搜档网
当前位置:搜档网 › 基于数学形态学的直流接地极引线C型行波故障测距

基于数学形态学的直流接地极引线C型行波故障测距

基于数学形态学的直流接地极引线C型行波故障测距
基于数学形态学的直流接地极引线C型行波故障测距

直流系统接地详解

直流系统接地详解,绝对不容错过哟! 时常听着技术人员与客户沟通:当直流输电系统以单极大地方式运行时,在直流接地极附近有直流电流从地中经直接接地的中性点流入交流变压器中,会造成变压器出现直流偏磁问题,这其中的直流系统接地到底是怎么一回事儿,你弄明白了么? 1、直流系统的重要性 所谓直流系统,是可以为设备各种动作提供可靠稳定不间断的电源,直流系统自身的可靠性直接影响到整个系统的安全。 需要强调的一点是:直流电源是十分稳定可靠的,但是由于控制保护回路的应用,使直流系统的故障成为电力系统更大故障的事故隐患,这就是我们常说的直流系统接地故障危害。 2、什么是直流接地? 直流电源系统正极或负极对地间的绝缘电阻值降低至某一整定值,或者低于某一规定值这时我们称该直流系统有正接地故障或负接地故障。 3、直流接地故障的危害? 1、直流正极接地:有保护及自动装置误动的可能。因为一般跳合闸线圈、继电器线圈与负极电源接通,若这些回路在发生一点接地,就可能引起误动、误跳; 2、直流负极接地,可能使继电保护、自动装置拒绝动作。同时,直流回路短接,使电源保险熔断,失去保护及操作电源,并且可能烧坏继电器接点。

3、直流系统正负极各有一点接地,会造成短路使电源保险熔断,使保护极自动装置、控制回路失去电源。 4、小编还从技术人员那里也曾了解过,变电站变压器主变中性点直流接地状况,如果遇上直流电流的超标入侵,产生的直流系统接地故障会使得变电站带来极大的功能电能损耗,这是需要及时安装直流偏磁抑制装置预防的。 安徽正广电作为直流偏磁治理的电力窗口,不断分享行业技术发展以及最新的直流偏磁仿真、测试、治理知识,安徽正广电励志成为客户们的最佳服务者,我们必将以合作共赢的原则,与大家携手畅游电力的海洋!

10kV系统单相接地故障分析及处理

10kV系统单相接地故障分析及处理 随着社会经济的快速发展,其中10kV系统经常发生单相接地问题,影响电力系统正常运行。电力企业得到了很大进步,文章通过分析10kV系统发生单相接地故障原因及危害,总结出10kV系统单相接地故障时的处理方法及其注意事项。 标签:单相接地故障;危害;处理;注意事项 1 概述 电力系统在进行分类时常分大电流接地系统和小电流接地系统。采用小电流接地系统有一大优点就是系统某处发生单相接地时,虽会造成该接地相对地电压降低,其他两相的相电压升高,但线电压却依然对称,因而不影响对用户的连续供电,系统可继续运行1~2小时。10KV系统无论是在供电系统还是配电系统中都应用的比较广泛,故10KV系统是否可靠安全运行直接影响到整个电力系统能否正常运行。然而10kV系统在恶劣天气条件下发生单相接地故障的机率却很大。10kV系统若在发生单相接地故障后未得到妥善处理让电网长时间运行的话,将会致使非故障相中的设备绝缘遭受损坏,使其寿命缩短,进一步发展为事故的可能得到提高,严重影响变电设备和配电网的安全经济运行。因此,工作人员一定要熟知10kV系统发生接地故障的处理方法,一旦10kV系统发生单相接地故障必须及时准确地找到故障线路予以切除,以确保电力系统稳定安全运行。 2 10kV系统发生单相接地故障的原因及危害 导致10kV系统发生单相接地故障的原因有很多,大致可以分为以下五类主要原因: (1)设备绝缘出现问题,发生击穿接地。例如:配电变压器高压绕组单相绝缘击穿或接地、绝缘子击穿、线路上的分支熔断器绝缘击穿等。 (2)天气恶劣等自然灾害所致。例如:线路落雷、导线因风力过大,树木短接或建筑物距离过近等。 (3)输电线断线致使发生单相接地故障。例如:导线断线落地或搭在横担上、配电变压器高压引下线断线等。 (4)飞禽等外力致使发生单相接地故障。例如:鸟害、飘浮物(如塑料布、树枝等。 (5)人为操作失误致使发生单相接地故障等。 10kV系统的馈线上发生单相接地故障的危害除了使非故障两相电压升高以

直流系统接地故障查找的方法处理原则

精心整理直流系统接地故障查找的方法、处理原则 电厂直流系统分支较多、涉及面广,绝缘水平很难保持得很高,特别是在空气潮湿的水轮机层,发生直流接地的机率较大,若不及时处理,会严重影响安全经济运行。直流系统发生一点接地后,若未及时发现和处理, 人员应先切换直流负荷屏上的接地电压表,判明直流接地的极性。若将该表转换开关切至“正”,电压表指示值为220V,则说明“负”极接地;反之,则“正”极接地。接地极性明确后,可进行以下处理:检查绝缘水平低(如水轮机层的各直流设备),存在设备缺陷及有检修工作的电气设备

和线路是否有接地情况;询问载波室是否有直流系统故障;依次切断直流负荷屏上各负荷开关;检查蓄电池、硅整流装置及充电机回路是否有接地现象等。在切断上述每一直流回路后,应迅速恢复送电。在切断每一回路过程中,工作人员应根据仪表和信号装置的指示,判断是否有接地。如切断时接地消失,恢复送电后接地又出现,则可肯定接地发生在该回路上, 掌。一般直流屏上输出的直流电源按其负荷性质分两路分别送到合闸母线(250V)和控制母线(220V),它们负极分开,正极共用。而且对于每台机组以及升压站等设备使用的不同直流电源也相对分开。这在设计之时也是方便于运行上查找直流系统接地故障。 (2)、判断接地极性。用万用表DC档测量直流电源“+”、“-”极对

地电压,若“+”极接地时,则“-”极对地电压为220V,若“-”极接地时,则“+”极对地电压为220V,据此判断出接地极性。为叙述方便,以下设“-”极接地。 (3)、用万用表测直流控制母线“+”极对地电压为220V,瞬时切除所有合闸电源开关后,如电压值下降很多甚至为0V,就说明接地点在合闸 ,说明接地点在主厂房的机组范围内;如所测电压值无变化,说明接地点在中控室范围内。 如接地点在机组范围内,则分别断开相关机组直流电源开关,以判定在哪台机组。之后测量接地点所在机组的自动屏上控制电源进线“+”极对地电压,瞬时解除至调速器、励磁调节屏、测温自动屏、闸阀控制系统、

单相接地故障的特征及处理

单相接地故障的特征及处理 10kV(35kV)小电流接系统单相接(以下简称单相接是配电系统最常见故障,多发生潮湿、多雨天气。树障、配电线路上绝缘子单相击穿、单相断线以及小动物危害等诸多因素引起。单相接影响了用户正常供电,可能产生过电压,烧坏设备,引起相间短路而扩大事故。,熟悉接故障处理方法对值班人员来说十分重要。 1几种接故障特征 (1)当发生一相(如A相)不完全接时,即高电阻或电弧接,这时故障相电压降低,非故障相电压升高,它们大于相电压,但达不到线电压。电压互感器开口三角处电压达到整定值,电压继电器动作,发出接信号。 (2)发生A相完全接,则故障相电压降到零,非故障相电压升高到线电压。此时电压互感器开口三角处出现100V电压,电压继电器动作,发出接信号。 (3)电压互感器高压侧出现一相(A相)断线或熔断件熔断,此时故障相指示不为零,这是此相电压表二次回路中经互感器线圈和其他两相电压表形成串联回路,出现比较小电压指示,但该相实际电压,非故障相仍为相电压。互感器开口三角处会出现35V左右电压值,并启动继电器,发出接信号。 (4)系统中存容性和感性参数元件,特别是带有铁芯铁磁电感元件,参数组合不匹配时会引起铁磁谐振,继电器动作,发出接信号。 (5)空载母线虚假接现象。母线空载运行时,也可能会出现三相电压不平衡,发出接信号。但当送上一条线路后接现象会自行消失。 2单相接故障处理 (1)处理接故障步骤: ①发生单相接故障后,值班人员应马上复归音响,作好记录,迅速报告当值调度和有关负责人员,并按当值调度员命令寻找接故障,但具体查找方法由现场值班员自己选择。 ②详细检查所内电气设备有无明显故障迹象,不能找出故障点,再进行线路接寻找。 ③将母线分段运行,并列运行变压器分列运行,以判定单相接区域。 ④再拉开母线无功补偿电容器断路器以及空载线路。对多电源线路,应采取转移负荷,改变供电方式来寻找接故障点。 ⑤采用一拉一合方式进行试拉寻找故障点,当拉开某条线路断路器接现象消失,便可判断它为故障线路,并马上汇报当值调度员听候处理,同时对故障线路断路器、隔离开关、穿墙套管等设备做进一步检查。 (2)处理接故障要求: ①寻找和处理单相接故障时,应作好安全措施,保证人身安全。当设备发生接时,室内不接近故障点4m以内,室外不接近故障点8m以内,进入上述范围工作人员必须穿绝缘靴,戴绝缘手套,使用专用工具。 ②减小停电范围和负面影响,寻找单相接故障时,应先试拉线路长、分支多、历次故障多和负荷轻以及用电性质次要线路,然后试拉线路短、负荷重、分支少、用点性质重要线路。双电源用户可先倒换电源再试拉,专用线路应先行通知。若有关人员汇报某条线路上有故障迹象时,可先试拉这条线路。 ③若电压互感器高压熔断件熔断,不用普通熔断件代替。必须用额定电流为0.5A装填有石英砂瓷管熔断器,这种熔断器有良好灭弧性能和较大断流容量,具有限制短路电流作用。 3结束语 减少单相接故障给电网运行带来不良影响,要求值班人员熟悉有关运行规程,了解设备运行状况,实践中不断总结经验,提高处理问题能力,还要积极改善设备运行条件,及时消除设备缺陷,保持设备清洁,提高设备绝缘水平。同时,还要加强配电线路检修、维护管理,提高配电线路检修人员技术水平,缩短查找处理接故障时间,尽快恢复对用户供电。

行波法在配电网故障测距中的应用

中国电力教育2010年管理论丛与技术研究专刊 配电网与电力用户相联,所处的地理环境复杂,线路 分支多,接地电阻和分布电容比较大,故障定位困难,一 直被认为是个难点。近年来,行波法日趋成熟,其优越性 越来越受到电力行业的重视。尤其是C型行波法,在故障 后可以重复测距判断,很大程度上保证了测量精度,在配 电网故障测距中有较大的优势。 行波法是通过测量故障产生的行波在故障点及检测端 (母线之间往返一趟的时间或利用故障点行波到达线路两 端的时间差来计算故障距离,一般分为A、B、C、E 4种。[1-3] 本文通过分析行波反射和折射原理,介绍了这几种行波测距 方法的原理和特点。最后通过对10kV多分支配电线路单相 接地故障进行仿真分析,验证了C型行波法在配电网故障 测距中的可行性。 一、行波反射与折射原理 行波在线路上传播时,遇到波阻抗不连续点(如故障点

会发生反射与折射。[4-6]反射和折射是行波的重要特性,其中,反射波是用来实现故障测距的重要依据。 如图1所示,行波U i(入射波沿波阻抗为Z 1 的线路 传播,到达O点,波阻抗由Z 1 变为Z 2 ,发生反射和折射; 一部分行波U r(反射波沿Z 1 线路返回,另一部分行波U j(透 射波沿Z 2 线路继续传播。O点的反射系数可以用反射电 压(电流与入射电压(电流之比来表示,电压反射系数为: (1 反射系数大小相等,符号相反。

行波法在配电网故障测距中的应用 徐汝俊* 严凤 (华北电力大学电气与电子工程学院,河北保定 071003 摘要:行波法故障测距不受系统参数、运行方式、线路不对称性及互感器变化误差等因素的影响,构成简单、容易实现。该方法通过检测行波在故障点及检测端之间往返一次的时间或利用故障点行波到达线路两端的时间差来计算故障距离,具有测距速度快、精度高的优点。本文介绍了A、B、C、E这4种行波测距方法的原理及其各自的优缺点。通过对10kV多分支配电线路单相接地故障进行仿真,比较正常线路和故障线路波形,找到了第一个波形畸变点并以此来确定故障距离。结果表明测距精度满足实际要求,从而验证了C型行波法在配电网故障测距中的可行性。 关键词:配电网;行波法;反射波;测距;仿真 *作者简介:徐汝俊,男,华北电力大学电气与电子工程学院硕士研究生。 (2 当线路出现开路点或行波运动到线路的开路终端时, 相当于z 2 →8,有反射系数K u=1,K i =-1。线路中短路点 相当于z

输电线路行波故障测距技术的发展与应用

输电线路行波故障测距技术的发展与应用 发表时间:2018-03-13T16:20:56.700Z 来源:《电力设备》2017年第30期作者:常文杰 [导读] 摘要:伴随我国现代化建设的初步完成与城市化水平的不断提升,对于电力的需求也在不断的增长,然而较早的供配电系统常因安全性、供电质量等出现各种不间断的故障,怎样才能利用一些新技术 (国网新疆电力有限公司检修公司新疆乌鲁木齐 830001) 摘要:伴随我国现代化建设的初步完成与城市化水平的不断提升,对于电力的需求也在不断的增长,然而较早的供配电系统常因安全性、供电质量等出现各种不间断的故障,怎样才能利用一些新技术,更快速、更准确的将这些故障及时诊断出来,并为维护与检修提供充足的时间,并使电力恢复更为及时,是当下应该考虑的重要问题;另一方面,我国在火力发电、水力发电以及新的生物能源发电方面,有了长足的累积,尤其是随着三峡工程、南水北调工程等这些重大项目的完成,更是为发电企业提供了一股新的动力;加之配套性的电网改造也成功的实现了电网的升级与优化,向智能化、自动化、一体化方面又迈进了重要的一步。 关键词:故障测距;行波;行波故障测距装置 引言 随着我国电力行业的不断发展,为保证电力系统安全可靠性,我们国家对电力系统提出了更高的标准要求。为保证可靠供电,降低停电损失,在输电线路发生故障时,要求对电力系统输电线路故障进行快速准确的定位。早期的故障测距方法可以分为阻抗法、故障分析法、行波法等3种。其中,阻抗法和故障分析法受故障点过渡电阻等因素影响,有比较大的测距误差,不但达不到运行要求,而且适用性不高。而行波法测距主要是通过采集故障电压或电流的波形,标定行波到达时刻来进行测距。运用行波法的原理进行测距,其精度比较高,也有广泛的适用性,故而大量应用在电力系统中进行测距。本文通过对国内外行波测距关键技术、改进算法、实际装置的调研,对行波测距关键技术的发展、算法的改进和实际中应用的装置进行了总结,对行波测距技术的未来发展提出了展望。 1行波测距技术原理、特征 (1)行波的发现有赖于研究者对输电线路故障点在附加电源作用的影响分析,行波主要是指输电线路在此情况下,线路上出现与光速传播较接近的电压、电流行波;从原理的角度来看,行波理论主要是以行波为载体,分析故障点、测量点之间传播的时间差,利用它计算或测量出故障距离,对其加以定位。(2)行波测距方法表现为4大类型,分别为单端测距、雷达测距、脉冲信号测距、双端测距。(3)与基于工频量的故障测距技术比较,行波测距技术与行波测距特征表明了自身的最大优势,目前来看,集中表现在不受故障点过渡电阻、线路结构等因素的阻碍,另外,如同概述所言,它在测量方面测距精度非常高,适用范围也相当广泛;而且由于在行波理论流行的现在,小波变换理论、数学形态理论也在不断发展,对于各种交叉性质的理论研究,在未来的突破可能性极大,所以行波测距技术的可发展空间还非常广阔,也表明了它的研究需要不断加强,从而向着完善化的方向不断推进。 2行波测距的关键技术 2.1行波信号的提取 暂态行波所覆盖的频带很宽,信号的提取可由电压或电流互感器完成。高压输电线路普遍采用的电容分压式电压互感器CVT (capacitivevoltagetransformer),截止频率低,传变高频电压信号会带来衰减和相移,因此很少使用。常规的电流互感器可以传变100kHz以上的电流暂态分量,能够满足行波测距的要求,在实际应用中常用电流互感器提取行波信号。同时,对于新建变电站使用的电子式电流互感器ECT(electroniccurrenttransformer),文献提出了相应的行波信号提取方法。 2.2行波信号的采集与时间同步 行波传播波速接近光速,1μs的采样误差将带来约±150m的测距误差。因此对行波信号的采样频率要求在1MHz及以上,使用双端原理时,线路两侧必须配置高精度和高稳定度的实时时钟。随着微电子技术的高速发展,实现高速数据采集和处理己非难事,现有的A/D转换芯片转换频率完全可以满足,并且GPS接收模块的电力系统同步时钟装置可以实现1μs时间同步以满足测距要求,为实现准确的TWFL奠定了所需的硬件基础。在实际应用中,由于GPS接收模块存在输出信号不稳定、卫星失锁、时钟跳变、信号干扰等原因导致的同步时钟信号失步的问题,因此必须附加高稳定度守时钟,并且需要消除偏差超过某一限定范围的时间同步信号,从而提高双端原理的测距精度。 2.3行波信号达到时间的标定 行波信号到达时间的标定和波速的确定是行波法最关键的技术,时间与波速相互对应,必须同时讨论才有意义。判定检测到的行波波头频率,然后根据线路参数的频率特性计算出行波在该频率下的传播速度,以此用于测距是最为准确的。求取暂态行波信号的一阶或二阶导数,并与设定的门槛值进行比较来判断行波信号是否到达,此方法对噪声比较敏感,当故障距离较短,行波中高频分量明显时,其效果较好。相关法和匹配滤波器法是以首次到达母线的行波信号为参考,利用从故障点反射回母线的行波信号与参考信号的反极性相似性,根据互相关函数的最大值判定反射波达到时间,进而求出故障位置的方法,但其测距结果受母线端所连接的输电线数目等因素影响,行波在传播过程中的波形畸变会降低算法的可靠性。中的主频率法是一种频域分析方法,该方法从较长的时间段来考察行波频率范围,由行波中频谱最强的分量决定行波到达时间,然后求解故障距离,其缺点是所求行波主频往往较低,定位精度会受到影响。小波分析方法利用小波变换在时频域内都具有局部化特性,对信号进行局部化分析,可有效提取故障行波特征,得到信号中的奇异点,小波分量的模极大值出现时间即为电流行波脉冲的到达时刻,并且通过得到信号被分析频带的中心频率和模极大值对应时间能同时解决行波到达时间和传播速度的选取问题,在实际设备中也有广泛的应用。 3行波故障测距系统应用实例 当系统中任一被监视信号超过预设值,高速采集单元启动,发出触发信号,标定当前时间,激活CPU中的采集控制定时电路,经过大约几毫秒时间,高速采集单元终止工作从而向CPU发外部中断信号。CPU在中断服务程序中获取到这次触发的时间信息后释放高精度时钟,并处理触发的暂态数据,判断是否为有效触发。如果有效,设置启动标志。在主循环程序中,系统进入故障处理程序的前提是CPU能够获取到启动标志,数据存储过程也是在处理程序中进行,从而形成启动报告,通过串口发出上报信号。

直流系统接地故障问题分析及排查方法

直流系统接地故障问题分析及排查方法在变电站直流系统为控制、信号、继电保护、自动装置、事故照明及操作等提供可靠的直流电源,其正常与否对变电站的安全运行至关重要。但实际运行中,由于气候环境影响、设备的维护不够恰当、直流回路中混入了交流电、寄生回路存在等原因都可能会引起直流系统接地。直流系统容易发生单点接地。虽然单点接地不引起危害,但若演变成两点接地将造成保护误动或拒动、信息指示不正确、熔断器熔断等严重事件。无论何种原因,直流接地事故都会影响其她电力设备的正常运行,严重者,会导致整个电网系统的瘫痪,造成无法挽回的重大损失保护好直流系统的正常运行就是变电站工作的重中之重,因此,对直流系统接地故障必须采取早发现、早消除、勤防范策略 一、直流系统接地的危害 直流系统一般用于变电所控制母线、合闸母线、UPS不间断电源,也用作其她电源与逻辑控制回路。直流系统就是一个绝缘系统,绝缘电阻达数十兆欧,在其正常工作时,直流系统正、负极对地绝缘电阻相等,对地电压也就是相对平衡的。当发生一点接地时,其正、负极对地电压发生变化,接地极对地电压降低,非接地极电压升高,控制回路与供电可靠性会大大降低,但一般不会引发电气控制系统的次生故障。可就是,当直流系统有两点或多点接地时,极易引起逻辑控制回路误动作、直流保险熔断,使保护及自动装置、控制回路失去电源,在复杂保护回路中同极两点接地,还可能将某些继电器短接,不能动作跳闸,致使越级跳

闸,造成事故扩大。规程严格规定:直流系统多点同极接地,应停止直流系统一切工作,也就是基于其故障性质的不确定因素。 1、直流系统正极接地的危害 当发生直流正极接地时,可能会引起保护及自动装置误动。因为一般断路器的跳合闸线圈以及继电器线圈就是与负极电源接通的,如果在这些回路上再发生另一点直流接地,就可能引起误动作。 如上图所示,A、B两点发生直流接地时,相当于将外部合闸条件全部短接,从而使合闸线圈得电误动作合闸。A、C两点接地时,则外部分闸条件被短接而误动作跳闸。A、D两点,A、F两点接地,同样都能造成开关误跳闸。

单相接地故障的特征及处理通用版

安全管理编号:YTO-FS-PD548 单相接地故障的特征及处理通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

单相接地故障的特征及处理通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 10kV(35kV)小电流接地系统单相接地(以下简称单相接地)是配电系统最常见的故障,多发生在潮湿、多雨天气。由于树障、配电线路上绝缘子单相击穿、单相断线以及小动物危害等诸多因素引起的。单相接地不仅影响了用户的正常供电,而且可能产生过电压,烧坏设备,甚至引起相间短路而扩大事故。因此,熟悉接地故障的处理方法对值班人员来说十分重要。 1 几种接地故障的特征 (1)当发生一相(如A相)不完全接地时,即通过高电阻或电弧接地,这时故障相的电压降低,非故障相的电压升高,它们大于相电压,但达不到线电压。电压互感器开口三角处的电压达到整定值,电压继电器动作,发出接地信号。 (2)如果发生A相完全接地,则故障相的电压降到零,非故障相的电压升高到线电压。此时电压互感器开口三角处出现100V电压,电压继电器动作,发出接地信号。 (3)电压互感器高压侧出现一相(A相)断线或熔断件熔

变电站直流系统接地故障的查找

变电站直流系统接地故障的查找 摘要:变电运维班目前管辖的变电站越来越多,直流系统是电力系统的重要组 成部分,直接关系到设备的稳定运行和安全。本文针对直流系统在运行中发生一 点接地的各种可能性,结合现场实践经验,提出直流接地故障查找的方法和步骤,为运行人员及时查找直流接地提供有力的帮助。 关键词:直流系统接地;故障分析;故障排查;故障处理 0引言 变电站直流系统是用蓄电池来储存能量的,用充电机补充能量的同时向全站 保护、监控及通讯系统源源不断地输送电能,确保其安全、稳定、可靠运行。直 流系统的绝缘系统正常时,正、负极对地绝缘电阻相等,正、负极对地电压平衡。发生一点接地时,正、负极对地电压发生变化,接地极对地电压降低,非接地极 电压升高,在接地发生和恢复的瞬间,经远距离、长电缆起动中间继电器跳闸的 回路可能因其较大的分布电容造成中间继电器误动跳闸(可采用较大起动功率的 中间继电器来避免),除此之外,对全站保护、监控、通讯装置的运行并没有影响。但是,存在一点接地的直流系统,供电可靠性大大降低,因为在接地点未消 除时再发生第二点接地,极易引起直流短路和开关误动、拒动,所以直流一点接 地时,设备虽可以继续运行,但接地点必须尽快查到,并立即消除、隔离才能确 保设备可靠运行。 1直流接地形式 按接地点所处位置的不同,可将直流接地分为室内和室外两种,按引起接地 的原因,又可分为以下几种: 1.1由下雨天气引起的接地 在大雨天气时,雨水飘入未密封严实的户外二次接线盒,使接线桩头和外壳 导通起来,引起接地。例如瓦斯继电器不装防雨罩,雨水渗入接线盒,当积水淹 没接线柱时,就会发生直流接地和误跳闸。在持续的小雨天气(如霉雨天气), 潮湿的空气会使户外电缆芯破损处或者黑胶布包扎处绝缘大大降低,从而引发直 流接地。 1.2由小动物破坏引起的接地 当二次接线盒(箱)密封不好时,飞虫会钻进盒里筑巢,巢穴会将接线端子 和外壳连接起来,引发直流接地。电缆外皮被老鼠咬破时,也容易引起直流接地。 1.3由挤压磨损引起的接地 当二次线与转动部件(如经常开合的开关柜柜门)靠在一起时,二次线绝缘 皮容易受到转动部件的磨损,当其磨破时,便造成直流接地。 1.4接线松动脱落引起接地 接在断路器机构箱端子排的二次线(如110kV开关机构箱内的二次线),若 螺丝未紧固,在断路器多次跳合时接线头容易从端子中滑出,搭在铁件上引起接地。 1.5误接线引起接地 在二次接线中,电缆芯的一头接在端子上运行,另一头被误认为是备用芯或 者不带电而让其裸露在铁件上,引起接地。在拆除电缆芯时,误认为电缆芯从端 子排上解下来就不带电,从而不做任何绝缘包扎,当解下的电缆芯对侧还在运行时,本侧电缆芯一旦接触铁件就引发接地。 1.6插件内元件损坏引起接地

行波测距法

行波法故障测距 行波法的研究始于本世纪四十年代初,它是根据行波传输理论实现输电线路故障测距的。现在行波法已经成为研究热点。 行波法的研究始于二十世纪四十年代初,它是根据行波传输理论实现输电线路故障测距的。现在行波法已经成为研究热点。 简介 (1)早期行波法 按照故障测距原理可分为A,B,C 三类: ① A 型故障测距装置是利用故障点产生的行波到达母线端后反射到故障点,再由故障点反射后到达母线端的时间差和行波波速来确定故障点距离的。但此种方法没有解决对故障点的反射波和对侧母线端反射波在故障点的透射波加以区分的问题,所以实现起来比较困难。 ② B 型故障测距装置是利用记录故障点产生的行波到达线路两端的时间,然后借助于通讯联系实现测距的。由于这种测距装置是利用故障产生后到达母线端的第一次行波的信息,因此不存在区分故障点的反射波和对侧母线端反射波在故障点的透射波的问题。但是它要求在线路两端有通讯联系,而且两边时标要一致。这就要求利用GPS 技术加以实现。 ③ C 型故障测距装置是在故障发生后由装置发射高压高频或直流脉冲,根据高频脉冲由装置到故障点往返一次的时间进行测距。这种测距装置原理简单,精度也高,但要附加高频脉冲信号发生器等部件,比较昂贵复杂。另外,测距时故障点反射脉冲往往很难与干扰相区别,并且要求输电线路三相均有高频信号处理和载波通道设备。 比较 三种测距原理的比较:A 型和 C 型测距原理属于单端测距,不需要线路两端通信,因都需要根据装置安装处到故障点的往返时间来定位,故又称回波定位法;而 B 型测距原理属于双端通讯, 需要双端信息量。A 型测距原理和 B 型测距原理适用于瞬时性和持久性故障,而C 型测距原理只适用于持久性故障。 (2)现代行波法 从某种意义上讲,现代行波法是早期A 型行波法的发展。60年代中期以来,人们对1926年提出的输电线路行波传输理论行了大量的深入的研究,在相模变换、参数频变和暂态数值计算等方面作了大量的工作,进一步加深了对行波法测距及诸多相关因素的认识。 1)行波相关法 行波相关法所依据的原理是向故障点运动的正向电压行波与由故障点返回的反向电压行波之间的波形相似,极性相反,时间延迟△ t 对应行波在母线与故障点往返一次所需要的时间。对二者进行相关分析,把正向行波倒极性并延迟△ t 时间后,相关函数出现极大值。 这种方法也存在对故障点的反射波和对侧母线端反射波在故障点的透射波加以区分的问题。由于在一些故障情况下存在对侧端过来的透射波,它们会与故障点发生的反射波发生重叠,从而给相关法测距带来很大困难。 2)高频行波法 高频行波法与其他行波法不同的是,它提取电压或电流的高频行波分量,然后进行数字信号处理,再依据 A 型行波法进行故障测距。这种方法根据高频下母线端的反射特性,成功的区分了故障点的反射波和对侧母线端反射波在故障点的透射波。 (3)利用行波法测距需要解决的问题 行波法测距的可靠性和精度在理论上不受线路类型、故障电阻及两侧系统的影响,但在实际中则受到许多工程因素的制约。 1)行波信号的获取 数字仿真表明:故障时线路上的一次电压与电流的行波现象很明显,包含丰富的故障信息,但需要通过互感器进行测量。关键是如何用一种经济、简单的方式从互感器二次侧测量到行波信号。一般来说,电压和电流的互感器的截止频率要不低于10khz,才能保证信号不过分失真。用于高压输电线路的电容式电压互感器(CVT)显然不能满足要求。利用故障产生的行波的测距装置,最好能做到与其他的线路保护(如距离保护)共用测量互感

2021新版直流接地引发的一次“异常”现象分析

2021新版直流接地引发的一次“异常”现象分析 Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0025

2021新版直流接地引发的一次“异常”现 象分析 1引言 变电站直流系统的稳定运行对继电保护及自动装置的可靠正确动作至关重要。对整个电网的安全运行起决定性作用,直流系统出现异常或故障,应尽快处理。一般情况下,直流接地故障是一个独立的故障现象,取决于直流二次回路对地的绝缘水平。直流接地故障(即使是重复接地)排除后直流系统即可恢复正常运行,很少出现连续接地故障。在一次220KV变电站35KV的3516馈线开关检修过程中发生了一次“直流母线接地故障”反复出现且受控于3516开关分合影响的异常现象。 2起因及经过 2002年11月29日该站一条35KV馈线(3516)发生BC相短路,

电流保护I段动作切除故障后启动重合闸装置,但重合未成功(原因:重合过程中开关拒合烧坏合闸线圈,未实现重合指令。该开关为户内少油式手车断路器,配CD-10型电磁合闸机构)。14:30分我们组织检修人员对开关机构进行检修调试,对烧坏的合闸线圈进行更换处理,16:30分事故抢修结束后在对3516开关进行分合试验过程中,直流装置及中央信号打出了“直流母线接地”的信号。直流系统异常现象出现后对直流母线接地故障先进行了处理。用UT-52型数字表直流1000V档对直流母线电压进行实测,结果:U=231V、U+=231V、U-=0V,得出了负极直接接地的结论。本着“先易后难、先次后主”的原则进行接地点查找:首先断开3516的控制、保护、合闸电源,直流接地依旧,排除了3516单元直流回路存在接地的可能,当拉开“10KVⅠⅡ段保护信号电源”时“一套直流母线接地"故障消失,直流母线负极对地电压上升为115V。进一步查找发现10千伏116电容器保护装置内部电源负极绝缘降低(10KV馈线及电容器保护装置型 号MDM—B1C,该型号保护装置曾多次出现过故障,运行极不稳定)。用数字表测得该装置电源负对地电阻值247Ω,断开装置的直流电源

变电站线路单相接地故障处理及典型案例分析(扫描版)

变电站线路单相接地故障处理及典型案例分析 [摘要] 在大电流接地系统中,线路单相接地故障在电力系统故障中占有很大比例.本文通过对某地区工典型故障案例进行分析,介绍了处理方法,并对相关的知识点进行阐述,为现场运行人员正确判断和分析事故原因提供了借鉴。 [关键词]大电流接地系统;小电流接地系统;判断;分析 我国电压等级在110kV 及其以上的系统均为大电流接地系统,在大电流接地系统中,线路单相接地故障在电力系统故障中占有很大的比例,造成单相故障的原因有很多,如雷击、瓷瓶闪落、导线断线引起接地、导线对树枝放电、山火等。线路单相接地故障分为瞬时性故障和永久性故障两种,对于架空线路一般配有重合闸,正常情况下如果是瞬时性故障,则重合闸会启动重合成功;如果是永久性故障将会出现重合于永久性故障再次跳闸而不再重合。 为帮助运行人员正确判断和分析大电流接地系统线路单相瞬时性故障,本案例选取了某地区一典型的220kV线路单相瞬时接地故障,并对相关的知识点进行分析。 说明,此案例分析以FHS变电站为主。 本案例分析的知识点: (1)大电流接地系统与小电流接地系统的概念。 (2)单相瞬时性接地故障的判断与分析。 (3)单相瞬时性接地故障的处理方法。 (4)保护动作信号分析。 (5)单相重合闸分析。 (6)单相重合闸动作时限选择分析。 (7)录波图信息分析。 (8)微机打印报告信息分析。 一、大电流接地系统、小电流接地系统的概念 在我国,电力系统中性点接地方式有三种: (1)中性点直接接地方式。 (2)中性点经消弧线圈接地方式。 (3)中性点不接地方式。 110kV及以上电网的中性点均采用中性点直接接地方式。 中性点直接接地系统(包括经小阻抗接地的系统)发生单相接地故障时,接地短路电流很大,所以这种系统称为大电流接地系统。采用中性点不接地或经消弧线圈接地的系统,当某一相发生接地故障时,由于不能构成短路回路,接地故障电流往往比负荷电流小得多,所以这种系统称为小电流接地系统。 大电流接地系统与小电流接地系统的划分标准是依据系统的零序电抗X0与正序电抗X1的比值X0/X1。 我国规定:凡是X0/X1≤4~5的系统属于大接地电流系统,X0/X1>4~5的系统则属于小接地电流系统。事故涉及的线路及保护配置图事故涉及的线路和保护配置如图2-1所示,两变电站之间为双回线,线路长度为66.76km。

电力系统故障测距

1、前言 高压输电线路的故障极大威胁了电力系统的安全、可靠运行。高压输电网发生故障后,需要及时巡线以查找故障点,以便及时消除缺陷恢复供电。故障点的准确定位,可以使巡线人员直接找到故障点并处理,从而大大减轻巡线负担,这就可以加速线路故障的排除,做到尽量快速供电,将损失减小到最小。 2、输电线路的故障分类 2.1瞬时故障 这种故障能成功重合闸,不会造成绝缘的致命损害。鸟类以及其它物体的短时的导体之间或导体对地接触也会引起这类故障。 2.2永久故障 它是指导体之间以及包括一个或多个导体对地的短路故障,此类故障发生时,不可能重合闸,多由机械外力造成。 2.3绝缘击穿 由于冰雪、老化、污秽以及瞬时过电压闪络破坏等原因,使得线路某一点绝缘降低,在正常运行电压下绝缘击穿而造成短路,重合闸不成功。此类故障在低电压时不出现故障状态。在故障切除后, 它们大多没有肉眼能 看见的明显的破坏痕迹。 3、故障测距方法的分类 现有的故障测距方法按原理来分,基本上可以分为三大类:阻抗法,行波法,故障分析法。 3.1阻抗法 阻抗法是根据故障时测量到的电压、电流量而计算出故障回路的阻抗,其前提是忽略线路的分布电容和漏电导。由于线路长度和阻抗成正比,因此便可以求出由测距点到故障点的距离。 阻抗法的优点是比较简单可靠。但大多数阻抗法存在着精度问题。它们的误差主要来源于算法本身的假设,测距精度深受故障点的过渡电阻的影响,只有当故障点的过渡电阻为零时,故障点的距离才能够比较准确的计算出来。而且由于实际系统中线路不完全对称以及测量端对侧系统阻抗值的不可知等因素的影响,测距误差往往远大于某些故障测距产品在理想条件下给出的误差标准。 为此,中外学者做了许多研究工作,在提高阻抗法的精度方面进行了不懈的努力,先后提出了解微分方程法和一些基于工频基波量的的测距算法, 如零序电流相位修正法、零序电流迭代法和解二次方程法等等。但迭代法有时候可能会出现收敛于伪根或难于收敛、甚至于不收敛的情况; 解二次方程法则可能会出现伪根,所以阻抗法的主要问题仍然是测距精度。 3.2行波法 行波法的研究始于本世纪四十年代初,它是根据行波传输理论实现输电线路故障测距的。现在行波法已经成为研究热点。

小电流接地系统接地故障分析知识讲解

小电流接地系统 单相接地故障分析与检测 为了提高供电可靠性,配电网中一般采取变压器中性点不接地或经消弧线圈和高阻抗接地方式,这样当某一相发生接地故障时,由于不能构成短路回路,接地故障电流往往比负荷电流小得多,因而这种系统被称为小电流接地系统。 小电流接地系统中单相接地故障是一种常见的临时性故障,当该故障发生时,由于故障点的电流很小,且三相之间的线电压仍保持对称,对负荷设备的供电没有影响,所以允许系统内的设备短时运行,一般情况下可运行1-2个小时而不必跳闸,从而提高了供电的可靠性。但一相发生接地,导致其他两相的对地电压升高为相电压的倍,这样会对设备的绝缘造成威胁,若不及时处理可能会发展为绝缘破坏、两相短路,弧光放电,引起去系统过压。然而当系统发生单相接地故障时,由于构不成回路,接地电流是分布电容电流,数值比负荷电流小得多,故障特征不明显,因此接地故障检测仍是一项世界难题,很多技术有待克服。 单相接地故障分析 当任意两个导体之间隔着绝缘介质时会形成电容,因此在简单电网中,中性 ,在相电压作用下,点不接地系统正常运行时,各相线路对地有相同的对地电容C 每相都有一个超前于相电压900的对地电容电流流入地中,然而由于电容的大小与电容极板面积成正比而与极板距离成反比,所以线路的对地电容,特别是架空线路对地电容很小,容抗很大,对地电容电流很小。 系统正常运行时,如图1,由于三相相电压U A、U B、U C是对称的,三相对地电容电流I co.A、I co.B、I co.C也是平衡的,因此,三相的对地电容电流矢量和为0,没有电流流向大地,每相对地电压就等于相电压。

图1中性点不接地电力系统电路图与矢量图 当系统中某一相出现接地故障后,假设C相接地,如图2所示,相当于在C 相的对地电容中并联了一个大电阻,由于故障电流I C没有返回电源的通路,只能通过另外两项非故障A、B相线路的对地电容返回电源。此时C相线路的对地电压为U C’ = U CD = 0,而A相对地线电压即U A’ = U AD = U AC = -U CA = -U C∠-300 = U B∠-900,而B相对地线电压即U B’ = U BC = U B∠-300,则U A’和U B’相差600。非故障相中流向故障点的电容电流I AC= U A’jwC0,I BC= U B’jwC0,且I AC、I BC超前U A’和U B’ 900,I AC、I BC大小相等为I co.A之间相差600。 图2中性点不接地电力系统发生C相接地故障电路图与矢量图由此可见,C相接地时,不接地的A、B两相对地电压U A’和U B’由原来的相电压升高到线电压,即值升高到原来的倍,相位由原来的相差1200变为相差600。此时,从接地点流回的电流I C应为A、B两相的对地电容电流之和,即I C = I AC + I BC。

变电站直流系统接地故障查找及处理

变电站直流系统接地故障查找及处理 摘要:直流系统在变电站内是很重要的也是相对独立的一个电源系统,主要作用是为变电站的控制、信号、自动装置以及 开关的分合闸操作等提供可靠的直流电源。接地直流系统干扰的 任务是变电站的安稳。本文主要对于变电站直流接地故障进行了 简要的分析,提出了其中存在的问题并且提出了相应的解决措 施,希望能够给相关部门带来一定的帮助,促进变电站更好的发展。 关键词:变电站;直流系统;故障处理 中图分类号:TM862 文献标识码:A 文章编号:1674-7712 (2014) 08-0000-01 对于人们的日常生活来说,变电站是十分重要的存在,他影响着人们的正常生活。在我们生活中的电源的供应就是经过变电 站运输而来的,由此可知变电站对于我们生活的重要性,一个没 有电源的城市将会是什么样的城市,我想没有人是愿意过着那样 的生活的。因此,变电站对于现代人来说是一个必不可少的设 备,只有拥有了变电站,才可以使得直流电源进行正常的供应从 而保障人们的生活。 一、变电站直流系统中存在的问题 (一)直流系统设备故障

变电站中存在着绝缘老化、破损的现象是运行多年的直流系统中常见的问题,这种情况下很容易出现接地的现象,从而引起直流系统设备发生故障。 (二)气候因素 这种意外情况的发生是由于气候原因产生的。当当地的气候为雷雨季节或者空气过于潮湿的时候,就会使得变电站内部充满了水汽,从而导致设备上存在着积水,这对于电力设备的影响是极大的,这种现象就可能造成接地,从而使得变电站无法正常的进行工作。 (三)工作人员的操作失误 工人在施工时工艺不严格,造成裸线、线头接地等,引起接地。 (四)零件掉落 小金属物件掉落在直流系统裸露的原件上造成的接地故障。 由于多种多样的原因导致的接地故障的类型也不尽相同:按接地的极性可以分为正、负接地。而在所有的接地事故中,两点接地的危害最为严重,造成的经济损失和人身伤害也最为严重。不同原因造成的事故产生的结果也不相同,比如正接地可能会导致断路器跳闸,而负接地可能导致断路器拒绝跳闸。在直流系统的过程中,如果只有一个变电站的系统发生了故障,那么所造成的影响还是可以控制的,一旦两个或者多个变电站在同一时间发生了接地故障,那么所带来的影响也是极大的,会严重的影响人们的正常生活。

智能电网行波故障测距系统的应用方法探讨

智能电网行波故障测距系统的应用方法探讨 故障测距系统的构成部分主要有两种,第一种为终端装置,第二种为主站。随着电力电子技术的快速发展,在电网建设中也融入了智能化技术,基于智能电网的构建也相应的产生了智能变电站,在变电站内部的故障测距系统终端装置中使用了不同的采样方式,并利用不同的装置解决了以往的通讯问题。本文分析了智能电网和传统故障测距系统之间存在的差异,探讨了在测距主站中如何保障测距系统可靠运行的有效措施,并提出了可以对故障进行智能化分析的系统,提高了电网故障的诊断效率。 标签:智能电网;行波故障;测距系统;应用方法 行波故障测距系统是使用极其广泛的一种系统,和传统的阻抗测距法相比,具有准确度高、可靠性高的优势,特别是在辽宁等地区已然形成了完善的测距系统。智能电网建设速度的不断提高,使得智能电网的规划和建设范围都有所扩大,因此为了保证稳定供电和人们生活的正常运行,就必须要在电力系统发生故障之后,在最短时间内完成供电恢复。在这种情况下传统的测距方法体现了极大的劣势,必须要根据智能电网的特点设计符合实际故障检测需求的测距系统。 一、传统测距系统存在问题 第一,传统的测距方法在信号接入方式方面存在着落后的现象。目前很多变电站内的测距终端装置无法和电子式的互感器信号相匹配,导致二者无法进行连接[1]。并且在采样的过程中需要把信号电缆放置于控制室的内部,才能够开展集中式采样工作,降低了采样的效率,也无法满足智能化变电站对技术的要求。第二,无法完成高效的信息共享。在传统的测距系统中会通过各种协议将测距结果上传,但是测距系统的录波数据无法向其他不同的装置或者系统进行数据传输,相应的也无法从其他装置中或者系统中获取数据。第三,没有对电网的整体数据和信息进行有效的利用。传统的测距系统只会考虑到在输电线路左右两侧的数据,因此导致算法无法对电网整体的数据进行合理的应用,导致系统运行的可靠性受到影响,也缩小了系统的使用范围。 二、智能电网故障测距系统构成 在智能电网下故障测距系统仍然是以原有系统为基础进行构建的[2]。测距终端装置主要负责的工作内容是采集电力系统或者电网在运行过程中产生的数据,并通过设定好的方式和途径发送到相应的位置。测距主站则是负责对数据和信息进行计算和分析,并对外进行信息发布。测距主站具有就地配置的特點,但是为了减轻后期主站维修和管理的工作压力和难度会选择在远方进行测距主站的配置。如果故障测距系统均选择就地配置的时候则会将其组合后的结构统一称之为测距装置。 三、智能电网行波故障测距系统的应用

相关主题