolchain.tar.bz2 源码下载地址: U-Boot: (选择rel_imx_4.1.15_1.2.0_ga.tar.bz2) https://www.sodocs.net/doc/6e18248149.html,/git/cgit.cgi/imx/uboot-imx.git/ Kernel: (选择rel_imx_4.1.15_1.2.0_ga.tar.bz2) https://www.sodocs.net/doc/6e18248149.html,/git/cgit.cgi/imx/linux-2.6-imx.git/ 源码移植过程: 1、将linux内核及uBoot源码拷贝到Ubuntu12.04系统中的dchip_imx6ul目录下; 2、使用tar命令分别将uboot和kernel解压到dchip_imx6ul目录下; 3、解压后进入uboot目录下,新建文件make_dchip_imx6ul_uboot201504.sh,且文件内容如下: ################################################################### # Build U-Boot.2015.04 For D518--i.MX6UL By FRESXC # ################################################################### #!/bin/bash export ARCH=arm export CROSS_COMPILE=/dchip-linaro-toolchain/bin/arm-none-linux-gnueabi - make mrproper # means CLEAN make mx6ul_14x14_evk_defconfig make2>&1|tee built_dchip_imx6ul_uboot201504.out 4进入kernel目录下,新建文件make_dchip_imx6ul_linux4115120.sh,且文件内容如下: ###################################################################

petit_fatfs文件系统移植

FatFS文件系统的优点我就不赘述了,我需要的功能不多,所以我移植是FatFS的精简版petit fatfs,现将我的一直步骤写下来供大家参考。工程暂不能分享,见谅。 1、移植的文件系统为petit fatfs R0.02。 下载地址:https://www.sodocs.net/doc/6e18248149.html,/fsw/ff/pff2.zip 2、本人选用的单片机是STC12C5A56S2(容量够大)。 3、选用的SD卡为macro SD,容量512M,格式化为fat32文件系统,分配大小为512字节。 Petit fatfs文件系统的修改步骤及说明如下: 一、integer.h,pff.c,diskio.h这三个文件不需要修改。 二、pff.h的修改: 1、使能FAT32文件系统的支持#define_FS_FAT321 2、选择简体中文编码格式#define_CODE_PAGE936 三、diskio.c的修改: 1、添加必要头文件:reg51.h,sd.h,spi.h。 2、填写设备初始化函数DSTATUS disk_initialize(void) 这个函数我是参考别人写的: DSTATUS disk_initialize(void) { DSTATUS stat; //Put your code here stat=STA_NOINIT; if(!SD_Init()) { stat&=~STA_NOINIT; } return stat; } 3、填写读函数:DRESULT disk_readp(BYTE*dest,DWORD sector,WORD sofs,WORD count) 这个函数写法各异,就不具体说了, BYTE*dest这个就是指你要讲读出来的数据存在哪里的指针变量。 DWORD sector是要读扇区的地址,看一下SD卡的读写命令你就知道了。 WORD sofs是偏移量,简单就是说,要读的数据相对于扇区开始的字节数,这个读出来,直接忽略掉。 WORD count是要读的字节个数,读完偏移量的字节数,就是要读这个,将读出来的数据存在干才说的那个BYTE*dest。 最后还有一个剩余字节数即(512-sofs-count),这个也不是需要的数据,读出来忽略掉就行了。 4、我做的东西不需要向SD写入,所以disk_writep就没有动。 具体操作,以及在主函数中的调用可参考https://www.sodocs.net/doc/6e18248149.html,/tlptotop/blog/item/21c30b2ae0c9a4f5e7cd40de.html

系统移植方案

文档作者:cyt2005 提交时间:2007年7月06日 系统移植方案 Mysql的版本是mysql-5.1.19-win32 操作系统是WINXP2 移植过程中重点问题 数据类型差异 ORACLE数据库和MYSQL数据库在数据类型方面差异比较大,而且数据类型也是一个数据库存储数据的基础,所以找到数据类型之间的对应是整个系统进行移植的基础。以下给出了ORACLE →MYSQL数据类型的对应关系。b5E2RGbCAP 数值类型: NUMBER → DECIMAL,精度刻度都不变 注:如果是序列用BIGINT 字符串类型: VARCHAR2 → VARCHAR长度不变。 LONG → LONGTEXT 这里有可能遇到的问题是超过主键key长度的问题,根据实际情况适当修改,如果是TEXT类型也需要指名长度,否则建立key会报错p1EanqFDPw 日期类型: DATE→DATETIME

TIMESTAMP(N> TIMESTAMP SQL语法差异 SEQUENCE: MYSQL没有ORACLE中的SEQUENCE对象,我们在迁移的时候需要特别注意,一般SEQUENCE有两种用途:DXDiTa9E3d 1、作为表中自增字段的序列号。 2、程序中获得自动编号。 MYSQL数据类型中存在 AUTO_INCREMENT为自增数据类型。我们可以利用该数据类型变通一下来满足我们现有系统中的SEQUENCE功能。RTCrpUDGiT 对于ORACLE中SEQUENCE作为表的自增列一般是通过与触发器绑定实现的,在MYSQL中我们可以直接利用MYSQL的AUTO_INCREMENT类型来实现。5PCzVD7HxA ORACLE开发的应用程序中直接SELECT SEQUENCT来获得自动编号,对于这个功能我们也可以利用MYSQL的AUTO_INCREMENT类型来实现。jLBHrnAILg 首先介绍一个函数,我们可以利用如下函数查询最后一个序列号的值: mysql> SELECT LAST_INSERT_ID(>。 +------------------+ | LAST_INSERT_ID(> | +------------------+

uboot移植步骤介绍

uboot移植过程 1.修改Makefile 首先给要建立的S3C2410开发板取名为TE2410, 移植uboot时以smdk2410为模板, 修改Makefile #tar xvjf u-boot-1.1.3.tar.bz2 #cd u-boot-1.1.3 #vi Makefile scb9328_config : unconfig @./mkconfig $(@:_config=) arm arm920t scb9328 NULL imx smdk2400_config : unconfig @./mkconfig $(@:_config=) arm arm920t smdk2400 NULL s3c24x0 smdk2410_config : unconfig @./mkconfig $(@:_config=) arm arm920t smdk2410 NULL s3c24x0 SX1_config : unconfig @./mkconfig $(@:_config=) arm arm925t sx1 te2410_config : unconfig @./mkconfig $(@:_config=) arm arm920t te2410 NULL s3c24x0 蓝色字体是添加的内容。其中,te2410_config : unconfig意思是为TE2410建立一个编译项,@./mkconfig $(@:_config=) arm arm920t te2410 NULL s3c24x0中的arm表示CPU的架构是基于ARM体系结构的;arm920t表示CPU类型是arm920t;te2410是开发板的型号;NULL表示开发商或经销商的名称为空;s3c24x0表示是基于s3c24x0的片上系统。 2.在uboot的board目录下建立te2410开发板子目录 #cp –fr board/smdk2410 /board/te2410 #cd board/te2410 #mv smdk2410.c te2410.c 还要修改board/te2410/Makefile文件, OBJS := smdk2410.o flash.o -------- OBJS := te2410.o flash.o 3.在include/configs目录下建立te2410.h头文件 #cd include/configs #cp –fr smdk2410.h te2410.h 4.指定交叉编译器的路径 选择支持softfloatpoint的交叉编译器,在etc/bashrc文件中添加一行 export PATH=/home/newdisk/toolchain/gcc-3.4.5-glibc-2.3.6/arm-softfloat-linu x-gnu/bin:$PATH 其中, /home/newdisk/toolchain/gcc-3.4.5-glibc-2.3.6/arm-softfloat-linux-gnu /bin是交叉编译器路径

在STM32中移植FATFS文件系统

STM32的FATFS文件系统移植笔记 一、序言 经常在网上、群里看到很多人问关于STM32的FATFS文件系统移植的问题,刚好自己最近也在调试这个程序,为了让大家少走弯路,我把我的调试过程和方法也贡献给大家。 二、FATFS简介 FatFs Module是一种完全免费开源的FAT文件系统模块,专门为小型的嵌入式系统而设计。它完全用标准C语言编写,所以具有良好的硬件平台独立性,可以移植到8051、PIC、AVR、SH、Z80、H8、ARM等系列单片机上而只需做简单的修改。它支持FATl2、FATl6和FAT32,支持多个存储媒介;有独立的缓冲区,可以对多个文件进行读/写,并特别对8位单片机和16位单片机做了优化。 三、移植准备 1、FATFS源代码的获取,可以到官网下载:https://www.sodocs.net/doc/6e18248149.html,/fsw/ff/00index_e.html最新版本是R0.09版本,我们就移植这个版本的。 2、解压文件会得到两个文件夹,一个是doc文件夹,这里是FATFS的一些使用文档和说明,以后在文件编程的时候可以查看该文档。另一个是src文件夹,里面就是我们所要的源文件。 3、建立一个STM32的工程,为方便调试,我们应重载printf()底层函数实现串口打印输出。可以参考已经建立好的printf()打印输出工程:.viewtool./bbs/foru ... d=77&extra=page%3D1 四、开始移植 1、在已经建立好的工程目录User文件夹下新建两个文件夹,FATFS_V0.09和 SPI_SD_Card,FATFS_V0.09用于存放FATFS源文件,SPI_SD_Card用于存放SPI的驱动文件。 2、如图1将ff.c添加到工程文件夹中,并新建diskio.c文件,在diskio.c文件中实现五个函数: 1.DSTATUS disk_initialize (BYTE);//SD卡的初始化 2. DSTATUS disk_status (BYTE);//获取SD卡的状态,这里可以不用管 3. DRESULT disk_read (BYTE, BYTE*, DWORD, BYTE);//从SD卡读取数据 4. DRESULT disk_write (BYTE, const BYTE*, DWORD, BYTE);//将数据写入 SD卡,若该文件系统为只读文件系统则不用实现该函数 5. DRESULT disk_ioctl (BYTE, BYTE, void*);//获取SD卡文件系统相关信息 6. 复制代码

NB-IoT协议SDK移植说明文档docx.docx

NB-IOT 协议接入说明文档 Version: 1.0

1、资源模型介绍 1.1协议介绍 OneNET提供了采用LWM2M+CoAP协议接入设备的说明文档,用户可以下载学习相关的具体内容,其中包括: LWM2M协议的介绍 LWM2M是OMA组织制定的轻量化的M2M协议。LwM2M定义了三个逻辑实体: ?LWM2M Server 服务器; ?LWM2M Client 客户端,负责执行服务器的命令和上报执行结果; ?LWM2M 引导服务器Bootstrap Server,负责配置LWM2M客户端。 在这三个逻辑实体之间有4个逻辑接口: ?Device Discovery and Registration:客户端注册到服务器并通知服务器客户端所支持的能力; ?Bootstrap:Bootstrap Server配置Client; ?Device Management and Service Enablement:指令发送和接收; ?Information Reporting:上报其资源信息。 图1-1 LWM2M协议栈 ?LWM2M Objects:每个对象对应客户端的某个特定功能实体。LWM2M 规范定义

了以下标准Objects,比如 o urn:oma:lwm2m:oma:2; (LWM2M Server Object); o urn:oma:lwm2m:oma:3; (LWM2M Access Control Object); o每个object下可以有很多resource,比如Firmware object可以有Firmware版本号,size等resource; o Vendor可以自己定义object。 LWM2M Protocol:定义了一些逻辑操作,比如Read, Write, Execute, Discover or Observe等。 LWM2M协议的具体内容和消息格式可以参考OMA的网站 https://https://www.sodocs.net/doc/6e18248149.html,/wiki/OMA_LWM2M CoAP协议的说明 CoAP(Constrained Application Protocol)协议是IETF提出的一种面向网络的协议,采用了与HTTP类似的特征,核心内容为资源抽象、REST式交互以及可扩展的头选项等。CoAP协议基于REST构架,REST是指表述性状态转换架构,是互联网资源访问协议的一般性设计风格。为了克服HTTP对于受限环境的劣势,CoAP既考虑到数据报长度的最优化,又考虑到提供可靠通信。一方面,CoAP提供URI,REST式的方法如GET、POST、PUT和DELETE,以及可以独立定义的头选项提供的可扩展性。另一方面,CoAP基于轻量级的UDP协议,并且允许IP多播。为了弥补UDP传输的不可靠性,CoAP定义了带有重传机制的事务处理机制。并且提供资源发现机制,并带有资源描述。

基于STM32的FATS文件系统移植全教程

一、移植目的 1、结合命令界面的改进,实现文件系统与命令界面的结合使用。 2、在命令界面中实现以下文件系统操作命令:flist-列出当前目录下的文件;f mkdir-在当前目录下创建目录;fchgdir-改变当前目录;fread-读取文件内容;fwrite-新建文件并写入。 二、移植条件 1、可以识别参数的串口命令界面。 2、FatFS007e版本。 三、对命令界面所实现功能的描述 1、超级终端设置。 首先打开串口终端,设置波特率115200,8位数据,无奇偶校验,无流控,终端仿真选择ANSIW,asicc码设置为以换行符结尾(以前设置的,原因已经忘了),反正这样设置了能够正常工作。 开发板复位后,终端显示:**********nthq2004 编写的简单命令接口!***** **** Sh> 然后可以在这里输入命令执行。比如现在支持的命令包括:"help","cls","ledon","ledoff","time","temp","i2cwr","i2crd","sdrd","sdwr",共10个命令。比如输入help me命令,则会显示命令界面当前支持的所有命令,并显示当前所有输入的命令参数。所以命令执行过程的分析以help me为例,help是命令,me是参数。 2、串口终端命令输入过程

在串口终端输入一个字符时,其工作工程为: void USART1_IRQHandler(void){ //该函数在文件stm32f10x_it.c中OS_CPU_SR cpu_sr; OS_ENTER_CRITICAL(); OSIntNesting++; //中断嵌套计数 OS_EXIT_CRITICAL(); if ( USART_GetITStatus ( USART1, USART_IT_RXNE )!= RESET) { Uart_ReceiveChar(); //串口接收字符} OSIntExit(); //这里可以触发任务切换软中断 } 串口接收到字符引起终端、然后调用函数Uart_ReceiveChar()获取字符并放入串口消息队列, void Uart_ReceiveChar (void) { //该函数在文件uart.c中 u32 RecChar; RecChar = (u32)(USART1->DR & 0xFF); OSQPost ( UartMsgOSQ, ( void* )RecChar );//将字符指针化放入消息队列,这里接用了周慈航教授书中的方法。} 在task_uartcmd.c文件创建的串口界面任务中, case UartStateInput: //如果出于输入状态 { UartCharIn=Uart_GetChar(); //读取输入按键 UartCharIn &= 0x7F;

相关主题