搜档网
当前位置:搜档网 › 利用劈尖干涉检测工件的平滑程度

利用劈尖干涉检测工件的平滑程度

利用劈尖干涉检测工件的平滑程度
利用劈尖干涉检测工件的平滑程度

利用劈尖干涉检测工件的平滑程度

姓名沈霞民

专业电子工程

学号C042012013 摘要空气劈尖的等厚干涉,可测量精确加工工件表面极小纹路的深度,在生活中有着广泛的运用。

关键词劈尖等厚干涉

现有一标准的平滑玻璃片和一待测工件,将待测工件放在下面且待测表面向上,把标准玻璃片置于上方,在两者之间放一薄片,组成一空气劈尖。用单色平行光垂直照射到玻璃片上,在显微镜中观察干涉条纹,可能会出现三种情形。

干涉条纹现象如下

一.明暗相间的与棱边平行的等间距直条纹

二.明暗相间但与棱边不平行的弯曲且向左凸的条纹

三.明暗相间但与棱边不平行的弯曲且向右凸的条纹

由干涉条纹可知

情形一待测工件表面是平滑的,因为条纹是等间距直条纹;

情形二待测工件表面是下凹的,因为本应在该处不出现明纹,却出现与高级次在同一级次的干涉明纹,可知此处光程差变大了;

情形三待测工件表面是上凸的,因为本应在该处不出现明纹,却出现与低级次在同一级次的干涉明纹,可知此处光程差变小了。

下面将通过理论计算求出待测工件表面上凸或下凹的程度。以情形二为例。

由干涉条纹可知,相邻两明纹之间的距离为b ,明纹偏离的大小为a ,假设下凹深度为h ?

2/2λδ+=ne =λk ,(明纹)...

2,1=k 暗纹)

...(2,1,0,2/)12(2/2=+=+=k k ne λλδ n e e k k 2/e 1λ=-=?+

很小)θθθ(,sin l l e ≈=? )1n (,2/===b n l θλ

很小)θθλθ(,tan 2/≈=b θtan /=?a h

b a h 2/λ=?

通过以上计算,很好地得出了待测工件表面下凹了b a h 2/λ=?。根据此表达式可以得出,当a 越大,b 越小,工件表面越不平滑。

将此方法运用于实际中,能够精确地判断出工件是否符合工业标准,筛选出合格的产品。

细丝直径的测量铁丝直径知识讲解

细丝直径的测量铁丝 直径

细丝直径的测量铁丝直径 【实验目的】 (1)通过实验加深对等厚干涉原理及干涉概念的理解 (2)学习用等厚干涉测量铁丝直径的方法 (3)学会读书显微镜的正确使用 【仪器用具】钠光灯读数显微镜劈尖装置 【实验原理】 当两片很平的玻璃叠合在一起,并在其一端垫入细丝时,两玻璃片之间就形成一空气薄层(空气劈)。在单色光束垂直照射下,经劈上、下表面反射后两束反射光是相干的,干涉条纹将是间隔相等且平行于二玻璃交线的明暗交替 的条纹 相邻两暗纹(或明纹)对应的空气厚度 2dk 2 k 2dk, — k 1 2dki dk j 则细丝直径D为 ta n N为干涉条纹总条纹 勿人k |明纹2d /2 2k 1- 暗纹

-------------------------------------------- r --------- D—— 1S-2-------------------------------------------------- L为劈尖的长度用游标卡尺测,S%相邻两暗条纹的间距,用读书显微镜测量(5次测 量) ____ 6 589.3 10 mm A为钠光波长,入二 已知入射光波长,测出N。和L ,就可计算出细丝(或薄片)的直径D。【实验内容】 (1) 将细丝(或薄片)夹在劈尖两玻璃板的一端,另一端直接接触,形成空气劈尖。然后 置于移测显微镜的载物平台上。 (2) 开启钠光灯,调节半反射镜使钠黄光充满整个视场。此时显微镜中的视场由暗变売。 调节显微镜目镜焦距及叉丝方位和劈尖放置的方位。调显微镜物镜焦距看清干涉条纹,并使显微镜同移动方向与干涉条纹相垂直。 (3) 用显微镜测读出叉丝越过条暗 条纹时的距离I,可得到单位长度的条纹数No。 再测出两块玻璃接触处到细丝处的长度L.重复测量五次,根据式 D N丄(/2)计算细丝直径D平均值和不确定度。 【数据记录】 实验测量数据 单位(mm)斥一I,rI :11

干涉法测量微小量

干涉法测微小量 (本文内容选自高等教育出版社《大学物理实验》) 光的干涉现象表明了光的波动性质,干涉现象在科学研究与计量技术中有着广泛的应用。在干涉现象中,不论是何种干涉,相邻干涉条纹的光程差的改变都等于相干光的波长,可见光的波长虽然很小,但干涉条纹间的距离或干涉条纹的数目却是可以计量的。因此,通过对干涉条纹数目或条纹移动数目的计量,可得到以光的波长为单位的光程差。 利用光的等厚干涉现象可以测量光的波长,检验表面的平面度、球面度、光洁度,精确的测量长度、角度,测量微小形变以及研究工作内应力的分布等。 通过本次实验,学习、掌握利用光的干涉原理检验光学元件表面几何特征的方法,用劈尖的等厚干涉测量细丝直径的方法,同时加深对光的波动性的认识。 实验原理 1. 用牛顿环测平凸透镜的曲率半径 当曲率半径很大的平凸透镜的凸面放在一平面玻璃上时,见图,在透镜的凸面与平面 之间形成一个从中心O 向四周逐渐增厚的空气层。当单色光垂直照射下来时,从空气层上下两个表面反射的光束1和光束2在上表面相遇时产生干涉。因为光程差相等的地方是以O 点为中心的同心圆,因此等厚干涉条纹也是一组以O 点为中心的明暗相间的同心圆,称为牛顿环。由于从下表面反射的光多走了二倍空气层厚度的距离,以及从下表面反射时,是从光疏介质到光密介质而存在半波损失,故1、2两束光的光程差为 2 2λ δ+ =? (1)

式中λ为入射光的波长,δ是空气层厚度,空气折射率1≈n 。 当程差Δ为半波长的奇数倍时为暗环,若第m 个暗环处的空气层厚度为m δ,则有 ...3,2,1,0,2 ) 12(2 2=+=+ =?m m m λ λ δ 2 λ δ? =m m (2) 由图中的几何关系22 2)(m m R r R δ-+=,以及一般空气层厚度远小于所使用的平凸透镜的曲率 半径R ,即R m <<δ,可得 R r m m 22 =δ (3) 式中r m 是第m 个暗环的半径。由式(2)和式(3)可得 λmR r m =2 (4) 可见,我们若测得第m 个暗环的半径r m 便可由已知λ求R ,或者由已知R 求λ了。但是,由于玻璃接触处受压,引起局部的弹性形变,使透镜凸面与平面玻璃不可能很理想的只以一个点相接触,所以圆心位置很难确定,环的半径r m 也就不易测准。同时因玻璃表面的不洁净所引入的附加程差,使实验中看到的干涉级数并不代表真正的干涉级数m 。为此,我们将式(4)作一变换,将式中半径r m 换成直径D m ,则有 λmR D m 42 = (5)

劈尖干涉测量细铜丝直径实验报告

劈尖干涉测量细铜丝直径实验报告软件一班 110604147 王宏静一、实验名称:用劈尖干涉测量细丝的直径 二、实验目的: (1)深入了解等厚干涉。 (2)设计用劈尖干涉测量细丝直径的方 法。 (3)设计合理的测量方法和数据处理方 法,减小实验误差。 三、实验仪器: (1)读数显微镜 (2)纳光灯 (3)平玻璃两片 (4)待测细丝 四、实验原理: 将两块光学玻璃板叠在一起,在一段插入细丝,则在两玻璃间形成一空气劈 尖(如图1 )用单色光垂直照射时和牛顿环一两样,在空气薄膜上下表面反射的两束光发生干涉,其中光程差: 6_2A+A/2 …((? 产生的干涉条纹是一簇与两玻璃板交接线平行且间隔相等的平行条板。如图(2 )显然:6=2d+A/2=(2k+l)‘A/2 k=0,1,2,3,.,…………,? 6=2d+A/2=kA k=1,2,3……… ,?

(图1) 与K纹暗条纹对应的薄膜厚度:d=k*A/2 ………? 显然d=0(棱边)处空气薄膜厚度为d(棱边)处对应k=0是暗条纹,称为零级暗条纹。di=A/2处为一级暗条纹,第k级暗条纹处空气薄膜厚度 为:dk=W2……………? 得。 两相邻暗条纹对应的劈尖厚度之差为Ad=dk+1_dk=A/2_……………? 若两暗条纹之间的距离为I,则劈尖的夹角e(利用sine=M………?求 (图2) 此式表明:在入、e-定时,l为常数,即条纹是等间距的,而且当A-定时(e越大,I越小,条纹越宽,因此e不宜太大。

设金属细丝至棱边的距离为I(欲求金属细 丝的直径D,则可先测L(棱边到金属细丝直径) 和条纹间距L,由?式及sine=D/L求得: D=Lsin e =L*A ,(2+I)……( …((@ 这就是本实验利用劈尖干涉测量金属细丝的直径的公式,如果N很大,实验上往往不是测量两条相邻条纹的间距(而是测量相差N级的两条暗条纹的问题,从而测得的测量结果 D=N*A/2 如果N很大,为了简便,可先测出单位长度内的暗条纹数No和从交纹到金属丝的距离L,那么 N=NoL_ D=NoL‘A/2 五、实验内容与步骤 (1将被测薄片夹在两地平板玻璃的一端,置于读数显微镜底座台面上(调节显微镜,观察劈尖干涉条纹。 (2)由式?可知当波长人已知时,只要读出干涉条纹数K,即可得相应的D。实验时,根据被测物厚薄不同,产生的干涉条纹数值不可,若K较小(K<=100)( 可通过k值总数求D。若k较大(数起来容易出错,可先测出长度L间的干涉条纹x(从而测得单位长度内的干涉条纹数n=x/Lx然后再测出劈尖棱边到薄边的距离L,则k=n*l。薄片厚度为 D=k*A/2=n*I*A/20 A=589.3nm

劈尖干涉测量头发丝直径

劈尖干涉测量头发丝直径 摘要:根据等厚干涉原理,利用劈尖干涉,成功测量除了头发丝的直径。 关键词:干涉 劈尖 细丝直径 1. 引言:根据薄膜干涉原理,用两个很平的玻璃板间产生一个很小的角度,就构成一个楔形空气薄膜,用已知波长的单色光入射产生的干涉条纹,可以测量头发丝的直径。 2. 设计方法及设计原则: 2.1 理论依据: 当两片很平的玻璃叠合在一起,并在其一端垫入细丝时,两玻璃片之间就形成一空气薄层(空气劈)。在单色光束垂直照射下,经劈上、下表面反射后两束反射光是相干的,干涉条纹将是间隔相等且平行于二玻璃交线的明暗交替的条纹。 显然,劈尖薄膜上下两表面反射的两束光发生干涉的光程差为 2(21)k 0,1,222e k λ λ δ=+=+= 时,干涉条纹为暗纹与 k 级暗条纹对应的薄膜厚度为:2k e k λ = 两相邻暗条纹所对应的空气膜厚度差为: 21λ=-+k k e e 如果有两玻璃板交线处到细丝处的劈尖面上共有N 调干涉条纹,则细丝的直径d 为;

)2/(λN D = 由于N 数目很大,实验测量不方便,可先测出单位长度的条纹数l N N i = 0,再测出两玻璃交线处至细丝的距离L ,则 L N N 0= )2/(0λL N D = 已知入射光波长λ,测出0N 和L ,就可计算出细丝(或薄片)的直径D 。 2.2 实验方法: 实验仪器:钠光灯 读数显微镜 劈尖装置 1、将细丝(或薄片)夹在劈尖两玻璃板的一端,另一端直接接触,形成空气劈尖。然后置于移测显微镜的载物平台上。 2、开启钠光灯,调节半反射镜使钠黄光充满整个视场。此时显微镜中的视场由暗变亮。 调节显微镜目镜焦距及叉丝方位和劈尖放置的方位。调显微镜物镜焦距看清干涉条纹,并使显微镜同移动方向与干涉条纹相垂直。 3、用显微镜测读出叉丝越过条暗条纹时的距离l,可得到单位长度的条纹数0N 。再测出两块玻璃接触处到细丝处的长度L.重复测量六次,根据式 )2/(0λL N D =计算细丝直径D 平均值和不确定度。 3. 实验结果与分析: 3.1 实验数据与处理: 实验测量数据 l =(2.123+2.127+2.121+2.129+2.127+2.125)6 mm =2.125mm S i = (l ?l )2n i=1n ?1 = (2.123?2.125)2+(2.127?2.125)2+(2.121?2.125)2+(2.129?2.125)2+(2.127?2.125)2+(2.125?2.125)26?1 =0.0053mm ?l = S i 2+?仪 2= (0.0053)2+(0.005)2 mm 2=0.007mm 2 l =l ±?l = 2.125±0.007 mm E l =?l l =0.0072.125×100%=0.33%

劈尖干涉法测定金属细丝不同位置直径

劈尖干涉法测定金属细丝不同位置直径 系别:计算机科学与技术系专业班级:软件工程1801班 姓名:王睿、罗家鑫指导教师:王天会 摘要:在劈尖干涉法测定金属细丝直径的实际测量中,同一条金属细丝不同位置的直径通常不尽相等。本文将对劈尖干涉法测定金属细丝直径进行一定的理论分析,并证明金属细丝不同位置的直径存在差异并进行简单的不确定度分析。 关键词:金属细丝直径;劈尖干涉法;不同位置;多次测量 一、引言 等厚干涉又是光的干涉中的重要物理实验。而作为等厚干涉的具体应用——利用劈尖干涉法测定金属细丝直径, 是一项很好的设计性实验。理想状态下金属细丝是均匀的,但在基本测量中,我们发现金属细丝与之不符,即其不同位置之间的直径存在一定的差异。为更加直观地解释和说明这一实验现象,本文对此作出了如下的理论分析。 二、理论分析、实验系统、实验数据处理、实验结论 (一)实验原理 1.劈尖干涉原理 两块表面是严格几何平面的玻璃片,将一端互相叠合,另一端插入细丝,两板间即形成空气劈尖,空气劈尖即两玻璃片之间形成一个一段薄一段厚的楔形空气膜,两玻璃片叠合端的交线称为棱边,空气膜的夹角θ称为劈尖楔角。当平行单色光垂直照射到玻璃片时,可以在劈尖表面观察到明暗相间的干涉条纹(若入射光是复色光,则为彩色条纹,这个现象称为劈尖干涉。) 劈尖干涉条纹是由空气膜的上、下表面反射的两列光波叠加干涉而成。当波长为λ的单色光a垂直空气膜表面入射时,由于劈尖楔角θ很小,上、下表面反射的两束相干光叠加干涉而成。当波长为λ的单色光a垂直空气膜表面入射时,由于劈尖楔角θ很小,上、下表面反

第一组中l 的A 类不确定度 ()21 2A --? ?=?-n r x x U 2 101 999908.0129.02--? =- 00062.0=mm 第一组中l 的相对不确定度()()2 B 2 A x U x U U ?+?= 2200062.00005.0+= mm 00079.0=

劈尖干涉法测细直径

劈尖干涉法测细直径

————————————————————————————————作者:————————————————————————————————日期:

细丝直径的测量 摘要:根据等厚干涉原理,利用劈尖干涉,成功测量除了头发丝的直径。发丝的直径,我们对它的估值约为0.06mm,对于这么小的细丝的直径,我们用卡尺或千分尺测量,最小分度顶多也就0.01mm,这样一来,测量的值误差较大,利用劈尖等厚干涉法,根据两相邻干涉暗纹厚度差l/2,l的大小为0.0005893mm。显然测量的结果误差较小。 关键词:干涉劈尖细丝直径 引言:根据薄膜干涉原理,用两个很平的玻璃板间产生一个很小的角度,就构成一个楔形空气薄膜,用已知波长的单色光入射产生的干涉条纹,可以测量头发丝的直径。 1.实验原理 当两片很平的玻璃叠合在一起,并在其一端垫入细丝时,两玻璃片之间就形成一空气薄层(空气劈)。在单色光束垂直照射下,经劈上、下表面反射后两束反射光是相干的,干涉条纹将是间隔相等且平行于二玻璃交线的明暗交替的条纹。

λλk d =+=?2 2明纹 ()21222λ λ+=+=?k d 暗纹 相邻两暗纹(或明纹)对应的空气厚度 λ λ k d k =+ 2 2 () 12 21+=+ +k d k λ 21λ = -+k k d d 则细丝直径D 为 2λ N D = N 为干涉条纹总条纹 S L D 2 tan λ αα==≈ 2λ?= S L D L 为劈尖的长度用游标卡尺测 S 为相邻两暗条纹的间距,用读书显微镜测量(5次测量) Λ 为钠光波长,λ = mm 103.5896-? 已知入射光波长λ,测出0N 和L ,就可计算出细丝(或薄片)的直径D 。 2.实验方法: 实验仪器:钠光灯 读数显微镜 劈尖装置

试验报告用劈尖干涉测量细丝的直径

实验报告:用劈尖干涉测量细丝的直径 090404162 通信一班 张恺 一、实验名称:用劈尖干涉测量细丝的直径 二、实验目的:(1)深入了解等厚干涉。 (2)设计用劈尖干涉测量细丝直径的方法。 (3)设计合理的测量方法和数据处理方法,减小实验误差。 三、实验仪器:(1)读数显微镜(2)纳光灯(3)平玻璃两片(4) 待测细丝 四、实验原理: 将两块光学玻璃板叠在一起,在一段插入细 丝,则在两玻璃间形成一空气劈尖(如图1)。 当用单色光垂直照射时和牛顿环一两样,在空气 薄膜上下表面反射的两束光发生干涉,其中光程 差: δ=2λ+λ/2 ……………………① 产生的干涉条纹是一簇与两玻璃板交接线 平行且间隔相等的平行条板。如图(2)。显然:δ=2d+λ/2=(2k+1)*λ/2 k=0,1,2,3,……………② δ=2d+λ/2=kλ k=1,2,3,………………③ (图1) 与K纹暗条纹对应的薄膜厚度:d=k*λ /2 ……………………④ 显然d=0(棱边)处空气薄膜厚度为d(棱边) 处对应k=0是暗条纹,称为零级暗条纹。d 1 =λ /2处为一级暗条纹,第k级暗条纹处空气薄膜 厚度为:d k =kλ/2 ……………⑤ 两相邻暗条纹对应的劈尖厚度之差为△d=d k+1 -dk=λ/2………………⑥ 若两暗条纹之间的距离为l,则劈尖的夹角θ,利用sinθ=λ/l……… ⑦求得。 (图2) 此式表明:在λ、θ一定时,l为常数,即条纹是等间距的,而且当λ一定时,θ越大,l越小,条纹越宽,因此θ不宜太大。 设金属细丝至棱边的距离为l,欲求金属细丝的直径D,则可先测L(棱边到金属细丝直径)和条纹间距L,由⑦式及sinθ=D/L求得: D=Lsinθ=L*λ/(2*l)……………………………………⑧ 这就是本实验利用劈尖干涉测量金属细丝的直径的公式,如果N很大,实验上往往不是测量两条相邻条纹的间距,而是测量相差N级的两条暗条纹 的问题,从而测得的测量结果 D=N*λ/2 如果N很大,为了简便,可先测出单位长度内的暗条纹数N 和从交纹到 金属丝的距离L,那么 N=N 0L………………………D=N L*λ/2 五、实验内容与步骤

利用劈尖干涉检测部件平整度的研究

用劈尖干涉检测部件平整度的研究 李江 (曲靖师范学院物理与电子工程学院云南曲靖655011) 摘要: 根据劈尖干涉原理,在显微镜下观察干涉图样,可以简单的判断某些部件的平整度.若使一块平滑玻璃板和待测部件间形成一个很小的角度,就构成一个楔形空气薄膜,用已知波长的单色光入射后就会产生干涉条纹。如果条纹向靠近劈尖的顶角侧弯曲时,说明部件该处是下凹的;若条纹向远离劈尖的顶角侧弯曲时,说明部件在该处是凸起的。这种判断方法简单,易于操作,是工业上常用的一种判断部件平整度的方法。 关键词: 劈尖干涉;楔形空气薄膜;干涉条纹

目录 第一章引言 (3) 第二章实验原理 (4) 第三章实验步骤 (6) 第四章实验误差分析 (6) 第五章实验总结 (7)

第一章引言 劈尖干涉实质上是等厚干涉,为了简单判断某些金属部件的平整度,将其作为劈尖的下底面得出干涉图样,观察干涉图样的凹凸性就可简单的判定部件的平整度。前人在基于等厚干涉原理的基础上,通过劈尖干涉可测出某些透明液体的折射率和薄片的厚度,使折射率在光学领域充满色彩,后人也采用了不同的方法测量了这个光学量,并且测量方法也越来越精确。本实验是通过劈尖干涉得到干涉图样,间接地检测部件平整度,通过分析光程差,易得当平面平整时,厚度是均匀变化的,则在显微镜得到的干涉条纹为平滑的直线。当显微镜中的图像有一下凹,条纹是等厚的点的轨迹,下凹就是厚度增加,于是这里的厚度等于比此处远离劈棱处的地方的厚度,远离劈棱的地方的轨迹偏到这里来;当显微镜中的图像有一凸起,条纹也是等厚的点的轨迹,凸起就是厚度减少,于是这里的厚度等于比此处靠近劈棱处的地方的厚度,靠近劈棱的地方的轨迹偏到这里来。总体情况就是:当有一下凹,则条纹向靠近劈棱方向偏;若有一凸起,则条纹向远离劈棱的方向偏。从而利用劈尖干涉原理得出干涉图样,对某些部件的平整度进行简单的检测。

实验报告:牛顿环与劈尖干涉

实验八牛顿环与劈尖干涉 实验时间:实验人: 实验概述 【实验目的及要求】 1.掌握用牛顿环测定透镜曲率半径的方法; 2.掌握用劈尖干涉测定细丝直径(或薄片厚度)的方法; 3.通过实验加深对等厚干涉原理的理解. 【仪器及用具】 钠灯、移测显微镜、玻璃片(连支架)、牛顿环仪、光学平玻璃板(两块)和细丝(或薄片)等. 【实验原理】 牛顿环仪是由待测平凸透镜L和磨光的平玻璃板P叠合安装在金属框架F中构成的(图1).框架边上有三个螺旋H,用以调节L和P之间的接触,以改变干涉环纹的形状和位置.调节H时,不可旋得过紧,以免接触压力过大引起透镜弹性形变,甚至损坏透镜. 当一曲率半径很大的平凸透镜的凸面与一平玻璃板相接触时,在透镜的凸面与平玻璃板之间形成一空气薄膜.薄膜中心处的厚度为零,愈向边缘愈厚,离接触点等距离的地方,空气膜的厚度相同,如图2所示,若以波长为λ的单色平行光投射到这种装置上,则由空气膜上下表面反射的光波将在空气膜附近互相干涉,两束光的光程差将随空气膜厚度的变化而变化,空气膜厚度相同处反射的两束光具有相同的光程差,形成的干涉条纹为膜的等厚各点的轨迹,这种干涉是一种等厚干涉。

在反射方向观察时,将看到一组以接触点为中心的亮暗相间的圆环形干涉条纹,而且中心是一暗斑[图3(a)];如果在透射方向观察,则看到的干涉环纹与反射光的干涉环纹的光强分布恰成互补,中心是亮斑,原来的亮环处变为暗环,暗环处变为亮环[图3(b) ],这种干涉现象最早为牛顿所发现,故称为牛顿环。 在图2中,R 为透镜的曲率半径,形成的第m 级干涉暗条纹的半径为r m ,第m ’级干涉暗条纹的半径为r m ’。 不难证明: λmR r m = (1) ()2 12λ ?-= 'R m m (2) 以上两式表明,当A 已知时,只要测出第m 级暗环(或亮环)的半径,即可算出透镜的曲率半径R ;相反,当R 已知时,即可算出 .但是,由于两接触面之间难免附着尘埃以及在接触时难免发生弹性形变,因而接触处不可能是一个几何点,而是一个圆斑,所以近圆心处环纹粗且模糊,以致难以确切判定环纹的干涉级数,即于涉环纹的级数和序数不一定一致. 因而利用式(1)或式(2)来测量R 实际上也就成为不可能,为了避免这一困难并减少误差,必须测量距中心较远的、比较清晰的两个环纹韵半径,例如测出第m 1个和第m 2个暗环(或亮环)的半径(这里m 1 、 m 2

劈尖干涉法测细丝直径(参考模板)

细丝直径的测量 摘要:根据等厚干涉原理,利用劈尖干涉,成功测量除了头发丝的直径。发丝的直径,我们对它的估值约为0.06mm,对于这么小的细丝的直径,我们用卡尺或千分尺测量,最小分度顶多也就0.01mm,这样一来,测量的值误差较大,利用劈尖等厚干涉法,根据两相邻干涉暗纹厚度差l/2,l的大小为0.0005893mm。显然测量的结果误差较小。 关键词:干涉劈尖细丝直径 引言:根据薄膜干涉原理,用两个很平的玻璃板间产生一个很小的角度,就构成一个楔形空气薄膜,用已知波长的单色光入射产生的干涉条纹,可以测量头发丝的直径。 1.实验原理 当两片很平的玻璃叠合在一起,并在其一端垫入细丝时,两玻璃片之间就形成一空气薄层(空气劈)。在单色光束垂直照射下,经劈上、下表面反射后两束反射光是相干的,干涉条纹将是间隔相等且平行于二玻璃交线的明暗交替的条纹。

相邻两暗纹(或明纹)对应的空气厚度 则细丝直径D为 为干涉条纹总条纹 L为劈尖的长度用游标卡尺测 S为相邻两暗条纹的间距,用读书显微镜测量(5次测量) Λ为钠光波长,λ N和L,就可计算出细丝(或薄片)的直径D。 已知入射光波长λ,测出 2.实验方法: 实验仪器:钠光灯读数显微镜劈尖装置

1、将细丝(或薄片)夹在劈尖两玻璃板的一端,另一端直接接触,形成空气劈尖。然后置于移测显微镜的载物平台上。 2、开启钠光灯,调节半反射镜使钠黄光充满整个视场。此时显微镜中的视场由暗变亮。 调节显微镜目镜焦距及叉丝方位和劈尖放置的方位。调显微镜物镜焦距看清干涉条纹,并使显微镜同移动方向与干涉条纹相垂直。 3、用显微镜测读出叉丝越过条暗条纹时的距离l,可得到单位长度的条纹数0N 。再测出两块玻璃接触处到细丝处的长度L.重复测量五次,根据式)2/(0λL N D =计算细丝直径D 平均值和不确定度。 3 实验数据处理: 实验测量数据 单位(mm ) 5 j i S S - S1 10.505 S6 11.330 0.165 S2 10.674 S7 11.509 0.167 S3 10.837 S8 11.682 0.169 S4 11.006 S9 11.842 0.167 S5 11.176 S10 12.018 0.168

劈尖干涉

劈尖干涉 根据薄膜干涉的道理,可以测定平面的平直度.若使两个很平的玻璃板间有一个很小的角度,就构成一个楔形空气薄膜,用已知波长的单色光入射产生的干涉条纹,条纹向劈尖的顶角侧弯曲时说明工件该处是一个凹;条纹远离顶角弯曲时,工件该处有一个凸起。 实验原理:将两块玻璃板n1和n2叠起来,在一端垫一细丝(或纸片), 两板之间形成一层空气膜,形成空气劈尖.图 a.形成与劈尖棱角平行,明暗相间的等厚条纹.观 察劈尖干涉的实验装置如图1所示, 从点光源S发出的光经透镜L 变成平行光,在经过半透半反玻璃片M射向空气劈尖, 自劈尖上下两表面反射后形成相干光,径路显微镜T,就能在劈尖上表面观察到明暗相间均匀分布的干涉条纹。如图2. 设两玻璃板之间的夹角为q,玻璃的折射率为n1,空气的折射率为1.由于Q角很小,在实验中,单色平行光几乎垂直地射向劈面,所以劈尖上下两表面的反射光线与入射光线近乎重合。设在P点出,劈尖对应的厚度e。因为n1>1,所以劈尖表面有半波损失.因此上下两表面反射光的光程差为: δ=2ne+λ/2 反射光是相干光,相干叠加明暗纹的条件是: 每一明条纹或暗条纹都与一定的K值对应,也就是与劈尖的厚度e相对应.在两玻璃片相接触处,劈尖的厚度e=0,由于半波损失的存在,所以在棱边处为暗条纹。任何相邻明条纹或暗条纹所对应的厚度差为: e=λ/2n 我们分析实验采用空气劈尖,n=1。若相邻两条明条纹或暗条纹之间的距离为L,则可知:Lsinθ=λ/2n

因为角度很小,所以L=λ/2nθ, 所以为使实验条纹凹凸明显,使θ小,L就越大,即干涉条纹越疏。当平面平整时,厚度均匀变化,条纹为直线。当显微镜中的图像有一凹,条纹是等厚的点的轨迹,凹就是厚度增加,于是这里的厚度等于比此处远离劈棱处(厚度为0的地方)的地方的厚度,远离劈棱的地方的轨迹偏到这里来,总体情况就是:条纹向劈棱方向偏。若有一凸,向远离劈棱的方向偏。 实验步骤:将两块玻璃板叠在一起,在一侧一细丝,将一束单色光垂直照射到上玻璃板,在光学显微镜内观察干涉条纹。用图甲所示的空气劈尖检查工件表面的平整度,出现如图乙、丙所示的条纹。 用干涉法检查平面,如图甲所示,两板之间形成一层空气膜,用单色光从上向下照射,入射光从空气膜的上下表面反射出两列光波,形成干涉条纹。如果被检测平面是光滑的,得到的干涉图样必是等距的。如果某处凹下去,则对应明纹(或暗纹)提前出现,如图乙所示;如果某处凸起来,则对应条纹延后出现,如图丙所示。(注:“提前”与“延后”不是指在时间上,而是指由左向右的位置顺序上。) 条纹向劈尖的顶角侧弯曲时说明工件该处是一个凹;条纹远离顶角弯曲时,工件该处有一个凸起。 实验误差分析:两玻璃板之间的角度要控制好,如若过大,将无法观察到实验现象,若过小,条纹将分辨不出来。其次,要注意劈尖的质量。本实验必须小心实验误差,否则将观察不到实验现象。 实验总结:在实验中,越来越注重实验的准确性,有些实验仪器必须保持一定的平整度,精确实验结果,在生活中,工厂生产的产品也注重产品的质量,提升产品的光洁度,运用劈尖干涉原理对产品的检测是一种很好的方法。

细丝直径的测量

细丝直径的测量 摘要:本次实验为细丝直径的测量,由于细丝利用普通的测量工具很难准确测量,误差很大,所以此次实验是利用等厚干涉原理,即由同一光源发出的平行单色光垂直入射分别经过空气劈尖所形成的空气薄膜上下表面反射后,在上表面相遇时产生的一组与棱边平行的,明暗相间,间隔相同的干涉条纹,由此来测量细丝的直径,使数据更加准确,本次试验就是利用干涉原理制作劈尖测量发丝的直径。 关键词:干涉原理空气劈尖直径光程差 引言:本次实验是利用空气劈尖根据光的干涉原理测量发丝的直径,干涉和衍射是光的波动性的具体变现,利用光的等厚干涉由同一光源发出的平行光,分别经过劈尖间所形成的空气薄膜上下表面反射后产生干涉现象,形成明暗相间的条纹,使用显微镜观察明暗条纹间的距离,由此来计算发丝的直径 实验原理: 当两片很平的玻璃叠合在一起,并在其一端垫入细丝时,两片玻璃片之间就形成了一层空气薄膜,叫做空气劈尖。在同一光源发出的单色平行光垂直照射下,经劈尖上下表面反射后将会产生干涉现象,在显微镜观察可发现明暗相间的干涉条纹,如图所示

实验内容与步骤: 实验仪器:读数显微镜 45度反射镜 2片光学玻璃钠光灯发丝1 将发丝夹在2片光学玻璃的一端,另一端直接接触,形成空气劈尖。将劈尖放在读数显微镜的载物台上。 2 打开钠光灯,调节45度反射镜,使光线平行垂直射入充满视野,此时显微镜的视野由暗变亮。 3 调节显微镜物镜的焦距使视野内明暗相间的条纹清晰,调节显微镜目镜焦距以及叉丝的位置是否对齐和劈尖放置的位置, 4 找出一段最清晰的条纹用读数显微镜读出两条明条纹或暗条纹之间的距离,同一方向转动测微鼓轮测量出5组明或暗条纹的间距。 5 使用游标卡尺测量出劈尖内细丝到较远一端的距离L 6 根据公式和测量的数据计算出细丝的直径和不确定度

光电细丝直径测量

西安工业大学北方信息工程学院课程设计(论文) 题目:细丝直径测试仪 系别:光电信息系 专业:测控技术与仪器 班级:B110102 学生:董博 学号:B11010203 任课教师:吴玲玲 2014年10月

目录 1绪论 (6) 1.1前言 (6) 1.2基于CCD测径仪的发展现状国外发展现状 (6) 1.3 国内发展现状 (7) 1.4论文的主要内容 (8) 2测量原理和方案论证 (8) 2.1利用衍射法测量细铜丝直径 (8) 2.2利用分光法测量细铜丝直径 (9) 2.3线阵CCD测量直径系统测细铜丝直径 (10) 2.4 成像系统 (13) 2.5设计方案的论证与选择采用 (14) 3 系统设计 (15) 3.1整体系统设计 (15) 3.2光学系统设计 (16) 3.2.1光源 (16) 3.2.2光源照明 (16) 3.2.3成像光学系统 (16) 3.3机械系统设计 (16) 3.3.1机械设计的原理和要求 (16) 3.3.2机械设计的保险装置 (16) 3.2.3机械设计的稳定性 (16) 3.4电路系统设计 (16) 3.4.1低通滤波器 (16)

3.4.2相关双采样 (16) 3.4.3差分放大电路 (16) 3.5数字图像处理及报警系统设计 (16) 3.5.1系统组成 (16) 3.5.2块方向的选取 (16) 3.5.3单位标定 (16) 3.5.4细丝直径的获取 (17) 3.5.5直径的测量 (17) 4 实验结果及影响测量精度的主要因素分析 (18) 4.1光学系统对测量精度的影响分析 (18) 4.1.1影响测量精度的因素及对策 (18) 4.2信号处理电路对测量精度的影响分析 (18) 4.2.1零点漂移对测量精度的影响 (18) 4.2.1被测工件的均匀性对测量精度的影响 (18) 4.2.2误差分析 (19) 4.3图像处理对测量精度的影响 (19) 4.3.1标定误差 (19) 4.3.2示值显示误差 (19) 4.3.3误差合成 (19) 4.3.4仪器误差 (19) 5 结论 (20) 参考文献 (21)

用干涉法测细丝直径实验结果讲解

重庆工商大学大学物理实验 (光学)设计性实验报告 实验题目:用干涉法测细丝直径 指导老师:龙涛、唐裕霞 实验设计:林志发、刘洋青、谢成 学院:计算机科学与信息工程学院 专业:应用物理学 班级:13金融物理学

本次设计性实验分工 姓名学号分工 林志发 2013136139 实验设计和数据分析 刘洋青 2013136119 实验设计和预习报告 谢成 2013136122 实验设计和现场分析 用干涉法测细丝直径 一、实验名称 用干涉法测细丝直径 二、实验目的 1、学会根据现有实验条件,合理设计实验方法; 2、通过实验加深对等厚干涉原理及干涉概念的理解; 3、学会读书显微镜的正确使用; 三、实验仪器: 钠光灯,数显微镜,载玻片,盖玻片,细丝(铜丝,铁丝,头发丝) 四、实验原理: 当两片很平的玻璃叠合在一起,并在其一端垫入细丝时,两玻璃片之间就形成一空气薄层(空气劈)。在单色光束垂直照射下,经劈尖上、下表面反射后两束反射光是相干的,干涉条纹将是间隔相等且平行于二玻璃交线的明暗交替的条纹。

图1 图2 相邻两暗纹(或明纹)对应的空气厚度 则细丝直径D为 为干涉条纹总条纹 L为劈尖的长度用游标卡尺测,S为相邻两暗条纹的间距,用读书显

微镜测量(5次测量) λ为钠光波长,λ = mm 103.5896-? 已知入射光波长λ,测出0N 和,就可计算出细丝(或薄片)的直径。 实验内容: (1)将细丝(或薄片)夹在劈尖两玻璃板的一端,另一端直接接触,形成空气劈尖。然后置于移测显微镜的载物平台上。 (2)开启钠光灯,调节半反射镜使钠黄光充满整个视场。此时显微镜中的视场由暗变亮。调节显微镜目镜焦距及叉丝方位和劈尖放置的方位。调显微镜物镜焦距看清干涉条纹,并使显微镜同移动方向与干涉条纹相垂直。 (3)用显微镜测读出叉丝越过条暗条纹时的距离L,可得到单位长 度的条纹数0N 。再测出两块玻璃接触处到细丝处的长度L.重复测量五次,根据式)2/(0λL N D =计算细丝直径D 平均值和不确定度。 实验操作方法: 在做实验前,必须知道载玻片,盖玻片,细丝的正确放置方法,如图所示: L D

等厚干涉实—牛顿环和劈尖干涉

等厚干涉实验—牛顿环和劈尖干涉 要观察到光的干涉图象,如何获得相干光就成了重要的问题,利用普通光源获得相干光的方法是把由光源上同一点发的光设法分成两部分,然后再使这两部分叠如起来。由于这两部分光的相应部分实际上都来自同一发光原子的同一次发光,所以它们将满足相干条件而成为相干光。获得相干光方法有两种。一种叫分波阵面法,另一种叫分振幅法。 1.实验目的 (1)通过对等厚干涉图象观察和测量,加深对光的波动性的认识。 (2)掌握读数显微镜的基本调节和测量操作。 (3)掌握用牛顿环法测量透镜的曲率半径和用劈尖干涉法测量玻璃丝微小直径的实验方法 (4)学习用图解法和逐差法处理数据。 2.实验仪器 读数显微镜,牛顿环,钠光灯 3.实验原理 我们所讨论的等厚干涉就属于分振幅干涉现象。分振幅干涉就是利用透明薄膜上下表面对入射光的反射、折射,将入射能量(也可说振幅)分成若干部分,然后相遇而产生干涉。分振幅干涉分两类称等厚干涉,一类称等倾干涉。 用一束单色平行光照射透明薄膜,薄膜上表面反射光与下表面反射光来自于同一入射 光,满足相干条件。当入射光入射角不变,薄膜厚度不同发生变化,那么不同厚度处可满足不同的干涉明暗条件,出现干涉明暗条纹,相同厚度处一定满足同样的干涉条件,因此同一干涉条纹下对应同样的薄膜厚度。这种干涉称为等厚干涉,相应干涉条纹称为等厚干涉条纹。等厚干涉现象在光学加工中有着广泛应用,牛顿环和劈尖干涉就属于等厚干涉。下面分别讨论其原理及应用: (1)用牛顿环法测定透镜球面的曲率半径 牛顿环装置是由一块曲率半径较大的平凸玻璃透镜和一块光学平玻璃片(又称“平晶”)相接触而组成的。相互接触的透镜凸面与平玻璃片平面之间的空气间隙,构成一个空气薄膜间隙,空气膜的厚度从中心接触点到边缘逐渐增加。如图9-1(a )所示。 R e r (a ) (b) 图9-1 牛顿环装置和干涉图样

干涉法测量微小量

7.2.1 干涉法测微小量 (本文内容选自高等教育出版社《大学物理实验》) 光的干涉现象表明了光的波动性质,干涉现象在科学研究与计量技术中有着广泛的应用。在干涉现象中,不论是何种干涉,相邻干涉条纹的光程差的改变都等于相干光的波长,可见光的波长虽然很小,但干涉条纹间的距离或干涉条纹的数目却是可以计量的。因此,通过对干涉条纹数目或条纹移动数目的计量,可得到以光的波长为单位的光程差。 利用光的等厚干涉现象可以测量光的波长,检验表面的平面度、球面度、光洁度,精确的测量长度、角度,测量微小形变以及研究工作内应力的分布等。 通过本次实验,学习、掌握利用光的干涉原理检验光学元件表面几何特征的方法,用劈尖的等厚干涉测量细丝直径的方法,同时加深对光的波动性的认识。 实验原理 1. 用牛顿环测平凸透镜的曲率半径 当曲率半径很大的平凸透镜的凸面放在一平面玻璃上时,见图7.2.1-1,在透镜的凸面与平面之间形成一个从中心O 向四周逐渐增厚的空气层。当单色光垂直照射下来时,从空气层上下两个表面反射的光束1和光束2在上表面相遇时产生干涉。因为光程差相等的地方是以O 点为中心的同心圆,因此等厚干涉条纹也是一组以O 点为中心的明暗相间的同心圆,称为牛顿环。由于从下表面反射的光多走了二倍空气层厚度的距离,以及从下表面反射时,是从光疏介质到光密介质而存在半波损失,故1、2两束光的光程差为 22λ δ+=? (1)

式中λ为入射光的波长,δ是空气层厚度,空气折射率1≈n 。 当程差Δ为半波长的奇数倍时为暗环,若第m 个暗环处的空气层厚度为m δ,则有 ...3,2,1,0,2)12(22=+=+=?m m m λ λ δ 2λ δ?=m m (2) 由图7.2.1-1中的几何关系222)(m m R r R δ-+=,以及一般空气层厚度远小于所使用的平凸透镜的曲 率半径R ,即R m <<δ,可得 R r m m 22=δ (3) 式中r m 是第m 个暗环的半径。由式(2)和式(3)可得 λmR r m =2 (4) 可见,我们若测得第m 个暗环的半径r m 便可由已知λ求R ,或者由已知R 求λ了。但是,由于玻璃接触处受压,引起局部的弹性形变,使透镜凸面与平面玻璃不可能很理想的只以一个点相接触,所以圆心位置很难确定,环的半径r m 也就不易测准。同时因玻璃表面的不洁净所引入的附加程差,使实验中看到的干涉级数并不代表真正的干涉级数m 。为此,我们将式(4)作一变换,将式中半径r m 换成直径D m ,则有 λmR D m 42= (5) 对第m+n 个暗环有 λR n m D n m )(42+=+ (6) 将(5)和(6)两式相减,再展开整理后有 λ n D D R m n m 422-=+ (7) 可见,如果我们测得第m 个暗环及第(m+n )个暗环的直径D m 、D m+n ,就可由式(7)计算透镜的曲率半径R 。 经过上述的公式变换,避开了难测的量r m 和m ,从而提高了测量的精度,这是物理实验中常采用的方法。 2. 劈尖的等厚干涉测细丝直径 见图7.2.1-2,两片叠在一起的玻璃片,在它们的一端夹一直径待测的细丝,于是两玻璃片之间形成一空气劈尖。当用单色光垂直照射时,如前所述,会产生干涉现象。因为程差相等的地方是平行

等厚干涉——劈尖牛顿环实验参考答案

一、选择题 1. 在等厚干涉实验中,设牛顿环的空气薄层厚度为e,则当2e A:为入射光波长的整数倍时产生暗条纹,为入射光半波长的奇数倍时产生明条纹 B:为入射光波长的整数倍时产生暗条纹,为入射光波长的奇数倍时产生明条纹 C:为入射光波长的整数倍时产生明条纹,为入射光半波长的奇数倍时产生暗条纹 D:为入射光波长的整数倍时产生明条纹,为入射光波长的奇数倍时产生暗条纹 请选择:A 2.两束光在空间相遇产生干涉的条件是 A:频率相等B:振动方向相同C:相位差恒定,且满足一定条件D:abc都是 请选择:D 3.牛顿环实验中,读数显微镜的视场中亮度不均匀,其原因是 A:显微镜的物镜有问题B:反光玻璃片放反了C:入射单色光方向不正D:显微镜的目镜有问题 请选择:C 4.牛顿环是一种 A:不等间距的衍射条纹B:等倾干涉条纹C:等间距的干涉条纹D:等厚干涉条纹 请选择:D 5.牛顿环实验中,单向测量的目的是为了消除 A:视差B:读数显微镜测微鼓轮的仪器误差C:测微螺距间隙引起的回程误差D:ABC都不是 请选择:C 6.劈尖干涉实验中,若测得20个劈尖干涉条纹间隔L1,劈尖条纹的总长为L,则其包含的干涉暗条纹总数为 A:20L/L1 B:20L1/L C:L/(20L1) D:L1/(20L) 请选择:A 7.牛顿环实验中有如下步骤:①调节读数显微镜的反光片和纳光灯的位置,使其视场明亮均匀②调节目镜使叉丝像清晰③将牛顿环放于载物台,由下向上调节镜筒,得到清晰的干涉条纹④调节牛顿环的位置和叉丝方向,使牛顿环中某环在纵向叉丝沿主尺方向移动时始终于横向叉丝相切⑤测量。则正确的实验顺序是 A:a b c d e B:b c a d e C:a b d c e D:d a c b e 请选择:A 8.在牛顿环实验中,读数显微镜的调节要求是 A:叉丝清晰B:显微镜内视场均匀明亮C:图象清晰D:abc都是 请选择:D

1 劈尖干涉理论

1 劈尖干涉理论 首先我们再来回顾一下波的干涉的定义:“两列频率相同的波相互叠加,在某些地方振动加强,某些地方振动减弱,这种现象叫波的干涉”。 具体来说,最大加强区域和最大减弱区域分别为: 波的最大加强区域:该点到两个波源的路程之差是波长的整数倍,即δ=k λ; 波的最大减弱区域:该点到两个波源的路程之差是半波长的奇数倍,即δ=(2k+1)λ/2; 对于光波来说,上面的波的干涉情况也适用。两列同样的光波,光波的路程差情况也会引起光的干涉。 如图 所示。用单色光从上面照射,入射光在空气层的上下表面发生反射,从放射光中就会看到等宽明暗相间的干涉条纹,设两玻璃间的夹角为θ,入射光的波长为λ,入射点处膜的厚度为h 。考虑光从光疏介质射向光密介质有半波损失,则 有干涉相长产生明纹的条件为:22λ +nh = λk 3,2,1=k (1) 干涉相消产生暗纹的条件为:22λ+ nh = λ)1(+k 3,2,1=k (2) 2.劈尖干涉的应用 (1) 检查平面的平整度 当光入射向玻璃和其下方的工件时时,在(参原理图像)工件的上表面和玻璃板的下表面反射的两束光将发生光的干涉。根据光的干涉原理,(如左图所示)当光波的光程差为波长的整数倍时,在反射区域的光屏上就会形成明条纹;同理,当光波的光程差为半个波长的奇数倍时,就会在光屏上形成暗条纹。 在图中我们能够看到,当工件平整度极佳是,光程差取决于空气层的厚度。空气层厚度相同的位置,明暗纹情况相同,我们看到的是平行的、交错的明暗纹(直线状)。若工件不平整,即在工件的上表面反射的光的路程不在一致的时候,则条纹会凸起或者凹陷(如下图所示)

我们还可以根据干涉原理算出其纹路深度:设b 为条纹间隔,a 为弯曲深度,则由相似三角形关系可得:b a e h =?,而对于空气来说,有2λ=?e ,从而可以得到b a h 2λ= (2) 测量微小长度 利用劈尖干涉可以测量微小长度,要 测量小球的直径,可以把小球夹在两 块平玻璃之间,形成空气劈尖如图所示。 显然,有几何关系可以得到:θtan L d = 又由衍射知识可以知道两明纹间距:θλ sin 2=?l 因为,当0→θ事,有l ?=≈2sin tan λ θθ; 从而可得:l L d ?=2λ 然而,在试验中往往无法准确地测量L ,因此可采用下面的方法来测量小球直径: 由于干涉条纹是一簇平行于劈棱的等间隔的直线。产生第k 级干涉条纹的两束光的光程差为: 22λ δ+=k e 其中k e 为第k 级干涉条纹处的厚度,λ为入射光的波长,2 λ为半波损(光在介质表面反射时可能产生半波损,当光通过的介质的折射率关系为2121n n n n n n <>><或时产生半波损) 由于本实验存在半波损,有干涉条件可知,产生暗纹的条件是 2)12(22λ λ δ+=+=k e k ??=,2,1,0k

劈尖干涉测定金属细丝不同位置直径

劈尖干涉测定金属细丝不同位置的直径 系 别:化学与药学系 专业班级:食品质量与安全19班 姓 名:肖仰青、魏俊萍 指导教师:王天会 【摘要】劈尖干涉测细丝直径,是等厚干涉实验的具体应用。而实测中,同一条细丝的不同位置直径并不相等。对这一实验现象进行较为深入的理论分析和解释。并证明同一条金属细丝不同位置的直径存在差异。 【关键词】劈尖干涉;细丝直径;测量位置;多次测量 1.引言 干涉和衍射是光的波动性的具体表现。等厚干涉又是光的干涉中的重要物理实验。而作为等厚干 涉的具体应用———利用劈尖干涉法测定细丝直径,是一项很好的设计性实验。但是在实验中我们发现,同一条金属细丝不同位置的直径存在差异,与设想中均匀的金属细丝有所不符。如何解释这一实验现 象,又如何准确测量出直径,本文针对这一问题作了具体的分析和研究。 2理论分析、实验系统、实验数据处理、实验结论 实验准备仪器 钠光灯,读数显微镜,劈尖装置,细丝,游标卡尺、钢板尺。 实验原理 如图4将细丝插入两光学平玻璃板的一端,形成一空气劈尖。单色光垂直照射到空气劈尖表面,上下表面的反射光发生干涉,在劈尖表面形成明暗等间隔的干涉条纹。劈尖干涉属于等厚干涉条纹。在两玻璃片交线处为零级暗条纹。 1、劈尖干涉测直径原理 厚度为d 的地方,上下表面反射光的光程差为: 在第k 级暗条纹出有 ()122 22+= + =?k d k k λ λ 在第1+k 级暗条纹出有 相邻暗条纹的厚度差2 1λ =-=?+k k d d d 相邻暗条纹间隔?x , 因为夹角小于1度,在 5<θ时,θθtan sin ≈, 所以,距离棱边L 处的细丝直径2 λ??= x L D 只要能测得劈尖棱边长L ,相邻暗条纹间隔x ?,已知波长就能够测量细丝直径。 实验步骤 1、将金属长细丝夹在劈尖两玻璃的一端,另一端直接接触,形成空气劈尖,然后置于一 侧显微镜的载物平台上。 2、开启钠光灯,调节半反射镜使钠光灯黄光充满整个视场,此时显微镜中的视场由暗变 亮,调节显微镜目镜焦距及叉丝方位和劈尖放置的方位,调显微镜物镜焦距看清干涉 x x ?=?=22tan λλθL D = θsin

相关主题