搜档网
当前位置:搜档网 › 磁悬浮电路图

磁悬浮电路图

磁悬浮电路图
磁悬浮电路图

自制磁悬浮装置

Magnetic Levitation

张皓

2009.5.6 china

磁悬浮是一项很有发展前途的项目,我在网上找到两种控制方法,一种是利用模拟运算放大器进行PD控制 ,另一种是通过AVR单片机进行软PD控制,我参照了运放的电路制作了装置,磁铁终于悬浮在空中了.

悬浮的效果

结构如图,传感器放置在下方感知磁铁磁场强度,通过电路,反馈控制上方线圈的电流,使磁铁处于动态的平衡中.

装置的电感从日光灯泡的电子镇流器中卸出,为合适,将下方两侧的磁芯切除,保留中间和上方的磁芯.封闭的磁芯使磁力线从磁芯穿过,就很难吸引下方磁铁了. 磁芯有无的影响:有磁芯可以增强线圈的磁场,降低线圈数与能耗,此外磁芯与磁铁的吸引力可以抵消一部分重力,但是有磁芯磁铁就不能太靠近电感,否则会被牢牢吸住.总之有磁芯的利大于弊.

首次焊接的电路(图片),效果不理想,电路基准与比例共用一个运放,调试困难,输出电流不是呈直线,于是我改进了电路:

各运放的接法与功能列表如下

如果使用集成霍尔元件,无需限流,分压电阻也要调整。

基准与比例电路分离。22UF电容为微分电容,串一小阻值电阻,否则一些毛刺就会使输出电压上下振动。

IC-F2输出端的LED指示磁场的强弱,2k电阻避开LM324的0.7V死区电压。IC-F3恒流源用于消除三极管放大倍数影响。

续流二极管防止电感反激电流损坏三极管,三极管选用中大功率管.4.7UF、104仅用于消除电感的声音噪声。

磁铁有三种不稳定情况,如上图所示,其中前两种最终会导致生效,第一种可通过滤波或微分电路消除,第二种遇到后我想来好长时间,感谢上帝帮助,只要下面固定一重物就可以解决了.实际操作中我在磁铁下方粘贴了一块马赛克玻璃,就不会倾翻了.

调试过程:

将磁铁放于底座(霍尔传感器上方),强度指示LED亮,然后缓慢离开.在合适的高度,如果LED仍然亮,顺时针调节基准电位器,直到LED熄灭.接通线圈电路,磁铁即悬浮半空中.

相关链接

https://www.sodocs.net/doc/6615124846.html,/u95/v_NDMyNTEzODA.html

https://www.sodocs.net/doc/6615124846.html,/id/Electromagnetic-Floater

https://www.sodocs.net/doc/6615124846.html,/f?kz=329844838

手把手教你DIY磁悬浮详细教程--吊悬式上推式

手把手教你DIY磁悬浮 吊悬电路图 R3为距离调节,这个距离是有一定的大小,小到磁铁会吸住上面的铁芯,大到上面电磁铁没有力吸住下机的磁铁。 R4 是放大调节器,在PID中可看作P。 R5R6组成电压中线中。 距离调节,也可这样做:R3去掉不用,直接调节A放大器的中线电压。 R8,C1这个值要通过调试才能达到完美。这个可增加稳定性 这个3503磁感应器在电动摩托车车把找到的,线性的,当没有磁力线通过时输出为电压的一半。

3503放在线圈(线圈可以加铁芯)的下面中心点,这个放置有正反面之分。吊悬用强磁铁。 线圈的圈数和线直径大慨个数,没有算出要多少才可以,多圈几圈正常下多可以用单组电路(整个完整电路应有两组这样的电路) 电路分析: 这个电路中可分成几个部份 R2,R3,D1,C1组成稳压供给3503和中线电压取样 A放大器与R8,R7组成输入放大 因霍尔是放在磁场中间,和霍尔自身的工艺因素,所出输不一定刚好是电压的一半,所以放大器的中性电压一定要用R6来调节 R9,R10,C3,组成PID Q1,Q3,B放大器可看成一个放大器,R1是RF,这样就好理解了,D2,D3是保护Q1,Q3的。 R11,R12,Q2,Q4,C放大器这是一组约为1:1放大,正好与B放大输出成反相 也可这样来说,后级的电路是推勉放大器 如果不用R11,R12,Q2,Q4,C放大器,这个电路其实就是吊悬电路改变而来的 在调试中先试一组电路 当磁铁在线圈上方左右移动时,手能感觉到磁铁被电磁铁在上方一个位置中吸卡住(有点轻微,要认真去感觉),调节R6可改变吸卡的位置,

霍尔放在相对一组线圈中间,上下也要居中(这个很关健) 如果线圈的磁力够推动磁铁的话可以放在下面大磁铁中(这个看起比较好看),但初做这个还是先放在大磁铁上面,当然这个前提是下面的环形磁铁的磁力足以托起上面的悬磁铁一定距离,够放住线圈。左右线圈输出的磁性是想反的。对悬磁铁来说正好一个线圈是拉,一个线圈是推。 当悬磁铁向左漂移时,电磁铁会把它拉到右过来(一个推,一个拉),当悬磁向右漂移时,电磁铁也会把它拉到左过来,这样的结果会使悬磁铁居在两个线圈拉力的中间。上下两个线圈也是这个道理。

小学科学二年级下册第五单元第16课《制作磁悬浮笔架》

小学科学二年级下册第五单元第16课《制作磁悬浮笔架》 皇华小学备课组坚永芹 教材分析: 通过对本册第二单元磁铁的学习,学生已基本了解了磁铁的基本性质,也初步尝试了利用磁铁的性质制作指南针为人类服务。但是在真实的生活情景下,磁铁的性质还有哪些真实应用,利用磁铁的性质还可以进行哪些发明和创新呢?本可利用磁悬浮笔架这个技术与工程活动,让学生了解科学、技术与工程活动紧密结合,能够为生活带来更多的便利,为什会带来更多的进步。 教学目标: 1.能利用磁铁美工刀等材料和工具,在教师的指导下完成磁悬浮笔架的制作。 2.能对自己和他人的作品提出改进建议。 3.能如实讲述事实,当发现事实与自己原有的想法不同时,能尊重事实,养成用事实说话的意识。 4.了解到人类可以利用科技产品让生活环境得到改善。 教学重难点: 重点:探究磁悬浮实验的工作原理。 难点:利用磁悬浮实验的工作原理,完成磁悬浮笔架的制作。 活动准备:环形磁铁、纸盒、美工刀,双面胶、铅笔 教学过程: 一、问题与猜测 教师先演示"小猫钓鱼"的游戏(用磁铁吸引曲别针) ,让学生回忆学过的有关磁铁的知识,再展示磁悬浮地球仪和磁悬浮飞机等,激发学生探究其中原理的欲望。 师:同学们,我们知道了每块磁铁上都有两个磁极。不同的磁极靠近时会相互吸引,相同的磁极靠近时会相互排斥。这节课,我们就来利用磁铁间的这种奇妙的性质,制作一个可以悬浮的笔架。 (教师板书:制作磁悬浮笔架。) (设计意图:带领学生回顾已学知识。从学生喜欢的玩具人手,激发学生的学习兴趣,引导学生对悬浮现象进行猜测和探究。) 二、探究过程

(一)设计磁悬浮笔架 1、师提问:我们手中的铅笔可以飘浮在空中吗?谁能想到好方法?(学生积极回答。) 师:同学们的想法真棒。 (学生交流讨论,积极回答环形磁铁同学们能根据它联想到什么呢? 2、老师演示。我们可以先把假笔套在环形磁铁中,再把磁铁放在纸盒中,这样它们就会相互推开使铅笔悬浮在空中了。 3、(救师展示材料:环形磁铁、纸盒美工刀,双面胶、铅笔)师:哪位同学能说说这些工具的名称?(学生积极交流回答。) 师:哪位同学知道这些材料的作用? (学生小组内积极交流讨论。) 4、教师总结:美工刀可以用来切制纸盒;铅笔可以用来绘制线条:直尺可以用来测量物体的直径和厚度:纸盒可以用来做磁悬浮笔架的底座:双面胶可以用来固定位置。 (二)制作磁悬浮笔架 师:同学们,在开始制作前,老师遇到了一个难题.需要同学们一起帮忙解决:怎样能把磁铁牢固地固定在纸盒上呢? (学生积极讨论、汇报。) 师:可以用双面胶把磁铁粘在纸盒上,但是这个方法还不是太牢固。哪位同学还有其他的想法? (学生回答。) 师:我们可以先用直尺测量出环形磁铁的厚度和长度,再用铅笔在纸盒上绘制出宽度与环形磁铁厚度相同的、长度与纸盒相同的长方形,然后用直尺测量出环形磁铁的直径,用蜡笔在绘制的长方形两侧画出长度略小于环形碰铁直径的长方形,最后用美工刀将纸盒上绘制的4个长方形挖出来。 师提出活动要求: (1)学生小组内分工合作,互相配合。 (2)不能用美工刀嬉戏打闹,制作过程中要注意安全。 (3)安装磁铁时,,要注意磁铁的南北极方向。 (4)调试笔筒上两块磁铁间的位置,直至笔筒能悬浮。提示学生注意操作规范和安全。)学生开展实验活动,教师巡视并适时指导。 (设计意图:教师通过设置问题,发散学生思维;通过设计磁悬浮笔架的活动指向,培养

磁悬浮球控制系统的仿真研究

磁悬浮球控制系统的仿真研究 王玲玲,王宏,梁勇 (海军航空工程学院,山东烟台 264000) 作者简介:王玲玲(1984—),女,硕士,讲师,主要从事控制技术研究。 本文引用格式:王玲玲,王宏,梁勇.磁悬浮球控制系统的仿真研究[J].兵器装备工程学报,2017(4):122-126. Citation:format:WANG Ling-ling, WANG Hong, LIANG Yong.Simulation and Research of Magnetic Levitation Ball Control System[J].Journal of Ordnance Equipment Engineering,2017(4):122-126. 摘要:针对磁悬浮球系统的本质不稳定性,设计PID控制算法实现系统的稳定控制。建立磁悬浮球系统的动力学模型,并对其中的非线性部分进行平衡点处的线性化,采用根轨迹校正设计超前滞后控制器。最后采用PID控制设计,并使用根轨迹校正中零极点对系统性能影响的思想去调整PID参数,使系统的稳定性、动态性能和稳态性能满足要求。 关键词:磁悬浮球系统;PID;根轨迹法;校正 磁悬浮可以用于实现各种机械结构的高速、无摩擦运转,如高速磁悬浮列车、高速磁悬浮电机、磁悬浮轴承等。尽管磁悬浮的应用领域繁多,系统形式和结构各不相同,但究其本质都具有本质非线性、不确定性、开环不确定性等特征。这些特征增加了对其控制的难度,也正是由于磁悬浮的这些特性,使其更加具有研究价值和意义。本文针对磁悬浮球系统,研究其稳定控制,并使其性能指标满足要求。 1 磁悬浮球控制系统的基本原理 磁悬浮球控制系统主要由铁芯、线圈、光电源、位置传感器、放大及补偿装置、数字控制器和控制对象钢球等部件组成[1],如图1所示。 当电磁铁上的线圈绕组通电时,位于磁场中的刚体受到电磁力的吸引作用。当产生的电磁力与球体的重力相等时,球体悬浮于空中,处于不稳定的平衡状态,当它受到外界扰动时,易失去平衡。因此,为了使系统稳定,就必须加上反馈环节,实现闭环控制,并设计控制算法,使稳定后的性能满足要求。

高速磁悬浮列车车载电源系统

高速磁悬浮列车车载电源系统 李健鸣(株洲南车时代电气股份有限公司技术中心,湖南株洲412001) 摘要:上海高速磁悬浮列车是世界上第一条商业运行的高速磁悬浮列车。简述了高速磁悬浮列车车载电源系统的结构及功能,并详细阐述其系统的各个基本组件、部件的结构及功能。 关键词:高速磁悬浮;车载电源;升压斩波器;配电;磁悬浮列车 0 引言 我国在本世纪之初引进德国技术,在上海建设世界第一条高速磁悬浮列车商业运行线。上海引进的常导高速磁浮车辆是整个高速磁悬浮交通的核心技术之一,而车载电源系统又是车辆的核心技术之一。经多年运行,显示出该技术的优越性。本文介绍该车载电源系统的结构和功能。 1 车载电源系统结构和功能 上海磁悬浮列车采用了如下的供电方案:列车在速度小于20 km/h时完全由供电轨供电;列车速度在约20~100 km/h时由地面的供电轨与列车自带的直线发电机联合对车辆供电;在列车速度大于100 km/h时完全由直线发电机供电;车载蓄电池作为列车紧急或故障运行情况下的电源;在使用涡流制动器紧急制动时,高速运行段(速度大于约150 km/h)电能由直线发电机提供,当较低速度时直线发电机电能不能满足涡流制动需要,此时由蓄电池与直线发电机联合提供电能,紧急制动过程中不使用供电轨向列车供电。 每一节车的车载电源包括以下几部分: ①4套相互独立的440 V直流电源,每套最大容量为128 kW; ②4套相互独立的24 V直流电源,每套容量为1.6 kW; ③2套相互独立的230 V三相交流电源,每套容量约为5.5 kW; ④1套外部440 V直流供电电源。440 V电源是车上的主电源,24 V电源与230 V电源都是通过相应的变流设备从440 V电源变换得到的。24 V电源是车上的控制电源,主要向控制设备供电。每套440 V电源与24 V电源上都接有一组蓄电池作为备用电源。440 V电源与24 V电源都有较大的冗余,当部分供电设备出现故障时不会影响对车辆的供电。230 V电源则主要向车上与安全无关的用电设备供电,它在每节车上没有冗余。 1.1 基本组件及结构 整个车载电源主要包括如下组件: ①440 V直流车载电源基本组件。它包括的部件为:440 V车载电源开关箱;440 V蓄电池箱;蓄电池通风机;升压斩波器。 ②24 V直流车载电源基本组件。它包括的部件为:24 V蓄电池箱;蓄电池通风机;DC-DC 变流器;24 V车载电源配电柜;24 V车载电源开关箱。 ③230 V交流车载电源基本组件。它包括的部件为:230 V车载电源开关箱;230 V车载逆变器及230 V车载电源配电柜。 ④外部供电基本组件。它包括的部件为:外部供电车载电源;开关箱受流器;受流器的气动控制组件。 车载电源供电部件的关系结构如图1所示。

16制作磁悬浮笔架教案

《制作磁悬浮笔架》 一、教学目标: 1、知识目标: 通过对磁悬浮工作原理的探究,帮助儿童掌握磁的相关知识 2、能力目标: 锻炼学生利用简单器材完成实验能力 3、思维目标: 通过以上两点提升学生的观察、分析的思维能力 二、教学重点与难点: 1、教学重点: 探究磁悬浮实验的工作原理。 2、教学难点: 探究磁悬浮列车的工作原理 三、教学设计: 从一个小魔术开始回顾磁铁的性质及其作用——利用磁铁的性质探究磁悬浮原理——了解磁悬浮列车的运行原理——激发学生的兴趣,制作完成磁悬浮笔成品知识拓展,让学生了解各国对磁悬浮技术的应用。 四、教学方法: 演示、验证式、讨论式教学 五、教学准备: 教师演示器材学生器材 工具材料工具材料 无磁悬浮笔套件无磁悬浮笔套件 六、教学过程: 1、复习前课: 2、课程兴趣点:磁铁为什么可以漂浮? 3、引导质疑: 第一步通过演示一个小魔术,回顾磁铁的性质及其作用。 第二步利用磁铁的性质学习磁悬浮原理,并了解磁悬浮列车的运行原理。 第三步通过制作完成磁悬浮成品,激发学生的兴趣,并让学生了解各国对磁悬浮技术的应

用。 4、探究验证过程: ⑴实验器材:磁悬浮笔套件 ⑵实验目的:了解磁极同极相斥,异极相吸的性质 ⑶实验记录:当两磁铁靠近时,会出现两种情况,一种是两磁铁吸在一起,一种是上面的磁 铁悬浮起来。 学生实验:通过以上演示实验,让学生掌握实验规律,独立完成本节课实验(教师可以适当的点拨) 5、总结回顾: 磁悬浮也称作“磁浮”,是一种利用磁体间的吸引力和排斥力来使物件浮在空中的技术,还有利用电磁力的吸引或排斥,使物件不受引力束缚,从而自由浮动的。 6、拓展表达: (1)拓展视野: 磁悬浮列车是怎样运动的呢?当然靠磁力了,首先利用磁铁同性相斥的原理把列车悬浮 起来,再利用磁铁异性相吸、同性相斥的原理使列车前进,消耗了电能。根据我们现有的知 识可以这样理解,但是磁悬浮实际工作原理要复杂得多。 (2)表达知识: 磁悬浮就是运用磁体“同性相斥,异性相吸”的性质,使磁体具有抗拒地心引力的能力 悬浮起来。 七、板书设计: 磁悬浮 一、磁铁为什么可以漂浮? 二、实验部分 1、了解磁极同极相斥,异极相吸的性质 三、总结 磁极:南极(S)、北极(N) 同极相斥,异极相吸 八、课后延伸: 课下总结整理磁铁在生活中的应用,通过本节课的学习,学生掌握磁悬浮的原理,回家 后可以利用相关材料制作磁悬浮玩具,并写出实验步骤。

磁悬浮控制系统建模与仿真大学毕设论文

2010届毕业设计说明书 磁悬浮控制系统建模及仿真系部:电气与信息工程系 专业:电气自动化技术 完成时间:2010年5月

目录 1 绪论 (2) 1.1 磁悬浮技术的发展与现状 (3) 1.2 磁悬浮技术研究的意义 (3) 1.3 磁悬浮的主要应用 (3) 1.3.1 磁悬浮列车 (3) 1.3.2 高速磁悬浮电机 (4) 2 磁悬浮系统概述 (4) 2.1 磁悬浮实验本体 (5) 2.2 磁悬浮电控箱 (6) 2.3 控制平台 (6) 3 控制系统的数学描述 (7) 3.1 控制系统数学模型的表示形式 (7) 3.1.1 微分方程形式 (7) 3.1.2 状态方程形式 (8) 3.1.3 传递函数形式 (8) 3.1.4 零极点增益形式 (9) 3.1.5 部分分式形式 (9) 3.2 控制系统建模的基本方法 (10) 3.2.1 机理模型法 (10) 3.2.2 统计模型法 (11) 3.2.3 混合模型法 (11) 3.2.4 控制系统模型选择 (12) 3.3 控制系统的数学仿真实现 (12) 4 MATLAB软件的介绍 (13) 4.1 MATLAB简介 (13) 4.2 Simulink概述 (13) 4.3 Simulink用法 (14) 5 磁悬浮系统基于MATLAB建模及仿真 (20) 5.1 磁悬浮系统工作原理 (20) 5.2 控制对象的运动方程 (21) 5.3 系统的电磁力模型 (21) 5.4 电磁铁中控制电压与电流的模型 (21) 5.5 平衡时的边界条件 (23) 5.6 系统数学模型 (23) 5.7 系统物理参数 (23) 5.8 Matlab下数学模型的建立 (24)

【CN110049468A】一种中高速磁浮列车的车地无线通信系统【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910193665.1 (22)申请日 2019.03.14 (71)申请人 北京交通大学 地址 100044 北京市海淀区西直门外上园 村3号 (72)发明人 刘湘黔 徐洪泽 张文静 岳强  杨光 仲维锋  (74)专利代理机构 北京市商泰律师事务所 11255 代理人 黄晓军 (51)Int.Cl. H04W 4/42(2018.01) H04W 4/44(2018.01) H04W 76/10(2018.01) H04B 10/25(2013.01) (54)发明名称 一种中高速磁浮列车的车地无线通信系统 (57)摘要 本发明提供了一种中高速磁浮列车的车地 无线通信系统。包括:车载无线电系统,以及设置 在轨道沿线的分区中的分区无线电控制单元、无 线电基站和中央无线电控制单元。车载无线电系 统通过38G无线电与无线电基站连接和通信,无 线电基站将接收到的列车信号通过光纤网络传 送至分区无线电控制单元,分区无线电控制单元 将接收到的列车信号传输给分区安全计算机、牵 引控制系统和中央无线电控制单元,实现车地信 息传输。本发明的系统通过采用通信分区与运控 分区交错布置,车地通信的跨分区交接和运控系 统的跨分区交接分开执行,降低了因通信连接失 败而导致的运控分区交接失败率,从而降低了牵 引切断和紧急制动次数,提高了线路准点率以及 乘客舒适度。权利要求书1页 说明书5页 附图1页CN 110049468 A 2019.07.23 C N 110049468 A

附--磁悬浮系统模型

1.1 磁悬浮系统的基本结构 磁悬浮控制系统主要由铁心、线圈、传感器、控制器、功率放大器及其控制对象刚体等元件组成。系统结构如图2-1所示。 图2-1 磁悬浮系统结构图 Figure2-1 Structure diagram of magnetic levitation system 1.2 磁悬浮系统的工作原理 磁悬浮系统是利用电磁力来控制刚体悬浮的空间位置。其工作原理是控制电磁铁绕组的电流,产生与刚体重量等价的电磁力,使得刚体稳定悬浮在平衡位置。由于电磁力与悬浮气隙间存在非线性反比关系,这种平衡并不稳定,一旦受到外界干扰(如电压脉动或者风),刚体就会掉下来或被吸上去,因此必须实行闭环控制。采用位置传感器在线获取刚体位置信号,控制器对位移信号进行处理产生控制信号,功率放大器根据控制信号产生所需电流并送往电磁铁,电磁铁产生相应磁力克服重力使得刚体稳定在平衡点附近。当刚体受到干扰向下运动时,刚体与电磁铁的距离增大,传感器所敏感的光强增大,其输出电压增大,经过功率放大器处理后,使得电磁铁控制绕组的控制电流增大,电磁力增大,刚体被吸回平衡位置。反之亦然。 1.3 磁悬浮系统的动力学模型 1.3.1 刚体运动方程 刚体受力情况如图2-2所示,图中mg 表示刚体所受得重力,(,)F i x 表示线圈通电时刚体所受的电磁力,()d f t 表示系统所受的干扰力,()t θ表示刚体与参考平面的距离,0()t θ表示电磁铁与参考平面的距离,()x t 表示电磁铁与刚体之间的距离,取向上为正。

参考平面 图2-2 刚体受力示意图 Figure2-2 Schematic diagram of strained rigid body 根据牛顿第二定律,可得刚体的运动方程: 22 d ()(,)()d d x t m F i x mg f t t =-- (2-1) 1.3.2 电磁力模型 电磁铁与刚体构成磁路,磁路的磁阻主要集中在两者间的气隙上,其中有效气隙磁阻可表示为 02()x R x S μ= (2-2) 式中0μ为空气的导磁率,70410/H m μπ-=?;S 为电磁铁的极面积;x 为导轨与磁极表面的瞬时间隙。 由磁路的基尔霍夫定理可知 (,)()Ni i x R x =Φ (2-3) 式中N 为电磁铁线圈匝数,i 为电磁绕组中的瞬时电流,(,)i x Φ为铁心磁通。 将式(2-2)代入式(2-3),可得铁心磁通为 0(,)2SNi i x x μΦ= (2-4) 当电磁铁工作在非饱和状态时,电磁铁的磁链 20(,)(,)2SN i i x N i x x μλ=Φ= (2-5) 另外,电磁力可由与它磁场同能量的关系表示为 (,) (,)c W i x F i x x ?=? (2-6) 式中(,)c W i x 为磁能能量,并且

挑战DIY 极限,我做的磁悬浮 磁悬浮原理

磁悬浮原理 磁悬浮想法由来已久,就是用磁力克服重力让物体悬空,但真正做起来并不容易,主要原因是没有稳定的平衡点。要达到悬浮,必须是稳定的悬浮。也就是说,用一个力(或位移)在任何方向上(上下左右前后等)来(小)扰动被悬浮物,都会有一个恢复力,使得外力撤消后重新恢复平衡。

我见过的磁悬浮可以分成有源的和无源的两大类,前者比如反馈式的,用光电、磁电等手段检测到被悬浮物体偏离正常悬浮点后,通过调节电磁铁的电流来使得物体保持在悬浮点附近,因此需要用电。这样的悬浮从道理上看,与开直升飞机悬停没什么区别。 无源悬浮又分为超导悬浮和普通磁悬浮两类,前者是靠超导体的完全抗磁性来达到的,超导体和磁体之间就像安装了弹簧一样。简单说就是任何磁铁在超导体附近的移动都会在超导体表面产生电流,而这个感生电流所产生的磁场阻碍磁铁的运动,因此磁铁就与超导体相对静止。 普通磁悬浮又可分成两类,排斥悬浮和吸引悬浮。排斥悬浮有成品可买到,就是所谓的陀螺悬浮。其原理是用五块大磁铁(比如四角四块N极向上、中间一块S极向上)在悬浮空间上方产生一个磁场谷(对N极向下的悬浮磁铁周围排斥力强但中间弱),那么只要被悬浮磁铁的极性得到保持,就可以成功悬浮。但处

于自由状态的磁铁会上下反转,把排斥力变成吸引力,结果悬浮就失败。解决这一问题的办法就是把悬浮磁铁做成陀螺,保证在运转期间极性不反转,这样才能悬浮起来。这个“玩具”我很早也买过,悬浮需要技巧,陀螺的重量要通过垫片调整到误差在0.1g之内才能悬浮,而且要求底座很平。 以上悬浮要么需要能量,要么需要不会持久保持的条件(超导的低温、陀螺的旋转),因此都不是永久悬浮方案。 最后一种,就是吸引悬浮。但吸引悬浮中,两块磁铁的吸引力基本上是与距离的平方成反比的,尽管吸力与重力有一个平衡点,但为非稳定平衡。 为了解决这一问题,需要用反磁性物质制造一个局部的稳定空间。 我先给出我的试验过程和结果,过一会儿再讲具体原理,并给出另一个制作实例。 1、花90元买来500克分析纯的铋粒。实际上用不了这么多,也用不着这么纯,但只有这个可买。

磁悬浮列车技术基础

磁悬浮列车技术基础 磁悬浮列车主要由悬浮系统、推进系统和导向系统三大部分组成,见图。尽管可以使用与磁力无关的推进系统,但在目前的绝大部分设计中,这三部分的功能均由磁力来完成。下面分别对这三部分所采用的技术进行介绍 悬浮系统:目前悬浮系统的设计,可以分为两个方向,分别是德国所采用的常导型和日本所采用的超导型。从悬浮技术上讲就是电磁悬浮系统(EMS)和电力悬浮系统(EDS)。图4给出了两种系统的结构差别。 电磁悬浮系统(EMS)是一种吸力悬浮系统,是结合在机车上的电磁铁和导轨上的铁磁轨道相互吸引产生悬浮。常导磁悬浮列车工作时,首先调整车辆下部的悬浮和导向电磁铁的电磁吸力,与地面轨道两侧的绕组发生磁铁反作用将列车浮起。在车辆下部的导向电磁铁与轨道磁铁的反作用下,使车轮与轨道保持一定的侧向距离,实现轮轨在水平方向和垂直方向的无接触支撑和无接触导向。车辆与行车轨道之间的悬浮间隙为10毫米,是通过一套高精度电子调整系统得以保证的。此外由于悬浮和导向实际上与列车运行速度无关,所以即使在停车状态下列车仍然可以进入悬浮状态。 电力悬浮系统(EDS)将磁铁使用在运动的机车上以在导轨上产生电流。由于机车和导轨的缝隙减少时电磁斥力会增大,从而产生的电磁斥力提供了稳定的机车的支撑和导向。然而机车必须安装类似车轮一样的装置对机车在“起飞”和“着陆”时进行有效支撑,这是因为EDS在机车速度低于大约25英里/小时无法保证悬浮。EDS系统在低温超导技术下得到了更大的发展。 超导磁悬浮列车的最主要特征就是其超导元件在相当低的温度下所具有的完全导电性和完全抗磁性。超导磁铁是由超导材料制成的超导线圈构成,它不仅电流阻力为零,而且可以传导普通导线根本无法比拟的强大电流,这种特性使其能够制成体积小功率强大的电磁铁。

自制磁悬浮装置

磁力悬浮器:玩儿的就是“气场”! chxmright发表于 2010-12-07 18:59 DIYer:J_Hodgie 制作时间:3-4小时 制作难度:★★★★☆ GEEK指数:★★★★☆ 这件小小的DIY作品向我们展现了一个磁力悬浮器是如何“神奇”地让各种物体漂浮在空中,而且仅仅利用了一个小小的磁铁而已哦~~简单易行,效果却是相当不凡的,一定能让围观者“大吃一斤”……

话说该神器和悬浮地球仪很神似~~但是我DIY的神器是电磁铁和永久磁铁配合的结果——这比简单的将几个永久磁铁捆绑了事,声称自己可以悬浮任何物体要高级多了,不是夸夸其谈,看我后续介绍吧。 我找来了一个微控制器(PLC或是单片机随你便)和一个红外传感器来侦查悬浮物的悬停高度,然后通过微处理器来设定电磁铁的电流值,从而让它乖乖地悬停在空中~ 当然咯,悬浮物的悬浮位置还是和悬浮物的重量与磁性大小有关滴。把物体放在磁铁和传感器之间时,我可以通过一个开关来侦测高度从而确定电流强度。 当物体悬浮时,物体的重力和磁铁对物体产生的吸引力是相等的,所以我们选择悬浮物体的时候一定要找使用非工业电磁铁,用较小的电磁力就可以摆平的物体啦~~而且这个小装置还能够进行动态调整以便物体保持完美的悬浮高度。 从前我总是被商店橱窗里的悬浮地球仪深深吸引,奈何钱包不鼓啊。何况那种玩意儿还非得捆绑销售那个悬浮物,而不能悬浮自己喜欢的物品! 因此呢,我决定自己利用磁铁DIY一个。先看看我的“神器”,酷吧? 双向电梯 ? 5 制作悬浮物 ? 6 飘起来向大家去炫耀吧 ?7 DIYer签到处

1 工具和材料 ○ATMega168微控制器○1个16-20MHz 晶体管○28针插座 ○双路全H桥集成电路卡○1个NPN型功率三极管○2个电磁铁 ○1个双色发光二极管 ○2个红外发光二极管 ○2个红外光敏二极管 ○1个5V稳压器

磁悬浮课程设计 2

评定表 学生姓名顾志鑫班级学号1011020110 专业探测制导与 控制技术课程设计题目磁悬浮控制系统 设计与实现 评 语 组长签字: 成绩 日期20 年月日

课程设计任务书 学院装备工程专业探测制导与控制 学生姓名顾志鑫班级学号1011020110 课程设计题目磁悬浮控制系统设计与实现 实践教学要求与任务: 设计一个小功率磁悬浮控制系统。要求根据问题的要求设计系统的总体实现方案,并为该系统选择合适的硬件。根据所选择的硬件,建立系统的数学模型,进而设计合适的控制系统校正方案并进行仿真研究。根据自己的设计,实际动手制作该磁悬浮系统,并进行调试和测试。最后,汇总课程设计内容完成课程设计报告。 系统参数及指标:Vcc=16,m=10g,n=150,R=12 控制系统相位裕度>30度。 工作计划与进度安排: 1、设计一个小功率磁悬浮控制系统,包括确定总体控制方案、硬件选 择。 3 2、写出各个器件单元的传递函数,画出组成系统单元传递函数的方框 图,推导出系统的传递函数;根据系统的传递函数设计系统的控制器计 算出控制器的相关参数,建立控制系统动态数学模型; 2 3、采用MATLAB仿真软件进行系统仿真实验。 2 4、根据所设计的控制方案,进行控制系统制作并调试; 3 5、对设计结果做出评价并提出改进意见; 2 6、课程设计结果验收并撰写写出设计报告; 2 7、课程设计答辩。 1 指导教师: 2013 年月日专业负责人: 2013 年月日 学院教学副院长: 2013 年月日

摘要 本文介绍了磁悬浮技术的系统试验构成及原理,并通过PD校正和超前校正分别实现系统校正。 关键词:磁悬浮技术,校正。

电磁悬浮系统课程设计报告

研究生课程考核试卷 科目:现代控制理论教师: 姓名:学号: 专业:类别: 上课时间: 考生成绩: 卷面成绩平时成绩课程综合成绩阅卷评语: 阅卷教师 (签名) 重庆大学研究生院制

电磁悬浮系统课程设计报告 1.设计要求 简易电磁悬浮系统的物理模型如下图所示。其中电源提供高频交流电压从而使得电磁铁线圈流过高频交流电流,产生高频交变的电磁场,进而在金属小球表面产生涡流,涡流形成的电磁场与线圈产生的电磁场之间产生相互作用力。通过控制电磁铁线圈中流过的电流,使之产生的电磁力与金属球的重力相平衡,金属球则可稳定的在空中保持悬浮。电磁力与线圈电流i的平方成正比,与电磁铁和小球之间的距离x成反比,即 2 Ki F h 其中K为电磁力系数。 假设系统的参数为M=0 g,K=0.0001,L=0.01H,R=1Ω,g=9.8m/ s2。当电流i=7A时,小球位于平衡点h=0.01m处,试求: (1)以线圈电压v为输入量,电磁铁和小球之间的距离x为输出量,通过近似线性化处理建立系统的状态空间表达式; (2)对系统作稳定性分析,判断小球能否位于平衡点; (3)假设系统的控制要求为:偏离平衡点后能够自动回到平衡点,其中稳定时间<0.5s、超调量<5。试设计带状态观测器状态反馈系统,并绘制模拟仿真图; (4)根据模拟仿真图,绘制系统综合前后的响应曲线,判断系统在外加扰动的情况下小球能否回到平衡点。

2.系统分析与设计 设控制对象处于悬浮的平衡位置,电磁铁绕组上的电流为i,当它对控制对象产生的吸力F和控制对象的重力Mg相平衡时,控制对象将处于一种平衡状态,静止在该位置上。 假设在平衡位置悬浮体受到一个向下的扰动,悬浮体就会偏离其平衡位置向下运动,此时传感器检测出悬浮体偏离其平衡位置的位移并将位移相对应的电压输出至控制器,控制器将这一位移信号变换为控制信号,功率放大器又将该控制信号变换为控制电流。相对于平衡位置,此时的控制电流增大,因此,电磁铁的吸力F变大了,从而使控制对象返回到原来的平衡位置。 如果控制对象受到一个向上的扰动并向上运动,此时控制器使得功放的输出电流减小,电磁铁的吸力F变小了,控制对象也能返回到原来的平衡位置。因此,不论控制对象受到向上或向下的扰动,只要在控制器的控制下相应地及时改变控制电流的值,控制对象始终能处于稳定的平衡状态。 控制系统组成如图2.1所示。 图2.1 磁悬浮控制系统组成 2.1状态空间表达式 1)求原系统的状态空间表达式 由题中条件可以得到原系统KVL的如下关系式: di =+ v iR L dt 当系统稳定时,即小球悬浮静止时有: 2 Ki F Mg == h 取向下为正方向,a为小球向下的加速度,对小球在竖直方向受力分析:

磁悬浮系统建模及其PID控制器设计说明

《Matlab仿真技术》 设计报告 题目磁悬浮系统建模及其PID控制器设计专业班级电气工程及其自动化 11**班 学号 7 学生 ** 指导教师 ** 学院名称电气信息工程学院 完成日期: 2014 年 5 月 7 日

磁悬浮系统建模及其PID控制器设计 Magnetic levitation system based on PID controller simulation 摘要 磁悬浮技术具有无摩擦、无磨损、无需润滑以及寿命较长等一系列优点,在能源、交通、航空航天、机械工业和生命科学等高科技领域有着广泛的应用背景。 随着磁悬浮技术的广泛应用,对磁悬浮系统的控制已成为首要问题。本设计以PID 控制为原理,设计出PID控制器对磁悬浮系统进行控制。 在分析磁悬浮系统构成及工作原理的基础上,建立磁悬浮控制系统的数学模型,并以此为研究对象,设计了PID控制器,确定控制方案,运用MATLAB软件进行仿真,得出较好的控制参数,并对磁悬浮控制系统进行实时控制,验证控制参数。最后,本设计对以后研究工作的重点进行了思考,提出了自己的见解。 PID控制器自产生以来,一直是工业生产过程中应用最广、也是最成熟的控制器。目前大多数工业控制器都是PID控制器或其改进型。尽管在控制领域,各种新型控制器不断涌现,但PID控制器还是以其结构简单、易实现、鲁棒性强等优点,处于主导地位。 关键字:磁悬浮系统;PID控制器;MATLAB仿真

一、磁悬浮技术简介 1.概述: 磁悬浮是利用悬浮磁力使物体处于一个无摩擦、无接触悬浮的平衡状态,磁悬浮看起来简单,但是具体磁悬浮悬浮特性的实现却经历了一个漫长的岁月。由于磁悬浮技术原理是集电磁学、电子技术、控制工程、信号处理、机械学、动力学为一体的典型的机电一体化高新技术。伴随着电子技术、控制工程、信号处理元器件、电磁理论及新型电磁材料的发展和转子动力学的进一步的研究,磁悬浮随之解开了其神秘一方面。 1900年初,美国,法国等专家曾提出物体摆脱自身重力阻力并高效运营的若干猜想--也就是磁悬浮的早期模型。并列出了无摩擦阻力的磁悬浮列车使用的可能性。然而,当时由于科学技术以及材料局限性磁悬浮列车只处于猜想阶段,未提出一个切实可行的办法来实现这一目标。 1842年,英国物理学家Earnshow就提出了磁悬浮的概念,同时指出:单靠永久磁铁是不能将一个铁磁体在所有六个自由度上都保持在自由稳定的悬浮状态。 1934年,德国的赫尔曼·肯佩尔申请了磁悬浮列车这一的专利。 在20世纪70、80年代,磁悬浮列车系统继续在德国蒂森亨舍尔测试和实施运行。德国开始命名这套磁悬浮系统为“磁悬浮”。 1966年,美国科学家詹姆斯·鲍威尔和戈登·丹比提出了第一个具有实用性质的磁悬浮运输系统。 1970年代以后,随着世界工业化国家经济实力的不断加强,为提高交通运输能力以适应其经济发展的需要,德国、日本、美国、加拿大、法国、英国等发达国家相继开始筹划进行磁悬浮运输系统的开发。 2009年时,国外研究的热点是磁悬浮轴承和磁悬浮列车,而应用最广泛的是磁悬浮轴承。它的无接触、无摩擦、使用寿命长、不用润滑以及高精度等特殊的优点引起世界各国科学界的特别关注,国外学者和企业界人士都对其倾注了极大的兴趣和研究热情。 2. 磁悬浮技术的应用及展望 20世纪60年代,世界上出现了3个载人的气垫车试验系统,它是最早对磁悬浮列车进行研究的系统。随着技术的发展,特别是固体电子学的出现,使原来十分庞大的控制设备变得十分轻巧,这就给磁悬浮列车技术提供了实现的可能。1969年,德国牵引机车公司的马法伊研制出小型磁悬浮列车模型,以后命名为TR01型,该车在1km 轨道上的时速达165km,这是磁悬浮列车发展的第一个里程碑。在制造磁悬浮列车的

磁悬浮模型制作说明

一篇来自国外的点子DIY作品,一名电子学高手制作的磁悬浮玩具,简单翻译了一下,有具体制作的教学步骤,看了教程以后你应该也可以轻松DIY一个漂浮在空中的小作品了!这个装置结合了永磁铁和电磁铁,利用一个微控制器和一个IR感应器,当内部装有磁铁的小物体放在电磁铁的下方,IR感应器就会感应到物体的存在,微控制器就会启动电磁铁并调整磁力大小,当小物体受到向上的磁力和向下的重力相同时,它就会漂浮在空中,漂浮的位置和高度取决于重量和磁力大小。 就像在商店里卖的漂浮地球仪一样,它可以让带有磁铁的物体浮在空中,只不过这个装置结合了永磁铁和电磁铁,利用一个微控制器和一个IR感应器,当内部装有磁铁的小物体放在电磁铁的下方,IR感应器就会感应到物体的存在,微控制器就会启动电磁铁并调整磁力大小,当小物体受到向上的磁力和向下的重力相同时,它就会漂浮在空中,漂浮的位置和高度取决于重量和磁力大小。 下面的图片和文字是一名电子学高手教大家如何轻松DIY一个漂浮在空中的小玩具。 资料来源:https://www.sodocs.net/doc/6615124846.html,/id/Electromagnetic-Floater/

1 工具和材料 ○ATMega168微控制器○1个16-20MHz 晶体管○28针插座 ○双路全H桥集成电路卡○1个NPN型功率三极管

○2个电磁铁 ○1个双色发光二极管 ○2个红外发光二极管 ○2个红外光敏二极管 ○1个5V稳压器 ○2个平行板电容 ○1个SPST电路转换开关○1个NO按钮 ○1个470欧姆电阻 ○1个5欧姆电阻 ○1个面包板 ○2个小盒 ○有机玻璃

○焊锡 ○热熔胶 ○钢丝铜线圈 ○乙烯软管 ○3个以上稀土磁铁,用于基座(规格:直径1/4"×厚度1/4")○2个以上稀土磁铁,用于悬浮物(规格:直径1/2"×厚1/8")●电烙铁 ●热熔胶枪

磁悬浮的原理及制作

磁悬浮的原理及制作 磁悬浮想法由来已久,就是用磁力克服重力让物体悬空,但真正做起来并不容易,主要原因是没有稳定的平衡点。要达到悬浮,必须是稳定的悬浮。也就是说,用一个力(或位移)在任何方向上(上下左右前后等)来(小)扰动被悬浮物,都会有一个恢复力,使得外力撤消后重新恢复平衡。 我见过的磁悬浮可以分成有源的和无源的两大类,前者比如反馈式的,用光电、磁电等手段检测到被悬浮物体偏离正常悬浮点后,通过调节电磁铁的电流来使得物体保持在悬浮点附近,因此需要用电。这样的悬浮从道理上看,与开直升飞机悬停没什么区别。 无源悬浮又分为超导悬浮和普通磁悬浮两类,前者是靠超导体的完全抗磁性来达到的,超导体和磁体之间就像安装了弹簧一样。简单说就是任何磁铁在超导体附近的移动都会在超导体表面产生电流,而这个感生电流所产生的磁场阻碍磁铁的运动,因此磁铁就与超导体相对静止。 普通磁悬浮又可分成两类,排斥悬浮和吸引悬浮。排斥悬浮有成品可买到,就是所谓的陀螺悬浮。其原理是用五块大磁铁(比如四角四块N极向上、中间一块S极向上)在悬浮空间上方产生一个磁场谷(对N极向下的悬浮磁铁周围排斥力强但中间弱),那么只要被悬浮磁铁的极性得到保持,就可以成功悬浮。但处于自由状态的磁铁会上下反转,把排斥力变成吸引力,结果悬浮就失败。解决这一问题的办法就是把悬浮磁铁做成陀螺,保证在运转期间极性不反转,这样才能悬浮起来。这个“玩具”我很早也买过,悬浮需要技巧,陀螺的重量要通过垫片调整到误差在0.1g之内才能悬浮,而且要求底座很平。 以上悬浮要么需要能量,要么需要不会持久保持的条件(超导的低温、陀螺的旋转),因此都不是永久悬浮方案。 最后一种,就是吸引悬浮。但吸引悬浮中,两块磁铁的吸引力基本上是与距离的平方成反比的,尽管吸力与重力有一个平衡点,但为非稳定平衡。

青岛版《科学》六制二年级下册16.《制作磁悬浮笔架》教学设计

16.制作磁悬浮笔架 【教材分析】 《制作磁悬浮笔架》是青岛版小学科学(五四学制)二年级下册《科技产品》单元的第 二课时,主要是引导学生会利用磁铁、美工刀等材料和工具,动手制作完成磁悬浮笔架。 教材分三部分:第一部分是问题与猜测,借助“为什么它们能悬浮在空中呢?”引发学生对悬浮现象的猜想。第二部分是探究与实践,呈现了两名学生设计磁悬浮笔架的讨论图, 同时呈现了制作磁悬浮笔架需要用到的材料和工具:环形磁铁、纸盒、美工刀、直尺、双面 胶、铅笔、塑料条。目的在引导学生利用提供的材料和工具,通过口述、图示等方式表达自 己的设计与想法,并完成任务。让学生意识到动手制作前需要先设计规划,动手之前先动脑。设计完毕后进行制作,引领学生制作并调试自己的磁悬浮笔架,引领学生在基于设计并制作 完成作品的过程中,需要经历多次调试和安装,才能达到最终的完美呈现。第三部分是拓展与创新,以提出对作品评价和改进的活动指向,并且“利用磁铁的性质,还可以进行什么 样的制作和发明?”引领学生对作品进行评价并提出改进建议,完善各自的作品。使学生 养成倾听他人意见,乐于与他人分享的品质。同时利用所学知识和技能继续拓展思维,激发学生创造力。 【学生分析】 前一课学生已经对圆珠笔的结构进行了探究学习,探究能力和设计能力都有了一定的基础,对圆珠笔的特点和结构有了一定的认知,具备了一定的知识储备,同时学生对于将磁悬浮技术应用在笔上产生了浓厚的兴趣,因此学生具备较好的学习动力。 【教学目标】 科学概念目标: 会利用磁铁、美工刀等材料和工具,动手制作完成磁悬浮笔架。 科学探究目标: 能对自己和他人的作品提出改进建议。 情感态度价值观: 能如实讲述事实,当发现事实与自己原有的想法不同时,能尊重事实,养成用事实说话的意识。 科学、技术、社会与环境目标:

自制磁悬浮无线输电教具的设计和制作

自制磁悬浮无线输电教具的设计和制作 邵静怡苏颖瞳梁国烈(岭南师范学院) 摘要:本教具利用了三点式电感震荡电路、电流的磁效应、电磁感应定律以及永磁体的同级互相排斥的原理来实现磁悬浮的无线输电。可应用于电流的磁效应、电磁感应定律的教学、磁体磁性教学以及磁悬浮的原理的教学中。 关键词:三点式电感震荡电路电流的磁效应电磁感应定律永磁铁 在人教版高中物理(选修3-2)第四章第四节法拉第电磁感应定律、第五节电磁感应现象的两类情况以及人教版高中物理(选修3-1)第三章第二节磁感应强度、第四节通电导线和磁场中受到的力的物理教学中,由于电流的磁效应、电磁感应定律以及磁铁的性质都是比较抽象的,并且电流的磁效应、电磁感应定律都是高中教学的重点以及难点。为了帮助学生更好的理解电流的磁效应,电磁感应定律的原理以及应用,方便他们牢固地掌握电生磁以及磁生电的相关知识,教师需要做好电流的磁效应以及电磁感应的课堂演示实验。但是,在物理课堂的教学中,目前还没有能同时满足以上几节课教学的教具,因此本小组借鉴前人的一些教具、网络资源以及模拟电子技术的相关内容,设计并制作了磁悬浮无线输电这个教具。一、自制磁悬浮无线输电教具 的设计和制作 本教具的外部结构是一个塑料瓶子以及粘在瓶子外沿的两根笔芯,其作用是为悬浮瓶盖提供接力点,如图(a)。瓶子的瓶盖以及悬浮的瓶盖中都各粘有八块圆形磁体。用于悬浮的瓶盖外沿绕有线圈,并且连接上发光二极管,构成次级线圈的电路,如图(b)。

1)无线输电原理: 电路图如图(A),总的来说本教具就是三点式电感震荡电路产生随时 间变化电流,其波形大致为正弦波的 电流,如图(B),变化的电流通过初级电感线圈,由电流的磁效应可知, 初级电感线圈就会产生磁场。由于电 流每经过半个周期就会变一次方向, 所以每半个周期,由初级线圈产生的 磁场方向就会改变一次,如图(g)。 由电流的磁效应的规律可知,由电流 磁效应产生的磁场的场强与通过电感 线圈的电流成正相关,所以初级线圈 产生的场强也大致为与电流的变化周 期一致的正弦波,如图(C)。变化的磁场再通过次级线圈,由电磁感应定 律e=n(dΦ)/(dt),可知次级线圈会产生的感应电动势并且没经过半个周期,方向就会改变一次。所以无论次级线圈的绕线方向如何,都会有电流正向 通过发光二极管,那么二极管都会发光。 工作电路是三点式电感震荡电路,其电路特点是:频率范围宽、容易起振,但输出含有较多高次调波,波形 较差。常用于产生几十兆赫以下的正

DIY磁悬浮玩具的做法图解

DIY磁悬浮玩具的做法图解 一篇来自国外的点子DIY作品,一名电子学高手制作的磁悬浮玩具,简单翻译了一下,有具体制作的教学步骤,看了教程以后你应该也可以轻松DIY一个漂浮在空中的小作品了! 这个装置结合了永磁铁和电磁铁,利用一个微控制器和一个IR感应器,当内部装有磁铁的小物体放在电磁铁的下方,IR感应器就会感应到物体的存在,微控制器就会启动电磁铁并调整磁力大小,当小物体受到向上的磁力和向下的重力相同时,它就会漂浮在空中,漂浮的位置和高度取决于重量和磁力大小。 就像在商店里卖的漂浮地球仪一样,它可以让带有磁铁的物体浮在空中,只不过这个装置结合了永磁铁和电磁铁,利用一个微控制器和一个IR感应器,当内部装有磁铁的小物体放在电磁铁的下方,IR感应器就会感应到物体的存在,微控制器就会启动电磁铁并调整磁力大小,当小物体受到向上的磁力和向下的重力相同时,它就会漂浮在空中,漂浮的位置和高度取决于重量和磁力大小。 下面的图片和文字是一名电子学高手教大家如何轻松DIY一个漂浮在空中的小玩具。

工作原理图如下:

一、材料准备 所需材料如下: - ATMega168 Microcontroller - 1 16-20 MHz Crystal - 28 Pin Socket - Dual Full H Bridge IC - 1 Power NPN - 2 Electromagnets - 1 Bicolour LED - 2 IR LED - 1 IR Photodiode - 1 5V Regulator - 2 Leveling Capacitors - 1 SPST Switch - 1 NO Button - 1, 470 Ohm Resistor - 1, 5 Ohm Resistor - 1 Universal Breadboard - 2 Cases

相关主题