搜档网
当前位置:搜档网 › 机器人摩擦补偿综述

机器人摩擦补偿综述

机器人摩擦补偿综述
机器人摩擦补偿综述

Friction Compensation in Robotics:an Overview

Basilio Bona and Marina Indri

Abstract—Friction e?ects are particularly critical for industrial robots,since they can induce large positioning errors,stick-slip motions,and limit cycles. This paper o?ers a reasoned overview of the main friction compensation techniques that have been de-veloped in the last years,regrouping them according to the adopted kind of control strategy.Some experi-mental results are reported,to show how the control performances can be a?ected not only by the chosen method,but also by the characteristics of the available robotic architecture and of the executed task.

I.Introduction

Each time precise motion control must be achieved by a robotic system,friction compensation represents a crucial step for the designer,who must solve various theoretical and practical problems.Friction e?ects are particularly critical for industrial robots:it has been observed[1]that“friction can cause50%error in some heavy industrial manipulators”.A poor(or absent)fric-tion compensation action in the control scheme may lead to signi?cant tracking errors(especially at low velocities), stick-slip motions,hunting in the stopping phase of the robot movement,and limit cycles when velocity reversals occur in the assigned trajectory.

Several friction models have been proposed[2]-[12], having di?erent levels of accuracy,and a wide variety of control solutions can be found in literature[1],[3]-[6],[11],[13]-[15],[19]-[25],[27]-[43],but no strategy can be de?nitely considered more e?ective than the others, since many factors can signi?cantly a?ect the practical implementation and the performances of each scheme. This paper proposes an overview of the most used and recent control strategies for friction compensation in robotics,with the purpose to o?er a guideline to the reader among the various solutions that have been developed in literature.A classi?cation of the various control schemes can be made following di?erent criteria: in this paper the control strategy is considered instead of the assumed friction model(as it is often done),to help the controller designer to choose the most suitable solution for the task to be executed,given the available hardware and software control architecture.We have considered only the most recent papers(as the interested reader can?nd previous results among their references) and the control schemes that have been experimentally tested.

The paper is organized as follows.In Section II,the most common friction models are brie?y pointed out,

This work was supported by ASI and MIUR.

B.Bona and M.Indri are with Dipartimento di Automatica e Informatica,Politecnico di Torino,Corso Duca degli Abruzzi 24,10129Torino,Italy basilio.bona@polito.it,ma-rina.indri@polito.it while Section III deals with the di?erent control strate-gies developed for friction compensation,distinguishing four main types of solutions,which are discussed in the four corresponding subsections.Section IV draws some conclusions concerning the reviewed methods,and discusses some additional issues,on the basis of exper-imental tests carried out in our laboratory for a planar manipulator with standard-resolution resolvers.

II.Friction models

Friction forces between two surfaces in contact arise as a consequence of the irregularities and asperities at microscopical level,and their e?ects depend on many factors,such as displacement and relative velocity of the bodies,properties of the surface materials,presence of lubrication,temperature,etc.The experimental obser-vation of friction phenomena has led to various,deeply di?erent models,which capture the friction components in a more or less accurate way.Interesting reviews of the main friction characteristics and classical models can be found in[3],[4],[6],starting from the basic concept of friction as a force that opposes motion,captured by the pure Coulomb model,up to complex static and dynamic models.

The simplest static friction model that can be adopted is the Coulomb+viscous one:

F(v)=F c sgn(v)+βv(1) where F is the friction force,v is the relative velocity of the contact surfaces,βis the viscous friction coe?cient, and F c is the Coulomb friction.

Model(1)can be easily upgraded taking into account the presence of stiction,i.e.a higher friction force F s acting while the system is at rest:motion can start only when the applied external forces(i.e.the command torque applied to the joint in the robotic case)are greater than F s[6].From experimental observation it is evident that the passage from stiction to friction during motion is not discontinuous:on the basis of such a consideration, di?erent mathematical models have been formulated to represent friction vs.velocity by continuous functions that account for the so-called Stribeck e?ect,i.e.the decrease of the friction amount as velocity increases within the low-velocity Stribeck region.The most used nonlinear expression leads to a model of the following type:

F(v)=

F c+(F s?F c)e?|v v s|δs

sgn(v)+βv(2) where v s is the Stribeck velocity that de?nes the region in which such an e?ect is present,andδs can be equal to 2(but not necessarily).

Other models have been used for control purposes to represent friction,including Stribeck,Coulomb and

Proceedings of the

44th IEEE Conference on Decision and Control, and

the European Control Conference 2005

Seville, Spain, December 12-15, 2005

WeA07.1

viscous e?ects,such as a simple polynomial function of a proper order as in[13],[16],or sigmoid-functions as in[7],[17].All the models analyzed up to this point, and many others that have been developed from the Karnopp model(see Section III-B and references[2], [6])are static models,as friction depends only on the current velocity value.The friction phenomena related to non-stationary velocities,variations in the break-away force,small displacements occurring during the stiction phase,and hysteretic e?ects can be captured only by dynamic models,which describe the pre-sliding behavior representing the microscopic asperities of the contact sur-faces by means of elastic bristles,whose de?ections give rise to the friction forces.The well-known Dahl model (illustrated and discussed in many papers,such as[4],[6], [14])is the simplest possible description of the dynamic friction behavior,and it can be expressed introducing an internal state variable z(representing the average bristle de?ection at the contact points of the moving surfaces) and de?ning the friction force accordingly as:

˙z=v?|v|

F c

σz(3a)

F=σz(3b) whereσrepresents the bristle sti?ness parameter.The Dahl model neither includes stiction,nor the Stribeck e?ect,since it simply adds a lag in the changes of the friction forces as velocity changes.

The widely used LuGre friction model,proposed for the?rst time in[5],is complete from this point of view, since it includes also these e?ects,describing the behavior of the friction force as:

˙z=v?

|v|

g(v)

σ0z(4a)

F=σ0z+σ1˙z+f(v)(4b) where z is an internal state variable as in(3),σ0and σ1are model parameters assumed to be constant,and functions g(v)and f(v)model the Stribeck e?ect and the viscous friction,respectively.For constant velocity, the steady-state friction force is then given by:

F ss=g(v)sgn(v)+f(v)(5) Di?erent parameterizations are possible for g(v)and f(v):the most used choices are those leading to an expression for the steady-state friction similar to(2). Details about them and about the identi?cation pro-cedure for the LuGre model can be found in[15].It must be underlined that the identi?cation of a friction dynamic model like the LuGre one always presents some peculiar di?culties,related to di?erent aspects,such as the impossibility to directly measure the internal state z, the high sensitivity of the stick-slip motions to the values of the dynamic parameters(i.e.σ0andσ1for the LuGre model),and the necessity of high precision sensors to correctly capture the phenomena of the pre-sliding phase. Even if the LuGre model is often used for control,it does not represent the?nal solution from the modelling point of view,since it does not take into account possible hysteresis e?ects.Alternative friction models,including also hysteresis e?ects at low velocity,have been proposed and discussed e.g.in[8],[9],and[11],whereas updates to the LuGre model have been proposed in[10]to avoid nonphysical drift phenomena in the presliding phase. More recently,single and multistate integral friction models have been proposed in[12],to account for the hysteresis behavior with non local memory.

III.Control strategies for friction

compensation

Several solutions have been proposed to compensate for friction in robotics,considering di?erent kinds of fric-tion phenomena,and hence di?erent models to represent it,and various strategies to eliminate or satisfactorily reduce its undesirable e?ects on the robot motion.In practice the choice of a particular solution is strongly in?uenced by factors like the available actuators,sensors, and hardware/software control architecture,as well as by constraints on the real-time computational burden. It can be useful then to analyze the various friction compensation techniques classifying them according to the adopted kind of control strategy,thus recognizing the following four main types of solutions.

A)A‘?xed’friction compensation term is added to a

more general control scheme,like a joint indepen-dent one or an inverse dynamics control scheme[18], by estimating the friction parameters o?-line,on the basis of an assigned(more or less complicated) friction model,following proper,ad hoc identi?ca-tion procedures[17],[22],[23].If a dynamic friction model is considered,an observer is inserted to esti-mate the friction internal state[24],[25].A further correction or a robust control action can be possibly added to the a priori estimated compensation term

[1],[5],[14],[27],[28].

B)Only some main characteristics of the friction phe-

nomena(e.g.the maximum stick component)are taken into account for compensation within the con-trol scheme.The estimates of the required friction characteristics are determined o?-line,whereas the on-line compensation action is tuned on the basis of such estimates[29]-[31].

C)Model-based adaptive algorithms are applied for

on-line friction compensation[15],[34]-[39].The adaptive schemes are based on a particular,static or dynamic,friction model,whose parameters are tuned on-line to obtain a satisfying compensation action also when signi?cant variations are present.

D)Strategies that are not based on a particular friction

model can be applied to counteract the friction e?ects,by properly choosing the control gain param-eters or by using non model-based observers[40]-

[43].

Another group of friction compensation techniques takes advantage of the so-called soft computing approach, using fuzzy,neural,and genetic algorithms to reconstruct the friction torques to be compensated or for a suitable self-tuning of the controller gains(see e.g.[19]-[21]). These approaches will not be reviewed in detail in the present paper for space reasons.

Each type of control solution has advantages and drawbacks that cannot be ignored.Solutions of type A),especially if based on static friction models,are

the‘cheapest’to be implemented in practice,since the required on-line computational burden is limited(a feed-forward compensation term could be possibly used,if necessary,in the static case using the reference posi-tion/velocity values instead of the current ones),but they require an accurate friction identi?cation phase(possibly with high-precision sensors),and they cannot,obviously, account for friction variations.Solutions B)could o?er some more robustness features,but a correct tuning of the compensation action is crucial to avoid limit cycles, and to obtain an accurate?nal positioning.Solutions C) often require a signi?cant on-line computational burden, and high-precision sensors when dynamic friction models are considered.Besides,only some of the friction param-eters can be easily updated on-line,as it will be discussed in Section III-C.In the control solutions of type D), the friction e?ects are often estimated and compensated only together with other disturbances acting on the robot motion,so that the actual control performances could signi?cantly vary in practice for di?erent trajectories and/or be satisfying only if high control values can be sustained by the considered robotic system.

It is then evident that none of these types of control solutions is superior to the others,in every case.Some control schemes proposed in literature,and regrouped according to the above classi?cation,are discussed in the following,to analyze with more details their main characteristics.

A.Fixed friction compensation techniques Satisfactory results can be obtained by adding a ‘?xed’friction compensation term to standard control algorithms,if a good o?-line estimate of the friction parameters has been performed,provided that friction variations with time,temperature,etc.are negligible.

It is quite obvious that the friction model used to de?ne the compensation term must be su?ciently accu-rate:compensation terms based on the pure Coulomb +viscous friction model(1)cannot provide accurate tracking and positioning results,as shown e.g.in[22], where this kind of solution is compared with friction compensation performed on the basis of the nonlinear, static model(2)in the case of a simple servomechanism. As expected,the best results are obtained when the second kind of compensation term is added to a model-based control algorithm,also thanks to a scrupulous identi?cation of the friction model parameters,aimed at the avoidance of limit cycles generation.

More recently,another compensation solution based on the same kind of discontinuous,static friction model has been proposed in[23],where an observer-based compensation scheme is developed by estimating again the parameters of the friction model o?-line.A lin-ear observer reconstructs the system states(i.e.,joint position and velocity in the robotic case),whereas a nonlinear friction compensation term,de?ned by using the identi?ed friction model and the estimated velocity,is added to a standard observer-based state feedback control.Good performances can be obtained by a proper tuning of the controller and the observer gains,if the presliding friction dynamics is actually negligible.

A di?erent kind of static,a priori estimated friction compensation solution is proposed in[17]for a three revolute joints robot,on the basis of the following three-sigmoid-function friction model:

τf

i

=

3

k=1

f i,k

1?

2

e2w i,k˙q i+1

+b i˙q i,i=1,2,3(6)

whereτf

i

is the friction torque acting on the i-th joint,˙q i is the i-th joint velocity,and f i,k,w i,k and b i are the parameters that de?ne the friction model.It is important to note that model(6)does not capture the static friction

component,sinceτf

i

=0at˙q i=0:its compensation then cannot be performed by the model-based term but only via an integral control action.The results obtained in a hand-writing task by a complete inverse dynamics control scheme with friction compensation are extremely good.

If the dynamic friction e?ects in the presliding phase cannot be neglected,the compensation term must be de-?ned on the basis of a dynamic model,with the insertion of an observer for the friction internal state estimation,as in[24],[25],where the Dahl model(3)is considered,with the addition of a viscous friction term,to compensate friction within velocity control schemes.In particular,in [24]an inverse dynamics control scheme and a PD-like algorithm(given by a nonadaptive version of the motion controller proposed in[26])are applied to a two dof direct-drive robot arm,comparing the results obtained by a pure Coulomb+viscous friction compensation with those provided by the Dahl model-based compensation. As expected,the second friction compensation solution gives the best results with both controllers,while the PD algorithm provides better performances with respect to the inverse dynamics scheme,when the same friction compensation term is inserted,perhaps because of a higher sensitivity of the last controller to model and parameter estimation errors.

Since in practice it is not always possible to obtain a su?ciently accurate friction description to be used for a pure?xed compensation,some kind of on-line correction action is added to the compensation provided by the o?-line estimated friction model to obtain better control performances,thus getting to schemes that lie between types A)and C).In[27],the Coulomb and viscous friction parameters are estimated o?-line,whereas the nonlinear,Stribeck e?ects are compensated within a sliding model control scheme by means of a disturbance observer;only an upper bound of the Stribeck term is required for the implementation of such a controller. It is important to note that the estimated disturbance term is not necessarily given by friction only,even if its e?ects are certainly dominant in the low velocity region.A nonlinear H∞-controller is proposed in[14], where friction is supposed to be described by the Dahl friction model,assuming that its parameters are known

(i.e.identi?ed o?-line),while the discrepancies between the actual friction and the estimated one are overcome by the robustness properties of the approach.

The control solution proposed in [5]is constituted by a linear position or velocity controller +a friction compensation term,estimated according to the LuGre friction dynamic model (4)with the insertion of an ‘observer’term,proportional to the tracking error in

(4a),thus obtaining an estimate of the friction force ?F

as:

˙?z =v ?|v |g (v )

σ0?z ?Ke (7a)

?F =σ0?z +σ1˙?z +βv (7b)where e is the tracking error,K is the observer gain,

and f (v )=βv has been considered in (4b).A similar approach for friction compensation on robot joints has been considered in [1],together with a PD algorithm with gravity compensation;an interesting discussion is developed by the authors about the friction identi?cation problems for a 2dof micro-manipulator and a 4dof macro-manipulator,showing the importance of such a phase for the control performances,together with the inability of a pure static,steady-state model to describe friction beyond a certain accuracy,at least for the consid-ered manipulators.A similar compensation term is added also in [28]to an output feedback controller,by intro-ducing in (7a)a properly designed output function K (y )instead of Ke ,but no experimental results are reported to test the actual performances of such a scheme.B.Techniques based on a partial knowledge of the friction characteristics

These techniques are based on the addition of a friction compensation term to standard control algorithms,like in the previous cases,but without requiring the knowl-edge of the exact friction model.

In particular,this kind of approach,originally devel-oped in [29],introduces a speci?c nonlinear compensation term that supplements a standard PD control algorithm;asymptotic stability is guaranteed for a stick-slip friction system,provided that the upper bounds of the static friction levels are known;robustness is also assured with respect to the characteristics of the slipping force,as-sumed to lie within a piecewise linear band.The friction torque τf acting on each joint of a robot is described according to the Karnopp model [2],as the sum of the static torque τstick and the slipping torque τslip ,with:

τstick =

?

??τ+s

0<τ+

s <τc τc τ?s ≤τc ≤τ+

s τ?s τc <τ?s

<0

(8a)τslip (˙q )=τ+d (˙q )μ(˙q )+τ?

d (˙q )μ(˙q )

(8b)

where τc is the command torque,τ+s and τ?

s are the positive and negative limits of the static friction torque,τ+d (˙q )and τ?d (˙q )are the slipping torque functions for positive and negative velocities,respectively,supposed to be bounded within the ?rst and third quadrants,and μ(·)is the right-continuous Heaviside step function.

The application of a traditional PD control leads to a

steady-state position error,since all the trajectories end up within an equilibrium region in which q L ≤q ≤q H ,

with q L =?τ+s /K P <0,q H =?τ?

s /K P >0,K P being the position control gain,and assuming q r =0as reference position,for the sake of simplicity.In the nonlinear solution proposed in [29],the steady-state position error is eliminated by de?ning the command torque as τc =?K D ˙q ?τn ,with

τn =???????τ?

s 0

??τ

+

s ?q L ≤q ≤0K P q otherwise (9a)where

?q H =q H +ε,?q L =q L ?ε,ε>0?τ+s =?K P ?q L =τ+s +K P ε?τ?s =?K P ?q H =τ?s ?K P ε

(9b)

The nonlinear compensation torque τn is active only

when the joint position is between the augmented stick-ing limits ?q L ,?q H ,while the controller is essentially a PD one outside such a region.

Some modi?cations and upgrades have been proposed more recently to this technique,extending in particular its application to digital control systems,too,for which a stable limit cycle response would be induced otherwise,due to the time delay introduced by the sample-and-hold operations.In particular,in [30]an hysteresis expression has been proposed for the nonlinear compensation term τn ,introducing two nonzero constants,δL and δH ,denot-ing the bounds of the velocity-dependent dead zone (see [30]for details).Their choice is crucial to eliminate the destabilizing e?ect of the time delay:greater values im-prove the stability margin,but enlarge the error bounds,since the steady-state position will lie between δL and δH .Slight modi?cations to the method,e.g.in [31],have been proposed to try to obtain a smaller ?nal error,but the actual possibility to achieve good performances seems to be strongly related to the characteristics of the considered robotic systems and of the hardware control architecture,which in?uences the choice of δL ,δH and of the sampling time.

C.Adaptive compensation schemes

As friction characteristics vary with time,temperature and system operating conditions,the adaptive compen-sation approach seems to be the natural solution to maintain satisfying and constant control performances in the various situations.Even if the researchers interest has been devoting to this kind of approach since the beginning of the 90’s (see e.g.[32],[33]),two main problems emerge each time a complete,dynamic friction model is considered:(i )some friction parameters enter in a nonlinear way in the model,and (ii )part of the system dynamics (i.e.the internal friction state z ),that in turn depends on the unknown parameters,is not measurable.There is no global solution to a problem like this,in which system state variables and parameters of a nonlinear model should be simultaneously estimated.Leaving to the interested reader more details about each

particular adaptive algorithm that has been proposed in the last years,it is interesting to compare the di?erent approaches that has been followed to overcome the above two problems.

In[15]adaptive versions of the observer-based fric-tion compensation scheme proposed in[5],and brie?y recalled in Section III-A,are developed to cope with structured friction variations in two cases.In the?rst one, variations of the normal forces exchanged between the contact surfaces are assumed to mainly a?ect the friction static parameters,whereas the dynamic parameters are considered as invariant due to the unchanged lubricant characteristics,and possible variations of the viscous coe?cientβare directly dealt with the linear controller. In the second case,temperature variations are assumed to uniformly a?ect both static and dynamic friction pa-rameters.The resulting parameter uncertainties in both cases are captured by a unique variable parameterθ,by rewriting model(4)with f(v)=βv as follows:

Case1):?

?

?

˙z=v?θ

|v|

g(v)

σ0z

F=σ0z+σ1˙z+βv

(10)

Case2):?

?

?

˙z=v?

|v|

σ0z

F=θ(σ0z+σ1˙z+βv)

(11)

where parametersσ0,σ1,βand function g(v)are sup-posed to be known,i.e.a priori identi?ed,andθis updated on-line,according to a proper adaptation law (see[15]for details and for some experimental results). This kind of approach has been upgraded in[34],where three di?erent observers are developed for the estimation of the unmeasurable friction state,in order to relax the conditions required in[5],and hence to facilitate the use of di?erent control loops.On the basis of such observers,two adaptive controllers are proposed:the ?rst one compensates for all the mechanical parameters variations,except for the parameters associated to the Stribeck e?ect(i.e.the parameters of function g(v)in (4a));the second one compensates for only a single parameter associated with normal force variations in the Stribeck e?ect function,following the same approach of case1)in[15],but utilizing a nonlinear?lter structure that allows an active compensation for the observer transient.Experimental results are available only in a 1-dof case,given by a switched reluctance motor,with a metal disk attached to the rotor.

An interesting comparison of di?erent static and dy-namic friction compensation techniques,including adap-tive algorithms,is presented in[35],in the case of a two-dof planar manipulator,showing in particular the di?erent performances that can be obtained by using (i)a pure computed torque scheme,(ii)the adaptive controller developed in[26]without friction compensa-tion,the same kind of adaptive control scheme with(iii) static or(iv)dynamic friction compensation.In the static friction case,only the Coulomb and viscous components are considered and directly included in the adaptive law, since they enter linearly in the model,and similarly,in the dynamic friction case,only the parameters that lin-early enter in equation(4b)are included in the adaption law,while the parameters de?ning function g(v)in(4a) are a priori identi?ed,and an observer is inserted for the estimation of z and˙z.This last solution gives the best results,as expected,thanks also to the available high-precision resolver.

All the considered adaptive algorithms,based on dy-namic friction models,result in compromises between the necessity of estimating the unmeasurable part of the friction dynamics and of updating on-line the friction parameters,typically disregarding the nonlinear param-eters related to the Stribeck e?ect in the adaptation law.If a static model is considered to represent friction, nonlinear adaptive control schemes can be developed, taking into account also the variations of the Stribeck e?ect parameters,as in[36],where friction is modelled as:

F(v)=

F c+F s e(?Fτv2)

sat(v)(12) where the sat(·)function can be de?ned as the standard, discontinuous signum function(see[36]for details).In particular,one of the two control schemes that are proposed is given by an adaptive set-point controller(i.e. performing only regulation tasks),which compensates for the uncertainty associated with all the friction parame-ters.In particular,the stiction and Stribeck parameters F s and Fτare updated by laws of the following types:

˙ F

s

=?γ0v sat(v)e(? Fτv2)(13a)

˙ F

τ=γ1v

3sat(v)e(? Fτv2)(13b) whereγ0andγ1are positive,constant gains.Experimen-tal results are shown for the same setup used in[34]. The tracking problem has been addressed in[37], where a general framework of adaptive control is pro-posed to compensate for uncertain nonlinear parame-ters appearing in robot dynamic model,assuming that friction is described by the static,nonlinear model(2) withδs=2.The resulting adaptive controller,applicable under Lipschitzian conditions,incorporates observers of minimum dimension,independently of the dimension of the unknown parameter vector.In particular,the applicability of the proposed controller is guaranteed by the possibility of decomposing the friction force(2) into a linear part F L(v)and a nonlinear one F N(v)as F(v)=F L(v)+F N(v),with

F L(v)=F c sgn(v)+βv(14a)

F N(v)=(F s?F c)e?(v2/v2s)sgn(v)(14b) where F N(v)can be rewritten as the product of two Lipschitzian functions in the parameter vectorθ= [θ1θ2]T:=

(F s?F c)1/v2s

T

as:

F N(v)=g(v,θ)h(v,θ)(15) with g(v,θ)=[10]θand h(v,θ)=e?(v2θ2)sgn(v).De-tails about the adaptive controller can be found directly in[37],together with some experimental results for a two-dof planar manipulator.

In[38],[39],a decomposition-based friction compensa-tion method is proposed,designing a separate compen-sator for each type of friction,utilizing di?erent control techniques.Friction is described by the static model(12) with the addition of the viscous component and a further term that takes into account the position dependency of friction and other modelling errors.The Stribeck term is linearized at the nominal parameter values F s and Fτ, so that all the friction parameters appear linearly in the linearized model,and adaptive control and robust control techniques can be easily applied.In particular,while the nominal friction is compensated by feedforward(on the basis of o?-line estimates),an adaptive compensator is designed to compensate for parametric unmodelled friction with unknown but constant parameters,and a robust compensator is used to deal with friction model parameter variations,as well as non-parametric unmod-elled friction.

Finally,it is worth to be noted how an adaptive friction compensation law has been successfully utilized in[13]in some hybrid force/velocity contour tracking tests,by using a polynomial friction model of properly high degree:the advantage of this solution is given by the fact that the friction parameters,i.e.the polynomial coe?cients,enter linearly in the model,and hence update laws can be easily designed for their on-line adaptation.

D.Non model-based compensation schemes and neural-fuzzy techniques

The friction compensation action of non-model based control schemes is generally accomplished by proper choices of the gains of standard control algorithms.Since the beginning of the90’s,the properness of using in-tegral control actions has been repetitively discussed, since although a conventional integral term eliminates the steady-state positioning error,it could produce limit cycles about a set-point for stick-slip systems.Varying integral actions must then be applied.An interesting experimental comparison of di?erent control schemes, including also some classic integral-based techniques(a rate-varying integral algorithm and a reset-o?integral law)can be found in[40],showing that satisfying results can be actually obtained in practice.More recently,the importance of the integral action has been put in evi-dence in[11],where the precision-limit positioning(PLP) is experimentally obtained for a direct-drive DC motor by using di?erent PI or PID controllers(with di?erent control gains)in the stick and slip phases;in particular a large integral action,that could not be applied in the slip phase(otherwise the system would become unstable) is used in the?nal positioning stage to achieve PLP. An integral-based solution has been developed also in [41]for a parallel manipulator with unknown Coulomb friction;the proposed control law is composed of a position PD controller and a reversed position error integral controller,given by a nonlinear control input u Irev de?ned as:

u Irev=K I sgn(v)

t

0e(τ)sgn(v(τ))dτ(16)

where K I is the integral control gain and e(t)is the

tracking error.A correct compensation action is based on

the fact that the sign of the integrated output is reversed

each time the sign of the velocity v changes,and the

integral controller consequently restarts.

A nonlinear proportional-integral-derivative(NPID)

control has been designed and experimentally imple-

mented in[42],showing the possibility to compensate

friction e?ects and improve tracking accuracy by apply-

ing a state feedback NPID control law with time-varying

state feedback gains,properly switching between higher

and lower values according to the system conditions.

All these solutions,which are not based on a particular

friction model,obviously lead to compensation actions

that include not only friction,but also all the other

disturbances acting on the system.This consideration

is at the basis of the control scheme proposed in[43],

where the problem of friction compensation is solved by

means of a nonlinear disturbance observer for robotic

manipulators,where friction is considered as a distur-

bance on the control torque,similar to other unknown

torques,without using a speci?c friction model.Even

if the stability properties of the controlled system are

analytically proven under the assumption that the dis-

turbance term varies slowly with respect to the observer

dynamics(thus assuming it as practically constant),the

reported simulated and experimental results show that

also some fast varying disturbances can be tracked by

the observer.

Finally,various control schemes(that are not discussed

in detail in this paper)have been proposed in literature

to compensate for friction e?ects by using genetic,neural

and fuzzy techniques.Such methods are used to ensure

stability properties of the controlled system by means

of a fuzzy self-tuning of the controller gains as in[19],

or to generate the shapes of the applied torque pulses,

to achieve a high positioning accuracy for stick-slip sys-

tems as in[21],or again to approximate the unknown

dynamics by fuzzy logic systems,thus obtaining a signal

to compensate for both structured and unstructured

uncertainties as in[20].

IV.Some experimental results and conclusions

In our opinion,no method among the reviewed ones

can be considered as intrinsically superior to the oth-

ers.The choice of a particular friction compensation

technique must be made taking into account the char-

acteristics of the considered robotic systems and of its

hardware/software control architecture,since practical

implementation issues,as sensors accuracy,actuators

characteristics,and real-time constraints,can discourage

the application of a certain method,or deeply in?uence

the achieved results.Hence,an experimental comparison

of the main friction techniques in the case of a particular

robot would be interesting,but it would not lead anyway

to a?nal judgement.

Some experimental results,obtained for a two-dof

planar manipulator with standard resolution resolvers,

are reported to underline two further important issues,

which are not strictly related to a particular friction

compensation method:(i )model-based techniques are suitable only if there is a good correspondence between the assumed and the actual friction model for the speci?c task to be performed;(ii )signi?cantly di?erent perfor-mances can be achieved by a certain friction compen-sation approach when di?erent tasks or trajectories are executed;in these cases,an average performance method might preferable to those providing an high accuracy only in speci?c conditions.

The considered two revolute-joint planar manipulator,moving in an horizontal plane,is actuated by direct-drive (i.e.without reduction gears)brushless motors,and it is equipped by resolvers,having a standard resolution of 8·10?5rad (more details can be found in [44]).Its dynamic model can be expressed as:

D d (q,˙q,¨q )θd +τf (˙q )=τc

(17)

where q,˙q ,and ¨q are the vectors of joint angles,an-gular velocities and angular accelerations,respectively,

τf (˙q )is the friction torque vector,τc is the command torque vector,while the contributions of the inertial,centrifugal and Coriolis torques are regrouped in the term D d (q,˙q,¨q )θd that is linear with respect to the vector of the identi?able inertial parameters θd [45].

The following inverse dynamics control law has been applied:

τc =D d (q,˙q,¨q r ?v c )?θd +?τf (˙q ),(18)where ¨q r is the reference acceleration vector,?θ

d and ?τf (˙q )ar

e estimates o

f the inertial parameter vector θd and of the friction torques τf (˙q ),respectively.The term v c represents the command vector of the outer loop,obtained by a standard PID control algorithm,identical in all the tests.In the ?rst implemented solution (denoted as C.I),the available nominal values of the inertial

parameters have been used to de?ne ?θd ,while ?τf (˙q )has

been de?ned according to the static,steady-state LuGre friction model (5),with:

g i (˙q i )= α0i +α1i e ?

˙

q i

ωs,i 2 sgn(˙q i )(19)

f (˙q i )=α2i ˙q

i (20)

The friction parameters have been identi?ed o?-line,

moving the joints at constant velocity values by means of a PD joint-independent control law;a new improved prototyping architecture has allowed a better ?tting of these simpler functions g i (˙q i )and f (˙q i )than that obtained in previous papers [16]and [46]with more complex expressions.In the second implemented solu-tion (denoted as C.II),friction on each joint has been described by a third-order polynomial function,whose coe?cients have been identi?ed o?-line together with the robot inertial parameters by a Least-Squares algorithm,collecting data during the execution of an “optimal”trajectory,according to the method developed in [45](more details can be found in [16]).The di?erences between the so-identi?ed inertial parameters and their nominal values are extremely small [16],so that the di?erent control performances of C.I and C.II are mainly due to the di?erent friction compensation solutions.

The same circular trajectory has been tracked twice for each of the two control solutions:in the ?rst case (LV)with low joint velocities (less than 2rad/s),and in the second case (HV)with high joint velocities (values greater than 4rad/s).As shown in Figure 1,while in the LV test the LuGre static compensation gives the best tracking accuracy,in the HV test the best results are achieved by the polynomial friction function.The accu-

https://www.sodocs.net/doc/6816655231.html,parison of the experimental results:reference (dashed line)and tracked (solid line)trajectory with C.I and C.II in the LV and HV tests.

rate friction model used in C.I has led to the best results at the low velocities range of the LV test,i.e.where friction is the main disturbance acting on the robot,and it is well described by such a model.On the contrary,in the high-velocity range of the HV test,the polynomial model seems to better capture the behavior of the ?τf (˙q )term,considered as friction but that can actually contain also other dynamic disturbances.From the control point of view then,the polynomial friction model could be preferable,since the quality of the achieved tracking results are comparable in the two tests:the rms value of the Cartesian tracking error with the polynomial C.II solution is 1.8mm in the LV test and 2.9mm in the HV one (while the maximum error values are 3.2mm and 4.9mm,respectively),whereas with the C.I solution the rms value passes from 0.5mm to 3.5mm,and the maximum one from 1.0mm to 5.9mm.Similar results have been obtained also by a feedforward compensation,i.e.,when the reference joint position and velocity values have been used,instead of the current ones,in the inner loop of the inverse dynamics control scheme and in the friction compensation term,with a signi?cantly reduced on-line computational burden.

References

[1]M.Kermani,M.Wong,R.Patel,M.Moallem,and M.Osto-jic,“Friction compensation in low and high-reversal-velocity manipulators,”in Proc.ICRA ’04,2004IEEE Int.Conf.on Robotics and Automation ,vol.5,2004,pp.4320–4325.

[2] D.Karnopp,“Computer simulation of stick-slip friction in

mechanical systems,”J.Of Dynamic Systems Measurement and Control ,vol.107,no.1,pp.100–103,1985.

[3] B.Armstrong-H′e louvry,Control of Machines with Friction.

Boston:Kluwer Academic Publisher,1991.

[4] B.Armstrong-H′e louvry,P.Dupont,and C.C.de Wit,“A

survey of models,analysis tools and compensation methods for the control of machines with friction,”Automatica,vol.30, no.7,pp.1083–1138,1994.

[5] C.Canudas de Wit,H.Olsson,K.?A str¨o m,and P.Lischinsky,

“A new model for control of systems with friction,”IEEE Trans.on Automatic Control,vol.40,no.3,pp.419–425,1995.

[6]H.Olsson,K.?A str¨o m,C.Canudas de Wit,M.G¨a fvert,and

P.Lischinsky,“Friction models and friction compensation,”

European Journal of Control,vol.4,pp.176–195,1998. [7]R.Hensen,G.Angelis,M.van de Molengraft,A.de Jager,

and J.Kok,“Grey-box modelling of friction:An experimental case study,”European Journal of Control,vol.6,no.3,pp.

258–267,2000.

[8]J.Swevers,F.Al-Bender,C.Ganseman,and T.Prajogo,“An

integrated friction model structure with improved presliding behaviour for accurate friction compensation,”IEEE Trans.

on Automatic Control,vol.45,no.4,pp.675–686,2000. [9]https://www.sodocs.net/doc/6816655231.html,mpaert,J.Swevers,and F.Al-Bender,“Modi?cation of

the leuven integrated friction model structure,”IEEE Trans.

on Automatic Control,vol.47,no.4,pp.683–687,2002. [10]P.Dupont,V.Hayward, B.Armstrong,and F.Altpeter,

“Single state elasto-plastic friction models,”IEEE Trans.on Automatic Control,vol.47,no.5,pp.787–792,2002.

[11]T.-Y.Lin,Y.-C.Pan,and C.Hsieh,“Precision-limit posi-

tioning of direct drive systems with the existence of friction,”

Control Engineering Practice,vol.11,pp.233–244,2003. [12]G.Ferretti,G.Magnani,and P.Rocco,“Single and multistate

integral friction models,”IEEE Trans.on Automatic Control, vol.49,no.12,pp.2292–2297,2004.

[13] F.Jatta,R.Adamini,A.Visioli,and G.Legnani,“Hybrid

force/velocity robot contour tracking:an experimental anal-ysis of friction compensation strategies,”in Proc.ICRA’02, IEEE Int.Conf.on Robotics and Automation,vol.2,2002,pp.

1723–1728.

[14]L.Aguilar,Y.Orlov,and L.Acho,“Nonlinear H∞-control of

nonsmooth time-varying systems with application to friction mechanical manipulators,”Automatica,vol.39,pp.1531–1542,2003.

[15] C.Canudas de Wit and P.Lischinsky,“Adaptive friction

compensation with partially known dynamic friction model,”

Int.J.of Adaptive Control and Signal Processing,vol.11,pp.

65–80,1997.

[16] B.Bona,M.Indri,and N.Smaldone,“Nonlinear friction

estimation for digital control of direct-drive manipulators,”in Proc.European Control Conf.(ECC’03),2003.

[17] D.Kosti′c,B.de Jager,M.Steinbuch,and R.Hensen,“Mod-

eling and identi?cation for high-performance robot control: An RRR-robotic arm case study,”IEEE Trans.on Control Systems Technology,vol.12,no.6,pp.904–919,2004. [18]L.Sciavicco and B.Siciliano,Modelling and Control of Robot

Manipulators,2nd ed.Berlin Heidelberg New York:Springer, 2000.

[19]M.A.Llama,R.Kelly,and V.Santiba?n ez,“Stable computed-

torque control of robot manipulators via fuzzy self-tuning,”

IEEE Trans.on Systems,Man,and Cybernetics-Part B, vol.30,no.1,pp.143–150,2000.

[20] D.V′e lez-D′iaz and Y.Tang,“Adaptive robust fuzzy control

of nonlinear systems,”IEEE Trans.on Systems,Man,and Cybernetics-Part B,vol.34,no.3,pp.1596–1601,2004. [21]M.R.Popovi′c, D.M.Gorinevsky,and A. A.Goldenberg,

“High-precision positioning of a mechanism with nonlinear friction using a fuzzy logic pulse controller,”IEEE Trans.on Control Systems Technology,vol.8,no.1,pp.151–158,2000.

[22] E.Papadopoulos and G.Chasparis,“Analysis and model-

based control of servomechanisms with friction,”in Proc.

IEEE/RSJ Int.Conf.on Intelligent Robots and System,vol.3, 2002,pp.2109–2114.

[23] D.Putra,L.Moreau,and H.Nijmeijer,“Observer-based com-

pensation of discontinuous friction,”in Proc.43rd IEEE Conf.

on Decision and Control,2004,pp.4940–4945.

[24]J.Moreno,R.Kelly,and R.Campa,“Manipulator velocity

control using friction compensation,”IEE Proceedings-Con-trol Theory Appl.,vol.150,no.2,pp.119–126,2003.

[25]J.Moreno and R.Kelly,“Manipulator velocity?eld control

with dynamic friction compensation,”in Proc.42nd IEEE Conf.on Decision and Control,vol.4,2003,pp.3834–3839.[26]J.-J.Slotine and W.Li,“Adaptive manipulator control:A case

study,”IEEE Trans.on Automatic Control,vol.33,no.11,pp.

995–1003,1988.

[27]S.-K.Chung,H.Imayoshi,T.Hanamoto,and T.Tsuji,“Im-

plementation of frictionless robot manipulator using observer-based sliding mode control,”in Proc.26th Annual Conf.of the IEEE Industrial Electronics Society,IECON2000,vol.1, 2000,pp.578–583.

[28] A.Shiriaev,A.Robertsson,and R.Johansson,“Friction com-

pensation for passive systems based on the lugre model,”in Proc.2nd IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control,Seville,Spain,April2003,pp.

183–188.

[29]S.Southward,C.Radcli?e,and C.MacCluer,“Robust non-

linear stick-slip friction compensation,”ASME Journal of Dynamic Systems,Measurement and Control,vol.113,no.4, pp.639–645,1991.

[30]M.S.Kang,“Robust digital friction compensation,”Control

Engineering Practice,vol.6,pp.359–367,1998.

[31]Z.-Q.Mei,Y.-C.Xue,G.-L.Zhang,and T.-X.Mao,“The

nonlinear friction compensation in the trajectory tracking of robot,”in Proc.2003Int.Conf.on Machine Learning and Cybernetics,vol.4,2003,pp.2457–2462.

[32] C.Canudas de Wit,P.No¨e l, A.Aubin,and B.Brogliato,

“Adaptive friction compensation in robot manipulators:Low velocities,”Int.J.of Robotic Research,vol.10,no.3,pp.189–199,1991.

[33] B.Friedland and Y.-J.Park,“On adaptive friction compensa-

tion,”IEEE Trans.on Automatic Control,vol.37,no.10,pp.

1609–1612,1992.

[34]P.Vedagarbha, D.Dawson,and M.Feemster,“Tracking

control of mechanical systems in the presence of nonlinear dynamic friction e?ects,”IEEE Trans.on Control System Technology,vol.7,no.4,pp.446–456,1999.

[35]Y.Zhu and P.Pagilla,“Static and dynamic friction compen-

sation in trajectory tracking control of robots,”in Proc.ICRA ’02IEEE Int.Conf.on Robotics and Automation,2002,pp.

2644–2649.

[36]M.Feemster,P.Vedagarbha, D.Dawson,and D.Haste,

“Adaptive control techniques for friction compensation,”

Mechatronics,vol.9,pp.125–145,1999.

[37]N.Hung,H.Tuan,T.Narikiyo,and P.Apkarian,“Adaptive

controls for nonlinearly parameterized uncertainties in robot manipulators,”in Proc.41st IEEE Conf.on Decision and Control,vol.2,2002,pp.1727–1732.

[38]G.Liu,“Decomposition-based friction compensation of me-

chanical systems,”Mechatronics,vol.12,pp.755–769,2002.

[39]G.Liu,A.Goldenberg,and Y.Zhang,“Precise slow motion

control of a direct-drive robot arm with velocity estimation and friction compensation,”Mechatronics,vol.14,pp.821–834,2004.

[40]P.Tataryn,N.Sepehri,and D.Strong,“Experimental com-

parison of some compensation techniques for the control of manipulators with stick-slip friction,”Control Engineering Practice,vol.4,no.9,pp.1209–1219,1996.

[41]J.-H.Ryu,J.Song,and D.-S.Kwon,“A nonlinear friction

compensation method using adaptive control and its practical application to an in-parallel actuated6-dof manipulator,”

Control Engineering Practice,vol.9,pp.159–167,2001. [42] B.Armstrong,D.Neevel,and T.Kusik,“New results in NPID

control:Tracking,integral control,friction compensation and experimental results,”IEEE Trans.on Control Systems Tech-nology,vol.9,no.2,pp.399–406,2001.

[43]W.-H.Chen,D.J.Ballance,P.J.Gawthrop,and J.O’Reilly,

“A nonlinear disturbance observer for robotic manipulators,”

IEEE Trans.on Industrial Electronics,vol.47,no.4,pp.932–938,August2000.

[44] B.Bona,M.Indri,and N.Smaldone,“An experimental setup

for modelling,simulation and fast prototyping of mechanical arms,”in Proc.IEEE Conf.on Computer-Aided Control Sys-tems Design,2002,pp.207–212.

[45]G.Cala?ore,M.Indri,and B.Bona,“Robot dynamic cal-

ibration:Optimal excitation trajectories and experimental parameter estimation,”J.of Robotic Systems,vol.18,no.2, pp.55–68,2001.

[46] B.Bona,M.Indri,and N.Smaldone,“Nonlinear friction

phenomena in direct-drive robotic arms:An experimental set-up for rapid modelling and control prototyping,”in Proc.7th IFAC2003Symposium on Robot Control,2003,pp.59–64.

机器人控制器的现状及展望概要

机器人控制器的现状及展望 摘要机器人控制器是影响机器人性能的关键部分之一, 它从一定程度上影响着机器人的发展。本文介绍了目前机器人控制器的现状, 分析了它们各自的优点和不足, 探讨了机器人控制器的发展方向和要着重解决的问题。 1引言 从世界上第一台遥控机械手的诞生至今已有 50年了,在这短短的几年里,伴随着计算机、自动控制理论的发展和工业生产的需要及相关技术的进步,机器人的发展已经历了 3代:(1 可编程的示教再现型机器人; (2 基于传感器控制具有一定自主能力的机器人; (3 智能机器人。作为机器人的核心部分, 机器人控制器是影响机器人性能的关键部分之一。它从一定程度上影响着机器人的发展。目前,由于人工智能、计算机科学、传感器技术及其它相关学科的长足进步, 使得机器人的研究在高水平上进行, 同时也为机器人控制器的性能提出更高的要求。 对于不同类型的机器人, 如有腿的步行机器人与关节型工业机器人, 控制系统的综合方法有较大差别,控制器的设计方案也不一样。本文仅讨论工业机器人控制器问题。 2机器人控制器类型 机器人控制器是根据指令以及传感信息控制机器人完成一定的动作或作业任务的装置, 它是机器人的心脏,决定了机器人性能的优劣。 从机器人控制算法的处理方式来看,可分为串行、并行两种结构类型。 2.1串行处理结构 所谓的串行处理结构是指机器人的控制算法是由串行机来处理。对于这种类型的控制器, 从计算机结构、控制方式来划分,又可分为以下几种。 (1单 CPU 结构、集中控制方式

用一台功能较强的计算机实现全部控制功能。在早期的机器人中, 如 Hero-I, Robot-I等, 就采用这种结构, 但控制过程中需要许多计算 (如坐标变换 , 因此这种控制结构速度较慢。 (2二级 CPU 结构、主从式控制方式 一级 CPU 为主机,担当系统管理、机器人语言编译和人机接口功能,同时也利用它的运算能力完成坐标变换、轨迹插补, 并定时地把运算结果作为关节运动的增量送到公用内存, 供二级 CPU 读取;二级 CPU 完成全部关节位置数字控制。 这类系统的两个 CPU 总线之间基本没有联系,仅通过公用内存交换数据,是一个松耦合的关系。对采用更多的 CPU 进一步分散功能是很困难的。日本于 70年代生产的 Motoman 机器人(5关节,直流电机驱动的计算机系统就属于这种主从式结构。 (3多 CPU 结构、分布式控制方式 目前, 普遍采用这种上、下位机二级分布式结构, 上位机负责整个系统管理以及运动学计算、轨迹规划等。下位机由多 CPU 组成,每个 CPU 控制一个关节运动,这些 CPU 和主控机联系是通过总线形式的紧耦合。这种结构的控制器工作速度和控制性能明显提高。但这些多 CPU 系统共有的特征都是针对具体问题而采用的功能分布式结构,即每个处理器承担固定任务。目前世界上大多数商品化机器人控制器都是这种结构。 控制器计算机控制系统中的位置控制部分,几乎无例外地采用数字式位置控制。 以上几种类型的控制器都是采用串行机来计算机器人控制算法。它们存在一个共同的弱点:计算负担重、实时性差。所以大多采用离线规划和前馈补偿解耦等方法来减轻实时控制 中的计算负担。当机器人在运行中受到干扰时其性能将受到影响, 更难以保证高速运动中所要求的精度指标。

(完整版)工业机器人文献综述

工业机器人文献综述 生产力在不断进步,推动养科技的进步与革新,以建立更加合理 的生产关系。自工业革命以来,人力劳动己经逐渐被机械所取代,而这种变革为人类社会创造出巨大的财富,极大地推动了人类社会的进步时至今天,机电一体化,机械智能化等技术应运而生并己经成为时代的主旋律。 1.工业机器人的发展: 1.1 机器人概念的诞生 机器人技术一词虽然出现的较晚,但这一概念在人类的想象中却早已出现。自古以来,有不少科学家和杰出工匠都曾制造出具有人类特点或具有动物特征的机器人雏形。我国西周时期的能工巧匠就研制出了能歌善舞的伶人,这是我国最早的涉及机器人概念的文章记录,此外春秋后期鲁班制造过一只木鸟,能在空中飞行,体现了我国劳动人民的智慧。机器人一词由捷克作家--卡雷尔.恰佩克在他的讽刺剧《罗莎姆的万能机器人》中首次提出,剧中描述了一机器奴仆Robot。此次Robot被沿用下来,中文译成机器人。1942年美国科幻作家埃萨克.阿西莫夫在他的科幻小说《我.机器人》中提出了“机器人三大定律”,这三大定律后来成为学术界默认的研发原则。现代机器人出现于20世纪中期,当计算机技术出现,电子技术的进步,数控机床的出现及与机器人相关的控制技术和零件加工技术的成熟,为现代机器人的发展打下了基础。 1.2 国内机器人的发展史 在我国目前采用工业机器人的行业主要有汽车行业、摩托车、电 器、工程机械、石油化工等行业。我国作为亚洲第三大的工业机器人需求国,对于工业机器人的需求量在逐年增加,从而吸引了大批工业机器人的制造商,加快了我国工业机器人技术的发展第一阶段是20世纪80年代,我国为t跟踪国际机器人技术的道路,当时以原机械工业部为主,航天工业部等部门联合组织国内的相关研究单位开展了工业机器人的研究,先后推出了弧焊、点焊、喷漆等多种工业机器人。直到90年代,通过国家863计划等的K77,我国具备t独!)设计不}}生产工业机器人的能力,培养了一批高水平的研究生产队伍进入21世纪,中国的工业机器人发展进入t一个崭新的阶段,其中最大的特点是以企业为主体,以市场为导向、赢利为目标的机器人产业开发群体止在形成。尽管国外大的工业机器人公司为了占领中国不断扩大的市场,加大了其在中国的经销力度,但是中国的机器人企业以自己独有的市场信息优势、售前售后的服}}c势、针对中国企业的工艺特点的专门化设计优势努力争取自己的市场地位随养全球经济的一体化发展,世界制造中心向中国转移的趋势,中国工业机器人的产业会快速的发展起来,特别重要的是研制单位必须和需求紧密结合,让机器人走进工厂,实现真止的产业化。 经过20多年的探索,我国的工业机器人自动化技术取得t长足的发展,但是与世界发达国家相比,还有不小的差距;机器人应用工程起步也较晚,应用领域窄,生产线系统技术落后随养我国制造业-尤其是汽车行业的发展,对工业机器人的需求日益增长,工业机器人的拥有量远远不能满足需求量。尤其是基础零部件和元器件生产和制造、机器人可靠性以及成木等问题,都存在很多问题。尤其在大负载工业机器人方而,不仅产品长期大量依靠从国外引进,在维护、更新改造方而对国外的依赖也相当严重。 1.3国内外工业机器人的发展方向

足球机器人设计【文献综述】

文献综述 机械设计制造及其自动化 足球机器人设计 一、前言 足球运动是大家都非常喜爱的运动。让机器人来踢足球呢?听起来是天方夜谭,可是他确实存在,足球机器人诞生于20世纪末,是高科技与体育运动结合的产物,其目标是到2050年前后,在“可比”的条件下,一支智能足球机器人比赛队伍要能战胜当时的人类世界足球冠军队。这是从事智能足球机器人事业的科技工作者所面临的十分艰巨的挑战。智能足球机器人涉及计算机、自动控制、传感与感知融合、无线通讯、精密机械和仿生材料等众多学科的前沿研究与技术融合,包括动态不确定环境中的多主体合作、实时推理~规划~决策、机器人学习和策略获取等当前人工智能的热点问题。智能足球机器人系统的研究和开发是培养信息自动化科技人才的重要手段,也是展现高科技发展的生动窗口和促进科技成果实用化的一个途径。]1[ 二、国内外足球机器人发展的现状 在人工智能与机器人学历史上,1997年将作为一个转折点被记住。在1997年5月,IBM 的“深蓝”击败了人类国际象棋世界冠军,人工智能界40年的挑战终于取得了成功。在1997年7月4日,NASA的“探路者”在火星成功登陆,第一个自治机器人系统Sojourner释放在火星的表面上。与此同时,RoboCup也朝着开发能够战胜人类世界杯冠军队的智能足球机器人队走出了第一步。 足球机器人的最初想法是由加拿大不列颠哥伦比亚大学的艾伦·马克沃斯(Alan Mackworth)教授于1992年提出的。日本学者迅速对这一想法进行了系统的调研和可行性分析。1993年6月,包括浅田埝( Minoru Asada)、Yasuo Kuniyoshi和北野宏明(Hiroaki Kitano)在内的一些研究工作者决定创办一项机器人比赛,暂时命名为RoboCup J联赛。然而在一个月之内,他们就接到绝大部分是日本以外的研究工作者的反应,要求将比赛扩展成一个国际性的联合项目。由此他们就将这个项目改名为机器人世界杯赛(Robot World Cup Soccer Games,简称RoboCup)。 与此同时,一些研究人员开始将机器人足球作为研究课题。隶属于日本政府的电子技术

毕业设计(论文)机器人行走机构 文献综述

重庆理工大学 毕业设计(论文)文献综述题目机器人行走机构设计 二级学院重庆汽车学院 专业机械设计制造及其自动化班级 姓名学号 指导教师系主任 时间

评阅老师签字:

机器人行走机构 吴俊 摘要:行走机器人是机器人学中的一个重要分支。行走机构可以是轮式的、履带式的 和腿式的等,能适应地上、地下、水中、空中、宇宙等作业环境的各种移动机构。本 文从国内外的研究状况着手,介绍了行走机器人的发展历史,研究现状和发展趋势。本文还介绍了国内最新的研究成果。 关键字:机器人行走机构发展现状应用 Keyword:robot travelling mechanism developing current situation application 一,前言 行走机器人是机器人学中的一个重要分支。关于行走机器人的研究涉及许多方面,首先,要考虑移动方式,可以是轮式的、履带式的和腿式的等;其次,必须考虑 驱动器的控制,以使机器人达到期望的行为;第三,必须考虑导航或路径规划。因此,行走机器人是一个集环境感知、动态决策与规划、行为控制与执行等多种功能于一体 的综合系统。机器人的机械结构形式的选型和设计,应该根据实际需要进行。在机器 人机构方面,应当结合机器人在各个领域及各种场合的应用,开展丰富而富有创造性 的工作。对于行走机器人,研究能适应地上、地下、水中、空中、宇宙等作业环境的 各种移动机构。当前,对足式步行机器人、履带式和特种机器人研究较多,但大多数 仍处于实验阶段,而轮式移动机器人由于其控制简单,运动稳定和能源利用率高等特点,正在向实用化迅速发展,从阿波罗登月计划中的月球车到美国最近推出的NASA 行星漫游计划中的六轮采样车,从西方各国正在加紧研制的战场巡逻机器人、侦察车 到新近研制的管道清洗检测机器人,都有力地显示出行走机器人正在以其使用价值和 广阔的应用前景而成为智能机器人发展的方向之一。 二、课题国内外现状 多足步行机器人是一种具有冗余驱动、多支链、时变拓扑运动机构, 是模仿多足 动物运动形式的特种机器人, 是一种足式移动机构。所谓多足一般指四足及四足其以上, 常见的多足步行机器人包括四足步行机器人、六足步行机器人、八足步行机器人等。 步行机器人历经百年的发展, 取得了长足的进步, 归纳起来主要经历以下几个 阶段: 第一阶段, 以机械和液压控制实现运动的机器人。 第二阶段, 以电子计算机技术控制的机器人。 第三阶段, 多功能性和自主性的要求使得机器人技术进入新的发展阶段。 三、研究主要成果 国内多足步行机器人的研究成果[1]: 1991年,上海交通大学马培荪等研制出JTUWM[1]系列四足步行机器人。JTUWM-III是模仿马等四足哺乳动物的腿外形制成,每条腿有3个自由度,由直流伺服

机器视觉技术发展现状文献综述

机器视觉技术发展现状 人类认识外界信息的80%来自于视觉,而机器视觉就是用机器代替人眼来做 测量和判断,机器视觉的最终目标就是使计算机像人一样,通过视觉观察和理解 世界,具有自主适应环境的能力。作为一个新兴学科,同时也是一个交叉学科,取“信息”的人工智能系统,其特点是可提高生产的柔性和自动化程度。目前机器视觉技术已经在很多工业制造领域得到了应用,并逐渐进入我们的日常生活。 机器视觉是通过对相关的理论和技术进行研究,从而建立由图像或多维数据中获机器视觉简介 机器视觉就是用机器代替人眼来做测量和判断。机器视觉主要利用计算机来模拟人的视觉功能,再现于人类视觉有关的某些智能行为,从客观事物的图像中提取信息进行处理,并加以理解,最终用于实际检测和控制。机器视觉是一项综合技术,其包括数字处理、机械工程技术、控制、光源照明技术、光学成像、传感器技术、模拟与数字视频技术、计算机软硬件技术和人机接口技术等,这些技术相互协调才能构成一个完整的工业机器视觉系统[1]。 机器视觉强调实用性,要能适应工业现场恶劣的环境,并要有合理的性价比、通用的通讯接口、较高的容错能力和安全性、较强的通用性和可移植性。其更强调的是实时性,要求高速度和高精度,且具有非接触性、实时性、自动化和智能 高等优点,有着广泛的应用前景[1]。 一个典型的工业机器人视觉应用系统包括光源、光学成像系统、图像捕捉系统、图像采集与数字化模块、智能图像处理与决策模块以及控制执行模块。通过 CCD或CMOS摄像机将被测目标转换为图像信号,然后通过A/D转换成数字信号传送给专用的图像处理系统,并根据像素分布、亮度和颜色等信息,将其转换成数字化信息。图像系统对这些信号进行各种运算来抽取目标的特征,如面积、 数量、位置和长度等,进而根据判别的结果来控制现场的设备动作[1]。 机器视觉一般都包括下面四个过程:

机械手文献综述

燕山大学 本科毕业设计(论文)文献综述 课题名称:顺序动作机械手 学院(系):机械工程学院 年级专业:机电控制 学生姓名:杨忠合 指导教师:郑晓军 完成日期: 2014.03.25

一、课题国内外现状 目前国内机械于主要用于机床加工、铸锻、热处理等方面,数量、品种、性能方面都不能满足工业生产发展的需要。所以,在国内主要是逐步扩大应用范围,重点发展铸造、热处理方面的机械手,以减轻劳动强度,改善作业条件,在应用专用机械手的同时,相应的发展通用机械手,有条件的还要研制示教式机械手、计算机控制机械手和组合机械手等。同时要提高速度,减少冲击,正确定位,以便更好的发挥机械手的作用。此外还应大力研究伺服型、记忆再现型,以及具有触觉、视觉等性能的机械手,并考虑与计算机连用,逐步成为整个机械制造系统中的一个基本单元。 国外机械手在机械制造行业中应用较多,发展也很快。目前主要用于机床、横锻压力机的上下料,以及点焊、喷漆等作业,它可按照事先指定的作业程序来完成规定的操作。国外机械手的发展趋势是大力研制具有某种智能的机械手。使它具有一定的传感能力,能反馈外界条件的变化,作相应的变更。如位置发生稍许偏差时,即能更正并自行检测,重点是研究视觉功能和触觉功能。目前已经取得一定成绩。目前世界高端工业机械手均有高精化,高速化,多轴化,轻量化的发展趋势。定位精度可以满足微米及亚微米级要求,运行速度可以达到3M/S,量新产品达到6轴,负载2KG的产品系统总重已突破100KG。更重要的是将机械手、柔性制造系统和柔性制造单元相结合,从而根本改变目前机械制造系统的人工操作状态。同时,随着机械手的小型化和微型化,其应用领域将会突破传统的机械领域,而向着电子信息、生物技术、生命科学及航空航天等高端行业发展。 二、研究主要成果 机械手通常用作机床或其他机器的附加装置,如在自动机床或自动生产线上装卸和传递工件,在加工中心中更换刀具等,一般没有独立的控制装置。有些操作装置需要由人直接操纵,如用于原子能部门操持危险物品的主从式操作手也常称为机械手。 搬运机械手仿真设计和制作,机械手的机械结构主要包括由两个电磁阀控制的气缸来实现机械手的上升下降运动及夹紧工件的动作,两个转速不同的电动机分别通过两线圈控制电动机的正反转,从而实现小车的进退运动,并利用ADAMS 软件对搬运机械手进行建模,对其进行运动学及动力学仿真,

攀爬机器人文献综述

攀爬机器人文献综述 攀爬机器人文献综述 对攀登机器人结构点性能计算和实验的研究 摘要 本文介绍了并联攀爬机器人性能的运动学和动力学研究,从而避免结构框架上的节点。为了避免结构节点,攀爬并联机器人可以取得某种确定的动作。一系列的动作组合起来,可以方便沿着结构节点的攀登运动。必须对并联攀爬机器人的姿态予以研究,因为在其独特的配置下,姿势能够驱动机器人。此外,需要对执行机构为了避免机构节点而产生的力进行评估。因此本文的目的要表明,Stewart–Gough 并行平台能够作为攀爬机器人,与其他机器人相反,并行攀爬机器人能后轻易而优雅地避免结构节点。为了支持第一部分中描述的模拟结果,实验测试平台已经发展到围绕结构节点对并联攀爬机器人地动力性能进行研究。获得的结果非常有趣,显示了潜在的在工业中使用平行S-G机器人作为攀岩机器人的存在。 关键词:爬壁机器人、动力学、并联机器人、奇点

一简介 当需要在一些危险或者难以到达的地方执行任务时,具有在不同结构上攀爬和滑行能力的机器人是非常重要的,比如在检查和维修金属桥梁、通信天线以及深入核工业结构内部过程中使用的机器人。通常,这些类型的金属结构是由聚合在一起的杆构成,是一种联合机械,每一个都可以描述为棱柱元素变截面和尺寸的扩展。所有这些元素组合产生晶格不同的几何结构,其中结构性因素在不同点的结合称为结构节点。这类结构的尺寸和形状取决于它应用的设计。在这一类型设置中不同任务的机器人化已经被广泛地记载在文献中。在许多情况下,有人提出使用连接机构和多腿机器人来实现位移的随即移动。另外,许多这些机器人是被设计用来在墙壁或管道攀爬和工作。一些建议的解决方案在机械上是非常复杂的,需要在运动控制方面有高水平的发展和阐述。一种用来给双层底部板件焊接的机器人正在研制当中。该型机器人是由一种有选择顺应性装配机器手臂配置的四足机器组成。该机器人通过抓住加强筋移动,但由于其几何结构不能移动通过结构节点。Balaguer提出了一种能够在复杂的三维金属基结构的爬壁机器人。该机器人采用“毛毛虫“的概念来取代这些结构,并实时生成控制设计从而确保稳定的自我支持。Longo建议一个城市侦察双足机器人。这种机器人能够在表面上实现交替移动,并且小到足以穿越密闭空间。Minor and Rossman 提出了一种有腿的机器人,能够通过移动其身体从而产生推力。这些机器人的结构让它们沿着管道和梁结构,并通过内爬管道,但机器人不能够避免节点。在本篇论文中提出的机器人能够围绕结构节点移动。 对于位移和攀爬金属结构的最优解问题在理论上是基于一种原理,动力执行机构是机器人结构的一部分,直接连接到并联机器人地末端,并用一种几何技巧克服了用于微小运动时的障碍。此外,机器人要轻便,机械结构简单,具有大的载荷和高速运转能力。这些条件基本都是由并联机器人实现。基于这个原因,用一种改进的的并联机器人作为攀爬机器人完全是有可能的。 基本上,并联机器人用于攀登必须用适当的夹具系统改变两个环中的一个,并取代另一个环,并通过预先设定的位移方向实现几何构型的动作。对并联机器人而言,这个过程简单且自然。

机器人控制原理_百度文库概要

第二章机器人系统简介 2.1 机器人的运动机构(执行机构 机器人的运动机构是机器人实现对象操作及移动自身功能的载体,可以大体 分为操作手(包括臂和手和移动机构两类。对机器人的操作手而言,它应该象人的手臂那样,能把(抓持装工具的手依次伸到预定的操作位置,并保持相应的姿态,完成给定的操作;或者能够以一定速度,沿预定空间曲线移动并保持手的姿态,并在运动过程中完成预定的操作。移动机构应能将机器人移动到任意位置,并保持预定方位姿势。为此,它应能实现前进、后退、各方向的转弯等基本移动功能。在结构上它可以象人、兽、昆虫,具有二足、四足或六足的步行机构, 也可以象车或坦克那样采用轮或履带结构 2.1.1 机器人的臂结构 机器人的臂通常采用关节——连杆链形结构,它由连杆和连杆间的关节组 成。关节,又称运动副,是两个构件组成相对运动的联接。在关节的约束下,两连杆间只能有简单的相对运动。机器人中常用的关节主要有两类: (1 滑动关节 (Prismatic joint: 与关节相连的两连杆只能沿滑动轴做直 线位移运动,移动的距离是滑动关节的主要变量,滑动轴一般和杆的轴线重合或平行。 (2转动关节 (Revolute joint: 与关节相连的两连杆只能绕关节轴做相对 旋转运动,其转动角度是关节的主要变量,转动轴的方向通常与轴线重合或垂直。 杆件和关节的构成方法大致可分为两种:(1 杆件和手臂串联连接,开链机 械手 (2 杆件和手臂串联连接,闭链机械手。

以操作对象为理想刚体为例,物体的位置和姿态各需要 3 个独立变量来描 述。我们将确定物体在坐标系中位姿的独立坐标数目称为自由度(DOF (degree of freedom 。而机器人的自由度是由有关节数和每个关节所具有的自由度数决定的(每个关节可以有一个或多个自由度,通常为 1 个。机器人的自由度是独立的单独运动的数目,是表示机器人运动灵活性的尺度。(由驱动器能产生主动动作的自由度称为主动自由度,不能产生驱动力的自由度称为被动自由度。通常开链机构仅使用主动自由度机器人自由度的构成,取决于它应能保证完成与目标作业相适应的动作。分析可知,为使机器人能任意操纵物体的位姿,至少须 6DOF ,通常用三个自由度确定手的空间位置(手臂,三个自由度确定手的姿态 (手。比较而言,人的臂有七个自由度,手有二十个自由度,其中肩 3DOF ,肘 2 DOF ,碗 2DOF 。这种比 6 还多的自由度称为冗余自由度。人的臂由于有这样的冗余性,在固定手的位置和姿态的情况下,肘的位置不唯一。因此人的手臂能灵活回避障碍物。对机器人而言,冗余自由度的设置易于增强运动的灵活性,但由于存在多解,需要在约束条件下寻优,计算量和控制的难度相对增大。 典型的机器人臂结构有以下几种: (1直角坐标型 (Cartesian/rectanglar/gantry (3P 由三个线性滑动关节组成。 三个关节的滑动方向分别和直角坐标轴 x,y,z 平行。 工作空间是个立方体 (2圆柱坐标型 (cylindrical(R2P 由一个转动关节和两个滑动关节组成。 两个滑动关节分别对应于圆柱坐标的径向和垂直方向位置,一个旋 转关节对应关于圆柱轴线的转角。

文献综述

一.前言部分: 1.前言 随着科学与技术的发展, 机械手的应用领域也不断扩大.目前, 机械手不仅应 用于传统制造业如采矿,冶金,石油,化学,船舶等领域,同时也已开始扩大到核能,航空,航天,医药,生化等高科技领域以及家庭清洁,医疗康复等服务业领域中.如,水下机器人,抛光机器人,打毛刺机器人,擦玻璃机器人,高压线作业机器人,服装裁剪机器人,制衣机器人,管道机器人等特种机器人以及扫雷机器人,作战机器人,侦察机器人,哨兵机器人,排雷机器人,布雷机器人等军用机器人都是机械手应用的典型。机械手广泛应用于各行各业.而且,随着人类生活水平的提高及文化生活的日益丰富多彩,未来各种专业服务机器人和家庭用消费机器人将不断贴近人类生活,其市场将繁荣兴旺。 2.相关概念 机械手是一种模拟人手操作的自动机械。它可按固定程序抓取、搬运物件或操持工具完成某些特定操作。应用机械手可以代替人从事单调、重复或繁重的体力劳动,实现生产的机械化和自动化,代替人在有害环境下的手工操作,改善劳动条件,保证人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。 20世纪40年代后期,美国在原子能实验中,首先采用机械手搬运放射性材料,人在安全间操纵机械手进行各种操作和实验。50年代以后,机械手逐步推广到工业生产部门,用于在高温、污染严重的地方取放工件和装卸材料,也作为机床的辅助装置在自动机床、自动生产线和加工中心中应用,完成上下料或从刀库中取放刀具并按固定程序更换刀具等操作。 二.主题部分: 1.历史 它是在早期出现的古代机器人基础上发展起来的,机械手研究始于20世纪中期,随着计算机和自动化技术的发展,特别是1946年第一台数字电子计算机问世以来,计算机取得了惊人的进步,向高速度、大容量、低价格的方向发展。同时,大批量生产的迫切需求推动了自动化技术的进展,又为机器人的开发奠定了基础。另一方面,核能技术的研究要求某些操作机械代替人处理放射性物质。在这一需求背景下,美国于1947年开发了遥控机械手,1948年又开发了机械式的主从机械手。 机械手首先是从美国开始研制的。1954年美国戴沃尔最早提出了工业机器人的概念,并申请了专利。该专利的要点是借助伺服技术控制机器人的关节,利用人手对机器人进行动作示教,机器人能实现动作的记录和再现。这就是所谓的示教再现机器人。现有的机器人差不多都采用这种控制方式。1958年美国联合控制公司研制出第一台机械手铆接机器人。作为机器人产品最早的实用机型(示教再现)是1962年美

大数据下民用机器人的运用及发展的文献综述演示教学

大数据下民用机器人的运用及发展的文献综述 李论 摘要:在人工智能大热的背景下,机器人的发展也日新月异,迅速渗透到各行各业中。机器人不仅改变着人类生活方式,也是先进制造业的关键支撑装备,其研发和产业化应用是衡量一个国家科技创新、高端制造发展水平的重要标志。近年来,随着机器人逐渐走入百姓的视野和生活,一系列政策扶持及市场需求拉动,使得中国民用机器人产业飞速发展。 关键词:大数据民用机器人研究综述 一、国内外民用机器人的现状与发展 通常所说的机器人主要指的是工业机器人,不仅仅是因为工业机器人起步较早,运用领域较广,更重要的是工业机器人已经比较成熟,在很多领域都能够得到应用。服务机器人则不然,日本早在20多年前就开始涉足服务机器人的研究,为什么迟迟没有成熟的产品问世?最近一年来,服务机器人却异军突起?主要有两个原因:一是大数据、云计算、精密传感等技术取得重大突破;二是日本进入老龄化社会以后,巨大的市场刚需倒逼行业发展。 服务机器人是一种半自主或全自主工作的机器人,完成有益于人类健康的服务工作。医用机器人是具有最好应用前景的服务机器人,它能够完成或辅助完成常规医疗方法和设备难以完成的复杂诊断和手术,已在神经外科手术、胸(含心脏)外科手术、遥控外科手术、人工关节置换和无损伤检测等方面引起重大变革,极大地提高医疗水平,为病人带来福音。医疗机器人主要研究开发手术机器人及其相关先进医用技术和设备,包括开展手术规划与导航、高精度和高可靠性的定位操作医用机器人机构、灵巧微操作手(机械手)、人机交互导航控制等关键技术。医用机器人的研究开发,不仅对常规医疗带来一系列技术变革,对临床和家庭护理及康复工程的发展产生深远影响,而且将推动智能机器人、计算机、虚拟现实、微机械电子等学科的发展。除手术机器人、诊断机器人、护理机器人、康复机器人等医用机器人外,服务机器人还包括各种家用机器人、娱乐机器人、体育机器人、玩具机器人、导游机器人、保安机器人、排险机器人、清洁机器人、秘书机器人、建筑机器人、邮拾和送信机器人以及加油机器人等。随着开发研究的进一步开展和价格的大幅度下降,服务机器人将广泛进入医院、家庭、工地、办公室和体育娱乐场馆,直接与人类共处,为人类排忧解难。 过去,日本开发了许多服务机器人,特别是陪护老人、情感、娱乐、教育等领域的机器人,与老人聊天,帮助老人拿东西,帮助老人做饭倒水、照顾孩子等,由于技术不成熟,不敢推向社会。他们认为,要推出与人打交道的产品是非常谨慎的事情。如果机器人不但没有陪护好老人,反而还伤害老人,这将是巨大的社会问题。最近几年,在互联网、物联网、图像识别、语音识别等技术有了快速发展的背景下,我们过去的困难变得迎刃而解。当然,目前的服务机器人还只是一个初级阶段的产物,智能化水平比较低,还需要不断完善。1 1胡跃明,丁维中等.吸尘机器人的研究现状与展望.计算机测量与控制,2002.10(10):631—633页 2蒋新松.未来机器人技术发展方向的探讨.机器人.1996(5):285—291页 3王炎,周大威.移动式服务机器人的发展现状及我们的研究门.电气传动.2000(4): 精品文档

电气专业论文文献综述

沧州师学院 专业外语阅读文献综述 学院机械与电气工程学院 姓名昊 学号1414216125 专业电气工程及其自动化 班级2014级1班 2017 年 1 月

PLC技术简介与应用 摘要:随着电子计算机技术的不断发展,PLC 技术在电气化自动控制制造与研发领域中的应用变得越来越广泛,发挥着不可替代的作用。PLC 技术在电气设备自动化控制中的应用是以微软的处理器作为基础,结合了现在的计算机技术,自动控制技术,现代通讯技术等的优势,极大的扩充了 PLC 技术在电气设备自动化控制应用中的适用领域,有很强的实效性。PLC 技术有着高灵活性、高可靠性、便捷性,和工业机器人、CAD/CAM 并称现代自动化工业的三大顶梁柱。本文介绍何为 PLC 技术,PLC 技术在电气设备自动化控制中的优势与应用,希望能有一定的借鉴作用。 关键词:PLC 技术;电气设备;自动化控制 一.PLC 技术的概念 PLC 是英语可编程控制器 Programmable logic Controller 的缩写,以微处理器为依托,结合通信,计算机,互联网和自动控制技术开发而成的工业上的控制装置。 PLC 技术起源于 20 世纪 70 年代,被成功的运用于汽车工业中。随着 PLC 技术运算,处理速度,控制各种功能的进步与商业化,它在电气设备自动化中的应用领域也变得越来越广泛,形成了仪表-电器-计算机控制的一体化模式。 PLC 技术在产品中的应用与生产,是以 DCS 集散控制系统和 FCS 总线控制系统作为主要的控制形式。 PLC 技术在将来的发展中,将不仅仅是作为一个基础系统,而是一种全分布式,开放式的控制系统。 二.PLC的结构 P L C 技术的本质是应用于工业控制的计算机技术,因此,它的硬件结构组成同大多数计算机结构是基本一致的,都包括有:电源、C P U( 中央处理器)、存储器、功能模块、通信模块、输入/ 输出接口电路等等。 三.PLC的工作原理概述 第一个步骤,输入采样。在这个步骤当中,可编程控制器读取采样数据主要通过扫描的方式,然后利用输入I/O输出映像区中所对应的单元对这些数据进行存储。在数据采样被输入之后,继续执行输出刷新操作对转入用户程序。 第二个步骤,程序执行。在用户程序执行的过程中,可编程控制器对用户程序进行扫描的执行顺序总是自上而下,在扫描的过程中,其运算按照固定的顺序和路线进行,其中,扫描顺序也是由左至右,由上至下,而扫描线路则是由用户程序的各个触电构成。 第三个步骤,系统输出刷新。在这一阶段所要完成的操作是可编程控制器在

机器人控制系统设计(毕业设计)文献综述

一、前言 1.课题研究的意义,国内外研究现状和发展趋势 1.1课题研究的意义 随着机器人在工业装配线的应用越来越广泛,工业环境对其控制系统的要求也越来越高,所以开放式机器人控制系统的设计具有工程实际意义。 课题以一四自由度关节型机器人研制为背景,设计机器人运动控制系统的硬件电路和软件结构,对机器人的运动控制电路进行设计,实现机器人按照预定轨迹或自主运动控制功能。 在机械工业中,应用机械手的意义可以概括如下: ①以提高生产过程中的自动化程度 应用机械手有利于实现材料的传送、工件的装卸、刀具的更换以及机器的装配等的自动化的程度,从而可以提高劳动生产率和降低生产成本。 ②以改善劳动条件,避免人身事故 在高温、高压、低温、低压、有灰尘、噪声、臭味、有放射性或有其他毒性污染以及工作空间狭窄的场合中,用人手直接操作是有危险或根本不可能的,而应用机械手即可部分或全部代替人安全的完成作业,使劳动条件得以改善。 ③可以减轻人力,并便于有节奏的生产 应用机械手代替人进行工作,这是直接减少人力的一个侧面,同时由于应用机械手可以连续的工作,这是减少人力的另一个侧面。因此,在自动化机床的综合加工自动线上,目前几乎都没有机械手,以减少人力和更准确的控制生产的节拍,便于有节奏的进行工作生产 随着机器人技术的发展,机器人应用领域的不断扩大,对机器人的性能提出了更高的要求,因此,如何有效地将其他领域(如图像处理、声音识别、最优控制、人工智能等)的研究成果应用到机器人控制系统的实时操作中,是一项富有挑战性的研究工作。而具有开放式结构的模块化、标准化机器人,其控制系统的研究无疑对提高机器人性能和自主能力,推动机器人技术的发展具有重大意义。 1.2国内外研究现状和发展趋势 随着机器人控制技术的发展,针对结构封闭的机器人控制器的缺陷,开发“具有开放式结构的模块化、标准化机器人控制器”是当前机器人控制器的一个发展方向。近几年,日本、美国和欧洲一些国家都在开发具有开放式结构的机器人控制器,如日本安川公司基于PC开发的具有开放式结构、网络功能的机器人控制器。我国863计划智能机器人主题也已对这方面的研究立项。 由于适用于机器人控制的软、硬件种类繁多和现代技术的飞速发展,开发一个结构完全开放的标准化机器人控制器存在一定困难,但应用现有技术,如工业PC

本科毕设步行机器人文献综述

本科生毕业设计(论文)文献综述 设计(论文)题目步行机器人运动学分析 作者所在系别机械工程系 作者所在专业机械设计制造及其自动化 作者所在班级B08111 作者姓名郭建龙 作者学号20084011132 指导教师姓名韩书葵 指导教师职称副教授 完成时间2012 年 2 月 北华航天工业学院教务处制

说明 1.根据学校《毕业设计(论文)工作暂行规定》,学生必须撰写毕业设计(论文)文献综述。文献综述作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。 2.文献综述应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,由指导教师签署意见并经所在专业教研室审查。 3.文献综述各项内容要实事求是,文字表达要明确、严谨,语言通顺,外来语要同时用原文和中文表达。第一次出现缩写词,须注出全称。 4.学生撰写文献综述,阅读的主要参考文献应在10篇以上(土建类专业文献篇数可酌减),其中外文资料应占一定比例。本学科的基础和专业课教材一般不应列为参考资料。 5.文献综述的撰写格式按毕业设计(论文)撰写规范的要求,字数在2000字左右。文献综述应与开题报告同时提交

毕业设计(论文)文献综述

Quadruped walking robot Abstract:The composition of the various parts of the walking robot is given a four-legged walking robot for complex terrain structure,analysis of the gait of the robot,given way to judge the stability of the robot in this form of gait.DH transform the kinematics of the robot forms of expression.The use of software for the simulation of the walking robot kinematics,robot joint exercise in the form in this form of gait,and laid the foundation for future robot control. Keywords: r obot kinematic analysis gait stability

工业机器人概述

工业机器人概述 摘要:工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作、自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动生产设备。 关键词:工业机器人;由来;发展;应用领域 0 引言 工业机器人是面向工业领域的多关节 机械手或多自由度的机器人,是自动执行工作的机器装置,是靠自身动力和控制能力来实现各种功能的专门系统。它可以接受人类指挥,也可以按照预先编排的程序运行,现代的工业机器人还可以根据人工智能技术 制定的原则纲领行动。因其灵活性高、输出功率大、定位精确的特点,工业机器人被广泛应用于制造业的各个环节。以其高效 高质、稳定的运转工作,工业机器人为所在行业的高效生产和稳定质量起到重要作用。 图1 工业机器人 1 工业机器人的由来 1920年捷克作家卡雷尔·查培克在其剧本《罗萨姆的万能机器人》中最早使用机器人一词,剧中机器人“Robot”这个词的本意是苦力,即剧作家笔下的一个具有人的外表,特征和功能的机器,是一种人造的劳力。它是最早的工业机器人设想。20世纪40 年代中后期,机器人的研究与发明得到了更多人的关心与关注。50年代以后,美国橡树岭国家实验室开始研究能搬运核原料的遥控操纵机械手,如图0.2所示,这是一种主从型控制系统,主机械手的运动。系统中加入力反馈,可使操作者获知施加力的大小,主从机械手之间有防护墙隔开,操作者可通过观察窗或闭路电视对从机械手操作机进行有效的监视,主从机械手系统的出现为机器人的产生为近代机器人的 设计与制造作了铺垫。 1954年美国戴沃尔最早提出了工业机 器人的概念,并申请了专利。该专利的要点是借助伺服技术控制机器人的关节,利用人手对机器人进行动作示教,机器人能实现动作的记录和再现。这就是所谓的示教再现机器人。现有的机器人差不多都采用这种控制方式。1959年UNIMATION公司的第一台工业机器人在美国诞生,开创了机器人发展的新纪元。UNIMATION的VAL(very advantage language)语言也成为机器人领域最早的编程语言在各大学及科研机构中传播,也是各个机器人品牌的最基本范本。其机械结构也成为行业的模板。其后,UNIMATION公司被瑞士STAUBLI收购,并利用STAUBLI的技术优势,进一步得以改良发展。日本第一台机器人由KAWASAKI从UNIMATION进口,并由kawasaki模仿改进在国内推广。

四足步行机器人文献综述

四足步行机器人文献综述 移动机器人按移动方式大体分为两大类;一是由现代车辆技术延伸进展成轮式移动机 器人(包括履带式);二是基于仿生技术的运动仿生气器人。运动仿生气器人按移动方式分 为足式移动、蠕动、蛇行、游动及扑翼飞行等形式,其中足式机器人是研究最多的一类运动 仿生气器人。 自然环境中有约50%的地势,轮式或履带式车辆到达不了,而这些地点如森林,草地 湿地,山林地等地域中拥有庞大的资源,要探测和利用且要尽可能少的破坏环境,足式机器 人以其固有的移动优势成为野外探测工作的首选,另外,如海底和极地的科学考察和探究, 足式机器人也具有明显的优势,因而足式机器人的研究得到世界各国的广泛重视。现研制成 功的足式机器人有1足,2足,4足,6足,8足等系列,大于8足的研究专门少。曾长期作为人类要紧交通工具的马,牛,驴,骆驼等四足动物因其优越的野外行走能 力和负载能力自然是人们研究足式机器人的重点仿生对象。因而四足机器人在足式机器人中 占有专门大的比例。长期从事足式机器人研究的日本东京工业大学的広濑茂男等学者认为:从 稳固性和操纵难易程度及制造成本等方面综合考虑,四足机是最佳的足式机器人形式[1],四 足机器人的研究深具社会意义和有用价值。

四足机器人的研究可分为早期探究和现代自主机器人研究两个 时期。中国古代的“木牛流马”以及国外十九世纪由Rygg 设计的“机械马”,是人类对足式行走行机器的早期探究。而Muybridge 在1899 年用连续摄影的方法研究动物的行走步态,则是人们研究足式机器人的开端。20世纪60年代,机器人进入了以机械和液压操纵实现运动的进展时期。美国学者Shigley(1960)和Baldwin(1966)都使用凸轮连杆机构设计了机动的步行车[2]。这一时期的研究成果最具代表性的是美国的Mosher于19 68 年设计的四足车“Walking Truck”[3](图1)。 80年代,随着运算机技术和机器人操纵技术的广泛研究和应用,真正进入了具有自主行为的现代足式机器人的广泛研究时期。 2、现代自主机器人的研究状况 以微型运算机技术广泛应用为标志的现代四足机器人的研究和应用受到世界广泛的关 注。现代四足机器人研究最系统和取得研究成果最多的是日本东京工业大学的広濑茂男等领 导的広癞·福田机器人研究室(HIROSE·FUKUSHIMA ROBTICS L AB),该实验室从80年代 开始四足机的研究,连续研究20多年,共试制成功3个系列、12款四足机器人。发表有关研 究论文172篇[4]。其它如美国的 MIT,卡耐基梅隆大学,加拿大,德国,法国,新加坡,韩国 等国家均有四足机器人样机研制成功。国内也进行了四足机器人的基础研究和试验研究,如 吉林工业大学,北京航空航天大学、上海交通大学,哈尔滨工业大学,中国科技大学等单位。 表1列出了国内外要紧从事研究四足机的单位和其研制的典型样机型。

毕设工业机器人运动学文献综述

机械臂的运动学分析综述 前言 随着工业自动化的发展,机械臂在产业自动化方面应用已经相当广泛。机械臂在复杂、枯燥甚至是恶劣环境下,无论是完成效率以及完成精确性都是人类所无法比拟的,也因此,机械臂在人类的生产和生活中发挥着越来越重要的作用。自从第一台产业用机器人发明以来,机械臂的应用也从原本的汽车工业、模具制造、电子制造等相关产业,向农业、医疗、服务业等领域渗透。 按照不同的标准,机器人分类方法各异。操作性与移动性是机器人最基本的功能构成[1]。根据机器人是否具有这两个能力对机器人进行分类,可以把机器人大体分为三大类:(1)仅具有移动能力的移动机器人。比如Endotics医疗机器人、Big Dog、PackBot,以及美国Pioneer公司的研究型机器人P2-DX、P3-DX、PowerBot 等。(2)仅具有操作能力的机械臂。比如Dextre、PUMA560、PowerCube机械臂等。(3)具有移动和操作能力的移动机械臂系统。如RI-MAN、FFR-1、以及勇气号火星车等[2]。机械臂作为机器人最主要的执行机构,工程人员对它的研究也越来越多。 在国内外各种机器人和机械臂的研究成为科研的热点,研究大体是两个方向:其一是机器人的智能化,多传感器、多控制器,先进的控制算法,复杂的机电控制系统;其二是与生产加工相联系,满足相对具体的任务的工业机器人,主要采用性价比高的模块,在满足工作要求的基础上,追求系统的经济、简洁、可靠,大量采用工业控制器,市场化、模块化的元件。 机械臂或移动车作为机器人主体部分,同末端执行器、驱动器、传感器、控制器、处理器以及软件共同构成一个完整的机器人系统。一个机械臂的系统可以分为机械、硬件、软件和算法四部分。机械臂的具体设计需要考虑结构设计、驱动系统设计、运动学和动力学的分析和仿真、轨迹规划和路径规划研究等部分。因此设计一个高效精确的机械臂系统,不仅能为生产带来更多的效益,也更易于维护和维修。 主题 机械臂的运动学分析分为正运动学和逆运动学两部分。正运动学分析是指对于给定的一个机械臂,根据其连杆参数和各个关节变量来求解末端执行器相对于给定坐标系的位置和姿态。逆运动学分析是指根据机械臂已知的连杆参数和末端执行器相对于固定坐标系的位置和姿态,来求解机器人各个关节变量的大小。

迎宾机器人设计文献综述

1前言 随着社会的发展,人工成本越来越高,一些简单繁琐的工作,比如迎宾这个工作,越来越多的人们不愿意花费时间去做。随着机器人技术的发展,越来越多的地方开始采用迎宾机器人去完成这些简单繁琐无味的工作。但是,我国的机器人产业发展起步的比较晚,一些迎宾机器人的价钱昂贵,维修费用高,而且维修过程繁琐,所以,我国的迎宾机器人的使用率不高。 为了更好的服务广大群众,更加高效完成工作,迎宾机器人要普遍投入使用,更要完善的是迎宾机器人的经济成本和功能设定。争取让机器人进入我们的生活。 2国内外研究现状 机器人自40多年前诞生以来,主要在生产制造领域发展比较迅速。而对迎宾服务型机器人产品,由于技术含量尤其是智能方面要求较高,国内外一直处于研发状态,只是在二十世纪末才有公司正式推出限量产品。 本田公司于1996年在全球率先发布了第一个双足步行式机器人原型“P2”, 1996年发布的P2是世界首个类人智能双足步行机器人,而且,由于把主机、控制马达、电池、无线通讯等必要的机器全部藏起来,不仅实现了无线遥控,还使他在外观上比较“光鲜”。1997年完成的P3比他的“兄弟”P1和P2乖巧玲珑得多,身高只有1.6米,体重仅为130千克,这要得益于零配件材料的改良,而且在电脑实现分散型的控制之后,机器人满足了小型化和轻量化的要求,更利于融入人类的生活。2000年推出新一代“P3”改进后的更加小型、轻量化的两脚站立行走类型的机器人“Asimo”。 iRobot机器人吸尘器英文名称为“Roomba”,中文为“伦巴”,是由美国iRobot公司生产。美国麻省理工学院(MIT) 罗德尼·布鲁克斯教授(Rondy Brooks),主持世界最大的大学实验室——电脑科学暨人工智能实验室(Computer Science and Artificial Intelligence Laboratory, 简称CSAIL),于1990年带着得意门生-科林·安格尔(Colin Angle)和海伦·格雷纳(Helen Greiner),以CSAIL所提供的创业基金为基础,创办了iRobot 公司。iRobot最初专注于军用机器人的研究,创造了PackBot等机器人,公司于2002年开始涉足家用机器人市场,并在2002年推出了具有历史历史意义的机器人吸尘器Roomba。

相关主题