搜档网
当前位置:搜档网 › C语言实现哈夫曼编码与译码

C语言实现哈夫曼编码与译码

C语言实现哈夫曼编码与译码
C语言实现哈夫曼编码与译码

信息工程1102 苑博2011116020230

C语言实现哈夫曼编码与译码

#include;

#define n 6 ;

#define m (2*n-1) ;

#define maxval 10000.0;

#define maxsize 100 ;

typedef struct;

{

char ch;

float weight;

int lchild,rchild,parent;

}hufmtree;

typedef struct;

{

char bits[n];

int start;

char ch;

}codetype;

void huffman(hufmtree tree[]);

void huffmancode(codetype code[],hufmtree tree[]);

void decode(hufmtree tree[]);

void main()

{

printf(" ——哈夫曼编码——\n"); printf("总共有%d个字符\n",n);

hufmtree tree[m];

codetype code[n];

int i,j;

huffman(tree);

huffmancode(code,tree);

printf("【输出每个字符的哈夫曼编码】\n");

for(i=0;i

{

printf("%c: ",code[i].ch);

for(j=code[i].start;j

printf("%c ",code[i].bits[j]);

printf("\n");

}

printf("【读入电文,并进行译码】\n");

decode(tree);

}

void huffman(hufmtree tree[])

int i,j,p1,p2;

float small1,small2,f;

char c;

for(i=0;i

{

tree[i].parent=0;

tree[i].lchild=-1;

tree[i].rchild=-1;

tree[i].weight=0.0;

}

printf("【依次读入前%d个结点的字符及权值(中间用空格隔开)】\n",n); for(i=0;i

{

printf("输入第%d个字符为和权值",i+1);

scanf("%c %f",&c,&f);

getchar();

tree[i].ch=c;

tree[i].weight=f;

}

for(i=n;i

{

p1=0;p2=0;

small1=maxval;small2=maxval; /

for(j=0;j

if(tree[j].parent==0)

if(tree[j].weight

{

small2=small1;

small1=tree[j].weight;

p2=p1;

p1=j;

}

else

if(tree[j].weight

{

small2=tree[j].weight; /

p2=j;

}

tree[p1].parent=i;

tree[p2].parent=i;

tree[i].lchild=p1;

tree[i].rchild=p2;

tree[i].weight=tree[p1].weight+tree[p2].weight;

}//huffman

void huffmancode(codetype code[],hufmtree tree[]) {

int i,c,p;

codetype cd;

for(i=0;i

{

cd.start=n;

cd.ch=tree[i].ch;

c=i;

p=tree[i].parent;

while(p!=0)

{

cd.start--;

if(tree[p].lchild==c)

cd.bits[cd.start]='0';

else

cd.bits[cd.start]='1';

c=p;

p=tree[p].parent;

}

code[i]=cd;

}

}//huffmancode

void decode(hufmtree tree[])

{

int i,j=0;

char b[maxsize];

char endflag='2';

i=m-1;

printf("输入发送的编码(以'2'为结束标志):"); gets(b);

printf("译码后的字符为");

while(b[j]!='2')

{

if(b[j]=='0')

i=tree[i].lchild;

else

i=tree[i].rchild;

if(tree[i].lchild==-1)

{

printf("%c",tree[i].ch);

i=m-1;

j++;

}

printf("\n");

if(tree[i].lchild!=-1&&b[j]!='2') printf("\nERROR\n");

}//decode

实验八 利用快速傅里叶变换(FFT)实现快速卷积(精选、)

实验八 利用FFT 实现快速卷积 一、 实验目的 (1) 通过这一实验,加深理解FFT 在实现数字滤波(或快速卷积)中的重要作用,更好的利用FFT 进行数字信号处理。 (2) 进一步掌握循环卷积和线性卷积两者之间的关系。 二、 实验原理与方法 数字滤波器根据系统的单位脉冲响应h(n)是有限长还是无限长可分为有限长单位脉冲响应(Finite Impulse Response )系统(简记为FIR 系统)和无限长单位脉冲响应(Infinite Impulse Response )系统(简记为IIR 系统)。 对于FIR 滤波器来说,除了可以通过数字网络来实现外,也可以通过FFT 的变换来实现。 一个信号序列x(n)通过FIR 滤波器时,其输出应该是x(n)与h(n)的卷积: ∑+∞ -∞ =-= =m m n h m x n h n x n y )()()(*)()( 或 ∑+∞ -∞ =-= =m m n x m h n x n h n y ) ()()(*)()( 当h(n)是一个有限长序列,即h(n)是FIR 滤波器,且10-≤≤N n 时 ∑-=-=1 0) ()()(N m m n x m h n y 在数字网络(见图6.1)类的FIR 滤波器中,普遍使用的横截型结构(见下图6.2 图6.1 滤波器的数字网络实现方法 图6.2 FIR 滤波器横截型结构 y(n) y(n) -1-1-1-1

应用FFT 实现数字滤波器实际上就是用FFT 来快速计算有限长度列间的线性卷积。 粗略地说,这种方法就是先将输入信号x(n)通过FFT 变换为它的频谱采样 值X(k),然后再和FIR 滤波器的频响采样值H(k)相乘,H(k)可事先存放在存储器中,最后再将乘积H(k)X(k)通过快速傅里叶变换(简称IFFT )还原为时域序列,即得到输出y(n)如图6.3所示。 图6.3 数字滤波器的快速傅里叶变换实现方法 现以FFT 求有限长序列间的卷积及求有限长度列与较长序列间的卷积为例来讨论FFT 的快速卷积方法。 (1) 序列)(n x 和)(n h 的列长差不多。设)(n x 的列长为1N ,)(n h 的列长为2N ,要求 )()(n x n y =N ∑-=-==1 ) ()()(*)()(N r r n h r x n h n x n h 用FFT 完成这一卷积的具体步骤如下: i. 为使两有限长序列的线性卷积可用其循环卷积代替而不发生混叠,必须选择循环卷积长度121-+≥N N N ,若采用基2-FFT 完成卷积运 算,要求m N 2=(m 为整数)。 ii. 用补零方法使)(n x ,)(n h 变成列长为N 的序列。 ?? ?-≤≤-≤≤=10 10)()(11N n N N n n x n x ?? ?-≤≤-≤≤=10 1 0)()(22N n N N n n h n h iii. 用FFT 计算)(),(n h n x 的N 点离散傅里叶变换 )()(k X n x FFT ??→? )()(k H n h FFT ??→? iv. 做)(k X 和)(k H 乘积,)()()(k H k X k Y ?= v. 用FFT 计算)(k Y 的离散傅里叶反变换得 y(n)

C语言实现FFT(快速傅里叶变换)

C语言实现FFT(快速傅里叶变换) 函数原型:空快速傅立叶变换(Struct Compx *xin,Intn) 函数函数:对输入复数组执行快速傅立叶变换(FFT)输入参数:*xin复结构组的第一个地址指针。结构输出参数:no * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *结构compx u,w,t。 nv2 =快速傅立叶变换_ N/2;nm1 =快速傅立叶变换_ N-1;(I = 0;i

Matlab傅里叶变换傅里叶逆变换-FFT-IFFT

Matlab傅里叶变换傅里叶逆变换 %% 信号经过傅里叶变换然后进行傅里叶逆变换后信号的变化 clear all;clc; %------Author&Date------ %Author: %Date: 2013/07/31 %========================================================================== Fs=8e3; %采样率 t=0:1/Fs:1; %采样点 len=length(t); %采样长度 f1=10; %频率1 f2=100; %频率2 f3=1000; %频率3 A1=1; %幅度1 A2=0.8; %幅度2 A3=0.3; %幅度3 MaxS=A1+A2+A3; %信号幅度的最大值 signal=A1*sin(2*pi*f1*t)+A2*sin(2*pi*f2*t)+A3*sin(2*pi*f3*t); X=fft(signal,len); %傅里叶变换 magX=abs(X); %信号的幅度 angX=angle(X); %信号的相位 Y=magX.*exp(1i*angX); %信号的频域表示 y=ifft(Y,len); %信号进行傅里叶逆变换 y=real(y); er=signal-y; %原始信号和还原信号的误差 subplot(311);plot(t,signal);axis([0 1 -MaxS MaxS]);xlabel('时间');ylabel('振幅');title('原始信号'); subplot(312);plot(t,y);axis([0 1 -MaxS MaxS]);xlabel('时间');ylabel('振幅');title('还原信号'); subplot(313);plot(t,er);xlabel('时间');ylabel('振幅');title('误差'); % End Script

快速傅里叶变换FFT的FPGA设计与实现--电科1704 郭衡

快速傅里叶变换FFT的FPGA设计与实现 学生姓名郭衡 班级电科1704 学号17419002064 指导教师谭会生 成绩 2020年5 月20 日

快速傅里叶变换FFT 的设计与实现 一、研究项目概述 非周期性连续时间信号x(t)的傅里叶变换可以表示为:= )(?X dt t j e t x ? ∞ ∞ --1 )(?,式中计算出来的是信号x(t)的连续频谱。但是,在实际的控制系统中能够式中计算出来的是信号x(t)的连续频谱。但是,在实际的控制系统中能够算信号x(t)的频谱。 有限长离散信号x(n),n=0,1,…,N-1的DFT 定义为: ∑-=-=-==1 02,1.....10)()(N n N j N kn N e W N k W n x K X π、、。 可以看出,DFT 需要计算大约N2次乘法和N2次加法。当N 较大时,这个计算量是很大的。利用WN 的对称性和周期性,将N 点DFT 分解为两个N /2点的DFT ,这样两个N /2点DFT 总的计算量只是原来的一半,即(N /2)2+(N /2)2=N2/2,这样可以继续分解下去,将N /2再分解为N /4点DFT 等。对于N=2m 点的DFT 都可以分解为2点的DFT ,这样其计算量可以减少为(N /2)log2N 次乘法和Nlog2N 次加法。图1为FFT 与DFT-所需运算量与计算点数的关系曲线。由图可以明显看出FFT 算法的优越性。 图1 FFT 与DFT 所需乘法次数比 较

X[1] 将x(n)分解为偶数与奇数的两个序列之和,即x(n)=x1(n)+x2(n)。 x1(n)和x2(n)的长度都是N /2,x1(n)是偶数序列,x2(n)是奇数序列,则 ∑∑=--=-=+2 )12(120 2)1.....,0()(2)(1)(N n k n N N n km N N k W n x W n x K X 所以)1...,0()(2)(1)(12 22120 -=+=∑∑-=-=N k W n x W W n x K X N n km N k N km N N n 由于km N N j km N j km N W e e W 2/2 /2222===--ππ ,则 )1.....,0)((2)(1)(2)(1)(12 2/120 2/-=+=+=∑∑-=-=N k k X W k X W n x W W n x K X k N N n km N k N N n kn N 其中X1(k)和X2(k)分别为x1(n)和x2(n)的N /2点DFT 。由于X1(k)和X2(k)均以N /2为周期,且WNk+N/2=-WNk ,所以X(k)又可表示为: )12/....,1,0)((2)(1)(-=+=N k k X W k X K X k N )12/....,1,0)((2)(1)2/(-=-=+N k k X W k X N K X k N

matlab-离散信号傅里叶变换

1.请用MATLAB编写程序,实现任意两个有限长度序列的卷积和。要求用图 形显示两个序列及卷积结果。 解:y(n)=∑x(i)h(n-i) 假设x(n)={1,2,3,4,5}; h(n)={3,6,7,2,1,6}; y(n)=x(n)*h(n) 验证:y[n]=[1,12,28,46,65,72,58,32,29,30] 【程序】 N=5 M=6 L=N+M-1 x=[1,2,3,4,5] h=[3,6,7,2,1,6] y=conv(x,h) nx=0:N-1 nh=0:M-1 ny=0:L-1 subplot(131);stem(nx,x,'*b');xlabel('n');ylabel('x(n)');grid on subplot(132);stem(nh,h,'*b');xlabel('n');ylabel('h(h)');grid on subplot(133);stem(ny,y,'*r');xlabel('n');ylabel('y(h)');grid on 【运行结果】

2.已知两个序列x[n]=cos(n*pi/2), y[n]=e j*pi*n/4x[n],请编写程序绘制 X(e jw)和Y(e jw)和幅度和相角,说明它们的频移关系。 –提示:用abs函数求幅度,用angle求相角。 【程序】 n=0:15; x=cos(n*pi/2); y=exp(j*pi*n/4).*x; X=fft(x); Y=fft(y); magX=abs(X); angX=angle(X); magY=abs(Y); angY=angle(Y); subplot(221);stem(n,magX,'*r');xlabel('频率');ylabel('幅度');grid on; subplot(222);stem(n,angX,'*b');xlabel('频率');ylabel('相位');grid on; subplot(223);stem(n,magY,'*r');xlabel('频率');ylabel('幅度');grid on; subplot(224);stem(n,angY,'*b');xlabel('频率');ylabel('相位');grid on;

银行家算法代码c语言编写

#define M 100 #include int max[M][M],allocation[M][M],need[M][M],available[M]; int i,j,n,m,r; void testout() //算法安全性的检测 { int k,flag,v=0; int work[M],a[M]; char finish[M]; r=1; for(i=0;i0) { for (i=0;iwork[j]) flag=0; if (flag==1) //找到还没完成的且需求数小于可提供进程继续运行的 { finish[i]='T'; //资源数的进程 a[v++]=i; //记录安全序列 for (j=0;j

银行家算法-实验报告

淮海工学院计算机工程学院实验报告书 课程名:《操作系统原理》 题目:银行家算法 班级: 学号: 姓名:

一、实验目的 银行家算法是操作系统中避免死锁的典型算法,本实验可以加深对银行家算法的步骤和相关数据结构用法的更好理解。 实验环境 Turbo C 2.0/3.0或VC++6.0 实验学时 4学时,必做实验。 二、实验内容 用C语言编写一个简单的银行家算法模拟程序,用银行家算法实现资源分配。程序能模拟多个进程共享多种资源的情形。进程可动态地申请资源,系统按各进程的申请动态地分配资源。要求程序具有显示和打印各进程的某一时刻的资源分配表和安全序列;显示和打印各进程依次要求申请的资源数量以及为某进程分配资源后的有关资源数据的情况。 三、实验说明 实验中进程的数量、资源的种类以及每种资源的总量Total[j]最好允许动态指定。初始时每个进程运行过程中的最大资源需求量Max[i,j]和系统已分配给该进程的资源量Allocation[i,j]均为已知(这些数值可以在程序运行时动态输入),而算法中其他数据结构的值(包括Need[i,j]、Available[j])则需要由程序根据已知量的值计算产生。 四、实验步骤 1、理解本实验中关于两种调度算法的说明。 2、根据调度算法的说明,画出相应的程序流程图。 3、按照程序流程图,用C语言编程并实现。 五、分析与思考 1.要找出某一状态下所有可能的安全序列,程序该如何实现? 答:要找出这个状态下的所有可能的安全序列,前提是要是使这个系统先处于安全状态,而系统的状态可通过以下来描述: 进程剩余申请数=最大申请数-占有数;可分配资源数=总数-占有数之和; 通过这个描述来算出系统是否安全,从而找出所有的安全序列。 2.银行家算法的局限性有哪些?

傅里叶变换matlab代码

%傅里叶变换 clc;clear all;close all; tic Fs=128;%采样频率,频谱图的最大频率 T=1/Fs;%采样时间,原始信号的时间间隔 L=256;%原始信号的长度,即原始离散信号的点数 t=(0:L-1)*T;%原始信号的时间取值范围 x=7*cos(2*pi*15*t-pi)+3*cos(2*pi*40*t-90*pi/180)+3*cos(2*pi*30*t-90*pi/ 180); z=7*cos(2*pi*15*t-pi)+3*cos(2*pi*40*t-90*pi/180); z1=6*cos(2*pi*30*t-90*pi/180); z1(1:L/2)=0; z=z+z1; y=x;%+randn(size(t)); figure; plot(t,y) title('含噪信号') xlabel('时间(s)') hold on plot(t,z,'r--') N=2^nextpow2(L);%N为使2^N>=L的最小幂 Y=fft(y,N)/N*2; Z=fft(z,N)/N*2;%快速傅里叶变换之后每个点的幅值是直流信号以外的原始信号幅值的N/2倍(是直流信号的N倍) f=Fs/N*(0:N-1);%频谱图的频率取值范围 A=abs(Y);%幅值 A1=abs(Z); B=A; %让很小的数置零. B1=A1; A(A<10^-10)=0; % A1(A1<10^-10)=0; P=angle(Y).*A./B; P1=angle(Z).*A1./B1; P=unwrap(P,pi);%初相位值,以除去了振幅为零时的相位值 P1=unwrap(P1,pi); figure subplot(211) plot(f(1:N/2),A(1:N/2))%函数ffs返回值的数据结构具有对称性,因此只取前一半 hold on plot(f(1:N/2),A1(1:N/2),'r--') title('幅值频谱')

(完整word版)操作系统 银行家算法

操作系统课程设计银行家算法

第一章引言 1.1 课程设计目地: 操作系统是计算机系统的核心系统软件,它负责控制和管理整个系统的资源并组织用户协调使用这些资源,使计算机高效的工作。课程设计的目的是综合应用学生所学知识,通过实验环节,加深学生对操作系统基本原理和工作过程的理解,提高学生独立分析问题、解决问题的能力,增强学生的动手能力。 第二章银行家算法描述 2.1 银行家算法简介: 银行家算法是一种最有代表性的避免死锁的算法。在避免死锁方法中允许进程动态地申请资源,但系统在进行资源分配之前,应先计算此次分配资源的安全性,若分配不会导致系统进入不安全状态,则分配,否则等待。 要解释银行家算法,必须先解释操作系统安全状态和不安全状态。 安全状态:如果存在一个由系统中所有进程构成的安全序列P1,…,Pn,则系统处于安全状态。安全状态一定是没有死锁发生。 不安全状态:不存在一个安全序列。不安全状态不一定导致死锁。 那么什么是安全序列呢? 安全序列:一个进程序列{P1,…,Pn}是安全的,如果对于每一个进程Pi(1≤i≤n),它以后尚需要的资源量不超过系统当前剩余资源量与所有进程Pj (j < i )当前占有资源量之和。 2.2 银行家算法描述: 我们可以把操作系统看作是银行家,操作系统管理的资源相当于银行家管理的资金,进程向操作系统请求分配资源相当于用户向银行家贷款。操作系统按照银行家制定的规则为进程分配资源,当进程首次申请资源时,要测试该进程对资源的最大需求量,如果系统现存的资源可以满足它的最大需求量则按当

前的申请量分配资源,否则就推迟分配。当进程在执行中继续申请资源时,先测试该进程已占用的资源数与本次申请的资源数之和是否超过了该进程对资源的最大需求量。若超过则拒绝分配资源,若没有超过则再测试系统现存的资源能否满足该进程尚需的最大资源量,若能满足则按当前的申请量分配资源,否则也要推迟分配。 2.3银行家算法原理 2.3.1银行家算法的思路 先对用户提出的请求进行合法性检查,即检查请求的是不大于需要的,是否不大于可利用的。若请求合法,则进行试分配。最后对试分配后的状态调用安全性检查算法进行安全性检查。若安全,则分配,否则,不分配,恢复原来状态,拒绝申请。 2.3.2 银行家算法中用到的主要数据结构 可利用资源向量 int Available[j] j为资源的种类。 最大需求矩阵 int Max[i][j] i为进程的数量。 分配矩阵 int Allocation[i][j] 需求矩阵 int need[i][j]= Max[i][j]- Allocation[i][j] 申请各类资源数量 int Request i[j] i进程申请j资源的数量 工作向量 int Work[x] int Finish[y] 2.3.3 银行家算法bank() 进程i发出请求申请k个j资源,Request i[j]=k (1)检查申请量是否不大于需求量:Request i[j]<=need[i,j],若条件不符重新

计算机操作系统 课程设计报告 银行家算法

《计算机操作系统》 课 程 设 计 报 告 题目:银行家算法 班级: XXXXXXXXXXXXXXXX 姓名: XXM 学号: XXXXXXXXXXXX 指导老师: XXXXXXXXXXXXXX 设计时间: XXXXXXXXXXXXXXX

一.设计目的 1、掌握死锁概念、死锁发生的原因、死锁产生的必要条件; 2、掌握死锁的预防、死锁的避免; 3、深刻理解死锁的避免:安全状态和银行家算法; 二.银行家算法 1.简介 银行家算法是一种最有代表性的避免死锁的算法。在避免死锁方法中允许进程动态地申请资源,但系统在进行资源分配之前,应先计算此次分配资源的安全性,若分配不会导致系统进入不安全状态,则分配,否则等待。为实现银行家算法,系统必须设置若干数据结构。 2.数据结构 1)可利用资源向量Available 是个含有m个元素的数组,其中的每一个元素代表一类可利用的资源数目。如果Available[j]=K,则表示系统中现有Rj类资源K个。 2)最大需求矩阵Max 这是一个n×m的矩阵,它定义了系统中n个进程中的每一个进程对m类资源的最大需求。如果Max[i,j]=K,则表示进程i需要Rj类资源的最大数目为K。 3)分配矩阵Allocation 这也是一个n×m的矩阵,它定义了系统中每一类资源当前已分配给每一进程的资源数。如果Allocation[i,j]=K,则表示进程i当前已分得Rj类资源的数目为K。 4)需求矩阵Need 这也是一个n×m的矩阵,用以表示每一个进程尚需的各类资源数。如果Need[i,j]=K,则表示进程i还需要Rj类资源K个,方能完成其任务。 Need[i,j]=Max[i,j]-Allocation[i,j]. 3.算法原理 操作系统按照银行家制定的规则为进程分配资源,当进程首次申请资源时,要测试该进程对资源的最大需求量,如果系统现存的资源可以满足它的最大需求量则按当前的申请量分配资源,否则就推迟分配。当进程在执行中继续申请资源时,先测试该进程本次申请的资源数是否超过了该资源所剩余的总量。若超过则拒绝分配资源,若能满足则按当前的申请量分配资源,否则也要推迟分配。 三.算法实现 1.初始化 由用户输入数据,分别对可利用资源向量矩阵A V AILABLE、最大需求矩阵MAX、分配矩阵ALLOCATION、需求矩阵NEED赋值。 2.银行家算法 在避免死锁的方法中,所施加的限制条件较弱,有可能获得令人满意的系统性能。在该方法中把系统的状态分为安全状态和不安全状态,只要能使系统始终都处于安全状态,便可

C语言实现FFT(快速傅里叶变换)

#include #include /********************************************************************* 快速福利叶变换C函数 函数简介:此函数是通用的快速傅里叶变换C语言函数,移植性强,以下部分不依赖硬件。此函数采用联合体的形式表示一个复数,输入为自然顺序的复 数(输入实数是可令复数虚部为0),输出为经过FFT变换的自然顺序的 复数 使用说明:使用此函数只需更改宏定义FFT_N的值即可实现点数的改变,FFT_N的应该为2的N次方,不满足此条件时应在后面补0 函数调用:FFT(s); 时间:2010-2-20 版本:Ver1.0 参考文献: **********************************************************************/ #include #define PI 3.1415926535897932384626433832795028841971 //定义圆周率值#define FFT_N 128 //定义福利叶变换的点数 struct compx {float real,imag;}; //定义一个复数结构struct compx s[FFT_N]; //FFT输入和输出:从S[1]开始存放,根据大小自己定义 /******************************************************************* 函数原型:struct compx EE(struct compx b1,struct compx b2) 函数功能:对两个复数进行乘法运算 输入参数:两个以联合体定义的复数a,b 输出参数:a和b的乘积,以联合体的形式输出 *******************************************************************/ struct compx EE(struct compx a,struct compx b) { struct compx c; c.real=a.real*b.real-a.imag*b.imag; c.imag=a.real*b.imag+a.imag*b.real; return(c); } /***************************************************************** 函数原型:void FFT(struct compx *xin,int N)

【免费下载】matlab实现傅里叶变换

一、傅立叶变化的原理; (1)原理 正交级数的展开是其理论基础!将一个在时域收敛的函数展开成一系列不同频率谐波的叠加,从而达到解决周期函数问题的目的。在此基础上进行推广,从而可以对一个非周期函数进行时频变换。 从分析的角度看,他是用简单的函数去逼近(或代替)复杂函数,从几何的角度看,它是以一族正交函数为基向量,将函数空间进行正交分解,相应的系数即为坐标。从变幻的角度的看,他建立了周期函数与序列之间的对应关系;而从物理意义上看,他将信号分解为一些列的简谐波的复合,从而建立了频谱理论。 当然Fourier积分建立在傅氏积分基础上,一个函数除了要满足狄氏条件外, 一般来说还要在积分域上绝对可积,才有古典意义下的傅氏变换。引入衰减因子e^(-st),从而有了Laplace变换。(好像走远了)。 (2)计算方法 连续傅里叶变换将平方可积的函数f(t)表示成复指数函数的积分或级数形式。 这是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。 为 连续傅里叶变换的逆变换 (inverse Fourier transform) 即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。 一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅里叶变换对(transform pair)。 二、傅立叶变换的应用; DFT在诸多多领域中有着重要应用,下面仅是颉取的几个例子。需要指出 的是,所有DFT的实际应用都依赖于计算离散傅里叶变换及其逆变换的快速算

法,即快速傅里叶变换(快速傅里叶变换(即FFT )是计算离散傅里叶变换及其逆变换的快速算法。)。(1)、频谱分析DFT 是连续傅里叶变换的近似。因此可以对连续信号x(t)均匀采样并截断以得到有限长的离散序列,对这一序列作离散傅里叶变换,可以分析连续信号x(t)频谱的性质。前面还提到DFT 应用于频谱分析需要注意的两个问题:即采样可能导致信号混叠和截断信号引起的频谱泄漏。可以通过选择适当的采样频率(见奈奎斯特频率)消减混叠。选择适当的序列长度并加窗可以抑制频谱泄漏。(2)、数据压缩由于人类感官的分辨能力存在极限,因此很多有损压缩算法利用这一点将语音、音频、图像、视频等信号的高频部分除去。高频信号对应于信号的细节,滤除高频信号可以在人类感官可以接受的范围内获得很高的压缩比。这一去除高频分量的处理就是通过离散傅里叶变换完成的。将时域或空域的信号转换到频域,仅储存或传输较低频率上的系数,在解压缩端采用逆变换即可重建信号。(3)、OFDM OFDM (正交频分复用)在宽带无线通信中有重要的应用。这种技术将带宽为N 个等间隔的子载波,可以证明这些子载波相互正交。尤其重要的是,OFDM 调制可以由IDFT 实现,而解调可以由DFT 实现。OFDM 还利用DFT 的移位性质,在每个帧头部加上循环前缀(Cyclic Prefix ),使得只要信道延时小于循环前缀的长度,就能消除信道延时对传输的影响。三、傅里叶变换的本质; 傅里叶变换的公式为dt e t f F t j ?+∞∞--=ωω)()(可以把傅里叶变换也成另外一种形式: t j e t f F ωπ ω),(21)(=可以看出,傅里叶变换的本质是内积,三角函数是完备的正交函数集,不同频率的三 角函数的之间的内积为0,只有频率相等的三角函数做内积时,才不为0。)(2,21)(2121Ω-Ω==?Ω-ΩΩΩπδdt e e e t j t j t j

fft快速傅里叶变换 c语言实现

#include #include #include #define N 1000 /*定义复数类型*/ typedef struct{ double real; double img; }complex; complex x[N], *W; /*输入序列,变换核*/ int size_x=0; /*输入序列的大小,在本程序中仅限2的次幂*/ double PI; /*圆周率*/ void fft(); /*快速傅里叶变换*/ void initW(); /*初始化变换核*/ void change(); /*变址*/ void add(complex ,complex ,complex *); /*复数加法*/ void mul(complex ,complex ,complex *); /*复数乘法*/ void sub(complex ,complex ,complex *); /*复数减法*/ void output(); int main(){ int i; /*输出结果*/ system("cls"); PI=atan(1)*4; printf("Please input the size of x:\n"); scanf("%d",&size_x); printf("Please input the data in x[N]:\n"); for(i=0;i

银行家算法报告和代码

课程设计(论文) 题目:银行家算法 院(系):信息与控制工程系专业班级: 姓名: 学号: 指导教师: 2016年1 月15日

西安建筑科技大学华清学院课程设计(论文)任务书 专业班级:学生姓名:指导教师(签名): 一、课程设计(论文)题目 银行家算法:设计一个n个并发进程共享m个系统资源的程序以实现银行家算法。 二、本次课程设计(论文)应达到的目的 操作系统课程实践性比较强。课程设计是加强学生实践能力的一个强有力手段。课程设计要求学生在完成程序设计的同时能够写出比较规范的设计报告。严格实施课程设计这一环节,对于学生基本程序设计素养的培养和软件工作者工作作风的训练,将起到显著的促进作用。 本题目要达到目的:了解多道程序系统中,多个进程并发执行的资源分配。掌握银行家算法,了解资源在进程并发执行中的资源分配情况。掌握预防死锁的方法,系统安全状态的基本概念。 三、本次课程设计(论文)任务的主要内容和要求(包括原始数据、技术参数、设计要求等) 要求: 1)能显示当前系统资源的占用和剩余情况。 2)为进程分配资源,如果进程要求的资源大于系统剩余的资源,不与分配并且提示分配不成功; 3)撤销作业,释放资源。 编写和调试一个系统动态分配资源的简单模拟程序,观察死锁产生的条件,并采用适当的算法,有效地防止和避免死锁的发生。 银行家算法分配资源的原则是:系统掌握每个进程对资源的最大需求量,当进程要求申请资源时,系统就测试该进程尚需资源的最大量,如果系统中现存的资源数大于或等于该进程尚需求资源最大量时,就满足进程的当前申请。这样就可以保证至少有一个进程可能得到全部资源而执行到结束,然后归还它所占有的全部资源供其它进程使用。 四、应收集的资料及主要参考文献: 操作系统经典算法的编程实现资料非常丰富,可以在图书馆找书籍或在因特网上找资料,都很容易找到,但是大部分代码是不全的,不能直接运行,希望大家只是把它当参考,编码还是自己做。 参考文献: 【1】汤小丹、梁红兵、哲凤屏、汤子瀛编著.计算机操作系统(第三版).西安:西安电子科技大学出版社,2007.5 【2】史美林编.计算机操作系统教程.北京:清华大学出版社,1999.11 【3】徐甲同编著.操作系统教程.西安:西安电子科技大学出版社,1996.8 【4】Clifford,A.Shaffer编著.数决结构与算法分析(C++版).北京:电子工业出版社,2005.7 【5】蒋立翔编著.C++程序设计技能百练.北京:中国铁道出版社,2004.1 五、审核批准意见 教研室主任(签字)

利用MATLAB编写FFT快速傅里叶变换

一、实验目的 1.利用MATLAB 编写FFT 快速傅里叶变换。 2.比较编写的myfft 程序运算结果与MATLAB 中的FFT 的有无误差。 二、实验条件 PC 机,MATLAB7.0 三、实验原理 1. FFT (快速傅里叶变换)原理: 将一个N 点的计算分解为两个N/2点的计算,每个N/2点的计算再进一步分解为N/4点的计算,以此类推。根据DFT 的定义式,将信号x[n]根据采样号n 分解为偶采样点和奇采样点。设偶采样序列为y[n]=x[2n],奇采样序列为z[n]=x[2n+1]。 上式中的k N W -为旋转因子N k j e /2π-。下式则为y[n]与z[n]的表达式: 2. 蝶形变换的原理: 下图给出了蝶形变换的运算流图,可由两个N/2点的FFT (Y[k]和Z[k]得出N 点FFT X[k])。同理,每个N/2点的FFT 可以由两个N/4点的FFT 求得。按这种方法,该过程可延迟后推到2点的FFT 。 下图为N=8的分解过程。图中最右边的为8个时域采样点的8点FFTX[k],由偶编号采样点的4点FFT 和奇编号采样点的4点得到。这4点偶编号又由偶编号的偶采

样点的2点FFT 和奇编号的偶采样点的2点FFT 产生。相同的4点奇编号也是如此。依次往左都可以用相同的方法算出,最后由偶编号的奇采样点和奇编号的偶采样点的2点FFT 算出。图中没2点FFT 成为蝶形,第一级需要每组一个蝶形的4组,第二级有每组两个蝶形的两组,最后一级需要一组4个蝶形。 四、实验内容 1.定义函数disbutterfly ,程序根据FFT 的定义:]2[][][N n x n x n y + +=、n N W N n x n x n z -+-=])2 [][(][,将序列x 分解为偶采样点y 和奇采样点z 。 function [y,z]=disbutterfly(x) N=length(x); n=0:N/2-1; w=exp(-2*1i*pi/N).^n; x1=x(n+1); x2=x(n+1+N/2); y=x1+x2; z=(x1-x2).*w; 2.定义函数rader ,纠正输出序列的输出顺序。 function y=rader(x,N) n=[0:N-1]; bn=dec2bin(n); rbn=fliplr(bn); rn=bin2dec(rbn); y=x(rn+1); 3.定义函数myfft ,程序中套了两个循环。 function X=myfft(x) N=length(x); h=log2(N); %h=3 for i=1:h %第一次i=1;第二次i=2 s=[]; for j=1:2^(i-1);%i=1时,j=1;i=2时,j=1:2 M=2^(h-i+1);%M:M=8;M=4 xj=x([1:M]+(j-1)*M);%xj=x([1:8]+(1-1)*8)=x(1)+x(2)...+x(8); %j=1:xj=x([1:4]);j=2:xj=x([1:4]+4) [y,z]=disbutterfly(xj); s=[s,y,z]; end x=s;

快速傅里叶变换 (FFT) 实现

§2.4 快速傅里叶变换 (FFT) 实现 一、实验目的 1. 掌握FFT 算法的基本原理; 2. 掌握用C 语言编写DSP 程序的方法。 二、实验设备 1. 一台装有CCS3.3软件的计算机; 2. DSP 实验箱的TMS320F2812主控板; 3. DSP 硬件仿真器。 三、实验原理 傅里叶变换是一种将信号从时域变换到频域的变换形式,是信号处理的重要分析工具。离散傅里叶变换(DFT )是傅里叶变换在离散系统中的表示形式。但是DFT 的计算量非常大, FFT 就是DFT 的一种快速算法, FFT 将DFT 的N 2 步运算减少至 ( N/2 )log 2N 步。 离散信号x(n)的傅里叶变换可以表示为 ∑=-=1 0][)(N N nk N W n x k X , N j N e W /2π-= 式中的W N 称为蝶形因子,利用它的对称性和周期性可以减少运算量。一般而言,FFT 算法分为时间抽取(DIT )和频率抽取(DIF )两大类。两者的区别是蝶形因子出现的位置不同,前者中蝶形因子出现在输入端,后者中出现在输出端。本实验以时间抽取方法为例。 时间抽取FFT 是将N 点输入序列x(n) 按照偶数项和奇数项分解为偶序列和奇序列。偶序列为:x(0), x(2), x(4),…, x(N-2);奇序列为:x(1), x(3), x(5),…, x(N-1)。这样x(n) 的N 点DFT 可写成: ()()∑++∑=-=+-=1 2/0 )12(1 2/0 2122)(N n k n N N n nk N W n x W n x k X 考虑到W N 的性质,即 2/)2//(22/)2(2][N N j N j N W e e W ===--ππ 因此有: ()()∑++∑=-=-=1 2/0 2/1 2/0 2 /122)(N n nk N k N N n nk N W n x W W n x k X 或者写成: ()()k Z W k Y k X k N +=)( 由于Y(k) 与Z(k) 的周期为N/2,并且利用W N 的对称性和周期性,即: k N N k N W W -=+2/

用Matlab对信号进行傅里叶变换实例

目录 用Matlab 对信号进行傅里叶变换 (2) Matlab 的傅里叶变换实例 (5) Matlab 方波傅立叶变换画出频谱图 (7)

用 Matlab 对信号进行傅里叶变换 1. 离散序列的傅里叶变换 DTFT(Discrete Time Fourier Transform) 代码: %原离散信号有 8 点 %原信号是 1行 8列的矩阵 %构建原始信号,为指数信号 %频域共-800 +800 的长度(本应是无穷, 高 %求 dtft 变换,采用原始定义的方法,对复指 7 subplot(311) 8 stem(n,xn); 9 title('原始信号(指数信号 )'); 10 subplot(312); 11 plot(w/pi,abs(X)); 12 title('DTFT 变换 ') 结果: 分析:可见,离散序列的 dtft 变换是周期的,这也符合 Nyquist 采样 定理的描述, 连续时间信号经周期采样之后, 所得的离散信号的频谱 是原连续信号频谱的周期延拓。 2. 离散傅里叶变换 1 N=8; 2 n=[0:1:N-1] 3 xn=0.5.^n; 4 5 w=[-800:1:800]*4*pi/800; 频分量很少,故省去) 6 X=xn*exp(-j*(n'*w)); 数分 量求和而得

与 1 中 DTFT 不一样的是, DTFT 的求和区间是整个频域,这对 N=8; % 原离散信号有 8 点 n=[0:1:N-1] %原信号是 1行 8列的矩阵 xn=0.5.^n; %构建原始信号,为指数信号 w=[-8:1:8]*4*pi/8; %频域共 -800 +800 的长度(本应是无穷, 高频分量很少, 故省去) X=xn*exp(-j*(n'*w)); %求 dtft 变换,采用原始定义的方法,对复指数分量求和而得 subplot(311) stem(n,xn); w1=[-4:1:4]*4*pi/4; X1=xn*exp(-j*(n'*w1)); title(' 原始信号 (指数信号 )'); subplot(312); stem(w/pi,abs(X)); title(' 原信号的 16 点 DFT 变换 ') subplot(313) stem(w1/pi,abs(X1)); title(' 原信号的 8 点 DFT 变换 ') 计算机的计算来说是不可以实现的, DFT 就是序列的有限傅里叶变换。 实际上, 1 中代码也只是对频域的 -800 +800 中间的 1601 结果图: 分析: DFT 只是 DTFT 的现实版本,因为 DTFT 要求求和区间无穷, 而 DFT 只在有限点内求和。 3. 快速傅里叶变换 FFT ( Fast Fourier Transform ) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

相关主题