搜档网
当前位置:搜档网 › 复数乘除法教案

复数乘除法教案

复数乘除法教案
复数乘除法教案

陈仓高级中学高二数学备课组集体教案

课题 §3.2.2复数代数形

式的乘除运算

撰写人

三维目标 1.知识与技能目标

理解并掌握复数的代数形式的乘法与除法运算法则,深刻理解它是乘法运算的逆运算;并掌握复数的除法运算实质是分母实数化类问题;

2.过程与方法目标

通过学习使学生进一步理解算理,提高对运算法则合理性的认识。

3.情感态度价值观

培养学生严密的推理能力,周到细密的计算能力.

重难点

重点: 复数代数形式的除法运算

难点: 对复数除法法则的运用.

课件名称

复数代数形式的乘除运算 上课时间

教学过程

【知识链接】

1.复数1z 与2z 的和的定义:()()()()i d b c a di c bi a z z +++=+++=+21;

2.复数1z 与2z 的差的定义:()()()()i d b c a di c bi a z z -+-=+-+=-21;

3.复数的加法运算满足交换律:1221z z z z +=+;

4.复数的加法运算满足结合律: ()()321321z z z z z z ++=++;

5.复数()R b a bi a z ∈+=,的共轭复数为bi a z -=.

【问题探究】

探究一、复数的乘法运算

引导1:乘法运算规则

设bi a z +=1、di c z +=2()R d c b a ∈,,,是任意两个复数,规定复数的乘法按照以下的法则进行:

=?21z z

其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把2i 换成-1,并且 把实部与虚部分别合并.两个复数的积仍然是一个复数.

引导2:试验证复数乘法运算律

(1)1221z z z z ?=?

(2)()()321321z z z z z z ??=??

(3)()3121321z z z z z z z ?+?=+?

点拨:两个复数相乘,类似两个多项式相乘,在所得的结果中把2i 换成-1,并且把实部与虚部分别合并.两个复数的积仍然是一个复数.

探究二、复数的除法运算

引导1:复数除法定义:

满足()()()bi a yi x di c +=++的复数()R y x yi x ∈+,叫复数bi a +除以复数di c + 的商,记为:()()di c bi a +÷+或者

di c bi a ++()0≠+di c . 引导2:除法运算规则:

利用()()22d c di c di c +=-+.于是将di

c bi a ++的分母有理化得: 原式=22

()()[()]()()()a bi a bi c di ac bi di bc ad i c di c di c di c d ++-+?-+-==++-+ 222222

()()ac bd bc ad i ac bd bc ad i c d c d c d ++-+-==++++. ∴(a +bi )÷(c +di )=i d

c a

d bc d c bd ac 2222+-+++. 点拨:利用初中我们学习的化简无理分式时,都是采用的分母有理化思想方法,而复数di c +与复数di c -,相当于我们初中学习的23+的对偶式23-,它们之积为1是有理数,而()()2

2d c di c di c +=-+是正实数.所以可以分母实数化. 把这种方法叫做分母实数化法

【典例分析】

例1计算()()()i i i +-+-24321

引导:可先将前两个复数相乘,再与第三个复数相乘.

点拨:在复数的乘法运算过程中注意将2

i 换成-1. 例2计算:(1)()()i i 4343-+ ; (2)()

21i +.

引导:按照复数乘法运算展开即可. 点拨:注意体会互为共轭复数的两个复数的乘积是一个实数,记住一些特殊形式代数式的运算结果,便于后续学习的过程中的化简、代换等.

例3计算(12)(34)i i +÷-

引导:可按照复数除法运算方法,先将除式写成分式,再将分母实数化,然后化简即可. 点拨:本题可将除法运算转化为乘法运算,但是相对麻烦,易于采用先将除式写成分式,再将分母实数化,然后化简的办法,学习时注意体会总结,寻求最佳方法.

例4计算i

i i i 4342)1)(41(++++- 引导:可先将分子化简,再按照除法运算方法计算,注意计算的准确性.

点拨:对于混合运算,注意运算顺序,计算准确.

【目标检测】

1.复数2

2i 1+i ?? ???

等于( ) A .4i B .4i - C .2i D .2i - 2.设复数z 满足

12i i z +=,则z =( ) A .2i -+

B .2i --

C .2i -

D .2i + 3.复数32321???

? ??+i 的值是( )

A.i -

B.i

C.1-

D.1

4.已知复数z 与()i z 822

-+都是纯虚数,求z . 提示:复数z 为纯虚数,故可设()0z bi b =≠,再代入求解即可.

【总结提升】

复数的乘法和除法运算是复数的基本运算,在学习时注意运算法则和方法,在乘法运算中注意把2

i 换成-1,在除法运算中注意方法的本质依据,计算时注意准确性.

【作业布置】

习题5-2:2,4题目 反思

高中数学-复数的基础知识

复数 基础知识 1.复数的定义:设i 为方程x 2=-1的根,i 称为虚数单位,由i 与实数进行加、减、乘、除 等运算。便产生形如a+bi (a,b ∈R )的数,称为复数。所有复数构成的集合称复数集。通常用C 来表示。 2.复数的几种形式。对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z). z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量。因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z 对应复平面内的点Z ,见图15-1,连接OZ ,设∠xOZ=θ,|OZ|=r ,则a=rcos θ,b=rsin θ,所以z=r(cos θ+isin θ),这种形式叫做三角形式。若z=r(cos θ+isin θ),则θ称为z 的辐角。若0≤θ<2π,则θ称为z 的辐角主值,记作θ=Arg(z). r 称为z 的模,也记作|z|,由勾股定理知|z|=22b a +.如果用e i θ表示cos θ+isin θ,则z=re i θ ,称为复数的指数形式。 3.共轭与模,若z=a+bi ,(a,b ∈R ),则=z a-bi 称为z 的共轭复数。模与共轭的性质有: (1)2121z z z z ±=±;(2)2121z z z z ?=?;(3)2||z z z =?;(4)2 121z z z z =???? ??;(5)||||||2121z z z z ?=?; (6)||||||2121z z z z =;(7)||z 1|-|z 2||≤|z 1±z 2|≤|z 1|+|z 2|;(8)|z 1+z 2|2+|z 1-z 2|2=2|z 1|2+2|z 2|2;(9)若|z|=1,则z z 1= 。 4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z 1=r 1(cos θ1+isin θ1), z 2=r 2(cos θ2+isin θ2),则z 1??z 2=r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)];若2 1212,0r r z z z =≠[cos(θ1-θ2)+isin(θ1-θ2)],用指数形式记为z 1z 2=r 1r 2e i(θ1+θ2),.)(2 12121θθ-=i e r r z z 5.棣莫弗定理:[r(cos θ+isin θ)]n =r n (cosn θ+isinn θ). 6.开方:若=n w r(cos θ+isin θ),则)2s i n 2(c o s n k i n k r w n π θπ θ+++=, k=0,1,2,…,n-1。 7.单位根:若w n =1,则称w 为1的一个n 次单位根,简称单位根,记Z 1=n i n ππ2sin 2cos +,则全部单位根可表示为1,1Z ,1121,,-n Z Z .单位根的基本性质有(这里记k k Z Z 1=,

复数乘除法、极坐标

学之导教育中心教案 学生: 梁庭苇授课时间: 课时: 2 年级: 高二教师:廖 课题复数乘除法、极坐标 教学构架 一、知识回顾 二、错题再现 三、知识新授 四、知识小结 教案内容 一、知识回顾 1、几何证明选讲 二、错题再现 1、如图ABC中,D是AB的三等分点,// DE BC,// EF BC,2 AF=,则AB=__________ F E D A B C 2、如图,在ABC中,AD是BC边上中线,AE是BC边上的高,DAB DBA ∠=∠ ,18 AB=,12 BE=,则CE=__________. 本次内容掌握情况总结 教师签字 学生签字 E B D C A

3、如图所示,圆O 的直径AB=6,C 圆周上一点,BC=3,过C 作圆的切线l ,过A 作l 的垂线AD AD 分别与直线l 、圆交于点D 、E ,则∠DAC = __,线段AE 的长为 __. 4、如图所示,从圆O 外一点A 引圆的切线AD 和割线ABC ,已知AD=23,AC=6,圆O 的半径为3, 则圆心O 到AC 的距离为________. . 5、如图所示,圆O 上一点C 在直径AB 上的射影为D ,CD=4,BD=8,则圆O 的半径等于 . 6、如图,四边形ABCD 内接于⊙O ,BC 是直径,MN 切⊙O 于A ,∠MAB=250,则∠D= ___ . 7.如图,AB 是圆O 的直径,直线CE 和圆O 相切于点C ,AD ⊥CE 于D ,若AD=1,∠ABC=300, 则圆O 的面积是______. 8.如图,⊙O 的割线PAB 交⊙O 于A 、B 两点,割线PCD 经过圆心O ,PE 是⊙O 的切线。已知PA=6, AB=3 1 7,PO=12,则PE=____ ⊙O 的半径是_______. A D B C E O A B C O D A B O D C O B A D C M N O B A D C E C O A B P D E

知识讲解复数基础

高考总复习:复数 【考纲要求】 1.理解复数的基本概念,理解复数相等的充要条件; 2.了解复数的代数表示形式及其几何意义;能将代数形式的复数在复平面上用点或向量表示,并能将复平面上的点或向量所对的复数用代数形式表示。 3.会进行复数代数形式的四则运算,了解两个具体相加、相减的几何意义. 【知识网络】 【考点梳理】 考点一、复数的有关概念 1.虚数单位i : (1)它的平方等于1-,即2 1i =-; (2)i 与-1的关系: i 就是-1的一个平方根,即方程21x =-的一个根,方程21x =-的另一个根是i -; (3)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立; (4)i 的周期性:41n i =,41n i i +=,421n i +=-,43n i i +=-(*n N ∈).

2. 概念 形如a bi +(,a b R ∈)的数叫复数,a 叫复数的实部,b 叫复数的虚部。 说明:这里,a b R ∈容易忽视但却是列方程求复数的重要依据。 3.复数集 全体复数所成的集合叫做复数集,用字母C 表示;复数集与其它数集之间的关系:N Z Q R C 4.复数与实数、虚数、纯虚、0的关系: 对于复数z a bi =+(,a b R ∈), 当且仅当0b =时,复数z a bi a =+=是实数; 当且仅当0b ≠时,复数z a bi =+叫做虚数; 当且仅当0a =且0b ≠时,复数z a bi bi =+=叫做纯虚数; 当且仅当0a b ==时,复数0z a bi =+=就是实数0. 所以复数的分类如下: z a bi =+(,a b R ∈)?(0)(0)00b b a b =?? ≠?=≠?实数;虚数当且时为纯虚数 5.复数相等的充要条件 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等。即:

复数代数形式的乘除运算教案

复数代数形式的乘除运算教案 教学目标: 1 知识与技能:理解并掌握复数的代数形式的乘法与除法运算法则,深刻理解它是乘法运算的逆运算 2 过程与方法:理解并掌握复数的除法运算实质是分母实数化类问题 3 情感、态度与价值观:复数的几何意义单纯地讲解或介绍会显得较为枯燥无味,学生不易接受,教学时,我们采用讲解或体验已学过的数集的扩充的,让学生体会到这是生产实践的需要从而让学生积极主动地建构知识体系。 教学重点:复数代数形式的除法运算。 教学难点:对复数除法法则的运用。 课型:新知课 教具准备:多媒体 教学过程: 复习提问: 已知两复数z1=a+bi, z2=c+di(a,b,c,d是实数) 加法法则:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i. 减法法则:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i. 即:两个复数相加(减)就是 实部与实部,虚部与虚部分别相加(减) (a+bi )±(c+di) = (a±c) + (b±d)i

复数的加法运算满足交换律: z1+z2=z2+z1. 复数的加法运算满足结合律: (z1+z2)+z3=z1+(z2+z3) 讲解新课: 一.复数的乘法运算规则: 规定复数的乘法按照以下的法则进行: 设z1=a+bi,z2=c+di(a、b、c、d∈R)是任意两个复数,那么它们的积(a+bi)(c+di)=(ac-bd)+(bc+ad)i. 其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把i2换成-1,并且把实部与虚部分别合并.两个复数的积仍然是一个复数. 探究: 复数的乘法是否满足交换律、结合律? 乘法对加法满足分配律吗? 二.乘法运算律: (1)z1(z2z3)=(z1z2)z3 证明:设z1=a1+b1i,z2=a2+b2i,z3=a3+b3i(a1,a2,a3,b1,b2,b3∈R). ∵z1z2=(a1+b1i)(a2+b2i)=(a1a2-b1b2)+(b1a2+a1b2)i, z2z1=(a2+b2i)(a1+b1i)=(a2a1-b2b1)+(b2a1+a2b1)i. 又a1a2-b1b2=a2a1-b2b1,b1a2+a1b2=b2a1+a2b1. ∴z1z2=z2z1. (2)z1(z2+z3)=z1z2+z1z3

高中数学复数专题知识点整理

专题二 复数 【1】复数的基本概念 (1)形如a + b i 的数叫做复数(其中R b a ∈,);复数的单位为i ,它的平方等于-1,即1i 2-=.其中a 叫做复数的实部,b 叫做虚部 实数:当b = 0时复数a + b i 为实数 虚数:当0≠b 时的复数a + b i 为虚数; 纯虚数:当a = 0且0≠b 时的复数a + b i 为纯虚数 (2)两个复数相等的定义: 00==?=+∈==?+=+b a bi a R d c b a d b c a di c bi a )特别地,,,,(其中,且 (3)共轭复数:z a bi =+的共轭记作z a bi =-; (4)复平面:建立直角坐标系来表示复数的平面叫复平面;z a bi =+,对应点坐标为(),p a b ;(象限的复习) (5)复数的模:对于复数z a bi =+,把z =z 的模; 【2】复数的基本运算 设111z a b i =+,222z a b i =+ (1) 加法:()()121212z z a a b b i +=+++; (2) 减法:()()121212z z a a b b i -=-+-; (3) 乘法:()()1212122112z z a a b b a b a b i ?=-++ 特别22z z a b ?=+。 (4)幂运算:1i i =21i =-3i i =-41i =5i i =61i =-?????? 【3】复数的化简 c di z a bi +=+(,a b 是均不为0的实数);的化简就是通过分母实数化的方法将分母化为实数:()()22ac bd ad bc i c di c di a bi z a bi a bi a bi a b ++-++-==?=++-+ 对于()0c di z a b a bi +=?≠+,当c d a b =时z 为实数;当z 为纯虚数是z 可设为c di z xi a bi +==+进一步建立方程求解

复数乘除法教案

陈仓高级中学高二数学备课组集体教案 课题 §3.2.2复数代数形 式的乘除运算 撰写人 三维目标 1.知识与技能目标 理解并掌握复数的代数形式的乘法与除法运算法则,深刻理解它是乘法运算的逆运算;并掌握复数的除法运算实质是分母实数化类问题; 2.过程与方法目标 通过学习使学生进一步理解算理,提高对运算法则合理性的认识。 3.情感态度价值观 培养学生严密的推理能力,周到细密的计算能力. 重难点 重点: 复数代数形式的除法运算 难点: 对复数除法法则的运用. 课件名称 复数代数形式的乘除运算 上课时间 教学过程 【知识链接】 1.复数1z 与2z 的和的定义:()()()()i d b c a di c bi a z z +++=+++=+21; 2.复数1z 与2z 的差的定义:()()()()i d b c a di c bi a z z -+-=+-+=-21; 3.复数的加法运算满足交换律:1221z z z z +=+; 4.复数的加法运算满足结合律: ()()321321z z z z z z ++=++; 5.复数()R b a bi a z ∈+=,的共轭复数为bi a z -=. 【问题探究】 探究一、复数的乘法运算 引导1:乘法运算规则 设bi a z +=1、di c z +=2()R d c b a ∈,,,是任意两个复数,规定复数的乘法按照以下的法则进行: =?21z z 其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把2i 换成-1,并且 把实部与虚部分别合并.两个复数的积仍然是一个复数.

引导2:试验证复数乘法运算律 (1)1221z z z z ?=? (2)()()321321z z z z z z ??=?? (3)()3121321z z z z z z z ?+?=+? 点拨:两个复数相乘,类似两个多项式相乘,在所得的结果中把2i 换成-1,并且把实部与虚部分别合并.两个复数的积仍然是一个复数. 探究二、复数的除法运算 引导1:复数除法定义: 满足()()()bi a yi x di c +=++的复数()R y x yi x ∈+,叫复数bi a +除以复数di c + 的商,记为:()()di c bi a +÷+或者 di c bi a ++()0≠+di c . 引导2:除法运算规则: 利用()()22d c di c di c +=-+.于是将di c bi a ++的分母有理化得: 原式=22 ()()[()]()()()a bi a bi c di ac bi di bc ad i c di c di c di c d ++-+?-+-==++-+ 222222 ()()ac bd bc ad i ac bd bc ad i c d c d c d ++-+-==++++. ∴(a +bi )÷(c +di )=i d c a d bc d c bd ac 2222+-+++. 点拨:利用初中我们学习的化简无理分式时,都是采用的分母有理化思想方法,而复数di c +与复数di c -,相当于我们初中学习的23+的对偶式23-,它们之积为1是有理数,而()()2 2d c di c di c +=-+是正实数.所以可以分母实数化. 把这种方法叫做分母实数化法 【典例分析】 例1计算()()()i i i +-+-24321 引导:可先将前两个复数相乘,再与第三个复数相乘. 点拨:在复数的乘法运算过程中注意将2 i 换成-1. 例2计算:(1)()()i i 4343-+ ; (2)() 21i +. 引导:按照复数乘法运算展开即可. 点拨:注意体会互为共轭复数的两个复数的乘积是一个实数,记住一些特殊形式代数式的运算结果,便于后续学习的过程中的化简、代换等.

高中数学必备知识点 复数知识点的归纳

2013高中数学必备知识点复数知识点的归纳 复数在数学领域中起着举足轻重的地位,学好复数,自然而然也变得尤为重要。以下是关于复数的一些基本知识,让我们一起来了解下吧。 定义 数集拓展到实数范围内,仍有些运算无法进行。比如判别式小于0的一元二次方程仍无解,因此将数集再次扩充,达到复数范围。形如z=a+bi的数称为复数(complex number),其中规定i为虚数单位,且i^2=i*i=-1(a,b是任意实数)我们将复数z=a+bi中的实数a 称为复数z的实部(real part)记作Rez=a 实数b称为复数z的虚部(imaginary part)记作 Imz=b. 已知:当b=0时,z=a,这时复数成为实数当a=0且b≠0时,z=bi,我们就将其称为纯虚数。 运算法则 加法法则 复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。 即 (a+bi)+(c+di)=(a+c)+(b+d)i. 乘法法则 复数的乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i^2 = ?1,把实部与虚部分别合并。两个复数的积仍然是一个复数。 即(a+bi)(c+di)=(ac-bd)+(bc+ad)i. 除法法则 复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)叫复数a+bi除以复数c+di的商运算方法:将分子和分母同时乘以分母的共轭复数,再用乘法法则运算, 即 (a+bi)/(c+di) =[(a+bi)(c-di)]/[(c+di)(c-di)] =[(ac+bd)+(bc-ad)i]/(c^2+d^2). 开方法则 若z^n=r(cosθ+isinθ),则 z=n√r[cos(2kπ+θ)/n+isin(2kπ+θ)/n](k=0,1,2,3……n-1) 用心爱心专心- 1 -

复数知识点与历年高考经典题型

数系的扩充与复数的引入知识点(一) 1.复数的概念: (1)虚数单位i ; (2)复数的代数形式z=a+bi ,(a, b ∈R); (3)复数的实部、虚部、虚数与纯虚数。 2.复数集 整 数有 理 数实数(0)分 数复 数(,)无理数(无限不循环 小数)纯 虚 数(0)虚 数(0)非 纯 虚 数(0)b a bi a b R a b a ??????=?????+∈????≠?≠??=?? 3.复数a+bi(a, b ∈R)由两部分组成,实数a 与b 分别称为复数a+bi 的实部与虚部,1与i 分别是实数单位和虚数单位,当b=0时,a+bi 就是实数,当b ≠0时,a+bi 是虚数,其中a=0且b ≠0时称为纯虚数。 应特别注意,a=0仅是复数a+bi 为纯虚数的必要条件,若a=b=0,则a+bi=0是实数。 4.复数的四则运算 若两个复数z1=a1+b1i ,z2=a2+b2i , (1)加法:z1+z2=(a1+a2)+(b1+b2)i ; (2)减法:z1-z2=(a1-a2)+(b1-b2)i ;

(3)乘法:z1·z2=(a1a2-b1b2)+(a1b2+a2b1)i ; (4)除法:11212211222222()()z a a b b a b a b i z a b ++-=+; (5)四则运算的交换率、结合率;分配率都适合于复数的情况。 (6)特殊复数的运算: ① n i (n 为整数)的周期性运算; ②(1±i)2 =±2i ; ③ 若ω=-21+23i ,则ω3=1,1+ω+ω2=0. 5.共轭复数与复数的模 (1)若z=a+bi ,则z a bi =-,z z +为实数,z z -为纯虚数(b ≠0). (2)复数z=a+bi 的模 |Z|=且2||z z z ?==a 2+b 2. 6.根据两个复数相等的定义,设a, b, c, d ∈R ,两个复数a+bi 和c+di 相 等规定为a+bi=c+di a c b d =???=?. 由这个定义得到a+bi=0?00a b =??=?. 两个复数不能比较大小,只能由定义判断它们相等或不相等。 7.复数a+bi 的共轭复数是a -bi ,若两复数是共轭复数,则它们所表示的点关于实轴对称。若b=0,则实数a 与实数a 共轭,表示点落在实轴上。 8.复数的加法、减法、乘法运算与实数的运算基本上没有区别,最主要的是在运算中将i 2=-1结合到实际运算过程中去。 如(a+bi)(a -bi)= a 2+b 2

(完整版)复数知识点归纳

精心整理 页脚内容 复数 【知识梳理】 一、复数的基本概念 1、虚数单位的性质 i 叫做虚数单位,并规定:①i 可与实数进行四则运算;②12-=i ;这样方程12-=x 就有解了,解为i x = 2(1①a z =(2例题:注意:三、共轭复数 bi a +与di c +共轭),,,(,R d c b a d b c a ∈-==? bi a z +=的共轭复数记作bi a z -=_,且22_ b a z z +=? 四、复数的几何意义 1、复平面的概念 建立直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴。显然,实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数。

精心整理 页脚内容 2、复数的几何意义 复数bi a z +=与复平面内的点),(b a Z 及平面向量),(b a OZ =→),(R b a ∈是一一对应关系(复数的实质是有序实数对,有序实数对既可以表示一个点,也可以表示一个平面向量) 相等的向量表示同一个复数 例题:(1)当实数m 为何值时,复平面内表示复数i m m m m z )145()158(22--++-=的点 ①位于第三象限;②位于直线x y =上 (2)复平面内)6,2(=→AB ,已知→→AB CD //,求→ CD 对应的复数 3、复数的模: 向量OZ 的模叫做复数bi a z +=的模,记作z 或bi a +,表示点),(b a 到原点的距离,即=z 22b a bi a +=+,z z = 若bi a z +=1,di c z +=2,则21z z -表示),(b a 到),(d c 的距离,即2221)()(d b c a z z -+-=- 例题:已知i z +=2,求i z +-1的值 五、复数的运算 (1)运算法则:设z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R ①i d b c a di c bi a z z )()(21+++=+++=± ②i ad bc bd ac di c bi a z z )()()()(21++-=+?+=? ③2221)()()()())(())(d c i a d bc bd ac di c di c di c bi a di c bi a z z +-++=-?+-+=++= (2)几何意义:复数加减法可按向量的平行四边形或三角形法则进行.如图给出 的平行四边形OZ 1ZZ 2可以直观地反映出复数加减法的几何意义,即=+,=-. 六、常用结论 (1)i ,12-=i ,i i -=3,14=i 求n i ,只需将n 除以4看余数是几就是i 的几次 例题:=675i (2)i i 2)1(2=+,i i 2)1(2-=- (3)1)2321(3=±-i ,1)2 321(3-=±i 【思考辨析】 判断下面结论是否正确(请在括号中打“√”或“×”) (1)方程x 2+x +1=0没有解.( )

复数的乘除法运算练习题(教师版)

复数的乘除法运算练习题(教师版) 1. i 为虚数单位,1i +1i 3+1i 5+1i 7等于( A ) A .0 B .2i C .-2i D .4i 2. 若a ,b ∈R ,i 为虚数单位,且(a +i)i =b +i ,则( D ) A .a =1,b =1 B .a =-1,b =1 C .a =-1,b =-1 D .a =1,b =-1 3. 在复平面内,复数i 1+i +(1+3i)2对应的点位于( B ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4. 设复数z 的共轭复数是z ,若复数z 1=3+4i ,z 2=t +i ,且z 1·z 2是实数,则实数t 等于( A ) A.34 B.43 C .-43 D .-34 5. 若z =1+2i i ,则复数z 等于( D ) A .-2-i B .-2+I C .2-i D .2+i 6.复数11z i =-的共轭复数是( B ) A .i 2121+ B .i 2121- C .i -1 D .i +1 7. 若复数z 1=1+i ,z 2=3-i ,则z 1·z 2等于( A ) A .4+2i B .2+i C .2+2i D .3+i 8.设复数z 满足,2)1(i z i =-则z =( A ) (A )i +-1 (B )i --1 (C )i +1 (D )i -1 9.若复数z 满足24iz i =+,则在复平面内,z 对应的点的坐标是( C ) A.(2,4) B.(2,-4) C.(4,-2) D.(4,2) 10.复数的11 Z i =-模为( B ) (A )12 (B )2 (C (D )2 11.()3=( A ) (A )8- (B )8 (C )8i - (D )8i 12. i 是虚数单位,3(1)(2)i i i -++等于 ( D ) A .1+i B .-1-i C .1+3i D .-1-3i 13.已知复数512i z i =+(i 是虚数单位),则_________z =14.若bi a i i +=++)2)(1(,其中,,a b R i ∈为虚数单位,则a b += 4

复数的三角形式及乘除运算

复数的三角形式及乘除运算 一、主要内容: 复数的三角形式,模与辐角的概念及几何意义,用三角形式进行复数乘除运算及几何意义. 二、学习要求: 1.熟练进行复数的代数形式与三角形式的互化,会求复数的模、辐角及辐角主值. 2.深刻理解复数三角形式的结构特征,熟练运用有关三角公式化复数为三角形式. 3.能够利用复数模及辐角主值的几何意义求它们的范围(最值). 4.利用复数三角形式熟练进行复数乘除运算,并能根据乘除运算的几何意义解决相关问题. 5.注意多种解题方法的灵活运用,体会数形结合、分类讨论等数学思想方法. 三、重点: 复数的代数形式向三角形式的转换,复数模及复数乘除运算几何意义的综合运用. 四、学习建议: 1.复数的三角形式是彻底解决复数乘、除、乘方和开方问题的桥梁,相比之下,代数形式在这些方面显得有点力不从心,因此,做好代数形式向三角形式的转化是非常有必要的. 前面已经学习过了复数的另两种表示.一是代数表示,即Z=a+bi(a,b ∈R).二是几何表示,复数Z 既可以用复平面上的点Z(a,b)表示,也可以用复平面上的向量 来表示.现在需要学习复数的三角表示.既用复数Z 的 模和辐角来表示,设其模为r ,辐角为θ,则Z=r(cosθ+isinθ)(r≥0). 既然这三种方式都可以表示同一个复数,它们之间一定有内在的联系并能够进行互化. 代数形式r= 三角形式 Z=a+bi(a,b ∈R) Z=r(cosθ+isinθ)(r≥0) 复数三角形式的结构特征是:模非负,角相同,余弦前,加号连.否则不是三角形式.三角形式中θ应是复数Z 的一个辐角,不一定是辐角主值. 五、基础知识 1)复数的三角形式 ①定义:复数z=a+bi (a,b ∈R )表示成r (cos θ+ i sin θ)的形式叫复数z 的三角形式。即z=r (cos θ + i sin θ) 其中z r = θ为复数z 的辐角。 ②非零复数z 辐角θ的多值性。 始边,向量oz → 所在的射线为终边的角θ叫复数z=a+bi 的辐角 以ox 轴正半轴为因此复数z 的辐角是θ+2k π(k ∈z ) ③辐角主值 表示法;用arg z 表示复数z 的辐角主值。 2π)的角θ叫辐角主值 02≤

复数的基本知识

补充复数的基本知识: 1、虚数单位 由于在实数集R 内负数不能开平方,所以在实数集内方程012=+x 无解。引入虚数,虚数单位符号为j ,并规定 (1) 它的平方等于-1,即12-=j ; (2)j 可以和实数一起进行四则运算,原有的加、减运算规律仍然成立。 性质:j j =1;12-=j ;j j -=3;14=j 一般地,对于任意整数n ,有: 14=j n ;j j n =+14;124-=+j n ;j j n -=+34 2、复数集 定义:形如),(R b a bj a ∈+的数称为复数。 通常用大写拉丁字母Z 表示一个复数,即),(R b a bj a Z ∈+= 其中 a 称为复数Z 的实部,a Z =)Re(; b 称为复数Z 的虚部,b Z =)Im(; 举例:j 32+,j 51-+,j 3的实部、虚部? ??? ???????≠=≠???=+)0a ()0a ()0b ()0b (非纯虚数纯虚数虚数无理数有理数实数复数bj a 3、复数的相等及共轭复数 定义:如果两个复数的实部相等,虚部也相等,则称这两个复数相等,即 d b c,a dj c ==?+=+bj a 定义:如果两个复数的实部相等,虚部互为相反数,则称这两个复数互为

共轭复数。 复数bj a Z +=的共轭复数记作bj a Z -= 例:3j 2j,1++的共轭复数 注:b a bj a bj a 22))((+=-+ 4、复数的几何表示(复平面) 任何一个复数bj a +都可以由一对有序实数)b ,a (唯一确定;反之,任何一对有序实数)b ,a (都能唯一确定一个复数bj a +;因此,复数bj a Z +=与平面直角坐标系中的点)b ,a (Z 是一一对应关系。于是,可以在平面直角坐标系中用横坐标为a ,纵坐标为b 的点)b ,a (Z 表示复数bj a Z +=。 用来表示复数的直角坐标平面称为复平面。 复数bj a Z +=与复平面上的点)b ,a (Z 是一一对应关系。即 复数bj a Z +=?点)b ,a (Z 矢量(或向量):既有大小又有方向。矢量可以用带箭头的有向线段来表示,箭头的方向表示矢量的方向,线段的长度表示矢量的大小。如下图所示:

复数知识点精心总结

复数知识点 考试内容: 复数的概念. 复数的加法和减法. 复数的乘法和除法. 数系的扩充. 考试要求: (1)了解复数的有关概念及复数的代数表示和几何意义. (2)掌握复数代数形式的运算法则,能进行复数代数形式的加法、减法、乘法、除法运算. (3)了解从自然数系到复数系的关系及扩充的基本思想. 1. ⑴复数的单位为i ,它的平方等于-1,即1i 2-=. ⑵复数及其相关概念: ① 复数—形如a + b i 的数(其中R b a ∈,); ② 实数—当b = 0时的复数a + b i ,即a ; ③ 虚数—当0≠b 时的复数a + b i ; ④ 纯虚数—当a = 0且0≠b 时的复数a + b i ,即b i. ⑤ 复数a + b i 的实部与虚部—a 叫做复数的实部,b 叫做虚部(注意a ,b 都是实数) ⑥ 复数集C —全体复数的集合,一般用字母C 表示. ⑶两个复数相等的定义: 00==?=+∈==?+=+b a bi a R d c b a d b c a di c bi a )特别地,,,,(其中,且. ⑷两个复数,如果不全是实数,就不能比较大小. 注:①若21,z z 为复数,则ο1若021φz z +,则21z z -φ.(×)[21,z z 为复数,而不是实数] ο2若21z z π,则021πz z -.(√) ②若C c b a ∈,,,则0)()()(222=-+-+-a c c b b a 是c b a ==的必要不充分条件.(当22)(i b a =-, 0)(,1)(22=-=-a c c b 时,上式成立) 2. ⑴复平面内的两点间距离公式:21z z d -=. 其中21z z ,是复平面内的两点21z z 和所对应的复数,21z z d 和表示间的距离. 由上可得:复平面内以0z 为圆心,r 为半径的圆的复数方程:)(00φr r z z =-. ⑵曲线方程的复数形式: ①00z r z z 表示以=-为圆心,r 为半径的圆的方程.

高二数学复数知识点总结

导读:本文高二数学复数知识点总结,仅供参考,如果觉得很不错,欢迎点评和分享。 【一】 复数的概念: 形如a+bi(a,b∈R)的数叫复数,其中i叫做虚数单位。全体复数所成的集合叫做复数集,用字母C表示。 复数的表示: 复数通常用字母z表示,即z=a+bi(a,b∈R),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。 复数的几何意义: (1)复平面、实轴、虚轴: 点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数 (2)复数的几何意义:复数集C和复平面内所有的点所成的集合是一一对应关系,即 这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。 这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。 复数的模:

复数z=a+bi(a、b∈R)在复平面上对应的点Z(a,b)到原点的距离叫复数的模,记为|Z|,即|Z|= 虚数单位i: (1)它的平方等于-1,即i2=-1; (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立 (3)i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。 (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。 复数模的性质: 复数与实数、虚数、纯虚数及0的关系: 对于复数a+bi(a、b∈R),当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi 叫做纯虚数;当且仅当a=b=0时,z就是实数0。 【二】 两个复数相等的定义: 如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈R,那么a+bi=c+di a=c,b=d。特殊地,a,b∈R时,a+bi=0 a=0,b=0. 复数相等的充要条件,提供了将复数问题化归为实数问题解决的途径。

复数的三角形式及乘除运算.docx

复数的三角形式及乘除运算 一、主要内容: 复数的三角形式,模与辐角的概念及几何意义,用三角形式进行复数乘除运算及几何意义. 二、学习要求: 1.熟练进行复数的代数形式与三角形式的互化,会求复数的模、辐角及辐角主值. 2.深刻理解复数三角形式的结构特征,熟练运用有关三角公式化复数为三角形式. 3.能够利用复数模及辐角主值的几何意义求它们的范围(最值) . 4.利用复数三角形式熟练进行复数乘除运算,并能根据乘除运算的几何意义解决相关问题. 5.注意多种解题方法的灵活运用,体会数形结合、分类讨论等数学思想方法. 三、重点: 复数的代数形式向三角形式的转换,复数模及复数乘除运算几何意义的综合运用. 四、学习建议: 1.复数的三角形式是彻底解决复数乘、除、乘方和开方问题的桥梁,相比之下,代数形式在这些方面显得有点力不从心,因此,做好代数形式向三角形式的转化是非常有必要的. 前面已经学习过了复数的另两种表示?一是代数表示,即Z=a+bi(a,b ∈R).二是几何表示,复数Z既可以用复 平面上的点Z(a,b)表示,也可以用复平面上的向量来表示.现在 需要学习复数的三角表示?既用复数Z的模和辐角来表示,设其模为r ,辐角为θ贝U Z=r(cos θ +isin θ )(r ≥0). 既然这三种方式都可以表示同一个复数,它们之间一定有内在的联系并能够进行互化.

代数形式r= 三角形式 2 Z=a+bi(a,b ∈ R) Z=r(cos θ +isin θ )(r ≥ 0) 复数三角形式的结构特征是:模非负,角相同,余弦前,加号连 ?否则不是三角形式?三角形式中 Z 的一个辐角,不一定是辐角主值 . 五、基础知识 1) 复数的三角形式 + i Sin θ) 其中I Z r θ为复数Z 的辐角。 ②非零复数Z 辐角θ的多值性。 以OX 轴正半轴为 因此复数Z 的辐 ③辐角主值 表示法;用arg 定义:适合[0, 始边,向量OZ 所在的射线为终边的角 角是 θ +2k ( k ∈ Z ) Z 表示复数Z 的辐角主值。 2 )的角θ叫辐角主值 0 arg z θ应是复数 ①定义:复数 z=a+bi (a,b ∈ R )表示成r ( cos θ + i sin θ)的形式叫复数 Z 的三角形式。即 z=r (cos θ θ叫复数z=a+bi 的辐角

复数知识点总结

复数 一、复数的概念 1. 虚数单位i (1) 它的平方等于1-,即 2 i 1=-; (2) 实数可以与它进行四则运算,进行四则运算时,原有的加、乘法运算仍然成立,即满足交换律与结合律. (3) i 的乘方: 4414243*i 1,i i,i 1,i i,N n n n n n +++===-=-∈,它们不超出i b 的形式. 2. 复数的定义 形如i(,)R a b a b +∈的数叫做复数, ,a b 分别叫做复数的实部与虚部 3. 复数相等 i i a b c d +=+,即,a c b d ==,那么这两个复数相等 4. 共轭复数 i z a b =+时,i z a b =-. 性质:z z =;2121z z z z ±=±;1121z z z z ?=?; );0()(22121 ≠=z z z z z 二、复平面及复数的坐标表示 1. 复平面 在直角坐标系里,点z 的横坐标是a ,纵坐标是b ,复数i z a b =+可用点(,)Z a b 来表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x 轴为实轴,y 轴出去原点的部分称为虚轴. 2. 复数的坐标表示 点(,)Z a b 3. 复数的向量表示 向量OZ . 4. 复数的模 在复平面内,复数i z a b =+对应点(,)Z a b ,点Z 到原点的距离OZ 叫做复数z 的模, 记作z .由定义知,z =. 三、复数的运算

1. 加法 (i )(i )()(a b c d a c b d +++=+++. 几何意义: 设1i z a b =+对应向量1(,)OZ a b = ,2i z c d =+对应向量2(,)OZ c d = ,则 12z z +对应的向量为12(,)OZ OZ a c b d +=++ . 因此复数的和可以在复平面上用平行四边形法则解释. 2. 减法 (i)(i)()()i a b c d a c b d +-+=-+-. 几何意义: 设1i z a b =+对应向量1(,)OZ a b = ,2i z c d =+对应向量2(,)OZ c d = ,则 12z z -对应的向量为1221(,)OZ OZ Z Z a c b d -==-- . 12()()i z z a c b d -=-+-=1Z 、2Z 两点之间的距离,也等于向量12Z Z 的模. 3. 乘法 ()()()()a bi c di a c b d i +±+=±+±. 4. 乘方 m n m n z z z +?= ()m n mn z z = 1212 ()n n n z z z z ?=? 5. 除法 ()()()()()()()()22a bi c di ac bd bc ad i a bi a bi c di c di c di c di c d +-++-++÷+= ==++-+. 6. 复数运算的常用结论 (1) 222(i)2i a b a b ab +=-+, 22(i)(i)a b a b a b +-=+ (2) 2(1i)2i +=, 2(1i)2i -=- (3) 1i i 1i +=-, 1i i 1i -=-+ (4) 1212z z z z ±=±, 1212z z z z ?=?, 1122 z z z z ??= ???,z z =. (5) 2z z z ?=, z z = (6) 121212z z z z z z -≤+≤+ (7) 1212z z z z ?=?,1212z z z z ?=?,n n z z = 四、复数的平方根与立方根

学习知识资料讲解复数(基础学习知识)

高考总复习:复数 【考纲要求】 1.理解复数的基本概念,理解复数相等的充要条件; 2.了解复数的代数表示形式及其几何意义;能将代数形式的复数在复平面上用点或向量表示,并能将复平面上的点或向量所对的复数用代数形式表示。 3.会进行复数代数形式的四则运算,了解两个具体相加、相减的几何意义. 【知识网络】 【考点梳理】 考点一、复数的有关概念 1.虚数单位i : (1)它的平方等于1-,即2 1i =-; (2)i 与-1的关系: i 就是-1的一个平方根,即方程21x =-的一个根,方程21x =-的另一个根是i -; (3)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立; (4)i 的周期性:41n i =,41n i i +=,421n i +=-,43n i i +=-(*n N ∈). 2. 概念

形如a bi +(,a b R ∈)的数叫复数,a 叫复数的实部,b 叫复数的虚部。 说明:这里,a b R ∈容易忽视但却是列方程求复数的重要依据。 3.复数集 全体复数所成的集合叫做复数集,用字母C 表示;复数集与其它数集之间的关系:N Z Q R C 4.复数与实数、虚数、纯虚、0的关系: 对于复数z a bi =+(,a b R ∈), 当且仅当0b =时,复数z a bi a =+=是实数; 当且仅当0b ≠时,复数z a bi =+叫做虚数; 当且仅当0a =且0b ≠时,复数z a bi bi =+=叫做纯虚数; 当且仅当0a b ==时,复数0z a bi =+=就是实数0. 所以复数的分类如下: z a bi =+(,a b R ∈)?(0)(0)00b b a b =?? ≠?=≠?实数;虚数当且时为纯虚数 5.复数相等的充要条件 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等。即: 如果,,,a b c d R ∈,那么a bi c di a c b d +=+?==且. 特别地: 00a bi a b +=?==. 应当理解: (1)一个复数一旦实部、虚部确定,那么这个复数就唯一确定;反之一样. (2)复数相等的充要条件是将复数转化为实数解决问题的基础. 一般地,两个复数只能说相等或不相等,而不能比较大小。如果两个复数都是实数,就可以比较大小;也只有当两个复数全是实数时才能比较大小。 6.共轭复数: 两个复数的实部相等,而且虚部相反,那么这两个复数叫做共轭复数。即: 复数z a bi =+和z a bi a bi =+=-(,a b R ∈)互为共轭复数。 考点二:复数的代数表示法及其四则运算 1.复数的代数形式: 复数通常用字母z 表示,即a bi +(,a b R ∈),把复数表示成a bi +的形式,叫做复数的代数形式。 2.四则运算

相关主题