搜档网
当前位置:搜档网 › DDR2SDRAM控制器的设计及FPGA验证

DDR2SDRAM控制器的设计及FPGA验证

DDR2SDRAM控制器的设计及FPGA验证
DDR2SDRAM控制器的设计及FPGA验证

CIC

中国集成电路

China lnte gra te d Circult

设计

1DDR2SDRAM的结构与特点

1.1DDR2SDRAM概述

DDR2(Double Data Rate2)是由JEDEC(电子设备工程联合委员会)开发的新生代内存技术标准。DDR2内存与DDR内存的数据采集方式相同,都是在时钟的上升沿和下降沿进行数据传输,但是DDR2采用4位预取技术,即相同的内核频率下,DDR2的数据传输速率是DDR的两倍[1]。DDR2的工作电压为1.8V,在增加存储密度的情况下又降低了功耗。

对比DDR,DDR2的结构还有一些新的特性[2]:

a)离线驱动调整(Off-Chip Driver):通过调整上拉/下拉电阻来补偿I/O接口端的电压,提高了

DDR2S DRAM控制器的

设计及FP GA验证

刘冠男1,欧明双2,宋何娟1

(1.华东电子工程研究所,合肥230031;

2.合肥工业大学,合肥230031)

摘要:根据DDR2SDRAM的技术规范,介绍了DDR2的基本特征和工作原理,提出了一种DDR2控制器的设计方法,详述了DDR2控制器的工作原理和功能结构,并在FPGA上验证了设计的正确性。

关键词:DDR2,控制器,FPGA,验证

The Design of DDR2SDRAM Controller

and Implementation in FPGA

lIU Guan-nan1,OU Ming-shuang2,SONG He-juan1

(1.East China Research Institute of Electronic Engineering,Hefei230031,China;

2.Hefei University of Technology,Hefei230031,China)

Abstract:The basic characteristics and working features of DDR2SDRAM is introduced in this paper.Then a kind of DDR2controller is discussed in this paper.Finally,the function and implementation of the DDR2controller is analyzed and validated on FPGA.

Keywords:DDR2,Controller,FPGA,validation

中国集成电路设计China lnte gra te d Circult

CIC

信号的完整性。

b)片内终结电阻(On Die Termination):主板上使用了大量的终结电阻来消除数据线终端反射信号,这大大增加了主板的制造成本。实际上,不同的内存模组对终结电路的要求是不一样的,因此,主板上的终结电阻并不能很好地匹配内存模组,还会在一定程度上影响信号品质。DDR2将终结电阻放在存储器内部,可以根据自己的特点内建合适的终结电阻,不仅降低了主板成本,还提高了信号品质。

c)前置CAS(Posted CAS):将CAS信号提前到RAS信号后面的一个时钟周期发送,可以有效解决DDR2中指令冲突问题,提高了DDR2总线的利用率。

1.2DDR2SDRAM的工作方式

DDR2SDRAM在正常使用前要进行初始化操作,根据实际应用对DDR2的工作模式和时序参数进行设置,初始化过程需要按照严格的时序步骤来完成。

初始化完成后,就可以对DDR2进行正常的读写操作了。DDR2内部的存储单元是按bank进行管理的,根据容量大小一般分为4或8个bank[3]。每个bank中又分为行和列,bank的位宽就是存储芯片的位宽。DDR2工作时,每个bank只允许打开1行,即只允许对打开的行进行读写操作,如果要对同一bank中的其他行进行读写操作,则必须先用预充电(precharge)命令关闭已经打开的行,再用激活(active)命令打开需要进行读写操作的行。发送激活命令时要同时给出bank地址和行地址,选定需要打开的行,等待一定的时序间隔后再给出列地址。DDR2的行列地址线是复用的,通过列地址选通信号CAS(Column Address Strobe)可以区分行地址与列地址。

DDR2采用突发方式进行数据传输,即对同一行中相邻的存储单元连续进行数据传输,连续传输所涉及的存储单元(列)的数量就是突发长度(Burst Lengths)。工作时只要给出起始地址和突发长度,DDR2就会依次自动对后面相应数量的列进行读写操作。DDR2支持的突发长度为4和8。

DDR2采用电容存储数据信息,电容的漏电造成数据必须要定时刷新才不会丢失。为了保存内部数据,DDR2每隔一定的时间就要对每一行进行刷新。根据DDR2的JEDEC标准,最多每隔7.8μs就要刷新一次,用来保持DDR2内部数据的正确性。DDR2有两种刷新模式:自刷新(self-refresh)和自动刷新(auto-refresh)。自刷新通常工作于所有bank都处于空闲的状态,功耗低,但是进入自刷新模式和退出自刷新模式都要经过复杂的时序步骤来完成,控制复杂。自动刷新模式由定时器产生刷新命令,易于控制,因此一般选择自动刷新模式。

DDR2的工作频率很高,因此数据窗口很窄,为了能准确采集数据,DDR2使用差分信号DQS、DQS_N来采集数据。写操作中,DQS信号由控制器发出,DQS信号与数据窗口中央对齐;读操作中,DQS信号由DDR2存储器发出,DQS信号与数据窗口边沿对齐,控制器接收到DQS信号后,要将DQS 信号与数据窗口相位偏移90°,使DQS信号与数据窗口中央对齐。DQS信号对相位要求很严格,在实际使用中,考虑连线延迟、管脚延迟等因素,在高频率下进行数据采集变得很困难,一般由专门的PHY(Physical Layer Interface)来完成。

2DDR2控制器的功能与设计

DDR2SDRAM需要专门的控制器才能与不同的芯片逻辑进行数据传输,综合上述DDR2存储器的工作方式,结合实际的使用需求,文章所设计的DDR2控制器主要实现以下几个功能:

(1)实现突发长度为4的读写操作

(2)自动发送激活和预充电命令,用户只需要发送读写命令而不用关心其他相关命令的发送时序(3)完成对DDR2的初始化操作[4],且初始化的相关参数可配置

(4)与DDR2连接的数据通道为64bit

CIC

中国集成电路

China lnte gra te d Circult

设计

(5)自动执行刷新操作2.1DDR2控制器的功能与结构

DDR2控制器主要由初始化模块、自动刷新模块、时序控制模块、DQS 管理模块和主状态机构成,结构图如图1所示。

初始化模块负责DDR2存储器的初始化操作,初始化过程中用到的时序参数可以在初始化之前进行配置。初始化过程具有最高的优先权,当初始化操作完成后,会发送信号给用户端,表示可以对DDR2存储器进行正常的读写操作了。

自动刷新模块负责DDR2存储器的刷新操作。设计中采用自动刷新模式,便于控制。刷新控制器每隔一定的时钟周期就准备发送刷新命令,执行刷新命令时,控制器会将用户端的操作应答信号失效,通知用户在此期间不应再发送读写命令;刷新操作完成后,控制器会再次使能操作应答信号,用户可以继续发送读写命令。执行突发长度为4的读写操作,最快也要两个时钟周期(写操作),如果是跨行操作则需要更多的时钟周期。因此,可能出现有刷新需求时命令还未执行完毕的情况,在这种情况下,控制器会将刷新请求向后延迟,等命令操作完成后再执行刷新命令。为了实现这种情况下的正常操作,在设置刷新周期时要留有一定的余量来满足最长的命令执行周期,否则DDR2中数据可能会因为没及时刷新而丢失。

DQS/DQ 管理模块主要负责数据及数据选通信号的管理。DDR2控制器设计的数据通道为64bit ,

因为DDR2在上升和下降沿都传输数据,所以将数据输入端设计为128bit 。DQS 管理模块在写操作时发送DQS 使能信号,在读操作时根据DQS 信号在时钟的上升和下降沿采集数据。

主状态机是整个控制器的核心部分,主状态机结合bank 管理模块、时序控制模块完成最终的命令和数据发送操作。

2.2状态机的工作流程

用户端发送的是线性地址,而不同类型的DDR2存储器所规定的行列地址及bank 地址所占用的位宽是不相同的[3],

因此,要将输入的线性地址根据所使用的DDR2存储器进行地址映射,将最终发送给DDR2的各类地址分离出来,供状态机使用。

状态机根据发送的地址和命令进行判断,决定应该执行何种操作。状态机的工作流程如图2所示。

上电后控制器首先执行的是初始化过程,然后才是读写操作。在读写过程中,会遇到刷新请求,刷新的优先权要高于读写操作。如果刷新操作与读写操作冲突,则控制器会先通知用户停止发送读写命令,并等待现有的读写操作完成,然后进行刷新操作。

图1DDR2控制器结构示意图

图2状态机流程图

执行读写操作时,控制器会先根据映射的行地

址来判断操作所需要的行是否已经激活,如果已经

激活,则直接发送列地址;如果没激活且在不同的

bank中,则先发送激活命令再发送列地址和读写命

令;如果没激活且在相同的bank中,则先要发送预

充电命令关闭已经打开的行,然后依次发送激活命

令和读写命令。

如果执行读操作,则在读命令发出后,要等待读

数据传回,根据DQS信号来接收读数据,将双速率

的64bit数据转换成单速率的128bit数据送给用

户端口。

3DDR2控制器的FPGA验证

使用Altera公司的Stratix II GX开发板来验证

所设计的DDR2控制器。该开发板上有4片Micron

公司的DDR2存储芯片,型号为MT47H32M16,每

片有16bit数据通道,满足设计所需要的64bit数

据位宽。编译工具用Quartus II7.2,仿真工具为

M odelSim SE6.1。

验证所用的结构图如图3所示。

验证中需要使用Quartus软件的megacore功能

调用开发板自带的PHY作为DDR2控制器和

DDR2存储器的接口,来保证读写过程中DQS信号

能够以精确的相位偏移发送和采集数据。因为PHY

的接口信号并不完全与设计的DDR2控制器的输出

信号相匹配,因此,在验证中需要在两者之间做一个

接口模块,使两者信号能够正确交互,完成DDR2控

制器的功能。

验证中需要一个验证模块作为整个验证平台的

驱动逻辑[5-6]。验证模块主要由写命令控制模块和读

命令控制模块组成。写入DDR2中的数据和地址分

别存储在两个ROM中,写操作时,两个ROM中的

数据分别输送到两个FIFO中,通过控制从两个

FIFO中读取数据的时序,来实现命令、数据与地址

的时序匹配。写操作完成后,会发出读操作使能信

号,开始执行读操作,读操作的地址与写操作的地址

相同,即将刚才写入的数据重新读回,读出的数据存

储在一个RAM中。读写操作的实现与中断由

controller发出的应答信号来控制。当读操作完成后,

比较写数据ROM与读数据RAM中的数据,看两者

是否相同,如果相同,则设计的DDR2控制器的功能

是正确的。

验证中,DDR2的读写时序如下:

4结论

文中设计的DDR2控制器在FPGA验证中得到

了正确的信号时序关系,比较写入数据和读出数据,

两者相同,DDR2控制器达到了设计要求。在FPGA

验证中,DDR2控制器在时钟频率267M Hz下仍能

正确地进行操作,实现较好的性能。

(下转第71页)图3FPGA验证示意图

图4(a)DDR2写操作时序

图4(b)DDR2读操作时序

CIC

read_n<='1';latch<='0';

AD_DATA<=(others=>'Z');

when others=>

conv_n<='0';cs_n<='1';write_n<='1';

read_n<='1';latch<='0';AD_DATA<=(others=>'Z');

end case;

end process;

5结束语

本系统采用浮点型DSP TM S320VC33作为主处理器,利用FPGA强大的数字逻辑功能,简化了硬件的设计,利用USB2.0与上位机进行通讯,具有数据采集速度快、功耗低、易于使用等优点。

参考文献

[1]周立功.USB固件编程与驱动开发[M].北京:北京航空航天大学出版社,2003.

[2]杨永东,曾庆立.基于FPGA+DSP的高速数据采集系统设计.吉首大学学报[J].2009,30(4)

[3]牛国朋,袁洪,范建军.一种基于FPGA和DSP的高性能PCI数据采集卡设计[J].微计算机信息, 2006:137-139

作者简介

李玮,山东省广播电视局昆嵛山转播台,工程师。

参考文献

[1]JEDEC solid state technology association,JEDEC STANDARD:DDR2SDRAM SPECIFICATION,M ay 2006

[2]张凯,李云岗.基于AMBA总线的DDR2SDRAM 控制器研究与实现.计算机工程与应用.2005

[3]M icron technology INC.1GB,2GB,512Mb DDRII SDRAM datasheet.2006

[4]赵天云,王洪迅,郭雷,毕笃彦.DDR2SDRAM控制器的设计与实现.微电子学与计算机.2005.Vol.22,No.3

[5]刘勤让,邬江兴.总线数据宽度可配置DDR传输的FPGA设计与实现.计算机工程与应用.2005 [6]须文波,胡丹.DDR2SDRAM控制器的FPGA实现.江南大学学报(自然科学版),2006Vol.5,No.2.

作者简介

刘冠男,中国电子科技集团第38研究所助理工程师,主要研究方向:DDR2存储器的传输及控制。

上接第45页

凌力尔特推出同步降压型DC/DC转换器LT3741

凌力尔特(Linear)最近推出同步降压型DC/DC转换器LT3741,该器件设计为准确地(±6%)调节高达20A的输出电流。其6V至36V的输入电压范围、恒定电流和恒定电压工作使该器件非常适用于多种应用,如从电池和超级电容器充电器、激光驱动器到大电流LED照明的各种应用。LT3741采用两个外部开关M OSFET,在0V至34V的宽电压范围内提供高达20A的连续输出电流。高达95%的效率使得无需外部散热。LT3741的频率可被设定和同步在200kHz到1M Hz范围,从而允许设计师优化效率,同时最大限度地减小外部组件尺寸。结合4×4mm QFN-20或耐热增强型TSSOP-20封装,LT3741可提供一个高度紧凑的恒定电压和电流解决方案。

CIC

液位传感器课程设计

目录 摘要 (2) 1绪论 (3) 引言 (3) 电容式液位测量技术的发展 (4) 电容式液位测量现状 (4) 电容式液位测量存在的问题 (5) 电容式液位传感器的发展趋势 (5) 2本设计的电容式液位测量方法 (6) 测量原理及实现思路 (6) 液体的物理参数对液位测量的影响 (8) 极板设计 (9) 液位测量系统的基本构成 (11) 3硬件设计 (12) 电源电路设计 (12) 电容测量电路设计 (13)

放大调零电路设计 (14) A/D转换电路设计 (16) 4误差分析 (17) 电容测量误差对精度的影响 (17) 影响液位测量的主要因素 (18) 5总结 (19) 参考文献 (20) 摘要 在工业自动化生产过程中,为了实现安全快速有效优质的生产,经常需要对液位进行精确测量,继而进行自动调节、智能控制使生产结果更趋完善。 通常进行液位测量的方法有二十多种,分为直接法和间接法。直接液位测量法是以直观的方法检测液位的变化情况,如玻璃管或玻璃板法。然而随着工业自动化规模的不断扩大,因其方法原始、就地指示、精度低等逐渐被间接测量方法取代。目前国内外工业生产中普遍采用间接的液位测量方法,如浮子式、液压式、电容法、超声波法、磁致伸缩式、光纤等。其中电容式液位测量价格低廉、结构简单,是间接测量方法中最常用的方法之一。

本设计采用一种与介质无关的电容式液位测量方法,解决了传统电容测量与被测介质有关的技术难题。它可以应用于动态液位测量,尤其是在被测液体本身介质常数和液位,随时间和环境等因素容易发生变化的场合,如车用燃油油位的计量,从而向当今高精度、数字化、集成化、智能化的科学技术全面发展更迈进了一步,对满足石油化工等液位检测领域的迫切需求具有重大的理论和应用价值,前景十分广阔。 消除电容式液位测量方法中介质介电常数的因素是关键,设计符合测量方法的电容极板,通过电容电压转换电路处理为直流电压信号,由数据采集卡采集后送入单片机或计算机,最终实现算法的设计。其中电容极板设计时需注意消除和减小边缘效应和寄生电容的影响,同时要保证平板电容良好的绝缘性能和抗外界干扰性。 最后在整体设计和理论分析的基础之上,从硬件各部分进行具体的设计,包括硬件电路和各环节的信号量匹配等。通过理论计算和数据分析,验证了此液位仪具有良好的性能,达到了要求的技术指标,同时指出了需要改进和完善的地方。 1绪论

水箱液位控制系统设计说明

过程控制综合训练 课程报告 16 —17 学年第二学期课题名称基于PLC和组态王的 系统 姓名 学号 班级 成绩

水箱液位控制系统 [摘要] 在工业生产过程中,液位贮槽如进料罐、成品罐、中间缓冲器、水箱等设备应用十分普遍,为了保证生产正常进行,物料进出需均衡,以保证过程的物料平衡。因此,工艺要求贮槽的液位需维持在给定值上下,或在某一小围变化,并保证物料不产生溢出。例如,锅炉系统汽包的液位控制,自流水生产系统过滤池、澄清池水位的控制等等。根据课题要求,设计一个单容水箱的液位过程控制系统,该系统能对一个单容水箱液位的进行恒高度控制。 关键词:过程控制液位控制PID控制 Abstract: In the process of industrial production, liquid storage tank such as product cans, buffer, tanks and other equipments are widely used. In order to ensure the normal production,material supply and demand must be balanced to guarantee the process of the production. So, the process requires that the liquid level in the tank should be maintained at a given value, or change in a small range,and ensure that the material does not overflow,for instance,system of boiler drum level control, level control of filter pool and clarification pool of self-flowing water production

温度控制器的设计与制作共13页

温度控制器的设计与制作 一、功能要求 设计并制作一个温度控制器,用于自动接通或断开室内的电加热设备,从而使室内温度达到设定温度要求,并能实时显示室内温度。当室内温度大于等于设定温度时,控制器断 ?时,控制器接通电加热设备。 开电加热设备;当室内温度比设定温度小2C 控温范围:0~51C? 控温精度:≤1C? 二、硬件系统设计 1.硬件系统由七部分组成,即单片机及看门狗电路、温度检测电路、控制输出电路、键盘电路、显示电路、设置温度储存电路及电源电路。 (1)单片机及看门狗电路 根据设计所需的单片机的内部资源(程序存储器的容量、数据存储器的容量及I/O口数量),选择AT89C51-24PC较合适。为了防止程序跑飞,导致温度失控,进而引起可怕的后果,本设计加入了硬件看门狗电路IMP813L,如果它的WDI脚不处于浮空状态,在1.6秒内WDI不被触发(即没有检测到上什沿或下降沿),就说明程序已经跑飞,看门狗输出端WDO将输出低电平到手动复位端,使复位输出端RST发出复位信号,使单片机可靠复位,即程序重新开始执行。(注:如果选用AT89S51,由于其内部已具有看门狗电路,就不需外加IMP813L) (2)温度检测电路 温度传感器采用AD590,它实际上是一个与绝对温度成正比的电流源,它的工作电压为4~30V,感测的温度范围为-550C~+1500C,具有良好的线性输出,其输出电流与温度成正比,即1μA/K。因此在00C时的输出电流为273.2μA,在1000C时输出电流为373.2μA。温度传感器将温度的变化转变为电流信号,通过电阻后转变电压信号,经过运算放大器JRC4558运算处理,处理后得到的模拟电压信号传输给A/D转换部分。A/D转换器选用ADC0804,它是用CMOS集成工艺制成的逐次逼近型模数转换芯片,分辨率8位,转换时间100μs,基准电压0~5V,输入模拟电压0~5V。 (3)控制输出电路 控制信号由单片机的P1.4引脚输出,经过光耦TLP521-1隔离后,经三极管C8550直接驱动继电器WJ108-1C-05VDC,如果所接的电加热设备的功率≤2KW,则可利用继电器的常开触点直接控制加热设备,如果加热设备的功率>2KW,可以继电器控制接触器,由接触器直接控制加热设备。 (4)键盘电路 键盘共有四个按键,分别是S1(设置)、S2(+)、S3(-)、S4(储存)。通过键盘来设置室内应达到的温度,键盘采用中断方式控制。 (5)显示电路 显示电路由两位E10501_AR数码管组成,由两片74LS164驱动,实现静态显示,74LS164所需的串行数据和时钟由单片机的P3.0和P3.1提供。对于学过“串行口”知识的班级,实习时,可以采用串行口工作于方式0,即同步移位寄存器的输出方式,通过串行口输出显示数据(实时温度值或设置温度值);对于没学过“串行口”知识的班级,实习时,可以采用模拟串行口的输出方式,实现显示数据的串行输出。 (6)设置温度存储电路 为了防止设定温度在电源断电后丢失,此设计加入了储存电路,储存器选用具有I2C总线功能的AT24C01或FM24C01均可。每次通过键盘设置的室内设定温度都通过储存器储存起来,即使是电源断电,储存器存储的设定温度也不丢失,在电源来电后,单片机自动将设

泡沫液位传感器设计

摘要:泡沫是一种特殊的两相流形态,其力学、热学、光学等多种性能均与单相气体或液体有很大区别,由于泡沫的形成机理多样、性质变化复杂,至今尚无完善的研究理论体系,泡沫的液位测量在国内外也是一个空白开发了一种基于传热原理的测量泡沫液位的传感器,介绍了传感器的构造和原理,以及测量误差和动态响应的计算分析: 1引言 泡沫是气一液联合构造的特殊形态,也是一种具有重要研究价值的边界形态。在自然界和工业生产过程中,普遍存在着大量的泡沫和泡沫性物质。在有些领域它们对人类的生产和生活起着积极的推动作用,比如泡沫浮选、啤酒制造和消防;然而有时候泡沫的形成却起着相反的作用,比如造纸过程和放射性废水浓缩过程,能否有效地监测和控制泡沫,直接关系着产品质量和生产效率。目前,生产和科研领域急需用于泡沫测量的仪表。 通过对泡沫的深入调研,开发r一种基于传热原理的测量泡沫液位的传感器ll J,介绍其构造和原理,并进行了测量误差和动态特性的计算分析。 2泡沫概述 2.1泡沫的定义 随着现代科学技术的发展,对于泡沫的研究越来越受到各行业的重视,然而“泡沫”至今仍无统一的定义,人们也经常将它与其他状态的物质相混淆。英语中“泡沫”称为“foam”,常用的“bubble"是指“气泡”,而不是“泡沫”。现在比较通用的一种泡沫界定方法如下(如图1): 图 1 泡沫与气泡、气泡分散体示意图 (1)气泡:浮于气体中的单个液膜包裹气体物,如娱乐中吹的肥皂泡; (2)泡沫:气多液少的“气/液”粗分散体,如污水处理产生的泡沫; (3)气泡分散体:液多气少的“气/液”粗分散体,如液体中的气泡。 2.2 泡沫的形成和稳定条件 泡沫形成的基本要素为:气液接触,含助泡剂,并且发泡速度高于破泡速度。 液体表面形成的泡沫如果不能够保持稳定,不会对外界产生明显的影响,影响泡沫稳定的主要因素是Marangoni效应,又叫作“自我痊愈效应”;表面粘度;液膜表面电荷;以及熵性双层互斥作用。 2.2泡沫的研究 目前泡沫的研究主要在两个方面:一是对于泡沫稳定性的研究,其重点在于增加泡沫流体的稳定性和消泡;二是对液体中气泡的动力学性质研究,主要研究方向有:在界面上气泡的生成理论、生长速率、动力学、脱离理论和数值模拟以及气泡传热传质的研究。泡沫的研究手段主要有: (1)声学技术:主要包括声学共振、脉冲探测,声纳复合频率反射方法,声学方法在海洋泡沫研究中使用较多;

液位控制系统演示工程操作说明

液位控制系统演示工程操作说明 一、创建工程 1、双击桌面中的图标,进入MCGS组态环境工作台,如图1所示。 2、点击图1中的“新建窗口”,出现“窗口0”图标。 3、点击“窗口0”鼠标右键,选择“属性”,按照图2进行设置,则窗口名称变为“水位控 制系统”,如图2右图所示。。 图2

二、画面设计 1、在“水位控制”窗口点击菜单中的【工具箱】图标,单击插入元件按钮,打开 【对象元件管理】中的【储藏罐】,选择罐17,点击确定。如图3所示,则所选中的罐出现在桌面的左上角,用鼠标改变其大小及位置。 图3 2、按照同样的方法,【储藏罐】选中2个罐(罐17,罐53),【阀】选中2个阀(阀58,阀 44),1个泵(泵40)。按图4放置。 图4 3、选中工具箱中的【流动快】按钮,单击鼠标并移动光标放置流动快。如图5所示设置

流动快。 图5 4、选中流动块,点击鼠标右键【属性】,按图6设置属性。 图6 5、添加文字,选中工具箱中的【标签】按钮,鼠标的光标变为“十字”形,在窗口任 意位置拖曳鼠标,拉出一个一定大小的矩形。建立矩形框后,鼠标在其内闪烁,可直接输入“水位控制系统演示工程”文字。选中文字,鼠标右键【属性】,按图7设置。

图7 6、点击菜单中的,可变更字体大小。按图5添加其他文字。 三、MCGS数据对象设置 2、单击工作台【实时数据库】按钮,进入【实时数据库】窗口。单击窗口右边的【新增对 象】按钮,在窗口的数据对象列表中,就会增加新的数据对象。双击选中对象,按图8设置数据对象属性。 图8 3、按照图9设置其他数据对象属性。

图9 4、双击【液位组】,存盘属性按图10设置,组对象成员按图11设置。 图10

温度控制器的设计

目录 第一章课程设计要求及电路说明 (3) 1.1课程设计要求与技术指标 (3) 1.2课程设计电路说明 (4) 第二章课程设计及结果分析 (6) 2.1课程设计思想 (6) 2.2课程设计问题及解决办法 (6) 2.3调试结果分析 (7) 第三章课程设计方案特点及体会 (8) 3.1 课程设计方案特点 (8) 3.2 课程设计心得体会 (9) 参考文献 (9) 附录 (9)

第一章课程设计要求及电路说明 1.1课程设计要求与技术指标 温度控制器的设计 设计要求与技术指标: 1、设计要求 (1)设计一个温度控制器电路; (2)根据性能指标,计算元件参数,选好元件,设计电路并画出电路图; (3)撰写设计报告。 2、技术指标 温度测量范围0—99℃,精度误差为0.1℃;LED数码管直读显示;温度报警指示灯。

1.2课程设计电路说明 1.2.1系统单元电路组成 温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S51,温度传感器采用DS18B20,用3位LED数码管以串口传送数据实现温度显示。 1.2.2设计电路说明 主控制器:CPU是整个控制部分的核心,由STC89C52芯片连同附加电路构成的单片机最小系统作为数据处理及控制模块. 显示电路:显示电路采用4个共阳LED数码管,用于显示温度计的数值。报警电路:报警电路由蜂鸣器和三极管组成,当测量温度超过设计的温度时,该电路就会发出报警。 温度传感器:主要由DS18B20芯片组成,用于温度的采集。 时钟振荡:时钟振荡电路由晶振和电容组成,为STC89C52芯片提供稳定的时钟频率。

第二章课程设计及结果分析 2.1课程设计 2.1.1设计方案论证与比较 显示电路方案 方案一:采用数码管动态显示 使用一个七段LED数码管,采用动态显示的方法来显示各项指标,此方法价格成本低,而且自己也比较熟悉,实验室也常备有此元件。 方案二:采用LCD液晶显示 采用1602 LCD液晶显示,此方案显示内容相对丰富,且布线较为简单。 综合上述原因,采用方案一,使用数码管作为显示电路。 测温电路方案 方案一:采用模拟温度传感器测温 由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。 方案二:采用数字温度传感器 经过查询相关的资料,发现在单片机电路设计中,大多数都是使用传感器,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。 综合考虑,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。 2.1.2设计总体方案 根据上述方案比较,结合题目要可以将系统分为主控模块,显示模块,温度采集模块和报警模块,其框图如下:

(完整版)状态反馈控制器的设计

上海电力学院实验报告自动控制原理实验课程题目:状态反馈控制器的设计 班级: 姓名: 学号: 时间: 一、问题描述已知一个单位反馈系统的开环传递函数为,试搭建simulink 模型。仿真原系统的阶跃响应。再设计状态反馈控制器,配置系统的闭环极点在,并用simulink 模型进行仿真验证。 二、理论方法分析 MATLAB提供了单变量系统极点配置函数acker (),该函数 的调用格式为K=place ( A,b,p) 其中,P为期望闭环极点的列向量,K为状态反馈矩阵。Acker ()函数时Ackerman 公式编写,若单输入系统可控的,则采用状态反馈控制后,控制量u=r+Kx 。 对于多变量系统的状态反馈极点配置,MATLAB也给出了函数place (),其调用格式为 K=place ( A,B,P) 状态反馈是将系统的状态变量乘以相应的反馈系数,然后反馈到输入端与参考输入叠加形成控制量,作为受控系统的输入,实现闭环系统极点的任意配置,而且也是实现解耦和构成线性最优调节器的主要手段。

只要给定的系统是完全能控且能观的,则闭环系统的极点可以通过状态反馈矩阵的确定来任意配置。这个定理是用极点配置方法设计反馈矩阵的前提和依据。在单输入,单输出系统中,反馈矩阵有唯一解,且状态反馈不改变系统的零点。 三、实验设计与实现 1、搭建原系统的sumlink模型并观察其单位阶跃响应 原系统sumlink模型

原系统单位阶跃响应 由原系统单位阶跃响应可知系统不稳定 2、用极点配置法设计状态反馈控制器 ①利用matlab计算系统的状态空间模型的标准型>> a=[10];b=[1 5 6 0];[A B C D]=tf2ss(a,b) A = -5 -6 0 1 0 0 0 1 0 B = 1 C = 0 0 10 ③系统能控性矩阵

基于PLC的液位控制系统设计

毕业论文(设计)题目:基于PLC控制的高精度液位控制系统的设计 姓名:濮孝金 学号: 专业:机械电子工程 年月

摘要 在工农业生产过程中,经常需要对水位进行测量与控制,而日常生活中应用 到的水位控制也相当广泛。在以往水塔液位控制系统中,常规继电器的频繁操作容易导致机械磨损,不方便更新和维护,不能满足人们的实际需求;另外,随着人口的递增和生活条件的提高,人们用水的需求量也日益增加。 为了提高液位控制系统的质量和效率,节约能源,本次模拟水塔液位控制系统的装置考虑结合可编程逻辑控制器,继电器和传感器等技术,实现液位控制系统的自动控制。本设计使用西门子S7-300 PLC可编程控制器作为液位控制系统的核心,配合硬件与软件实现液位控制池液位动态平衡,过高、过低水位报警等功能。主要 的实验方法是在水箱上安装一个自动水位测量装置,通过水位变送器检测水箱实际液位并将该液位反馈到PLC控制器,经A/D转换后,所得数据与PLC内部设定数据进行比较,控制器处理数据并发送相应指令改变电机的转速从而控制抽 水速率,改变进水量,使水位稳定地保持在设定值附近。此外,通过液位标定计算出控制器输出PIW数值与实际水位的关系,就可以在触摸屏上直观显示实时水位情况。实验结果表明本设计能较好地完成自动液位控制的功能。 关键词:水塔液位控制,水位控制,继电器,PLC Abstract In the course of routine industrial and agricultural production we the need to measure the water level and

control it. Furthermore everyday level control applications are quite extensive , such as hydropower , water towers and other water control . According to the water supply system in the past, frequent operation towers will produce mechanical wear of conventional relay convenient maintenance and updates, that means it can not meet the actual needs of the people, and with Gradual growth of population and living conditions, the demand for water is also increasing .In order to improve the quality of the water supply system, energy conservation, so I considered use a programmable logic controller, relay and sensor technology, with hardware and software to achieve low water level alarm, warning switch between work and procedures manual / automatic to design practical level control tower scheme. I completed the set up of this simulation using the tank water tower , based on Siemens S7-300 PLC programmable controller tank water level control system as the core .I completed a water tank to

液位开关_液位开关原理_液位开关接线图

液位开关种类及原理 1浮球液位开关 浮球液位开关结构主要基于浮力和静磁场原理设计生产的。带有磁体的浮球(简称浮球)在被测介质中的位置受浮力作用影响:液位的变化导致磁性浮子位置的变化。浮球中的磁体和传感器(磁簧开关)作用,产生开关信号。 2音叉液位开关 音叉液位开关的工作原理是通过安装在基座上的一对压电晶体使音叉在一定共振频率下振动。当音叉液位开关的音叉与被测介质相接触时,音叉的频率和振幅将改变,音叉液位开关的这些变化由智能电路来进行检测,处理并将之转换为一个开关信号,达到液位报警或控制的目的。为了让音叉伸到罐内,通常使用法兰或者带螺纹的工艺接头将音叉开关安装到罐体的侧面或者顶部。 3电容式液位开关 电容式液位开关的测量原理是:固体物料的物位高低变化导致探头被覆盖区域大小发生变化,从而导致电容值发生变化。探头与罐壁(导电材料制成)构成一个电容。探头处于空气中时,测量到的是一个小数值的初始电容值。当罐体中有物料注入时,电容值将随探头被物料所覆盖区域面积的增加而相应地增大,开关状态发生变化。 4外测液位开关 外测液位开关是一种利用“变频超声波技术”实现的非接触式液位开关,广泛使用于各种液体的液体检测。其测量探头安装在容器外壁上,属于一种从罐外检测液位的完全非接触检测仪表。仪表测量探头发射超声波,并检测其在容器壁中的余振信号,当液体漫过探头时,此余振信号的幅值会变小,这个改变被仪表检测到后输出一个开关信号,达到液位报警的目的。 万联芯城-电子元器件采购网https://www.sodocs.net/doc/5e5091072.html,一直秉承着以良心做好良芯的服务理念,为广大客户提供一站式的电子元器件配单服务,客户行业涉及电子电工,智能工控,自动化,医疗安防等多个相关研发生产领域,所售电子元器件均为原厂渠道进货的原装现货库存。只需提交BOM表,即可为您报价。万联芯城同时为长电,顺络,先科ST等知名原厂的指定授权代理商,采购代理品牌电子元器件价格更有优势,欢迎广大客户咨询,点击进入万联芯城。

液位控制器说明

正面

侧面背面

上面

功能和用途 本产品采用集成电路,并结合高层楼宇上、下水池(水塔)的水位分级提升进行设计,具有下下水池联合控制、水池排水及缺水保护等功能,可自动实现水箱补水、排水,并有效防止水池水位水高溢出或水泵空转损坏,是一种工业、家庭均适用的产品。非常适合城镇、农村、学校、式矿企事业单位及家庭用水的水井——水井供水工程,广泛应用于印染、化工、食品、饮料、酿酒、制糖等行业。 性能特征

(一)单控上水池控头安装说明安装图如图一所示:

D(绿线)、E(黄线)点并接到C。 (二)单控下水池(即排水池)探头安装说明安装图如图二所示: E—为下水池上限液位控制点,水们上升达到E点水位,水与探头接触,水位控制器自动开泵,水池排水;若不排水,则E点不接; D—为下水池下限液位控制点,水位下降到D点水位,水与控头脱离接触,水位控制器自动关泵,水池停止排水; C—为水池地线,放地水池的最低点与水底部接触; A、B点不接。 (三)缺水保护探头安装说明安装图如图三所示: C、D点为水池下限水位控制点,水位下降到下限水位,C、D探头之一与水面脱离接触,水位控制器继电器立即动作,切断输出,水泵停止工作; E点与C点短接; A、B点不接。 (四)上下水池联合控制探头安装说明安装图如图三所示: A—为上水池(水塔)上限液位控制点,水位上升达到A点水位,水与控头接触,水们控制器自动关泵; B—为上水池(水塔)下限液们控制点,水位下降到B点水位以下,水与探头脱离接触,水位控制自动开泵,水池充水; C—为上、下不池(水塔)公用在线,放在上、下水池的最低点与水池底部接触; D—为下水池下限液位控制点,水位下降到D点水位,水与探头脱离接触,水位控制器自动关泵,水池停止排水; E—为下水池上限液位控制点,水位上升到E点水位,水与探头接触,水位控制器自动开泵,水池排头;若不排水,则E点不接。 安装尺寸

温度控制器课程设计要点

郑州科技学院 《模拟电子技术》课程设计 题目温度控制器 学生姓名 专业班级 学号 院(系)信息工程学院 指导教师 完成时间 2015年12月31日

郑州科技学院 模拟电子技术课程设计任务书 专业 14级通信工程班级 2班学号姓名 一、设计题目温度控制器 二、设计任务与要求 1、当温度低于设定温度时,两个加热丝同时通电加热,指示灯发光; 2、当水温高于设定温度时,两根加热丝都不通电,指示灯熄灭; 3、根据上述要求选定设计方案,画出系统框图,并写出详细的设计过程; 4、利用Multisim软件画出一套完整的设计电路图,并列出所有的元件清单; 5、安装调试并按规定格式写出课程设计报告书. 三、参考文献 [1]吴友宇.模拟电子技术基础[M]. 清华大学出版社,2009.52~55. [2]孙梅生.电子技术基础课程设计[M]. 高等教育出版社,2005.25~28. [3]徐国华.电子技能实训教程[M]. 北京航空航天大学出版社,2006.13 ~15. [4]陈杰,黄鸿.传感器与检测技术[M].北京:高等教育出版社,2008.22~25. [5]翟玉文等.电子设计与实践[M].北京:北京中国电力出版社,2005.11~13. [6]万嘉若,林康运.电子线路基础[M]. 高等教育出版社,2006.27 ~29. 四、设计时间 2015 年12月21 日至2015 年12 月31 日 指导教师签名: 年月日

本设计是一种结构简单、性能稳定、使用方便、价格低廉、使用寿命长、具有一定的实用性等优点的温度控制电路。本文设计了一种温度控制器电路,该系统采用模拟技术进行温度的采集与控制。主要由电源模块,温度采集模块,继电器模块组成。 现代社会科学技术的发展可以说是突飞猛进,很多传统的东西都被成本更低、功能更多、使用更方便的电子产品所替代,本课程设计是一个以温度传感器采用LM35的环境温度简易测控系统,用于替代传统的低精度、不易读数的温度计。但系统预留了足够的扩展空间,并提供了简单的扩展方式供参考,实际使用中可根据需要改成多路转换,既可以增加湿度等测控对象,也能减少外界因素对系统的干扰。 首先温度传感器把温度信号转换为电流信号,通过放大器变成电压信号,然后送入两个反向输入的运算放大器组成的比较器电路,让电位器来改变温度范围的取值,最后信号送入比较器电路,通过比较来判断控制电路是否需要工作。此方案是采用传统的模拟控制方法,选用模拟电路,用电位器设定给定值,反馈的温度值与给定的温度值比较后,决定是否加热。 关键词:温度传感器比较器继电器

基于单片机液位控制的设计

单片机原理与应用 课程设计报告 题目:基于单片机的液位控制器设计 学院: xxxxxxxxxxxxxxxxxx 班级: xxxxxxxxxxxx 学号: xxxxxx 姓名: xxx 联系方式: xxxxxxxx 指导教师: xxxxxxxxxx 报告成绩: xx年xx月xx日

目录 1 绪论 (5) 2 系统总体设计 (6) 2.1设计思路 (6) 2.2 系统框图 (6) 2.3 设计原理分析 (7) 2.4 电路工作原理................................................................................................ 错误!未定义书签。 3 系统硬件设计 (9) 3.1 驱动电路设计 (9) 3.2 报警电路设计 (9) 3.3液位指示电路设计............................ 错误!未定义书签。 3.4压力自动控制模拟和手动操作控制电路设计 .... 错误!未定义书签。 3.5晶振电路.................................... 错误!未定义书签。 3.6 复位电路 (14) 4 系统软件设计 (15) 4.1 软件设计说明 (15) 4.2主程序流程图 (15) 4.3液位控制程序流程图 (15) 5 设计的结果 (18) 6 总结............................................ 错误!未定义书签。 附录............................................... 错误!未定义书签。

模电课设—温度控制系统设计

目录 1.原理电路的设计 (11) 1.1总体方案设计 (11) 1.1.1简单原理叙述 (11) 1.1.2设计方案选择 (11) 1.2单元电路的设计 (33) 1.2.1温度信号的采集与转化单元——温度传感器 (33) 1.2.2电压信号的处理单元——运算放大器 (44) 1.2.3电压表征温度单元 (55) 1.2.4电压控制单元——迟滞比较器 (66) 1.2.5驱动单元——继电器 (88) 1.2.6 制冷部分——Tec半导体制冷片 (99) 1.3完整电路图 (1010) 2.仿真结果分析 (1111) 3 实物展示 (1313) 3.1 实物焊接效果图 (1313) 3.2 实物性能测试数据 (1414) 3.2.1制冷测试 (1414) 3.2.2制热测试 (1818) 3.3.3性能测试数据分析 (2020) 4总结、收获与体会 (2121) 附录一元件清单 (2222) 附录二参考文献. (2323)

摘要 本课程设计以温度传感器LM35、运算放大器UA741、NE5532P及电压比较器LM339 N为电路系统的主要组成元件,扩展适当的接口电路,制作一个温度控制系统,通过室温的变化和改变设定的温度,来改变电压传感器上两个输入端电压的大小,通过三极管开关电路控制继电器的通断,来控制Tec制冷片的工作。这样循环往复执行这样一个周期性的动作,从而把温度控制在一定范围内。学会查询文献资料,撰写论文的方法,并提交课程设计报告和实验成品。 关键词:温度;测量;控制。

Abstract This course is designed to a temperature sensor LM35, an operational amplifier UA741,NE5532P and a voltage comparator LM339N circuit system of the main components. Extending the appropriate interface circuit, make a temperature control system. By changing the temperature changes and set the temperature to change the size of the two input ends of the voltage on the voltage sensor, an audion tube switch circuit to control the on-off relay to control Tec cooling piece work. This cycle of performing such a periodic motion, thus controlling the temperature in a certain range. Learn to query the literature, writing papers, and submitted to the curriculum design report and experimental products. Key words: temperature ; measure ;control

状态反馈控制器的设计

上海电力学院实验报告 自动控制原理实验课程 题目:状态反馈控制器的设计 班级: 姓名: 学号: 时间: 一、问题描述 已知一个单位反馈系统的开环传递函数为,试搭建simulink 模型。仿真原系统的阶跃响应。再设计状态反馈控制器,配置系统的闭环极点在,并用simulink模型进行仿真验证。 二、理论方法分析 MATLAB提供了单变量系统极点配置函数acker(),该函数的调用格式为 K=place(A,b,p) 其中,P为期望闭环极点的列向量,K为状态反馈矩阵。Acker ()函数时Ackerman公式编写,若单输入系统可控的,则采用状态反馈控制后,控制量u=r+Kx。 对于多变量系统的状态反馈极点配置,MATLAB也给出了函数place(),其调用格式为 K=place(A,B,P) 状态反馈是将系统的状态变量乘以相应的反馈系数,然后反馈到输入端与参考输入叠加形成控制量,作为受控系统的输入,

实现闭环系统极点的任意配置,而且也是实现解耦和构成线性最优调节器的主要手段。 只要给定的系统是完全能控且能观的,则闭环系统的极点可以通过状态反馈矩阵的确定来任意配置。这个定理是用极点配置方法设计反馈矩阵的前提和依据。在单输入,单输出系统中,反馈矩阵有唯一解,且状态反馈不改变系统的零点。 三、实验设计与实现 1、搭建原系统的sumlink模型并观察其单位阶跃响应 原系统sumlink模型

原系统单位阶跃响应 由原系统单位阶跃响应可知系统不稳定 2、用极点配置法设计状态反馈控制器 ○1利用matlab计算系统的状态空间模型的标准型>> a=[10];b=[1 5 6 0];[A B C D]=tf2ss(a,b) A = -5 -6 0 1 0 0 0 1 0 B = 1 C = 0 0 10 D = 0

锅炉水位控制器

河南科技学院新科学院 单片机课程设计报告题目:基于单片机的锅炉水位控制器 专业班级:电气工程及其自动化104 姓名: _ 时间:2012.12.03~2012.12.21 指导教师:邵峰、徐君鹏、张素君 2012年12月20日

基于单片机控制的锅炉水位控制器设计任务书 一. 设计要求 (一) 基本功能 1.具有手动和自动两种操作模式 2.能够实现多点水位数据采集,并实时进行水位状态显示 3.具有多种连锁保护和报警功能 具体工作过程如下: 控制器上电后,首先处于自动工作模式,程序开始扫描当前锅炉的水位和压力状态,如果水位低于正常水位,发出报警信后,同时启动水泵上水,经过一定时间后,如水位到达正常水位,报警将自冻结除,同时如果压力为低压状态则马上启动鼓风机和引风机,否则控制器自动关闭鼓风机和引风机。如果水位达到最高水位和压力超过设定压力时自动报警,同时关闭水泵和风机。系统时刻跟踪显示水位和压力状态。如果你想手动操作,你可以通过手动/自动转换键把系统置为手动工作模式,此时可由人工控制水泵和风机的运行,水位和压力检测由控制器自动完成,且当水位过低时不能手动停止水泵,过高时不能启动水泵,压力过低不能停止风机,过高不能启动风机,从而实现安全联锁保护控制。 (二)扩展功能 1.系统具备一定的硬件抗干扰能力 2.系统增加软件看门狗功能 二.计划完成时间三周 1.第一周完成软件和硬件的整体设计,同时按要求上交设计报告一份。 2.第二周完成软件的具体设计和硬件的制作。 3.第三周完成软件和硬件的联合调试。

目录 1引言 (1) 2总体设计方案.............................................................................. 1 2.1设计思路.............................................................................. 2 2.2设计方框图 (2) 3设计组成及原理分析..................................................................... 3 3.1水位检测电路设计..................................................................... 3 3.2驱动电路设计 (4) 3.3报警电路设计 (4) 3.4复位电路 (5) 3.5振荡电路 (5) 3.6水位指示电路 (6) 3.7手动自动路 (6) 4总结与体会 (7) 参考文献…………………………………………………………………………… 8附录1 …………………………………………………………………………… 9附录 2 …………………………………………………………………………… 10附录 3 …………………………………………………………………………… 11附录 4 (12)

液位控制系统设计说明

目录 第1章绪论............................................................................................... - 1 - 第2章设计方案........................................................................................ - 2 - 2.1 方案举例......................................................................................... - 2 - 2.2 方案比较......................................................................................... - 3 - 2.3 方案确定......................................................................................... - 3 - 第3章硬件设计........................................................................................ - 4 - 3.1 控制系统......................................................................................... - 4 - 3.1.1 AT89C51单片机 ..................................................................... - 4 - 3.1.2 AT89C51的信号引脚............................................................... - 6 - 3.1.3 单片机最小系统 ....................................................................... - 7 - 3.2 感应系统......................................................................................... - 8 - 3.3 指示系统......................................................................................... - 9 - 3.4 液位控制系统................................................................................. - 10 - 3.5 电机与报警系统.............................................................................. - 11 - 第4章软件设计...................................................................................... - 14 - 4.1 延时子程序.................................................................................... - 14 - 4.2 感应系统程序................................................................................. - 14 - 4.3 指示系统程序................................................................................. - 15 - 4.4 电机和警报系统程序 ....................................................................... - 16 - 4.5 液位预选系统程序 .......................................................................... - 16 - 4.6 系统主流程图................................................................................. - 19 - 第5章系统测试...................................................................................... - 21 - 5.1 仿真测试过程................................................................................. - 22 - 5.2 仿真结果....................................................................................... - 24 -总结...................................................................................................... - 25 - 致谢...................................................................................................... - 26 - 参考文献................................................................................................... - 25 -附录1 系统仿真电路 ................................................................................ - 28 - 附录2 源程序.......................................................................................... - 29 -

相关主题