搜档网
当前位置:搜档网 › “像素法求不规则图形面积”在实验中的应用第一期

“像素法求不规则图形面积”在实验中的应用第一期

“像素法求不规则图形面积”在实验中的应用第一期
“像素法求不规则图形面积”在实验中的应用第一期

第二讲不规则图形面积的计算(二)精选.

第二讲不规则图形面积的计算(二) 不规则图形的另外一种情况,就是由圆、扇形、弓形与三角形、正方形、长方形等规则图形组合而成的,这是一类更为复杂的不规则图形,为了计算它的面积,常常要变动图形的位置或对图形进行适当的分割、拼补、旋转等手段使之转化为规则图形的和、差关系,同时还常要和“容斥原理”(即:集合A与集合B 之间有:S A∪B=S A+S b-S A∩B)合并使用才能解决。 例1 如右图,在一个正方形内,以正方形的三条边为直径向内作三个半圆.求阴影部分的面积。 解法1:把上图靠下边的半圆换成(面积与它相等)右边的半圆,得到右图.这时,右图中阴影部分与不含阴影部分的大小形状完全一样,因此它们的面积相等.所以上图中阴影部分的面积等于正方形面积的一半。 解法2:将上半个“弧边三角形”从中间切开,分别补贴在下半圆的上侧边上,如右图所示.阴影部分的面积是正方形面积的一半。解法3:将下面的半圆从中间切开,分别贴补在上面弧边三角形的两侧,如右图所示.阴影部分的面积是正方形的一半. 例2 如右图,正方形ABCD的边长为4厘米,分别以B、D为圆心以4厘米为半径在正方形内画圆,求阴影部分面积。 解:由容斥原理 S阴影=S扇形ACB+S扇形ACD-S正方形ABCD

例3 如右图,矩形ABCD中,AB=6厘米,BC=4厘米,扇形ABE半径AE=6厘米,扇形CBF的半CB=4厘米,求阴影部分的面积。 解:S阴影=S扇形ABE+S扇形CBF-S矩形ABCD =13π-24=15(平方厘米)(取π=3)。 例4 如右图,直角三角形ABC中,AB是圆的直径,且AB=20厘米,如果阴影(Ⅰ)的面积比阴影(Ⅱ)的面积大7平方厘米,求BC长。 分析已知阴影(Ⅰ)比阴影(Ⅱ)的面积大7平方厘米,就是半圆面积比三角形ABC面积大7平方厘米;又知半圆直径AB=20厘米,可以求出圆面积.半圆面积减去7平方厘米,就可求出三角形ABC的面积,进而求出三角形的底BC的长. =(157-7)×2÷20 =15(厘米)。 例5 如右图,两个正方形边长分别是10厘米和6厘米,求阴影部分的面积。

不规则四边形面积的求法

不规则四边形面积的求法 来源:未知编辑:userb 发布时间:2012-10-08 13:47 浏览: 在初中数学考试中,几何是个重点,其中不规则四边形面积的求法更是重要。所以,我们在复习初中数学考试时,对这部分要点必须认真理解。 下面,我们就要来了解一下初中数学考试中的这个重点知识。 一. 作辅助线转化,化不规则四边形为规则图形 1. 作对角线,化四边形为三角形 例1. 如图1所示,凸四边形ABCD的四边AB、BC、CD和DA的长分别是3、4、12和3, ,求四边形ABCD的面积。 图1 解析:考虑到B为直角,连结AC,则 为直角 三角形。 所以 例2. 如图2所示,在矩形ABCD中,△AMD的面积为15,△BCN的面积为20,则四边形MFNE的面积为_______________。 图2

解析:连结EF,将四边形面积转化为两三角形面积之和。由等积变化知,△EFM与△AMD 面积相等,△EFN与△BCN面积相等。故所求面积为15+20=35。 2. 通过“割补”,化不规则四边形为规则图形 例3. 如图3所示,△ABC中,AB=AC=2,,D是BC中点,过D作,则四边形AEDF的面积为________________。 图3 解析:过中点D作,则DG、DH是△ABC的中位线,,即将△DFH割下补在△DEG处,于是所求面积转化为边长为1的正方形AGDH的面积,得1。 二. 引入未知量转化,变几何问题为代数问题 1. 引入字母常量计算面积 例4. 如图4所示,正方形ABCD的面积为1,AE=EB,DH=2AH,CG=3DG,BF=4FC,则四边形EFGH的面积是______________。 图4 解析:考虑到图中线段倍数关系多,设最短线段CF的长为m,则正方形边长为5m,面积为。

五年级奥数专题-不规则图形面积计算含解析

不规则图形面积计算 我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表:

实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。 那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。 一、例题与方法指导 例1 如右图,甲、乙两图形都是正方形,它们的边长分 别是10厘米和12厘米.求阴影部分的面积。 思路导航: 阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。 例2 如右图,正方形ABCD的边长为6厘米,△ABE、△ADF 与四边形AECF的面积彼此相等,求三角形AEF的面积. 思路导航:

∵△ABE 、△ADF 与四边形AECF 的面积彼此相等, ∴四边形 AECF 的面积与△ABE 、△ADF 的面积都等于正方形 ABCD 的13。 在△ABE 中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2, ∴△ECF 的面积为2×2÷2=2。 所以S △AEF=S 四边形AECF-S △ECF=12-2=10(平方厘米)。 例3 两块等腰直角三角形的三角板,直角边分别是10厘米 和6厘米。如右图那样重合.求重合部分(阴影部分)的面积。 思路导航: 在等腰直角三角形ABC 中 ∵AB=10 ∵EF=BF=AB-AF=10-6=4, ∴阴影部分面积=S △ABG-S △BEF=25-8=17(平方厘米)。 例4 如右图,A 为△CDE 的DE 边上中点,BC=CD ,若△ABC (阴影部分)面积为5平方厘米. 求△ABD 及△ACE 的面积. B C

求不规则四边形面积的两种方法-

打 求不规则四边形面积的两种方法 面积问题是初中数学的重要内容之一,解决面积问题的方法灵活,技巧性较强。本文 介绍利用转化思想求不规则四边形面积的方法。 一.作辅助线转化,化不规则四边形为规则图形 1.作对角线,化四边形为三角形 例1.如图1所示,凸四边形 ABCD 的四边AB 、BC 、CD 和DA 的长分别是3、4、 12和3, ? ABC =90 ° ,求四边形 ABCD 的面积。 图1 解析:考虑到? B 为直角,连结AC ,则 AC ?;AB 2 BC 2= 32 42 =5 又AC 2 CD^5212^13^ AD 2由勾股定理的逆定理知, ACD 为直角 三角形。 所以 S = S.ABC ' S ACD 1 1 3 4 1 2 5 2 2 =36 例2.如图2所示,在矩形 ABCD 中,△ AMD 的面积为15,A BCN 的面积为20,则 四边形MFNE 的面积为 _________________________________ 。

图2 解析:连结EF,将四边形面积转化为两三角形面积之和。由等积变化知,△EFM与△ AMD面积相等,△ EFN与厶BCN面积相等。故所求面积为 15+20=35。 2.通过“割补”,化不规则四边形为规则图形 例3.如图3所示,△ ABC中,AB=AC=2,/A =90°,D是BC中点,过 D作 DE丄DF,则四边形 AEDF的面积为______________________ 。 解析:过中点 D作DG_AB, DH_AC,贝U DG、DH是厶ABC的中位线, 二DEG二DFH ,即将△ DFH割下补在厶DEG处,于是所求面积转化为边长为 1的正方形AGDH的面积,得1。 .引入未知量转化,变几何问题为代数问题 1.引入字母常量计算面积

不规则图形面积的计算(一)

不规则图形面积的计算(一) 我们曾经学过三角形、长方形、正方形、平行四边形、梯形等基本图形(也叫规则图形)的面积计算,但在实际问题中,有些图形的面积是由一些基本图形通过组合、平凑而成的,他们的面积及周长无法用公式直接计算,我们通常称这些图形为不规则图形。 那么,我们怎样计算不规则图形的面积和周长呢? 我们一般是将这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,从而较轻松的解决问题。 【例1】如图,正方形的边长是4,求阴影部分面积 【分析】正方形的对角线将正方形平分,又因所截其直线平行于正方形的边,故阴影和空白处的面积相等。 【例2】如图,ABCD为长方形,AB=10厘米,BC=6厘米,E、F分别为AB、AD中点,且FG=2GE。求阴影部分的面积。 【分析】由FG=2GE可知,G点是线段EF的三等分点,故阴影部分的面积是

三角形CEF面积的三分之一。 【例3】如图,平行四边形ABCD的边长BC=10,直角三角形BCE的直角边EC=8,已知阴影部分的面积比三角形EFG的面积大10。求CF的长。 【分析】本题看似没有思路,重要是要理清各个面积之间的联系。 提示语对于求不规则图形的面积,首先要看清题目所给的条件,及通过题目所给条件可以得出什么?一般利用加辅助线,可以通过剪、拼、凑的方法得出答案。, 自己练 1、求下列图形阴影部分面积:单位:厘米

2、解答题: 直角梯形ABCD的上底BC=10厘米,下底AD=14厘米,高CD=5厘米。又三角形ABF、三角形BCE和四边形BEDF的面积相等。求三角形DEF的面积。 (3)、有一三角形纸片沿虚线折叠到右下图,他的面积与原三角形面积之比为2:3,已知阴影部分的面积为5平方厘米。求原三角形面积。 【提高题】求阴影部分面积(字母是为解题方便加的)

五年级数学 不规则图形面积的计算

不规则图形面积的计算 我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表: 实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。 那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。 例1如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。 例2如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积.

例3两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。如右图那样重合.求重合部分(阴影部分)的面积。 例4如右图,A 为△CDE 的DE 边上中点,BC=CD ,若△ABC(阴影部分)面积为5平方厘米.求△ABD 及△ACE 的面积. 例5如下页右上图,在正方形ABCD 中,三角形ABE 的面积是8平方厘 例6如右图,已知:S△ABC=1,AE=ED BD= 3 2BC

例7如下页右上图,正方形ABCD的边长是4厘米,CG=3厘米,矩形DEFG的长DG为5厘米,求它的宽DE等于多少厘米? 例8如右图,梯形ABCD的面积是45平方米,高6米,△AED的面积是5平方米,BC=10米,求阴影部分面积. 例9如右图,四边形ABCD和DEFG都是平行四边形,证明它们的面积相等.

四边形的面积公式

四边形的面积公式 张祖华苏树广 平阴县职业教育中心 摘要:本文发现了四边形面积的几个公式。 关键词:平行四边形梯形四边形面积 在初中数学教学,中职数学教学,及大专数学教学中,三角形是几何教学的首要图形,以此为基础,出现了正方形,长方形,平行四边形,梯形等重要图形,本文发现了这些四边形与三角形之间的面积关系公式,进一步阐清了这些几何图形的内在联系。 引理1 三角形面积公式S=0.5ah,其中a为三角形的底边边长,h为三角形的高线长度. 引理2 在三角形ABC中,AD为边BC内的任一连线段,其对应的把原三角形分成两个小三角形的面积分别为S,T.则S/T=DB/DC. 引理3 如下所示: 以Z表示三角形ABD的面积,X表示三角形ADC的面积, V表示三角形EBD的面积,N表示三角形EDC的面积, 则下式成立:ZN=XV 由上述三点预备知识, 如下所示:

以Z表示三角形ABD的面积,X表示三角形ADC的面积,V表示三角形EBD的面积,N表示三角形EDC的面积, S表示四边形ABED的面积, 有下述三个定理成立: 定理1 S=Z+X+V+N 定理2 ZN=XV 定理3 S=Z+X+V+XV/N 从而,有下述三个推论成立: 推论1在平行四边形ABED中有下述三个定理成立: 定理1 S=4Z 定理2 ZN=XV 定理3 S=Z+X+V+XV/N 推论2在等腰梯形ABED中(AC平行于BE)有下述三个定理成立: 定理1 Z=N 定理2 Z2=XV 定理3 S=Z+X+V+XV/N 推论3在梯形ABED中(AC平行于BE)有下述三个定理成立: 定理1 S= Z+X+V+N 定理2 ZN=XV 定理3 S=Z+X+V+XV/N

不规则凸多边形面积公式与计算方法的探究

不规则凸多边形面积公式与计算方法的探究 在我们的学习生活中,并不是全都像我们现在所学的正三角形,正四边形,正多边形等等比较规则的图形,还有许许多多不规则的多边形,那么,对于此类图形的面积我们应该如何去求?对于常见的任意三角形或四边形,除了我们学过的底乘高的计算方法外,还有没有其它的计算方法?我们下面就来探究这些问题。 通过探究发现,三角形的面积不仅可以用底 乘高来计算,还可以用三角函数进行直观的 表述。当然这我们还没有学到,这是高中的 内容。如图所示,S=1/2bc*ah,这是最简单的,但 ABBCsinABC,sin它的面积还可以表示成S=1 2 表示正弦,即直角三角行的对边比斜边,在这道题中就是AH/AB。,用文字表述就是三角形的面积等于两边的乘积及其夹角的正弦值的乘积的二分之一。由此,我们拓展到求任意四边形的面积,探究一下任意四边形的面积的求法。 我们知道,任意四边形都可以分割成两个三角形,从而通过求两个三角形面积的和的办法来实现,那么,除了分割及我们学过的方法之外,还有没有其它的方法呢?我们可能会想到先把它补成规则的四边形,然后通过相减的方法去做,这样的确可以,而且在和直角坐标系结合起来解决问题也是一种有效的方法,而且

补割法再求多边形的面积的应用中常常有无法替代的作用,这个我们后面再探究。如果我们结合向量的知识,把眼光放的更远一些,就会发现还会找到新的方法来表示平行四边形的面积。那就是向量的叉乘运算。但由于我的知识储备有限,我们还没有对向量进行太多的学习,加上向量的叉乘又是大学线性代数与解析几何的内容,我也看不懂,不过可以大概介绍一下,如图所示,a×b=AB*ACsinABC,结合前面所介绍的,它正B 好是平行四边形的面积的表达式,不过书中a 说要根据右手系判断方向,而且是三维的, 这个我就无能为力了,我们下边主要探讨多边形面积的求法。 如图所示,许许多多形形色色的多边形(凸多边形),我们应该如何去求它们的面积呢? 除了常见的的割补法外,我给出多边形面积的求解公式。任意多边形的面积公式用文字表述为逆时针坐标乘积减顺时针坐标乘积。例如:

第一讲不规则图形面积的计算(一)

第一讲不规则图形面积的计算(一) 我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形,它们的面积及周长都有相应的公式直接计算。 实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算。一般我们称这样的图形为不规则图形。 那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。 例1 如下图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米。求阴影部分的面积。 A B C 解:阴影部分的面积等于甲、乙两个正方形面积之和减去三个

“空白”三角形(△ABG、△BDE、△EFG)的面积之和。 1×10×10=50; 因为S△ABG= 2 1(10+12)×12=132; S△BDE= 2 1(12-10)×12=12。 S△EFG= 2 又因为S甲+S乙=12×12+10×10=244, 所以阴影部分面积=244-(50+132+12)=50(平方厘米)例2如下图,正方形ABCD的边长为6厘米,△ABE、 △ADF与四边形AECF的面积彼此相等,求三角形AEF的面积。 解:因为△ABE、△ADF与四边形AECF的面积彼此相等,所以四边形AECF的面积与△ABE、△ADF的面积都等于正方形ABCD面积的三分之一。也就是: 1×6×6=12。 S四边形AECF=S△ABE=S△ADF= 3 在△ABE中,因为AB=6,所以BE=4,同理DF=4,因此,CE=CF=2,所以△ECF的面积为2×2÷2=2。 所以S△AEF= S四边形AECF-S△ECF=12-2=10(平方厘米)。 例3:两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。如下图那样重合。求重合部分(阴影部分)的面积。

不规则图形的面积计算

不规则图形的面积计算 在图形面积计算时,经常会到一些无法直接求或不规则的图形,这时我们需要转换解题思维,根据图形的基本关系,运用分解、平移、旋转、割补、添辅助线等方法来思考。下面介绍几种常见的面积计算的解题思路. 一、“大减小” 例1.求下图中阴影部分的面积(单位:厘米) 解析:阴部部分的面积=“大减小” =两正方形面积-空白部分面积 =(4×4+3×3)-(4+3)×4÷2 =11平方厘米 二、“补” 例2.四边形ABCD是一个长10厘米,宽6厘米的长方形,三角形ADE的面积比三角形CEF的面积大10平方厘米,求CF的长。 解析:假设三角形EFC为图1,四边形ECBA为图2,三角形ADE为图3。给1、3同时补上2,它们的面积差不会发生改变 图形3的面积-图形1的面积=10

(图形3+图形2)-(图形1+图形2)= 即长方形ABCD的面积-三角形ABF的面积=10 那么,三角形ABF的面积=60-10=50=AB×BF÷2 可算出 BF=10厘米,所以CF=10-6=4厘米 例3.如图,四边形ACEF中,角ACE=角EFA=90°,角CAF=45°,AC=8厘米,EF=2厘米,求四边形ACEF的面积 解析:分别延长AF、CE,交于B点 在三角形ABC中,很明显,它是个等腰直角三角形,面积=8×8÷2=32平方厘米 在三角形EFB中,很明显,它也是一个等腰直角三角形,面积=2×2÷2=2平方厘米 所以,S四边形ACEF=S△ABC-S△EFB=32-2=30平方厘米 三、“移” 例4.如图所示(1图),四边形ABCD是一个长方形草坪,长20米,宽14米,中间有一条宽2米的曲折小路,求路的面积。 解析:小路是曲折的,不规则图形,可用采用“移”的思路来解决 把图1下面空白部分往上、往左移,使它与上面空白部分连接在一起,就成了图2中的空白部分,是一个长方形,长是20-2=18米,宽是14-2=12米,这个长方形的面积=18×12=216平方米,小路的面积=大长方形的面积-空白长方形的面积=20×14-216=64平方米 例5.如图,AE=ED,AF=FC,已知三角形ABC的面积是100平方厘米,求阴影部分的面积

六年级数学-不规则图形面积计算

不规则图形面积计算(1) 我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形. 我们的面积及周长都有相应的公式直接计算. 如下表: 实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算. 一般我们称这样的图形为不规则图形。 那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过 实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了、例题与方法指导 例1 如右图,甲、乙两图形都是正方形,它们的边长分别是10 厘米和 12厘米. 求阴影部分的面积。 思路导航:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白” 三角形(△ ABG、△BDE、△ EFG)的面积之和。

例 2 如右图,正方形 ABCD 的边长为 6 厘米,△ ABE 、△ ADF 与四边形 AECF 的面积 彼此相等,求三角形 AEF 的面积 . 1 ∴四边形 AECF 的面积与△ ABE 、△ ADF 的面积都等于正方形 ABCD 的 。 3 在△ ABE 中,因为 AB=6.所以 BE=4,同理 DF=4,因此 CE=CF=2, ∴△ ECF 的面积为 2×2÷ 2=2。 所以 S △ AEF=S 四边形 AECF-S △ECF=12-2=10(平方厘米)。 例 3 两块等腰直角三角形的三角板,直角边分别是 10 厘米和 6 厘米。如右图那样 在等腰直角三角形 ABC 中 ∵AB=10 ∵EF=BF=AB-AF=10-6=4, ∴阴影部分面积 =S △ ABG-S △ BEF=25-8=17(平方厘米)。 例 4 如右图, A 为△ CDE 的 DE 边上中点, BC=CD ,若△ ABC (阴影部分)面积为 5 平方厘米 . 求△ ABD 及△ ACE 的面积 . 思路导航: 取 BD 中点 F ,连结 AF.因为△ ADF 、△ ABF 和△ ABC 等底、等高, 所以它们的面积相等,都等于 5 平方厘米 . ∴△ ACD 的面积等于 15 平方厘米,△ ABD 的面积等于 10 平方厘米。 又由于△ ACE 与△ ACD 等底、等高,所以△ ACE 的面积是 15 平方厘米。 思路导航: ∵△ ABE 、△ ADF 与四边形 AECF 的面积彼此相等, 重合 . 求重合部分(阴影部分)的面积。 思路导航: C

不规则图形面积的计算及详细讲解

第一讲不规则图形面积的计算(一) 习题一(及详细答案) 一、填空题(求下列各图中阴影部分的面积): 二、解答题: 1.如右图,ABCD为长方形,AB=10厘米,BC=6厘米,E、F分别为AB、AD中点,且FG=2GE.求阴影部分面积。 2.如右图,正方形ABCD与正方形DEFG的边长分别为12厘米和6厘米.求四边形CMGN (阴影部分)的面积. 3.如右图,正方形ABCD的边长为5厘米,△CEF的面积比△ADF的面积大5平方厘米.求CE的长。 4.如右图,已知CF=2DF,DE=EA,三角形BCF的面积为2,四边形BEDF的面积为4.求三角形ABE的面积. 5.如右图,直角梯形ABCD的上底BC=10厘米,下底AD=14厘米,高CD=5厘米.又三角形ABF、三角形BCE和四边形BEDF的面积相等。求三角形DEF的面积. 6.如右图,四个一样大的长方形和一个小的正方形拼成一个大正方形,其中大、小正方形的面积分别是64平方米和9平方米.求长方形的长、宽各是多少? 7.如右图,有一三角形纸片沿虚线折叠得到右下图,它的面积与原三角形面积之比为2:3,已知阴影部分的面积为5平方厘米.求原三角形面积.

8.如右图,ABCD的边长BC=10,直角三角形BCE的直角边EC长8,已知阴影部分的面积比△EFG的面积大10.求CF的长. 习题一解答 一、填空题: 二、解答题: 3.CE=7厘米. 可求出BE=12.所以CE=BE-5=7厘米. 4.3.提示:加辅助线BD ∴CE=4,DE=CD-CE=5-4=1。 同理AF=8,DF=AD-AF=14-8=6, 6.如右图,大正方形边长等于长方形的长与宽的和.中间小正方形的边长等于长方形的长与宽的差.而大、小正方形的边长分别是8米和3米,所以长方形的宽为(8-3)÷2=(米),长方形的长为=(米).

最新五年级不规则图形面积计算

五年级不规则图形面积计算我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形?我们的面积及周长都有相应的公式直接计算?如下表:

实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算一般我们称这样的图形为不规则图形。 那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这 些图形通过实施害际卜、剪拼等方法将它们转化为基本图形的和、差关 系,问题就能解决了。 一、例题与方法指导 例1如右图,甲、乙两图形都是正方形,它们的边长分别是 10厘米和12厘米?求阴影部分的面积。 思路导航: 阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白 三角形(△ABG、壬DE、AEFG )的面积之和。 例2 如右图,正方形ABCD的边长为6厘米,A ABE、A ADF

与四边形AECF的面积彼此相等,求三角形AEF的面积.思路导航:

???△BE> △ADF与四边形AECF的面积彼此相等, 二四边形AECF的面积与厶ABE .△ADF的面积都等于正方形 ABCD 的1。 3 在A ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2 , ???△CF的面积为2X2吃=2。 所以S A AEF=S 四边形AECF-S △ECF=12-2=10 (平方厘米)。 两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。如右图那样重合?求重合部分(阴影部分)的面积。 思路导航: 在等腰直角三角形ABC中 ??AB=10 ??EF=BF=AB-AF=10-6=4 , ?阴影部分面积=S A ABG-S ^3EF=25-8=17 (平方厘米) 例4 如右图,A为△CDE的DE边上中点,BC=CD,若A ABC (阴影部分)面积为5平方厘米.

北师大版六年级数学《不规则图形的面积计算》

北师大版六年级数学不规则图形的面积计算 神农架林区木鱼镇小学教师:黄敏下面是湖北少年儿童出版社出版的北师大版六年级数学寒假作业题,对小学生来说,难度较大。 思路引导:阅读题目后发现,如果直接计算图中四边形ABED的面积,几乎是不可能的,因为四边形ABED是不规则的四边形。仔细观察我们发现比较简便的方法是,用△ABC的面积-△DEC的面积=四边形ABED的面积。 △ABC的面积很容易算出来,但△DEC的面积要直接算出来是很困难的,根据题目给出的已知条件“将直角三角形中的角C折起,使得C点与A点重合”,我们可以知道△DEC与△DAE是轴对称图形,即△DEC与△DAE全等,那么△DEC的面积=△AEC面积÷2。现在问题的关键是要计算出△AEC的面积,我们不知道底EC,进一步观察发现EC=AE,根据勾股定律可以算出底边EC。 方法一:AB2+BE2=AE2

因为EC=AE,BE=BC-EC,已知AB=3,BC=4, 所以AB2+(BC-EC)2=EC2 32+(4-EC)2=EC2 9+(16-8EC+EC2)=EC2 9+16-8EC+EC2=EC2 25-8EC+EC2=EC2 8EC=25 EC=3.125 △ABC的面积=4×3÷2=6 △DEC的面积=△AEC面积÷2 =EC×AB÷2÷2 =3.125×3÷2÷2 =2.34375 四边形ABED的面积=6-2.34375=3.65625 方法二: △ABC为直角三角形,且直角边的比为3:4,根据勾股定理,三角形斜边AC=5,将△AEC对折后△EDC与△EDA重合,所以DC=AC ÷2,ED⊥AC,∠B=∠EDC=90°。由于△ABC和△EDC中都有∠C,所以∠BAC=∠DEC,2个三角形的三个角都相同,由此得2个三角形的直角边的比也为3:4。 DC=5÷2=2.5 DE:DC=3:4

平行四边形面积计算公式

平行四边形面积计算公式 教学内容:九年义务教育人教版六年制小学课本第九册64页及例1 教学要求:1、使学生理解平行四边形面积计算公式的来源,初步掌握并学会运用面积公式。 2、培养学生动手操作能力,发展空间思维能力;培养学生的大胆创新意识 和小组间的团结协作精神。 教学重、难点:理解面积公式的推导过程。 教学准备:几个相同的平行四边形、投影、课件、剪刀 教学过程: 一、故事引入、设计情趣 拍卖公告 拍卖:为了大力发展小城镇建设,本镇现有一块地皮欲拍卖,有意者请与新袁 镇政府办公室联系。 新袁镇人民政府 2002年11月1日 问:1、如果你想参加竞拍,那你应该知道哪些条件呢? 2、如果这块地是个正方形,那求它的面积应该知道那些条件呢?长方形 呢? 3、如果是平行四边形,那应该知道什么呢?(板书:平行四边形面积计 算公式) 二、动手操作、激发兴趣 (1)、用数方格的方法计算平行四边形面积 1、出示一个平行四边形,引导学生按照每个方格代表1平方厘米,让学生说 出有多少?(让学生讨论如果不满一格应该怎么办) 2、出示一个长方形,再引导学生计算一下,说出结果。 比较一下:长方形的长、宽、面积分别与平行四边形的底、高、面积有什么关 系? 小结:从上面可以看出,平行四边形的面积也可以用数方格的方法求出来,但 数起来比较麻烦,如果是拍卖的那块地你还能数嘛?那想一想,能不能像计算 长方形面积那样,找出计算平行四边形面积的计算公式? 从上面的比较中我们发现了平行四边形的底、高、面积分别与长方形的长、宽、面积之间的关系,那你能不能把一个平行四边形转化成一个长方形呢? 想一想,该怎么做? (2)、用割补平移法推导平行四边形的面积公式 3、让学生拿出准备好的平行四边形进行剪拼(教师巡视)然后指名到前边来 演示。 4、课件演示平行四边形转化成长方形的过程 刚才发现同学们把平行四边形转化成长方形时,就是把从平行四边形左边 剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形,这样好吗? 在变换图形的位置时,怎样按照一定的规律呢? (1)、先沿着平行四边形的高剪下左边的直角三角形。 (2)、左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。 (3)、移动一段后,左手改按梯形的左部,右手再拿着直角三角形继续沿

五年级不规则图形面积计算[001]

五年级不规则图形面积计算 我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表:

实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。 那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。 一、例题与方法指导 例1 如右图,甲、乙两图形都是正方形,它们的边长分 别是10厘米和12厘米.求阴影部分的面积。 思路导航: 阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。 例2 如右图,正方形ABCD的边长为6厘米,△ABE、△ADF 与四边形AECF的面积彼此相等,求三角形AEF的面积. 思路导航:

∵△ABE 、△ADF 与四边形AECF 的面积彼此相等, ∴四边形 AECF 的面积与△ABE 、△ADF 的面积都等于正方形ABCD 的13。 在△ABE 中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2, ∴△ECF 的面积为2×2÷2=2。 所以S △AEF=S 四边形AECF-S △ECF=12-2=10(平方厘米)。 例3 两块等腰直角三角形的三角板,直角边分别是10厘米 和6厘米。如右图那样重合.求重合部分(阴影部分)的面积。 思路导航: 在等腰直角三角形ABC 中 ∵AB=10 ∵EF=BF=AB-AF=10-6=4, ∴阴影部分面积=S △ABG-S △BEF=25-8=17(平方厘米)。 例4 如右图,A 为△CDE 的DE 边上中点,BC=CD ,若△ABC (阴影部分)面积为5平方厘米. 求△ABD 及△ACE 的面积. B C

求不规则四边形面积的两种方法-

求不规则四边形面积的两种方法 面积问题是初中数学的重要内容之一,解决面积问题的方法灵活,技巧性较强。本文介绍利用转化思想求不规则四边形面积的方法。 一. 作辅助线转化,化不规则四边形为规则图形 1. 作对角线,化四边形为三角形 例1.如图1所示,凸四边形ABCD的四边AB、BC、CD和DA的长分别是3、4、 12和3ABCD的面积。 图1 为直角,连结AC,则 为直角三角形。 例2.如图2所示,在矩形ABCD中,△AMD的面积为15,△BCN的面积为20,则四边形MFNE的面积为_______________。 图2 解析:连结EF,将四边形面积转化为两三角形面积之和。由等积变化知,△EFM与△AMD面积相等,△EFN与△BCN面积相等。故所求面积为15+20=35。 2. 通过“割补”,化不规则四边形为规则图形 例3. 如图3所示,△ABC中,AB=AC=2D是BC中点,过D作 AEDF的面积为________________。 图3

解析:过中点D DG、DH是△ABC的中位线, DFH割下补在△DEG处,于是所求面积转化为边长为1的正方形AGDH的面积,得1。 二. 引入未知量转化,变几何问题为代数问题 1. 引入字母常量计算面积 例4.如图4所示,正方形ABCD的面积为1,AE=EB,DH=2AH,CG=3DG,BF=4FC,则四边形EFGH的面积是______________。 图4 解析:考虑到图中线段倍数关系多,设最短线段CF的长为m,则正方形边长为5m, 2. 引入未知量,把求面积转化为解方程(组) 例5. 如图5所示,D、E分别是△ABC的AC、AB边上的点,BD、CE相交于点O, 。 图5 解:连结OA,设△AOE、△AOD的面积分别为x、y,由“等高的三角形面积比等于底的比”有

求不规则四边形的面积

面积类: 求不规则四边形的面积:求不规则四边形的面积.txt 题目: 如图,腰长为6cm的等腰Rt△FED和腰长为9cm的等腰Rt△ABC部分重叠在一起,且BE=1cm,求阴影部分的面积。 逐步提示: 1、观察图形可知,阴影面积为一不规则的多边形面积,要求此面积,考虑常用的求不规则 多边形面积的方法:割补法、和差法、等积代换法等等,看看哪种方法更为合适。 2、本题适用和差法,我们已经知道BE,根据等腰直角三角形的性质可容易求得CK、BD、 AD的值,求得这些值,你能求得哪些三角形的面积呢?和阴影面积有关系的三角形有哪些? 3、如果能求得△ABC的面积,再求得△ADG和△CHK的面积,那么阴影面积就可以求得, △ADG的面积相信你可以容易求得,看看△CHK的面积怎样求? 4、已知∠C=∠A =∠F =45°,你能否推出∠CHK=90°呢?如果可以得出△CHK是等腰直角三角形,那么通过CK=8即可求出它的腰了,那么面积也可得出了,至此阴影的面积你可以求得了吧! 解后反思: 1、此题属于求解不规则多边形的面积的题目。观察图形可知,我们可以求出和阴影面积有关的三角形的面积,从而能够利用和差法方便求出原不规则多边形的面积。 2、求面积有以下几种方法: (1)补形法:计算某个图形的面积,如果它的面积难以直接求出,那么就设法把它补成面积较容易计算的图形; (2)分割法:把应求部分的图形分割成若干份规则的图形,求它们的面积和; (3)求差法:若图形A由图形B和图形C组成,且其中图形B为阴影部分,则B的面积=A的面积-C的面积。 本题就是采用方法(3),希望同学们深刻理解。 巩固练习: LMZT4-P134-8 如图,在长方形ABCD中,AB=3,BC=2,E为BC的中点,F在AB上,且BF=2AF,则四边形AFEC的面积为________.

方格图中不规则图形的面积计算

方格图中不规则图形的面积计算 教学内容:教材P100例五及练习二十二第7~11题。 教学目标: 知识与技能:初步掌握“通过将不规则图形近似地看作可求面积的多边形来求图形的面积”。 过程与方法:用数格子方法和近似图形求积法估测不规则图形的面积。 情感、态度与价值观:培养学生的语言表达能力和合作探究精神,发展学生思维的灵活性。 教学重点:将规则的简单图形和形似的不规则图形建立联系。 教学难点:掌握估算的习惯和方法的选择。 教学方法:迁移式、尝试、扶放式教学法。 教学准备:师:多媒体、树叶、透明方格纸。生:树叶若干片、方格纸一张。 教学过程 一、情境导入 出示图片:秋天的图片。并谈话导人:秋天一到,到处都是飘落的树叶,老师想把这美丽的树叶带入数学课里来研究,我们可以研究它的什么呢? 学生回答,并根据学生的回答板书课题:树叶的面积。 出示一片树叶,先让学生指一指树叶的面积是哪一部分?指名几名学生上台指一指。 引导学生思考:它是一个不规则的图形,那么面积如何计算呢? 学生通过交流,会想到用方格数出来,如果想不到教师可以提醒学生。 二、互动新授 1.出示教材第100页情境图中的树叶。 引导思考:这片叶子的形状不规则,怎么计算面积呢? 让学生思考,并在小组内交流。 学生可能会想到:可以将树叶放在透明方格纸上来计数。 对学生的回答要给予肯定,并强调还是要用一个统一的标准的方格进行计数。 演示教材第100页情境全图:在树叶上摆放透明的每格1平方厘米方格纸。 引导学生观察情境图,说一说发现了一些什么情况? 学生可能会看出:树叶有的在透明的厘米方格纸中,出现了满格、半格,还出现了大于半格和小于半格的情况。 2.自主探索树叶的面积。 明确:为了计算方便,要先在方格纸上描出叶子的轮廓图。 先让学生估一估,这片叶子的面积大约是多少平方厘米。 让学生自主猜测。 再让学生数一下整格的:一共有18格。 引导思考:余下方格的怎么办? 小组交流讨论,汇报。

《估计不规则图形的面积》教案

《估计不规则图形的面积》教学设计 教学内容:教材第100页例5及练习二十二相关练习。 教学目标: 1.初步掌握用“数方格”和“通过将不规则图形近似地转化成规则图形” 的方法来求不规则图形的面积。 2.通过小组合作探究估计不规则图形的面积的方法,培养学生的合作探究 精神,发展学生思维的灵活性。 3.激发学生学习的兴趣,提高学生解决实际问题的能力。 教学重点: 将不规则的简单图形和形似的规则图形建立联系。 教学难点: 掌握估算的习惯和方法的选择。 教学准备: 多媒体、述学单。 教学过程: 一、复习导入。 1.说一说学过的平面图形面积的计算方法。 2.出示一片树叶,让学生估计它的面积。 师:看,今天老师带来了一个不一样的图形,是什么?(生:叶子)你知道怎样计算它的面积吗?这片叶子呀,是一个不规则的图形,老师想看看你们的眼力。估一估,这片叶子的面积大约是多少? 生猜测。 师:我们刚才用眼睛目测,估计的结果都不相同,并且差别较大,那有没有什么好办法能比较准确的估计这片叶子的面积呢?今天这节课我们一起来研究这个问题?(板书:估计不规则图形的面积) 二、合作探究。 1.出示例题,理解题意。 师:在前面的学习中,我们常常把图形放在方格纸上来研究。今天我们不妨也这样做,把叶子放在方格纸上来观察。 课件出示例5,问:从题中你获得了哪些数学信息?要解决的问题是什么? 师:你能很快地估计这片叶子的面积吗? 生:不能。因为叶子遮住了方格纸? 师:有什么好方法处理一下,能让观察更方便?(先在叶子上画出所有的方格线)。 课件出示。 师:同学们,这样观察起来是不是方便多了? 2.学生自主探究。 师:解决了这个问题,你们现在能估计这片叶子的面积了吗? 请同学们拿出述学单,老师给你们准备了两个图,你可以用不同的方法估计这片叶子的面积。要求:自己看图独立思考,可以用笔在图上标一标、画一画,

不规则图形面积的计算方法

不规则图形面积的计算方法 教授对象:校区:年级:五科目:数学授课教师: 课题不规则图形面积计算所用课时 1.5 h 学习目标掌握不规则图形面积公式 授课时间 重点难点面积公式的应用 学习过程 不规则图形面积计算 我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表: 实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。

那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。 一、例题与方法指导 例1、如右图,甲、乙两图形都是正方形,它们的边长分别是10厘 米和12厘米.求阴影部分的面积。 思路导航: 阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白” 三角形(△ABG 、△BDE 、△EFG )的面积之和。 例2、如右图,正方形ABCD 的边长为6厘米,△ABE 、△ADF 与四边形AECF 的面积彼此相等,求三角形AEF 的面积. 思路导航: ∵△ABE 、△ADF 与四边形AECF 的面积彼此相等, ∴四边形 AECF 的面积与△ABE 、△ADF 的面积都等于正方形ABCD 的13 。 在△ABE 中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2, ∴△ECF 的面积为2×2÷2=2。 所以S △AEF=S 四边形AECF-S △ECF=12-2=10(平方厘米)。 例3、两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。如右图那样重合.求重合部分(阴影部分)的面积。 思路导航: 在等腰直角三角形ABC 中 ∵AB=10 ∵EF=BF=AB-AF=10-6=4, ∴阴影部分面积=S △ABG-S △BEF=25-8=17(平方厘米)。 例4、如右图,A 为△CDE 的DE 边上中点,BC=CD ,若△ABC (阴影部分)面积为5平方厘米. 求△ABD 及△ACE 的面积. 思路导航: 取BD 中点F ,连结AF.因为△ADF 、△ABF 和△ABC 等底、等高, B C

求不规则四边形面积的两种方法-精品

【关键字】方法、问题、思想、关系、解决 求不规则四边形面积的两种方法 面积问题是初中数学的重要内容之一,解决面积问题的方法灵活,技巧性较强。本文介绍利用转化思想求不规则四边形面积的方法。 一. 作辅助线转化,化不规则四边形为规则图形 1. 作对角线,化四边形为三角形 例1.如图1所示,凸四边形ABCD的四边AB、BC、CD和DA的长分别是3、4、 12和3ABCD的面积。 图1 为直角,连结AC,则 为直角三角形。 例2.如图2所示,在矩形ABCD中,△AMD的面积为15,△BCN的面积为20,则四边形MFNE的面积为_______________。 图2 解析:连结EF,将四边形面积转化为两三角形面积之和。由等积变化知,△EFM与△AMD面积相等,△EFN与△BCN面积相等。故所求面积为15+20=35。 2. 通过“割补”,化不规则四边形为规则图形 例3. 如图3所示,△ABC中,AB=AC=2D是BC中点,过D作 AEDF的面积为________________。 图3

解析:过中点D DG、DH是△ABC的中位线, DFH割下补在△DEG处,于是所求面积转化为边长为1的正方形AGDH的面积,得1。 二. 引入未知量转化,变几何问题为代数问题 1. 引入字母常量计算面积 例4.如图4所示,正方形ABCD的面积为1,AE=EB,DH=2AH,CG=3DG,BF=4FC,则四边形EFGH的面积是______________。 图4 解析:考虑到图中线段倍数关系多,设最短线段CF的长为m,则正方形边长为5m, 2. 引入未知量,把求面积转化为解方程(组) 例5. 如图5所示,D、E分别是△ABC的AC、AB边上的点,BD、CE相交于点O, 。 图5 解:连结OA,设△AOE、△AOD的面积分别为x、y,由“等高的三角形面积比等于底的比”有

相关主题