搜档网
当前位置:搜档网 › 基于构架角速度的垂向轨道长波不平顺在线监测

基于构架角速度的垂向轨道长波不平顺在线监测

基于构架角速度的垂向轨道长波不平顺在线监测
基于构架角速度的垂向轨道长波不平顺在线监测

轨道不平顺定义与分类形式

1、轨道不平顺定义及形式 在线路的平直道区段,钢轨并不是呈理想的平直状态,两根钢轨在高低和左右方向相对于理想的平直轨道呈某种波状变化而产生偏差,这种几何参数的偏差就称为轨道不平顺。 按激扰区分:垂向不平顺,横向不平顺,复合不平顺 按波长区分:短波,中波,长波按形状特征:正弦,余弦、凸台 按轮载作用:静态、动态 高低不平顺 水平不平顺 水平不平顺,是指左、右轨对应点的高差所形成的沿轨长方向的不平顺,它是由轨道高低不平顺所派生的。此外,也可将轨道水平不平顺按左右两轨的高差所形成的倾角来表示。 轨道水平不平顺是引起机车车辆横向滚摆耦合振动的重要原因。 方向不平顺 轨道方向不平顺,是指左右两根钢轨沿长度方向在横向平面 内呈现的弯曲不直,其数值以实际轨道中心线相对理论轨道中 心线的偏差来表示。 轨道方向不平顺是由于轨道铺设时的初始弯曲、养护和运用 中积累的轨道横向弯曲变形等原因造成。 轨道方向不平顺激发轮对产生横向运动、是引起机车车辆左 右摇摆和侧滚振动的主要原因。 轨距不平顺 轨距不平顺,是指左右两轨沿轨道长度方向上的轨距偏差,其数值以实际轨距与名义轨距之差来表示。 轨距不平顺对机车车辆运行的横向稳定性及曲线磨耗影响较大,轨距过大会引起掉道。轨距若在短距离内变化剧烈,即使不超过允许标准也会使车辆的摇晃和轮轨间的横向水平力增大。 复合不平顺 方向水平逆相复合不平顺:引起脱轨的重要原因 曲线头尾几何偏差 不同波长不平顺 -200m波长的不平顺常见;短波不平顺:轨面擦伤、剥离、焊缝、波磨; 中波不平顺:1-30m,钢轨轧制,12.5m,25m特征长度; 长波不平顺:30m以上,不均匀沉降,挠曲变形等。

轨道不平顺

一、铁路轨道不平顺概念 轨道不平顺是指轨道几何形状、尺寸和空间位置的偏差。广义而言,凡是直线轨道不平、不直对中心线位置和轨道高度、宽度正确尺寸的偏离曲线轨道不圆顺偏离曲线中心位置正确曲率、超高、轨距值,偏离顺坡变化尺寸等轨道几何偏差通称轨道不平顺。 二、铁路轨道不平顺的种类及产生原因 轨道不平顺的种类很多,可按其对机车车辆激扰作用的方向、不平顺的波长等进行分类。按机车车辆激扰作用的方向可分为垂向轨道不平顺、横向轨道不平顺、复合轨道不平顺。按不平顺的波长可分为短波、中波、长波等。 不平顺的种类和变化 垂向轨道不平顺包括高低、水平、扭曲、轨道短波不平顺和新轨垂向周期不平顺。横向轨道不平顺包括轨道方向不平顺、轨距偏差造成的不平顺。轨道同一位置上,垂向和横向不平顺共存形成的双向不平顺称为轨道复合不平顺。危害较大的复合不平顺有方向水平逆向复不

平顺、曲线头尾的几何偏差造成的不平顺。 1、高低不平顺 高低不平顺是指轨道沿钢轨长度方向在垂向的凹凸不平。它是由线路施工和大修作业的高程偏差,桥梁挠曲变形,道床和路基残余变形沉降不均匀,轨道各部件间的间隙不相等,存在暗坑、吊板,以及轨道垂向弹性不一致等造成的。 2、水平不平顺 水平不平顺即轨道同一横断面上左右两轨面的高差。在曲线上是指扣除正常超高的偏差部分,在直线上也是指扣除将一侧钢轨故意抬高形成的水平平均值后的偏差。 3、扭曲不平顺 轨道平面扭曲有些国家称为平面性,我国常称为三角坑即左右两轨顶面相对于轨道平面的扭曲,用相隔一定距离的两个横断面水平幅值的代数。差度量。国际铁路联盟专门委员会将所谓“一定距离”定义为“作用距离”,指轴距、心盘距。 4、轨道短波不平顺 即钢轨顶面小范围内的不平顺,它是由轨面不均匀磨耗、擦伤、剥离掉块、焊缝不平、接头错牙等形成的。其中轨面擦伤、剥离掉块、焊缝不平、接头错牙等多是孤立的不具周期性,而波纹磨耗、波浪性磨耗具有周期性特征。 5、新轨垂向周期不平顺 钢轨在轧制校直过程中,由于辊轮直径误差擦伤、剥离掉块、焊

无砟轨道的精测和精调技术 毕业论文

毕业设计(论文)中文题目:无砟轨道的精测和精调技术 学习中心(函授站): 专业:土木工程(铁道工程) 姓名: 学号: 指导教师: 北京交通大学远程与继续教育学院 2016年6月

毕业设计(论文)承诺书与版权使用授权书我所呈交的毕业论文是我在指导教师指导下独立研究、写作的成果。除了文中特别加以标注和致谢之处,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得北京交通大学或其他教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。 本毕业论文是本人在读期间所完成的学业的组成部分,同意学校将本论文的部分或全部内容编入有关书籍、数据库保存,并向有关学术部门和国家相关教育主管部门呈交复印件、电子文档,允许采用复制、印刷等方式将论文文本提供给读者查阅和借阅。 论文作者签名:_________________ ______年_______月______日 指导教师签名:_________________ _______年_______月______日

毕业设计(论文)成绩评议

毕业设计(论文)任务书 本任务书下达给:级专业学生设计(论文)题目: 一、毕业设计(论文)基本内容 二、基本要求

三、重点研究的问题 四、主要技术指标 五、其他要说明的问题 下达任务日期:年月日要求完成日期:年月日指导教师:

开题报告 题目:无砟轨道的精测和精调技术 学生姓名:学号: 2016 年 1 月 22日 一、文献综述 高速铁路作为现代社会的一种新的运输方式,具有极为明显的优势,高铁中的无砟轨道是当今世界先进的轨道技术。无砟轨道精调贯穿了无砟轨道施工及联调联试全过程,从无砟轨道施工至无缝线路铺设后轨道具备高速行车条件为止,根据轨道静态测量数据对轨道进行全面,系统地分析调整,将轨道几何尺寸调整到允许范围内,对轨道线性进行优化调整,合理控制规矩,水平,轨向,高低变化率,使轨道静态精度满足高速行车条件。 无砟轨道是以整体道床代替碎石道床的一种新型轨道,其平顺性、稳定性、精度和标准要求高,传统的施工技术和工艺已不能满足设计和运营的要求。这种新型的轨道结构,其静态几何状态中线为2mm,高程2mm,轨距±1mm,检测方法为全站仪配合轨道几何状态测量仪检测。 对于无砟轨道要求的高标准性,施工中一般是采用全站仪配合静态轨检小车对已铺设成型的线路轨道进行测量,人工配合进行线路调整。使用全站仪配合轨检小车进行轨道几何状态测量是一项费时细致的工作,再加上没有成熟的调整顺序和方法,会出现调整过一遍后,再进行复测时又出现线路的几何状态不能满足规范要求,需进行反复测量反复调整。不仅影响铺轨精调的整体进度,而且给钢轨和扣件带来一定的影响,最大的问题是不能保证联调联试的正常进行。在现有的施工技术条件下,如何在保证精调精度的同时提高铺轨精调的速度,本文对此进行探讨,寻求一种快速的精调作业方法,提高铺轨精调的速度。 随着应用经验的积累,高速铁路无砟轨道以其高稳定性、高平顺性和少维修等特点,在铁路运营中逐渐取得了明显优势,正在被广泛的使用。但是无砟轨道不同于有砟轨道,有极高的平顺性要求,CPIII(control points of III level)测量控制网为无砟轨道精调提供控制基础,而良好的精调过程可以实现高平顺性,因此CPIII测量控制网与无砟轨道的精调施工已成为高速铁路建设的热门研究课题之一。本文以大西高铁客运专线为依托,详细地介绍了CPIII建网与无砟轨道精调的施工过程,总结了CPIII控制网与无

轨检车测取的轨道谱精度分析.

第21卷第3期铁道学报 Vol. 21No.3 文章编号:100128360(1999)0320067205 轨检车测取的轨道谱精度分析 张格明,罗林 (铁道部科学研究院铁道建筑研究所,北京100081) 摘要:从理论解析、模型仿真分析及实测对比三方面,研究分析了轨检车移动负荷轮在不同速度时通过平顺轨道和不平顺轨道区段的动态轨迹变化。分析表明,在移动负荷轮作用下,轨道不平顺引起的轨道附加变形在不同速度时的量值很小,可 忽略不计,基于负荷车轮进行轨道不平顺动态检测可如实反映实际轨道不平顺特征和幅值大小,用轨检车测取的轨道不平顺样本进行轨道谱分析不会影响轨道谱精度,较大响应成分的疑虑。 关键词:轨道不平顺;轨检车;功率谱;轮轨相互作用中图分类号:U216.3文献标识码:A AccuracyitySpectrumDensity GeometryInspectionCar ZHANGGe2ming,LUOLin (ResearchInstituteofRailwayArchitecture,ChinaAcademyofRailwaySciences,Beijing100 081,China) Abstract:Inthispaper,onthebasesofthetheoreticalanalysis,dynamicmodelsimulationandtes tdatacompar2ison,themovingloadedwheeltraceontrackgeometryinspectioncarwhenrunni ngthroughsmoothtrackandroughtrackarestudied.Analysisshowsthattheattacheddeflection oftrackundermovingloadedwheelactionisverysmallandcanbeomitted.Thepaperpointsoutt hatthetrackirregularitiesmeasuredbytrackgeometryinspectioncarcanrevealtheactualtracki rregularityandthevalueofitsamplitude,andtheaccuracyoftrackir2regularityspectrumdensit yobtainedfromtrackgeometryinspectioncarisnearlynoteffected. Keywords:trackirregularity;trackgeometryinspectioncar;powerspectrumdensity;wheel railinteraction

CRTSI型双块式无砟轨道施工精调作业指导书

CRTSI型双块式无砟轨道施工精调作业指导书 1.1 精调作业流程 1.1.1 CRTS I型双块式无砟轨道施工精调作业流程图如图1.1.1。 图1.1.1 CRTS I型双块式无砟轨道施工精调作业流程图 1.2 底座(支承层)混凝土边模精确定位及外形检测1. 2.1底座(支承层)混凝土边模精确定位应符合本指南第5. 3.1条和第 4.4.3~4.4.7条的规定。 1.2.2混凝土支承层外形尺寸检测应符合表1.2.2的规定。

表1.2.2混凝土支承层外形尺寸允许偏差 1.3 标准轨排组装检测及粗调定位 1.3.1 轨排组装流程如图1.3.1。 图1.3. 1 轨排组装流程图 1.3.2轨排组装检测应符合下列规定: 1 用墨线在底座板上弹出轨排组纵、横向位置;

2 双块式轨枕布枕允许偏差为±5mm; 3 用钢尺丈量每两组轨排之间的纵向间距,在底座两边 确定轨排的横向位置,如 图1.3.2; 图1.3.2 出轨排组位置示意图 4 安装扣件及工具轨并检查外观质量。 5 轨排组装允许偏差应符合表1.3.2规定。 表1.3.2 轨排组装允许偏差 序号项目允许偏差(mm) 1 轨距±1,变化率不得大于 1‰ 2 轨枕间距±5 1.3.3轨排粗调定位流程如图1.3.3。

图1.3.3 轨排粗调定位流程图 1.3.4轨排粗调定位设备见表1.3.4。 表1.3.4轨排粗调定位设备表 1.3.5轨排粗调定位测量与调整应遵循以下步骤: 1 粗调设备支撑轨排; 2 通过CPⅢ测量轨排; 3 计算获得轨排调整量; 4 按调整量调整轨排; 5 轨排粗调到位后,安装螺杆固定轨排;

无砟轨道平顺性调整

无砟轨道无砟轨道平顺平顺平顺性性调整 栾显国1 (1. 中铁十九局 辽宁省辽阳市 111000) 摘要摘要::本文介绍了轨道平顺性的概念,及其评价方法。提出了一种无砟轨道平顺性调整的方法及其工 作流程。通过实例分析,得出了关于无砟轨道平顺性调整的一些结论和建议。 关键词关键词::平顺性;定弦检测;动弦检测;无砟轨道; 1. 引言 随着我国无砟轨道的建设的不断开展,建成后的无砟轨道的平顺性的保证显得尤为重要,如何进行无砟轨道平顺性的调整,如何调整是最合理的最优的是摆在技术人员面前的难题。由于我国引进无砟轨道技术时间尚短,对此问题尚没有深入的研究,本文结合笔者无砟轨道施工的经验,对此问题进行了有关的探索。 2. 平顺性评价方法介绍 所谓平顺性就是指两根钢轨在高低和左右方向与钢轨理想位置几何尺寸的偏差。实践中通常用拉弦测量的方法对轨道不平顺值进行测量。 2.1 国内平顺性评价方法 国内传统上使用的是固定弦长(比如直线上10米,曲线上20米),评价中间点的矢度,如果要评价下一点的矢度,则将该弦线前移至下一点,被评价点始终对应弦线的中间位置,该方法后文中简称“动弦检测”。该方法一直在我国有碴铁路施工和工务维护中沿用至今。它的检测示意图如下: 图1 国内平顺性检测示意图 其数学模型如下: ?H = h 实测 – h 设计 (1) 公式1中h 为正矢值,H 为绝对偏差[1]。 2.2 德国平顺性评价方法

随着无砟轨道技术的引进,另一种轨道平顺性的检测方法逐渐被国内相关工作人员所接受。就是拉一条长弦,并将其固定,然后逐点评价弦线范围内所有点的矢度,继而分析其相对偏差,该方法后文中简称“定弦检测”。检测示意图如图2。 图2 德国平顺性检测示意图 图2中的点是钢轨支承点的编号,以1P 到49P 表示。25P 与33P 间的平顺性检测按下式计算: )()(33253325实测实测设计设计---h h h h h =? (2) 由于1P 与49P 的正矢为零,故可检测2P (对应点10P )到40P (对应点48P )的平顺性。新的弦线则从已检测的最后一个点40P 开始[2] 。 经过专家论证,定弦检测(30m 弦,2mm/5m )的轨道短波不平顺限差要求比动弦检测(10米弦,2mm/5m )的限差要求更为严格,新建的无砟轨道的平顺性的调整都采用定弦进行检测[3]。 3. 3. 基于基于基于““定弦检测定弦检测””法的无砟轨道平顺性调整无砟轨道平顺性调整 无碴轨道平顺性调整的特殊性在于,不能像有碴轨道一样机算出拨道量和拨道量,利用捣固机将轨道整体调整到位。无碴轨道平顺性的调整必须两股钢轨分开调整,这就需要考虑轨距和轨向的相互影响,高低和超高的相互影响。根据国外的经验,无砟轨道平顺性调整要使用专门的测量设备和计算软件。调整工作包含如下步骤: 动态测量确定问题区段, 采用具有绝对测量功能的轨检小车进行静态测量 利用专用软件计算调整量 现场扣件更换 轨道复测 3.1动态检测 动态检测是利用轨道检查车通过跑车的方式来获得轨道的平顺性信息。动态检测设备可以测量轨道几何、线路标志、钢轨断面、钢轨磨耗、环境视频等。轨道几何及断面测量采用梁结构方式的惯性测量及摄像式的图像测量原理,轨道几何包括不同波长的高低和轨向、

轨道高低不平顺谱

第32卷第5期 2012年10月地震工程与工程振动JOURNAL OF EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol.32No.5Oct.2012收稿日期:2012-03-14;修订日期:2012-04-13 基金项目:国家重点基础研究发展计划第四子课题(2012CB026104);国家自然科学基金项目(51078111;50678055);冻土工程国家重点实 验室开放基金项目(SKLFSE201007);铁道部科学技术研究项目(2009G010-E ) 作者简介:陈士军(1979-),男,博士研究生,主要从事轨道交通作用下冻土路基动力稳定性研究.E- mail :hitcsj@foxmail.com 通讯作者:凌贤长(1963-),男,教授,主要从事路基动力稳定性研究.E- mail :xianzhang_ling@263.net 文章编号:1000-1301(2012)05-0033-06 轨道高低不平顺谱分析 陈士军1,凌贤长1,朱占元2,徐学燕1,刘艳萍 3(1.哈尔滨工业大学土木工程学院,黑龙江哈尔滨150090;2.四川农业大学城乡 建设学院, 四川都江堰611830;3.机械工业第四设计研究院,河南洛阳471000)摘要:基于国内外轨道高低不平顺功率谱密度拟合函数,通过编程数值计算分别对比研究了普通 线路谱和高速线路谱对行车平稳舒适性、安全性、轮轨动力效应的影响。结果表明,铁科院干线谱和 原长沙铁道学院谱激励下列车的平稳舒适性略优于美国六级谱,而前者的轮轨动力效应介于美国六 级谱和美国五级谱之间,后者则与美国六级谱相当;时速120km 等级普通线路谱和时速160km 等 级提速线路谱引起的列车行驶平稳性介于美国五级谱和六级谱之间,轮轨动力效应与美国六级谱较 一致;铁科院郑武线高速谱和时速200km 等级提速线路谱引起的列车平稳舒适性介于德国高干扰 谱和低干扰谱之间,而前者引起的轮轨力大于德国轨道谱,后者则与德国低干扰谱相当。同时采用 三角级法给出各轨道谱的时域样本,作为车辆-轨道垂向耦合动力分析模型的轮轨激励输入,仿真计 算了青藏客车YZ25T 在普通轨道谱激扰下以时速90km /h 行驶和高速轨道谱激励下以时速 200km /h 行驶时的轮轨竖向作用力,较好地验证了基于轨道谱密度函数的轮轨力效应分析结果。研 究成果可为列车行驶振动反应分析中轮-轨不平顺激励谱的选择提供参考。 关键词:轨道谱;高低不平顺;时域转化;三角级数法;轮轨力 中图分类号:TU435;TU752;P315.91文献标志码:A Analyses of track vertical profile irregularity spectra CHEN Shijun 1,LING Xianzhang 1,ZHU Zhanyuan 2,XU Xueyan 1,LIU Yanping 3 (1.School of Civil Engineering ,Harbin Institute of Technology ,Harbin 150090,China ;2.Urban and Rural Construction College , Sichuan Agricultural University ,Dujiangyan 611830,China ;3.SCIVIC Engineering Corporation ,Luoyang 471000,China ) Abstract :Based on the previous studies on fitting functions of power spectrum density (PSD )of track vertical irreg-ularity ,the different effects of common and high-speed track spectra on the performance of train ,such as running stability ,safety and wheel- track dynamic response ,have been compared.The results indicate that the running sta-bility of the TKY main line spectrum and the CSTDXY track spectrum is superior to that of the American track spectrum of sixth grade ,while the wheel-track dynamic response resulted from TKY main line spectrum lies be-tween those induced by the fifth and sixth grade American track spectra ,and the dynamic response induced by the CSTDXY track spectrum is almost identical with that by the sixth grade American track spectrum ;the running sta-bility induced by the spectra of 120km /h and 160km /h classification ,respectively ,all lie between those from the sixth and fifth grade American spectra ,and the wheel-track forces are almost identical with the sixth grade Ameri-can spectrum ;the running stability of TKY high-speed spectrum and the spectrum of 200km /h classification is in the middle level compared with German track spectra of high interference and low interference ,and the wheel-track

CRTSⅢ无砟轨道板精调施工技术交底

CRTSⅢ型板式无砟轨道先导段精调施工技术交底 1、适用范围 适用于中铁十四局鲁南高速铁路LQTJ-1标段CRTSⅢ型板式无砟轨道板精调施工。 2、作业准备 全站仪应具有自动目标搜索、自动照准、自动观测、自动记录功能,其标称精度应满足:方向测量中误差不大于±1″,测距中误差不大于±1mm+2ppm。 全站仪须经过专门检定机构的检定,并处于检定证书的有效期内,在进行轨道板精调测量前,应进行气压温度改正,温度计读数精确至0.5℃,气压计读数精确至0.5hPa。 2.1 准备工作 技术准备:对精调测量人员及调板人员进行专项培训,使其熟悉作业程序及操作要点;精调前对所需的轨道板精调数据进行换手复核,确保数据的正确无误;应对精调段CPⅢ网进行复测检核,并经铁三院测量咨询评估项目部CPⅢ控制网评估合格,确认无误后开始精调施工;精调施工前对精调测量系统进行相关的调试检校,确保测量系统正常工作。 3、技术要求 3.1 测量要求 ⑴CRTSⅢ型板式无砟轨道在轨道板施工完成后,直接安装扣件及

钢轨,为了保证线路的高平顺性,要求轨道板的定位精度非常高,严格按照相关规范、要求调整定位,减少后期扣件的调整量。 ⑵轨道板精调前,应对底座板进行高程检测,确保底座板高程误差在 0~-10mm 范围内,如不满足应在粗铺前进行处理。 ⑶精调施工前需要对各仪器设备进行检查调试,保证其正常运行。 ⑷轨道板精调应以 CPⅢ点为依据,全站仪自由设站应符合高速铁路测量相关标准的规定;精调前,对 CPⅢ点进行检查。 3.2 精调过程 3.2.1标架检校:精调系统在上线使用前一定要进行标架检校。硬件常数(如:棱镜高等)、标架四脚平整度要进行检核和调整,再将相关常数录入到程序中。在使用过程中,如发现数据不符需重复检校。 3.2.2 架设全站仪和定向棱镜 每块轨道板上使用测量系统的作业步骤如下: 架设全站仪,将6个测量标架安放在待调轨道板上,开启无线电装置,建立全站仪与电脑系统间联系,对全站仪进行初始定向和精调软件数据初始化。设站和定向的已知CPⅢ坐标和板坐标文件需要事先输入。全站仪利用8个CPⅢ点进行自由建站。全站仪的定向在利用基准点作为定向点观测后,还必须参考前一块已铺设好的轨道板上的最后一个支点,以消除搭接误差。 Ⅲ型板精调系统在精调时需要使用六个标架,放置在当前调整的轨道板的正数第二排承轨台和倒数第二排承轨台上。进行搭接时,搭接标架放置在搭接板临近当前精调板的第二排承轨台上。

秦沈客运专线板式无砟轨道不平顺功率谱分析(x)

第5卷 第6期2008年12月 铁道科学与工程学报 JOURNAL O F RA I L WAY SC I ENC E AND EN G I N EER I N G Vo l15 No16 D e c.2008 秦沈客运专线板式无砟轨道不平顺功率谱分析 金守华1,曾志平2,陈秀方2,曾华亮2 (1.中国铁建股份有限公司,北京100855;2.中南大学土木工程博士后流动站,湖南长沙410075) 摘 要:以秦沈客运专线轨检车实测轨道不平顺数据为统计样本,基于样本平稳性检验,采用FFT方法进行样本空间的谱估计,并由MAT LAB编程得到轨道不平顺谱密度和相关函数。通过对比分析,发现无砟轨道不平顺优于有砟轨道,高低和方向不平顺尤为突出;在8m以下波段内无砟轨道不平顺很好,无明显周期性成分;无砟轨道左右股钢轨横向不平顺控制均匀;左右两轨高低不平顺相关性较强,方向不平顺相关性较弱。基于样本的总体平均,运用非线性最小二乘拟合优化算法,得出无砟轨道不平顺谱密度拟合曲线参数值,对于研究我国无砟轨道不平顺功率谱有参考价值。 关键词:客运专线;无砟轨道;轨道不平顺;功率谱密度 中图分类号:U213.2 文献标识码:A 文章编号:1672-7029(2008)06-0017-05 PS D analysis of slab track irregularity of Q inhuangdao-Shenyang dedicated passenger rail w ay line J IN Shou2hua1,ZE NG Zhi2p ing2,CHEN Xiu2fang2,ZE NG Hua2liang2 (1.China Rail w ay Constructi on Cor porati on L i m ited,Beijing100855,China; 2.Post-doct orWork Stati on of Civil Engineering,Central South University,Changsha410075,China) Abstract:The statistic s peci m en was collected by track geometry ins pecti on car fr om Q inhuangdao-Shenyang dedicated passenger rail w ay line.Based on the stati onarity test of the s peci m en,Fast Fourier Transf or m(FFT) method was used t o evaluate the s pectrum of the whole s peci m en s pace.The power s pectrum density(PS D)and related functi ons of track irregularity were obtained by MAT LAB p r ogra m.By the contrast analysis,it is f ound that ballastless track irregularity is better than ballasted track irregularity,es pecially track vertical p r ofile irregu2 larity and track align ment irregularity.Ballastless track irregularity with wavelength less than8m is very good, and there is no re markably peri odic component.The left and right rail lateral irregularity of ballastless track is u2 nif or m.The correlati on of vertical p r ofile irregularity of left and right rail is str ong,and the correlati on of align2 ment irregularity is weak.Based on t otal average of the s peci m en of the track irregularity,the para meter values of PS D fitting curve f or ballastless track irregularity are obtained by the nonlinear curve-fitting algorithm in the least-squares sense,which has referencing value t o study ballastless track irregularity PS D. Key words:dedicated passenger rail w ay line;ballastless track;track irregularity;power s pectral density 轨道不平顺使列车簧下质量产生共振,造成列车与轨道振动及行车噪音,影响行车平稳和舒适。高速铁路对轨道不平顺要求十分严格[1]。世界各国广泛采用功率谱密度来描述轨道不平顺状态并测定了各自的轨道不平顺谱密度和相关函数。我国对轨道不平顺谱密度进行了较多研究[2-8],但对客运专线无砟轨道不平顺谱密度研究甚少。在此,本文作者将秦沈客运专线有砟轨道 3收稿日期:2008-09-17 基金项目:铁道部科技开发计划项目(2007G044-O-2-B,2004G05-A;中国博士后基金(20080440993)作者简介:金守华(1963-),男,安徽全椒人,博士,教授级高工,从事道路与铁道工程研究

CRTSI型双块式无砟轨道长轨精调施工作业指导书

CRTS I型双块式无砟轨道长轨精调施工作业指导书 编制: 审核: 批准: XXXXXXXXXX标项目经理部 二Ο年月日

目录 一、编制原则 (1) 二、适用范围 (1) 三、作业内容 (1) 四、作业标准 (1) 五、作业流程 (2) 六、人员组织(一个班组) (3) 七、工具配备 (3) 八、作业细则 (3) 九、注意事项 (6)

CRTSI型双块式无砟轨道长轨精调 施工作业指导书 一、编制原则 本作业指导书根据《无砟轨道验收标准》及沪昆公司相关要求编制,在保证轨道平顺性的前提下,确保轨道调整工作快速、高效进行。 二、适用范围 本作业指导书适用于沪昆客运长昆湖南段CKTJIII-2标段CRTSI 型双块式无砟轨道长轨精调工作。 三、作业内容 1、长轨应力放散锁定后对轨道的重新测量,对测量资料汇总整理和模拟调整并形成书面文件,同时统计扣件更换/调整的种类和数量并提取物资需求计划。 2、根据模拟调整文件报表,现场核对调整位置和调整项目,确认无误后更换相应种类的扣件。 3、扣件更换结束后,按规定扭力上紧螺栓,同时检查轨道调整效果和平顺性是否达到要求。 4、清理回收更换下来的扣件并分类存放,同时清理干净道床污染物。 四、作业标准 1、重新测量前,认真核对CPⅢ坐标、轨道设计线型要素数据输入是否正确,确保测量仪器校核无误,设站精度达到要求,钢轨、扣件干净无污染,无缺少和损坏,轨枕无空吊现象,焊缝平顺(<0.2mm),扣件扭矩和扣压力达到设计要求。 2、测量一般选在阴天或夜间进行,严禁在高温、雨天、大雾、大风等条件下测量,避免测量误差过大和出现假数据。 3、测量数据模拟调整前,必须保证数据的真实、可靠性。调整

轨道验收标准

轨道工程 1 铺轨前铺砟 1.1铺底砟 1.1.1 底砟铺设应采用压强不小于160kpa的机械碾压,压实密度不小于1.6g/cm3,碾压后应满足设计厚度。 1.1.2 在底砟上铺部分道砟后铺轨时,应对底砟和道砟分别进行碾压。 1.1.3 底砟厚度允许偏差±50mm,半宽允许偏差为+50mm。 1.2 预铺道砟 1.2.1 预铺道砟前应对道砟进行检验,道砟材料及级配应符合设计要求。 1.2.2 预铺道砟前,应核对路基的高程及中桩,根据其摊铺厚度及中线,在路肩挂拉弦线。 1.2.3 道砟可采用道砟摊铺机一次摊铺压实成形,或采用压强不小于160KPa的机械碾压,压实密度不小于1.6g/cm3。 1.2.4 道砟铺设厚度不宜小于150mm,砟面应整平压实,砟面中间不得凸起,可压出凹槽。 1.2.5铺砟允许偏差 序号项目允许偏差 1 高程±5mm 2 厚度±50mm 3 半宽±50mm 2 无缝线路轨道 2.1无缝线路轨道施工 2.1.1 缓冲区钢轨接头螺栓扭矩应达到900N·m,接头处钢轨面高低差及轨距线错牙允许偏差1mm。 2.1.2 缓冲区线路钢轨接头轨缝应按设计预留,缓冲区长轨条轨端相错量不得大于40mm。 2.1.3 邻近缓冲区的一对长钢轨应适当留出富余量,富余量的大小,根据焊接方法确定。 2.2 基地钢轨焊接 2.2.1 基地焊接长钢轨应采用闪光焊。

2.2.2 基地焊接应配备轨端除锈、钢轨焊接、焊头正火、冷却,钢轨矫直、焊缝打磨、探伤、长轨运输等设备。 2.2.3 焊接接头轨底上表面焊缝两侧各150mm范围内及距两侧轨底角边缘各35mm范围内应打磨平整。用200mm直尺测量,在焊缝中心线两侧各100mm范围内,焊头工作面表面不平度不应大于0.2mm。焊头及其附近钢轨表面不应有裂纹、明显压痕、划伤、碰痕、电击灼伤、打磨灼伤等损伤。 2.2.4 全长淬火轨焊头应进行淬火处理。 2.2.5长钢轨出厂时,长钢轨及焊接接头编号标记齐全,字迹清楚,工厂应提供焊头质量检验合格证交施工单位。 2.2.6 钢轨焊接接头平直度允许偏差 序号项目允许偏差(mm) 1 轨顶面+0.3,0 2 轨头内侧工作面±0.3 3 轨底(焊筋)+0.5,0 2.3 铺设长钢轨 2.3.1 长钢轨铺设允许偏差 序号项目允许偏差(mm) 1 轨枕±20 2 轨道中心线30 2.4 铺砟整道 2.4.1 轨道静态几何尺寸允许偏差 序号项目允许偏差(mm) 1 高低(10m弦量) 4

双块式无砟轨道精调

双块式无砟轨道精调(静态调整)施工技术总结 1前言 无缝线路铺设完成,长钢轨应力放散、锁定后即可开展轨道精调工作。轨道精调可分为静态调整和动态调整两个阶段。轨道静态调整是在联调联试之前根据轨道小车静态测量数据对轨道进行全面、系统地调整,将轨道几何尺寸调整到允许范围内,对轨道线型(轨向和轨面高程)进行优化调整,合理控制轨距变化率和水平变化率,使轨道静态精度满足350km/h及以上高速行车条件。 2工程概况 中铁十一局集团武广客运专线XXTJ I标二公司项目部在武广客运专线XXTJ I标非综合试验段施工了双线共计11.7公里的无砟轨道道床板,里程分别是DK1275+940~DK1278+139.22、DK1313+000~DK1314+400、DK1327+435.41~DK1329+692.66。 3轨道静态调整的工艺流程 轨道静态调整的工艺流程见图1所示:

3.1施工准备 3.1.1人员、设备配置 为确保工程项目的工程质量和施工管理,我单位组织了足够的人力资源,并成立了轨道精调小组,安排1个作业队伍,配置了足够的、先进的测量和施工设备,具体详见表1、表2所示。 表1 人员配置

表2 主要的测量仪器、施工机具 3.1.2人员培训 多次组织精调人员参加局指和武广公司举办的轨道精调培训,使参与轨道精调人员全面掌握轨道精调的工艺、程序、和标准。3.1.3CPIII复测 对CPIII控制点进行全面复测,此项工作有CPIII控制点埋设单位进行。 3.1.4调整件准备 根据轨道的结构类型和设备数量,提前配备相应数量的调整件。 3.2轨枕编号 3.2.1轨枕编号的方法 (1)全线采用贯通的连续里程,里程由4位数组成,表示公里数。

无砟轨道精调方法步骤

客运专线CRTSII 型板式无砟轨道精调方法步骤摘要:CRTSII型板式无砟轨道精调是关系到列车运行速度是否能达到设计要求的重要因素,结合京石铁路客运专线施工。重点阐述了无砟轨道精调的施工工艺和注意事项,并指出了轨道板精调作业对于整个高铁工程的主要性。 关键词:客运专线,CRTSII型无砟轨道,精调 1.引言 我国高速铁路的轨道技术主要是无砟轨道结构和有砟轨道结构,现阶段基本以无砟轨道结构为主,其中CRTS II型板式无砟轨道普遍应用在京津城际铁路、京石客专、京沪高速铁路和沪杭高速铁路上。CRTS II型板式无砟轨道采用了连续底座混凝土结构和轨道板纵联方式,现场施工作业简单方便、可靠性好。 轨道板精调是指通过调整轨道板的高度及平面状态,使各螺栓孔位置精确安置,从而保证扣件的安放精度,减少扣件安放后轨道的调整量。 2.技术标准 (1)《高速铁路设计规范》 (2)《高速铁路工程测量规范》 (3)《客运专线轨道几何状态测量仪暂行技术条件(科技基[2008]86号)》 (4)《客运专线铁路工程静态验收指导意见(铁建设[2009]183号)》 (5)《高速铁路联调联试及运行试验指导意见(铁集成[2010]166号)》 (6)《京石客专、石武客专(河北段)轨道精调作业标准、组织方案及作业流程实施细则》。 根据“细则”的要求,按照以下几何状态控制标准进行作业标准控制,如表1所示: 表1. 几何状态控制标准

3.施工要求 轨道测量前,认真核对CPⅢ坐标、轨道设计线型设计要素数据输入正确,确保测量仪器校核无误,设站精度达到要求,钢轨、扣件无污染,焊缝平顺,扣件扭矩和扣压力达到设计要求。 测量一般选在阴天或夜间进行,严禁在高温、雨天、大雾、大风等条件下测量,避免测量误差过大和出现假数据。 测量数据模拟调整前,必须保证数据的真实、可靠性。扣件更换前做出相应标识,并用弦绳和道尺做必要的复核。 更换扣件时,当实际轨温在于锁定轨±10℃以内施工作业,当高于锁定轨温20℃禁止作业,每次拆除扣件不得连续超过10—12个承轨台(防止胀轨),更换扣配件钢轨抬高量小于25mm,确保扣件更换能达到预期目的和平滑过渡。 扣件更换结束后,再次核对调整量和扣件规格,确认无误后按规定力矩上紧螺栓,回收

一种检测轨道不平顺的理论与方法(简介)

一种检测轨道不平顺的理论与方法 韩云飞 萨伏威(西安)导航技术有限公司 对于高速铁路来说,轨道的高平顺性是保证动车的快速、平稳、舒适、安全和经济运行的关键。保证高平顺性是高铁轨道养护的宗旨,对轨道不平顺的精密检测是轨道维护工作的关键。而目前高铁因轨道维护对检测设备所提出的要求已超出了传统检测设备的能力,检测设备的技术滞后成为阻碍我国高速铁路今后持续发展的一个瓶颈。 多年来,国内外都在积极开展对检测静态轨道长波不平顺的技术、方法和设备的研究,其探索和使用的主要测量技术为激光测量技术,但至今为止,收效甚微。目前用于高铁轨道维护的主流检测技术是激光测量技术,依靠激光全站仪和CPIII控制点实现对轨道绝对位置坐标的测量。激光测量是一种精度较高的位置测量技术,但存在许多弊病:比如,测量距离和测量速度均受到限制。同时,使用时需要CPIII控制网的支持,而控制网的建设和维护成本要远大于轨道检测成本。另外,使用位置测量确定不平顺,还需依靠设计线路作为检测基准。实际线路的位置坐标与设计线路的位置坐标间往往存在着很大的偏差,大幅度地增加了轨道维护的成本和难度,甚至超出了实际作业的能力范围。 对于轨道检测与维护来说,目前最大的问题在于基础理论的匮乏。在检测工作中,只有方法,没有理论,目前所有的检测方法都缺乏理论依据和证明,缺乏对轨道不平顺概念的基本定义和量化方法,造成使用不同的检测技术与设备获得不同的、相互矛盾的检测结果的混乱局面出现。我们认为,目前高铁上所广泛采用的依靠CPIII和设计线路检测轨道不平顺的方法是不科学的,因为它强调的是保证轨道的绝对平顺,而不是相对平顺,完全是没有必要的,与人们在传统工作中所积累的思想和经验也是相矛盾的。 因此,建立一套科学的检测理论,才是解决问题的正确途径。以下是对萨伏威(西安)导航技术有限公司所创建的新的轨道检测理论和方法的简单介绍,现已申请国家专利保护。 为什么至今还缺乏一套完整的轨道检测理论呢?其原因与人类的传统测量思想有关。 线路测量是轨道检测的基础。人们对线路测量的认识,始终停留在位置观察层面,既通过对实际线路中若干点的位置测量,将测量点的位置坐标投影的平面坐标系中,再用直线将所有的测量点连接起来,建立一条测量线路,然后对其进行处理。对于人来讲,这种测量方式是最直接和最有效的,但它并不适用于今天的计算机。 为什么这样讲呢?因为人脑和计算机对测量线路的处理方式是不同的。人脑在处理眼睛所看到的线路时,迅速将观测信息分解成线路的长短、形状、位置和方向等不同种类信息,分别进行处理。但今天的计算机还不具备这一智能分类能力,它只能在位置坐标的数字层面中进行处理。位置坐标仅能描述单独一个点的几何信息,但不能描述线路中的点与点间的关系,因此,计算机也是无法从位置坐标数据中获得长短、形状和方向等信息并加以处理了。 虽然人们对线路的平顺性拥有感性认识,但是无法准确地描述它。这是因为线路的平顺性是一种形状信息,而人脑则习惯于从形状角度思考处理线路。只是长期以来,由于缺乏一

轨道病害成因分析

郑州铁路局职工培训 教师课堂教学教案 首页,共6页 任课老师签名:教育科长审阅签名:

轨道病害成因分析 导语: 轨道检查车是铁路工务部门获得轨道状态信息,提供养修决策、指导现场作业、评价工作质量、实施科学管理,精修细养的重要手段,而了解轨道病害产生的原因是为更好的消灭病害,保证轨道几何状态的重点,这节课我们就以轨道病害成因分析对轨检车产生病害进行探讨分析 一.高低不平顺病害的危害及成因分析 高低不平顺(简称高低)会增加列车通过时的冲击动力,加速轨道结构和道床的变形,对车辆设备、列车行车安全构成危害,其危害大小与高低的幅值、变化率成正比,与高低波长成反比。对车辆影响较大的高低有三种: 1.波长在2m以内的高低,其特征幅值较小、波长较短,但是变化率较大,对车轮的作用力也较大; 危害:如果列车速度为60~110km/h时,高低引起的激振频率接近客车转向架的自振频率,将产生很大的轴箱垂直振动加速度。 原因:引起这类高低的因素主要为接头低塌、大轨缝及钢轨接头打塌、掉块、鞍型磨耗等。 2.波长在10m左右的高低,现场比较常见。其特征是幅值较大、波长较长,能使车体产生沉浮和点头振动。 危害:如果列车速度为60~110km/h时,高低引起的激振频率接近客车车体的自振频率,将产生较大的车体垂直振动。 原因:这种类型的高低易产生在桥头、道口、隧道、涵洞、道床翻浆地段软硬结合部。 3. 波长在20m左右的高低,其特征是幅值较大、波长较长,能使车体点头振动。 危害:当车体振幅方向与高低振幅方向相同时,将使车体产生较大振动,这种高低较少,现场工作人员如有忽视。 检测方法:现场检查高低时应使用20m的弦绳,在检查时用任意弦测量高低。

相关主题