搜档网
当前位置:搜档网 › Renewable and Sustainable Energy Reviews 16 (2012) 3891– 3902

Renewable and Sustainable Energy Reviews 16 (2012) 3891– 3902

Renewable  and   Sustainable  Energy  Reviews   16 (2012) 3891–  3902
Renewable  and   Sustainable  Energy  Reviews   16 (2012) 3891–  3902

Renewable and Sustainable Energy Reviews 16 (2012) 3891–3902

Contents lists available at SciVerse ScienceDirect

Renewable and Sustainable Energy

Reviews

j o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /r s e

r

A review of concentrating solar power plants in the world and their potential use in Serbia Tomislav M.Pavlovi′c ?,Ivana S.Radonji′c,Dragana https://www.sodocs.net/doc/4e14659200.html,osavljevi′c,Lana S.Panti′c

University of Niˇs ,Faculty of Science and Mathematics,Department of Physics,Viˇs egradska 33,18000Niˇs ,Serbia

a r t i c l e

i n f o

Article history:

Received 3August 2011

Received in revised form 13March 2012Accepted 13March 2012

Available online 28 April 2012

Keywords:Solar energy

Concentrating solar power (CSP)plants Parabolic trough Solar power tower Parabolic dish Fresnel re?ector

a b s t r a c t

In the paper description and working principles of the parabolic trough power plants,solar tower power plants,parabolic dish power plants and power plants with Fresnel re?ectors in the world and their poten-tial use in Serbia are given.In addition,the examples and technical characteristics of some concentrating solar power plants in the world are given.The paper points out that ?rst CSP plant Solar One was installed in 1982in USA.Nowadays there are 29active CSP plants while 31are being constructed worldwide.Power of parabolic trough power plants is between 0.25and 354MW,solar tower power plants 1.5and 20MW,parabolic dish power plants 1.5MW and power plants with Fresnel re?ectors 1.4and 5MW.The biggest active CSP plant SEGS of 354MW is located in Mojave Desert in USA.Besides results of considerations on solar energy potential in Serbia,current solar energy activities and future solar power projects in Serbia are given.Special attention is drawn to the Serbian government initiatives and support for the use of renewable sources of energy.In the end a suggestion for the installation of concentrating solar power plant in Serbia is given.

? 2012 Elsevier Ltd. All rights reserved.

Contents 1.Introduction ..........................................................................................................................................38922.

Concentrating solar power (CSP)....................................................................................................................38922.1.Parabolic trough system ......................................................................................................................38922.2.Solar power tower ............................................................................................................................38922.3.Parabolic dish system ........................................................................................................................38932.4.Fresnel re?ectors https://www.sodocs.net/doc/4e14659200.html,parison of different types of CSP plants .................................................................................................38943.

Examples:a review ..................................................................................................................................38943.1.Parabolic trough power plants (3894)

3.1.1.Solar Energy Generating System –SEGS (USA)....................................................................................38953.1.2.Solnova Solar Power Station (Spain)...............................................................................................38963.1.3.Andasol (Spain) (3896)

3.2.Solar tower power plants (3896)

3.2.1.Solar One and Solar Two (USA).....................................................................................................38963.2.2.Planta Solar 10(Spain)..............................................................................................................38963.2.3.Planta Solar 20(Spain)..............................................................................................................38973.2.4.Sierra Sun Tower (USA).............................................................................................................38973.2.5.Jülich Solar Tower (Germany) (3897)

3.3.Parabolic dish power plants (3897)

3.3.1.Maricopa Solar (USA) (3897)

3.4.Power plants with Fresnel re?ectors (3898)

3.4.1.Kimberlina (USA)...................................................................................................................38983.4.2.Puerto Errado 1(Spain). (3898)

?Corresponding author.Tel.:+38118225483;fax:+38118533014.

E-mail address:pavlovic@pmf.ni.ac.rs (T.M.Pavlovi′c).

1364-0321/$–see front matter ? 2012 Elsevier Ltd. All rights reserved.doi:

10.1016/j.rser.2012.03.042

3892T.M.Pavlovi′c et al./Renewable and Sustainable Energy Reviews16 (2012) 3891–3902

3.4.3.Liddell Power Station(Australia) (3898)

4.Solar energy potential in Serbia (3898)

5.Current solar energy activities in Serbia (3899)

6.Future solar power projects in Serbia (3900)

7.Serbian government initiatives and support (3900)

8.Conclusions (3901)

Acknowledgments (3901)

References (3901)

1.Introduction

Global increase in the number of population and scope of wealth leads to greater energy consumption.As a result,there is a lack of resources,especially energy and drinking water[1].The global energy consumption is likely to grow faster than the population growth[2].It is estimated that the consumption of electrical energy will double in the next15–20years[1].Estimates of the world primary energy consumption are that80%of the energy supply is provided by fossil fuels[3].The global challenge for the21st century and way ahead is to?nd other means of satisfying energy needs[4].Irrespective of the ecological arguments,increase of the production of electrical energy generated by renewable sources is necessary so that countries diminish their dependence on the import and the necessity to provide for new resources.Renewable sources are in the long run a valuable alternative.Many areas in the world abound in free solar energy while in some other areas wind and other types of renewable sources of energy impose themselves as a logical choice[1].

Having in mind that fossil fuels on Earth are limited and that their usage ensues the emission of CO2that exerts nega-tive in?uence on the environment,more and more renewable sources of energy are being used worldwide with the Sun as a primary source of energy.By using adequate equipment sun irradi-ation energy can be converted into thermal and electrical energy. Depending on the temperature of the working?uid we can dif-fer between the low-temperature(T<100?C),middle-temperature (100?C

Concentrated solar power(CSP)plants denote plants that gener-ate electrical energy by means of concentrated sun irradiation.CSP plants are composed of the solar concentrators,steam turbine and electricity generator.Solar concentrators can be parabolic troughs, heliostats,parabolic dishes and Fresnel re?ectors[7].CSP plants use concentrators to focus sunlight onto a receiver in which a working ?uid is heated up to several hundred Celsius degrees[8].CSP plants use solar heat to produce steam for electricity generation[9].For the continuous functioning of the CSP plant during the night and in overcast days a thermal energy from the heat tank or gas as an additional source of energy is used[10,11].

The paper goes on to give a description of the parabolic trough system,solar power tower,parabolic dish system,Fresnel re?ec-tors,comparison and examples of different types of CSP plants, solar energy potential in Serbia,current and future solar energy activities in Serbia.

2.Concentrating solar power(CSP)

2.1.Parabolic trough system

Parabolic trough systems are composed of several linear inter-connected parabolic troughs,steam turbine and generator of the electrical energy.In the focuses of cylindric-parabolic re?ectors a vacuumed glass tube is located.Within the vacuum glass tube there is an absorption tube with the?owing working?uid.In order to achieve maximal increase in the absorption of the sun irradia-tion and reduce heat losses,absorption tube is spectrally selective colored.High absorption coef?cient of sun irradiation of the absorp-tion tube and its position in the focus of the parabolic trough, provides for ef?cient heating of the working?uid.Due to low emis-sion of the absorption tube,heat losses of the parabolic troughs are reduced to the lowest.Parabolic troughs are positioned toward the south,upright or horizontally.When set upright by means of rotational carrier they follow the sun’s position in the east–west direction.When positioned horizontally,they change the tilt so as to track the changes in the sun’s height during the day.By means of parabolic troughs it is possible to heat mineral oil up to400?C.Thus, heated working?uid is by pumps transferred from the absorption tube into the heat exchanger.Here a heat exchanger converts the heat into steam which is then sent to a turbine to produce electric-ity.Parabolic trough systems provide the best land-use factor of any solar technology[3,5,10,12–16].Schematic view of parabolic trough power plant is shown in Fig.1.

Parabolic trough power plant of14MW,SEGS I was installed by Luz International Co.in1984in South California and it was combined with gas so as to enable the plant to function contin-uously,even during reparation and in overcast weather.The linear parabolic trough technology is more advanced than all the other CSP technologies[12].

2.2.Solar power tower

Solar power tower is composed of several heliostats,tower with top situated receiver with the working?uid and the generator of the electrical energy.Heliostats are composed of several?at mir-rors that focus concentrated sun irradiation onto the receiver.Each heliostat has its own mechanism for Sun tracking along two axis. Receivers are made of ceramics or the metals stable at high temper-atures.Working?uid can be water,molten salt,liquid sodium or air.Under the exertion of steam or molten salt,steam generator of electricity converts mechanical work into electrical energy which is then given to electro-distributive grid.Exhausted steam from the turbine is condensed in a condenser,and the condensate thereafter is pumped into the boiler where it again receives heat from the solar receiver,and the cycle is repeated[3,5,10,12,14,15,18].Schematic view of solar tower power plant is shown in Fig.2.

First solar power towers used water as a working?uid.How-ever,nowadays in USA solar power towers use as a working?uid mostly molten nitrate salt that is not?ammable,is non-toxic,and is better as a storage of heat than water.In Europe solar power tow-ers use air as a working?uid.Solar power towers are cost ef?cient and pro?table if they are power of50–100MW.When compared to other CSP technologies,solar power towers require the biggest area per unit of generated energy and large quantity of water.Ef?ciency of solar power towers is in?uenced by optical characteristics of heliostat,cleanliness of the mirror,precision of the tracking system, etc.Solar power towers can operate when combined with conven-tional fossil-?red plants such as the natural gas combined-cycle and

T.M.Pavlovi′c et al./Renewable and Sustainable Energy Reviews 16 (2012) 3891–3902

3893

Fig.1.Schematic view of parabolic trough power plant [17].

coal-?red or oil-?red Rankine plants.In hybrid plants solar energy

can be used to reduce the use of fossil fuel or to increase the power input to the steam turbine [13].

2.3.Parabolic dish system

Parabolic dish system is composed of parabolic re?ectors in the form of dish,Stirling engine placed in the focus of the dish and generator of the electrical energy.During the day solar dishes are automatically directed toward the Sun and they re?ect sun irra-diation toward the Stirling engine.By means of parabolic dishes with factor of concentration ratio of around 2000,in their focus a temperature of 700?C is reached and pressures of working ?uids of 200bar [3,10,11,13,14,15].

Parabolic dishes have diameter of 5–10m and the surface of 40–120m 2.Re?ecting surface of parabolic dishes is made of alu-minum or silver on glass or plastic.The best performance was found in mirrors of silver on glass,thickness of around 1mm.In order to improve re?ection it is desirable that glass contains cer-tain percentage of iron.Mirrors of silver on glass with iron have solar re?ectance of 90–94%.Power of the individual parabolic dish

system is between 5and 50kW [12,20].Schematic view of parabolic dish with Stirling engine is shown in Fig.3.

In Stirling engine the heat of concentrated sun irradiation is converted into mechanical work.To Stirling engine a generator of electrical energy is connected.The ef?ciency of the parabolic dish system with Stirling engine is 30%[12,13,20].

2.4.Fresnel re?ectors

Solar thermal power plants with Fresnel re?ectors are com-posed of ?at or slightly curved Fresnel re?ectors,receivers of the concentrated sun irradiation,cylindrical-parabolic re?ector,steam turbine and generator of the electrical energy.During the day Fresnel re?ectors are automatically directed toward the Sun and they re?ect sun irradiation toward cylindrical-parabolic re?ec-tor in whose focus there is a receiver in the shape of long tubes with running water.Under the in?uence of the re?ected sun irra-diation water in receiving tubes evaporates and under pressure runs into the steam turbine that starts generator of the electri-cal energy [3,10,13–15,22,23].Schematic view of CSP plant with Fresnel re?ectors is shown in Fig.4

.

Fig.2.Schematic view of solar tower power plant [19].

3894T.M.Pavlovi′c et al./Renewable and Sustainable Energy Reviews 16 (2012) 3891–

3902

Fig.3.Schematic view of parabolic dish with Stirling engine [21].

Table 1

Types of installed and CSP plants in construction in the world [26].

CSP plants

Active

In construction

With parabolic troughs 2027With solar tower

52With parabolic dishes 11With Fresnel re?ectors 31Total

29

31

Fresnel re?ectors are composed of a large number of ?at mirrors that are cheaper than parabolic mirrors.On the same surface one can place larger number of Fresnel re?ectors than parabolic mirrors.Fresnel re?ectors can be used in high or small capacity CSP plants with Fresnel re?ectors [10].

https://www.sodocs.net/doc/4e14659200.html,parison of different types of CSP plants

CSP plants are one of several renewable energy technologies with signi?cant potential to meet a part of future energy demand [25].CSP technology has the capacity to provide for about 7%of the total electricity needs projected for the world by 2030and 25%by 2050(considering a high-energy-saving,high-energy-ef?ciency scenario)[3].Up to date a large number of CSP plants were installed out of which 29are active and 31are being constructed.In Table 1data on types of the installed and CSP plants that are still being

constructed worldwide are given [26].The CSP market is expected to keep growing at a signi?cant pace [9].

In Table 2literature data referring to some characteristics and prices of active CSP plants in the world are given [11,13].

Land area needed to install CSP plant depends on the type of con-centrator that CSP plant uses.To install solar tower power plant the biggest area is needed.In case parabolic trough power plant does not have heat storage,a land area of around 25m 2/kW is needed for its installation.When solar tower power plant does not have heat storage around 45m 2/kW is needed for its installation [27].

3.Examples:a review

3.1.Parabolic trough power plants

Based on the data found on [26]nowadays there are 20active parabolic trough power plants worldwide:11in Spain,?ve in USA,two in Iran,one in Italy and one in Morocco.The same site data claim that worldwide 27parabolic trough power plants are being constructed:22in Spain,two in USA and one in India,one in Egypt,one in Algeria (see Tables 3and 4).

In Spain there are active parabolic trough power plants:Sol-nova of 150MW,Andasol Solar Power Station of 100MW,Extresol Solar Power Station of 100MW,Ibersol Ciudad Real of 50MW,Alvarado I of 50MW,La Florida of 50MW,Majadas de Tiétar of 50MW,La Dehesa of 50MW,Palma del Rio 2of 50MW,

Palma

Fig.4.Schematic view of CSP plant with Fresnel re?ectors [24].

T.M.Pavlovi′c et al./Renewable and Sustainable Energy Reviews16 (2012) 3891–39023895 Table2

Some characteristics and prices of active CSP plants in the world[11,13].

Type of CSP plant Plant size(MW)Thermal

ef?ciency(%)Demonstrated annual solar

ef?ciency(%)

Land use

(m2/MW ha)

Basic plant cost

($/W)

Speci?c power

(W/m2)

Capital cost

($/W)

Parabolic trough10–20030–4010–156–8 3.22300 2.9–3.22 Power tower10–15030–408–108–12 3.62300 2.4–3.62 Dish-Stirling 2.5–10030–4016–188–12 2.65200 2.65–2.9

del Rio1of50MW and Manchasol-1of50MW.In USA following parabolic trough power plants are active:Solar Energy Generating Systems of354MW,Martin Next Generation Solar Energy Center of 75MW,Nevada Solar One of64MW,Keahole Solar Power of2MW and Saguaro Solar Power Station of1MW.In Iran currently two parabolic trough power plants are installed:Yazd integrated solar combined cycle power station of17MW and Shiraz solar power plant of0.25MW.In Morocco one plant is active Beni Mathar Plant of20MW,and in Italy Archimede solar power plant of5MW[26].

3.1.1.Solar Energy Generating System–SEGS(USA)

CSP plant SEGS(Solar Energy Generating Systems)of354MW is located in USA,in the Mojave Desert,in San Bernardino county on three locations:Daggett,Kramer Junction and Harper Lake.It is composed of nine CSP plants and is the largest solar energy gener-ating facility in the world[10,28].

CSP plant SEGS has936,384mirrors that are placed on the sur-face of6.5km2.If the mirrors were lined up they would take up the length of370km.Parabolic mirrors with re?ection of94%are made of glass in the shape of half tubes.During the day mirrors are automatically directed toward the Sun.Sun irradiation is re?ected from the mirrors and is directed to the central tube containing syn-thetic oil which is heated to400?C.Re?ected irradiation focused to the central tube is from71to80times more intensive than the incident sun irradiation.Synthetic oil transmits its heat onto the water that evaporates and starts the steam turbine with Rankine cycle.In CSP plant SEGS each year on average3000mirrors are changed.Most frequent cause of mirror breaking is wind.CSP plant uses automatic mechanism for periodic mirror cleaning.CSP plant SEGS provides electrical energy for232,500households.To gen-erate electrical energy it uses sun irradiation and natural gas.By means of sun irradiation90%of electrical energy is generated.Nat-ural gas is used only when solar energy is insuf?cient to meet the demand for electrical energy[10,26].

CSP plant SEGS uses three generations of parabolic trough con-centrators:LS-1,LS-2and LS-3of the Israely-American company Luz International Ltd.Luz system concentrators denote standards to compare for all the other concentrators.These concentrators have proven reliability and are suitable for the use in commercial CSP plants[6,29].Company Luz manufactured in1984parabolic trough concentrator LS-1,in1985parabolic trough concentrator LS-2,and in1989parabolic trough concentrator LS-3.In order to increase electricity generation in CSP plants and reach higher?uid outlet temperatures,bigger concentrators with higher concentration ratio were aimed at.To decrease the manufacturing costs company Luz made a concentrator LS-3,bigger than the previous https://www.sodocs.net/doc/4e14659200.html,e of LS-3concentrator did not lower the manufacturing costs as expected. LS-3concentrator reaches the same maximal temperature(390?C) as LS-2,but LS-3is not easy to install and maintain as LS-2is[29,30]. Receiving tube of Luz concentrator is of spectrally colored stainless steel.Receiving tube is situated in vacuum glass tube with low con-tent of iron(0.015%).In order to increase the transmission of sun irradiation glass tube has antire?ection coating.Luz concentrators are made of silver glass thickness of4mm,they are protected with ?ve layers,one copper and four varnish,and they have a low con-tent of iron.Glass gets its parabolic shape by heating in precise parabolic molds and special furnaces.Selective layer used in LS-1 and LS-2concentrators is black chrome,while in LS-3concentrator a new ceramic-metal layer thickness of0.3?m is used[6].

Integral component of the CSP plant SEGS I is a heat tank enabling the plant to function continuously3h after the sun set.CSP plant SEGS I uses as a heat transfer?uid and heat storage material mineral oil,Caloria,specially manufactured for this purpose.Main advantage of this technology for heat storage is the fact that the same?uid is used as a heat transfer?uid and as a material for heat storage.Main drawback is that substantial quantity of oil is needed for the storage in heat tanks which increases the manufacturing and maintenance costs of this thermal power plant.Caloria oil took

Table3

Indicative land area requirements for different types of active CSP plants[27].

CSP plant Type of CSP plant Capacity(MW)Thermal storage(h)Land area(m2)Speci?c land area

(m2/kW)

SEGS Parabolic trough technology354–6,400,00018

Andasol Parabolic trough technology507.52,000,00040

Solnova Parabolic trough technology50–1,200,00024

PS10Solar tower technology111600,00055

PS20Solar tower technology20–900,00045

Table4

CSP plant SEGS of354MW in Mojave Desert,USA[10].

Plant Year built Location Net turbine capacity(MW)Field area(m2)Oil temperature(?C)

SEGS I1984Daggett1482,960307

SEGS II1985Daggett30165,376316

SEGS III1986Kramer Jct.30230,300349

SEGS IV1986Kramer Jct.30230,300349

SEGS V1987Kramer Jct.30233,120349

SEGS VI1988Kramer Jct.30188,000391

SEGS VII1988Kramer Jct.30194,280391

SEGS VIII1989Harper Lake80464,340391

SEGS IX1990Harper Lake80483,960

3896T.M.Pavlovi′c et al./Renewable and Sustainable Energy Reviews16 (2012) 3891–3902

Table5

Technical characteristics of CSP plant Solnova[28].

Name Solnova1,Solnova3and Solnova4

for each

Location Sanlúcar la Mayor,Spain

Lat/long location37?26 30,97 North6?14 59,98

West

Capacity50MW

Land area115ha

Solar-?eld aperture area300,000m2

#of Solar Collector Assemblies(SCAs)360

#of SCAs per loop4

SCA aperture area833m2

SCA length150m

#of Heat Collector Elements(HCEs)12,960

Heat-transfer?uid type Thermal oil

Solar-?eld outlet temperature393?C

Power cycle pressure100bar

42%of total costs invested in CSP plant SEGS I.This is exactly the reason why other SEGS CSP plants do not use this oil[6,19].

3.1.2.Solnova Solar Power Station(Spain)

CSP plant Solnova Solar Power Station of150MW is situated in Sanlúcar la Mayor,in Spain.It is composed of?ve separate units out of which three are active:Solnova1of50MW,Solnova3of 50MW and Solnova4of50MW.This CSP plant can also use natural gas as a secondary fuel for the generation of electrical energy[26]. CSP plant Solnova1uses parabolic troughs type ET-150,lined up in 90rows and oriented toward north–south.Concentrators ET-150 are around150m long and their aperture size is around820m2. Total re?ecting surface of these concentrators is260,000m2,and land surface occupied by Solnova1is around1,200,000m2[6,27]. Technical characteristics of CSP plant Solnova are given in Table5.

This power plant does not have heat tank and uses as heat trans-fer?uid synthetic oil that can be heated up to400?C.Global annual ef?ciency of this CSP plant is19%[6].

3.1.3.Andasol(Spain)

CSP plant Andasol of100MW is the?rst commercial parabolic trough power plant in Europe and the?rst in the world with heat storage.CSP plant Andasol is composed of two CSP plants Andasol1 and Andasol2,each power of50MW.These thermal power plants are located near town Guadix,in Granada,in Spain[26,28].

Because of the high altitude(1100m)and the semi-arid climate the site has exceptionally high annual direct insolation.Each collec-tor has a surface of51ha;it occupies about200ha of land.CSP plant Andasol uses parabolic trough concentrators type SKAL-ET.SKAL-ET concentrators SKAL-ET represent the third generation of Euro Trough concentrators.Solar?eld of each Andasol thermal power plant contains624concentrators with total re?ecting surface of over510,120m2and is located on the surface of2,000,000m2 [6,26,27,31].Technical characteristics of CSP plant Andasol are given in Table6.

CSP plant Andasol uses as heat transfer?uid superheated steam and as a heat storage media molten salts of sodium and potassium nitrate.Heat storage is composed of cold tank temperature of291?C and hot tank temperature of384?C.In the heat tank of the CSP plant Andasol there is molten salts of40%sodium nitrate(NaNO3) and60%potassium nitrate(KNO3).Heat storage has heat capacity of1010MW h of heat energy.Heat from the heat tank is used for the generation of electrical energy after the sunset,in the overcast weather,etc.Heat tank enables CSP plant to function around7.5h after the sunset and to almost double the working hours of the plant during the year.Average annual ef?ciency of Andasol CSP plant is 14.7%.During the year up to15%of electrical energy is generated by Andasol1CSP plant using gas[19,31].Table6

Technical characteristics of CSP plant Andasol[28].

Name Andasol1,Andasol2

Location Guadix,Granada,Spain

Lat/long location37?13 50,83 North3?4 14,08 West Capacity50MW

Land area200ha

Solar-?eld aperture area510,120m2

#of Solar Collector Assemblies(SCAs)624

#of SCAs per loop4

SCA aperture area817m2

SCA length144m

#of modules per SCA12

#of Heat Collector Elements(HCEs)11,232

Heat-transfer?uid type Diphenyl/biphenyl oxide

Solar-?eld inlet temperature293?C

Solar-?eld outlet temperature393?C

Power cycle pressure100bar

Storage type2-tank indirect

Storage capacity7.5h

Thermal storage description28,500tons of molten salt.60%sodium

nitrate,40%potassium nitrate.Heat

capacity1010MW h.Tanks are14m

high and36m in diameter.

3.2.Solar tower power plants

Based on the data found on[26]nowadays there are5active solar tower power plants worldwide:three in Spain,one in USA,one in Germany.The same site data claim that worldwide2solar tower power plants are being constructed:one in USA and one in France. Spain has active CSP plants Planta Solar20of20MW,Gemasolar of17MW and Planta Solar10of11MW,in USA active solar tower power plants are Sierra Sun Tower of5MW and in Germany Jülich Solar Tower of1.5MW[26].

3.2.1.Solar One and Solar Two(USA)

Near the town Barstow in California in1982Southern California Edison Co.constructed and installed?rst CSP tower plant,Solar One.CSP plant Solar One of10MW was in function from1982 to1986.Solar One contained1818heliostats with total surface of 72,650m2which focused sun irradiation onto the receiver located on the top of the tower height of91.43m.Focused sun irradia-tion heated water in the receiver up to620?C under pressure of 1,339,286Pa.During cloudy days and over night this CSP plant used heat from the heat tank made of6800tons of granular stone and sand located below the plant in cylindric steel tank.As a heat transfer?uid908,402l of special hot stable oil was used.CSP plant was completely run automatically and was monitored by computer system[5,32].

Solar One was in1995transformed into CSP plant Solar Two by adding new heliostats and it functioned until1999.Solar Two used the tower of Solar One while heliostat?eld had a surface of 82,750m2.Solar Two used as heat storage medium molten salt of 60%sodium nitrate and40%potassium nitrate.Thanks to this fact Solar Two could function even3h after the sunset.CSP plant Solar Two was pulled down and removed from its site on25November in2009[32].

3.2.2.Planta Solar10(Spain)

CSP plant Planta Solar10of11MW installed in2007,is located near Seville,in Andaluzia(Spain).Technical characteristics of CSP plant PS10are given in Table7.

Heliostat?eld of this plant is composed of624heliostats called Sanlúcar120,of the company Abengoa Solar,each surface of 120m2.The tower is115meters high and has40?oors.On the top of the tower there is a steam turbine that starts generator for the production of electrical energy.CSP plant PS10can store sat-urated steam in a ceramic alumina bed.When CSP plant PS10is

T.M.Pavlovi′c et al./Renewable and Sustainable Energy Reviews16 (2012) 3891–39023897

Table7

Technical characteristics of CSP plant PS10[28].

Name Planta Solar10(PS10)

Location Sanlúcar la Mayor,Spain

Lat/long location37?26 30,97 North,6?14 59,98 West Capacity11MW

Land area55ha

#of heliostats624

Heliostat aperture area120m2

Heliostat manufacturer(model)Abengoa(Solucar120)

Tower height115m

Receiver type Cavity

Heat-transfer?uid type Water

Receiver outlet temp250–300?C

Power cycle pressure45bar

Storage capacity1h

fully overload part of the steam produced on250?C and40bar is used to?ll the heat tank[19,26,28].CSP plant PS10has the aver-age ef?ciency of the conversion of solar energy into electric during the year around17.5%,and the ef?ciency of heat storage is around 92.4%.When there is no sun CSP plant runs on gas[19].

3.2.3.Planta Solar20(Spain)

CSP plant Planta Solar20of20MW is located near Seville,in Andaluzia.Technical characteristics of CSP plant PS20are given in Table8.

Heliostat?eld of this plant is composed of1255heliostats,each surface of120m2.The tower is165m high.On the top of the tower there is a steam turbine that starts generator for the production of electrical energy.Construction of the CSP plant PS20was begun in 2006and it was installed in2009.When compared to PS10,PS20 plant has bigger ef?ciency,better monitoring system and better thermal energy storage[26].Solar tower power plants PS10and PS20near Seville,in Andaluzia(Spain)are shown in Fig.5.

3.2.

4.Sierra Sun Tower(USA)

CSP plant Sierra Sun Tower of5MW was installed in2009in Lancaster,CA(USA).As of spring2010Sierra Sun Tower is the only commercial CSP tower facility in North America[26].Technical characteristics of CSP plant Sierra Sun Tower are given in Table9.

CSP plant Sierra Sun Tower takes up land area of8ha,has two towers and24,360?at mirrors which focus sun irradiation to the towers.Construction of Sierra Sun Tower took12months and engaged300workers.The plant has21full time employees.Sierra Sun Tower provides electrical energy for4000households[26]. 3.2.5.Jülich Solar Tower(Germany)

CSP plant Jülich Solar Tower of1.5MW,started running in2009, is located in Jülich in the west part of Germany.Technical charac-teristics of CSP plant Jülich Solar Tower are given in Table10. Table8

Technical characteristics of CSP plant PS20[28].

Name Planta Solar20(PS20)

Location Sanlúcar la Mayor,Spain

Lat/long location37?26 30,97 North,6?14 59,98 West Capacity20MW

Land area80ha

#of heliostats1255

Heliostat aperture area120m2

Heliostat manufacturer(model)Abengoa(Solucar120)

Tower height165m

Receiver type Cavity

Heat-transfer?uid type Water

Receiver outlet temp250–300?C

Power cycle pressure45bar

Storage capacity1

h Fig.5.Solar tower power plants PS10and PS20near Seville,in Andaluzia(Spain) [26].

On17ha there are2150movable mirrors each surface of8m2. Receiver is located on the tower,60m high.Concentrated sun irra-diation heats the air in receiver up to680?C.Hot air is used to heat the water up to485?C and to generate steam under pressure of 27bar.This plant provides350households with electrical energy [33].

3.3.Parabolic dish power plants

Based on the data found on[26]nowadays there is only one active parabolic dish power plant called Maricopa Solar of1.5MW, in USA.The same site data claim that worldwide only one parabolic dish power plant is being constructed in Spain.

3.3.1.Maricopa Solar(USA)

The?rst commercial parabolic dish power plant is in USA,Mari-copa Solar of1.5MW,near the town of Peoria in Arizona.Maricopa Solar is composed of60solar dishes,each having Stirling engine, and generator of electrical energy power of25kW.This CSP plant uses silverplated glass mirrors with solar re?ectance94%and Stir-ling engine with four cylinders and hydrogen as a working?uid

Table9

Technical characteristics of CSP plant Sierra Sun Tower[28].

Name Sierra Sun Tower

Location Lancaster,CA

Lat/long location34?46 North,118?8 West

Capacity5MW

#of heliostats24,360

Heliostat aperture area1136m2

Heliostat manufacturer eSolar

Tower height55m

Receiver type Dual-cavity receiver and tubular external

receiver

Heat-transfer?uid type Water

Receiver inlet temp218?C

Receiver outlet temp440?C

Table10

Technical characteristics of CSP plant Jülich Solar Tower[33,34].

Name Jülich Solar Tower

Location Jülich,Germany

Lat/long location50?55 0 North,6?23 58 East Capacity 1.5MW

Land area17ha

#of heliostats2150

Heliostat aperture area8m2

Tower height60m

3898T.M.Pavlovi′c et al./Renewable and Sustainable Energy Reviews16 (2012) 3891–3902

Table11

Technical characteristics of CSP plant Maricopa Solar[28].

Name Maricopa Solar

Location Peoria,AZ

Lat/long location33?33 31,0 North,112?13 7,0 West

Capacity 1.5MW

Land area15acres

#of dishes60

Dish description Each SunCatcher produces25kW of power Dish manufacturer(model)Stirling Energy Systems(SES)(SunCatcher TM) [35].Technical characteristics of CSP plant Maricopa Solar are given in Table11.

Concentrated sun irradiation heats hydrogen to750?C.Air is used to cool Stirling engine.CSP plant Maricopa Solar is used to demonstrate possibilities of the generation of the electrical energy and for the commercial production of electrical energy[36,37].

3.4.Power plants with Fresnel re?ectors

Based on the data found on[26]nowadays there are3active power plants with Fresnel re?ectors in USA,Spain and Australia.In USA active CSP plant is Kimberlina of5MW,in Spain it is Puerto Errado1of1.4MW and in Australia it is Liddell Power Station of 2MW.The same site data claim that worldwide one power plant with Fresnel re?ectors is being constructed in Spain.

3.4.1.Kimberlina(USA)

The?rst Compact Linear Fresnel Re?ectors(CLFR)project in North America,Kimberlina of5MW,is located in Bakers?eld in Cal-ifornia.Technical characteristics of CSP plant Kimberlina are given in Table12.

In this CSP plant thirteen narrow,?at Fresnel re?ectors make up one group.Each single re?ector tracks and focuses sun irradiation toward the tubes located above the re?ectors.Tubes contain water that evaporates under the in?uence of the concentrated sun irra-diation.Overheated steam,at the temperature of400?C,activates turbine and the generator of electrical energy as well[26].

3.4.2.Puerto Errado1(Spain)

Power plant with Fresnel re?ectors Puerto Errado1of1.4MW is located in Calasparra in Spain.Technical characteristics of CSP plant Puerto Errado1are given in Table13.

This CSP plant was put into function in April,2009.On7ha there are two rows of Fresnel re?ectors,each806m in length.Steam is produced by concentrating a direct sun irradiation toward the linear receiver which is7.40m above the ground[22,26,28].

3.4.3.Liddell Power Station(Australia)

In Lake Liddell,in New South Wales,in Australia,coal?red ther-mal power plant Liddell Power Station was upgraded with CSP plant

Table12

Technical characteristics of CSP plant Kimberlina[28].

Name Kimberlina Solar Thermal Power Plant Location Bakers?eld,CA

Lat/long location35?34 0,0 North,119?11 39,1 West Capacity5MW

Land area12acres

#of lines3

Line length385m

Mirror width in line2m

#of mirrors across line10

Collector manufacturer Ausra

Receiver type Non-evacuated

Receiver length385m

Heat-transfer?uid type Water

Power cycle pressure40bar Table13

Technical characteristics of CSP plant Puerto Errado1[28].

Name Puerto Errado1Thermosolar Power Plant(PE1) Location Calasparra,Spain

Lat/long location38?16 42,28 North,1?36 1,01 West

Capacity 1.4MW

Land area7ha

#of lines2

Line length806m

Mirror width in line16m

Collector manufacturer(model)Novatec Solar Espa?na S.L.(Nova-1)

Heat-transfer?uid type Water

Solar-?eld inlet temp140?C

Solar-?eld outlet temp270?C

Power cycle pressure55bar

with Fresnel re?ectors.Thus a consumption of coal for the produc-tion of electrical energy and the emission of4000tons of carbon dioxide annually was reduced[26,38].Technical characteristics of CSP plant Liddell Power Station are given in Table14.

This CSP plant has500Fresnel re?ectors dimensions of 12m×2m on the area of18,000m2.Sun irradiation that is re?ected from the Fresnel re?ectors heats and evaporates water in tubes located in the focus of the Fresnel re?ectors.Steam activates the turbine and the turbine activates the generator of electrical energy [38].

4.Solar energy potential in Serbia

Serbia is located between41?46 40 and46?11 25 of the north latitude and18?06 and23?01 east longitude.Serbia belongs to the continental climate regions that can be divided into the continen-tal climate in the Panonic lowlands,moderate-continental climate in lower parts of the mountain region and the mountain climate on high mountains.The biggest in?uence on the climate in Serbia is exerted by the air masses formed over Siberia,Arctic,Atlantic Ocean,African land and the Mediterranean.Over these areas a?eld of high air pressure is formed.On the territory of Serbia often cold air from the Siberia penetrates but rarely from the Artics.

North part of Serbia comprises a vast Panonic area which is wide open and exposed to the climate in?uences coming from the north and the east.The Panonic lowlands show continental climate that encompasses Vojvodina and its edge until800m of height.Con-tinental climate is characterized by extremely hot summers with insuf?cient humidity.Winters are long and harsh and autumns and springs are mild and short.Mean annual air temperatures in the Panonic area are increasing from the west toward the east and from the north to the south.

A moderate-continental climate is dominant in the mountain range of Serbia of800–1400m altitude.It is characterized by mod-erate hot summers,autumns longer and hotter than springs and cold winters.A mountain climate reins in the range over1400m of latitude.On the territory of Serbia it is most present on the mountainsˇSar-planina,Prokletije,Kopaonik,Stara planina,etc.This climate type is characterized by long,cold and snowy winters and short and chilly summers.Cloudiness in the Mountain region is from55%to60%annually.Sun shining in the Mountain region of Table14

Technical characteristics of CSP plant Liddell Power Station[26,39].

Name Liddell Power Station

Location Lake Liddell,Australia

Lat/long location32?22 26 S,150?58 40 E

#of lines4

Line length403.2m

Collector manufacturer(model)Novatec Solar Espa?na S.L.(Nova-1) Operating temperature270?C

Operating pressure55bar

T.M.Pavlovi′c et al./Renewable and Sustainable Energy Reviews16 (2012) 3891–3902

3899

Fig.6.Average daily global solar irradiation on horizontal plane in July in Serbia [41].

Serbia is1500–2000h annually.Such a small span of sunshine is a consequence of high cloudiness,especially in winter time.Sunshine span is the smallest on the mountains.On Tara sun shines1700h annually,or4.9h a day.On Kopaonik annual sunshine is1741h,or 5h a day.Precipitation in the Mountain region is high.On average Mountain region has1700mm of precipitation annually[40].

Results of long term meteorological measurements have shown that natural potentials of climatic resources of Serbia are very good. In Serbia the energy potential of the sun irradiation and poten-tial of biomass is around30%higher than in the Middle Europe (average annual sun irradiation energy in Europe is1096kW h/m2 year,and in Serbia it is around1400kW h/m2year).Mean values for January are in the range from1.1kW h/m2in the north of the country,to1.7kW h/m2in the south.Map for July indicates the least energy in the west part of the country and maximal energy in the south-east(Fig.6).Such spatial distribution is caused by the in?uence of daily cloudiness,which is most pronounced in the mountainous regions.Mean values for July are in the range from 5.9to6.6kW h/m2[41,42].Average daily global solar irradiation on horizontal plane in July,in Serbia is shown in Fig.6.Annual aver-age of daily energy of global solar irradiation on horizontal plane in Serbia is shown in Fig.7[42].

The yearly mean map appears like a compromise between the two?rst.Mean values for the year are in the range from3.3to 4.3kW h/m2.

Comparison of solar irradiation on horizontal,vertical and optimally inclined plane,optimal inclination and ratio of diffuse to global solar irradiation for some cities where CSP plants are installed in the world and some cities in Serbia obtained by pro-grams in Refs.[34,43],are given in Table15

.Fig.7.Annual average of daily energy of global solar irradiation on horizontal plane in Serbia[41].

Based on data in Table15it can be seen that in all given cities in Serbia the intensity of sun irradiation is higher than the intensity of sun irradiation in Jülich(Germany).Besides,in Serbia,ratio of diffuse to global sun irradiation is by17%smaller than the ratio of diffuse to global sun irradiation in Jülich.

5.Current solar energy activities in Serbia

Renewable energy policy in the Republic of Serbia and the anal-ysis of the renewable energy production sector in Serbia are given in the paper[44,45].Opportunities and challenges for a sustain-able energy policy in SE Europe:SE European Energy Community Treaty and perspectives of sustainable development in countries of Southeastern Europe are given in the paper[46,47].Kyoto Protocol implementation in Serbia as precognition of sustainable energetic and economic development is given in the paper[48].Energy ef?-ciency in Serbia-research and development activity is presented in the paper[49].National energy ef?ciency program in Serbia–strategy and priorities for the future is given in the paper[50]. Comparison and assessment of electricity generation capacity for different types of PV solar plants of1MW in Soko Banja,Serbia are given in the paper[51].Perspectives and assessments of solar PV power engineering in the Republic of Serbia are given in the paper [52].

Research in the area of renewable sources of energy has solid foundations in the National program of energy ef?ciency of the Ministry of Science in Serbia.However,application of attained technological knowledge is legging off,especially the realization of demo-projects due to the lack of incentive measures.

3900T.M.Pavlovi′c et al./Renewable and Sustainable Energy Reviews16 (2012) 3891–3902

Table15

Comparison of solar irradiation on horizontal,vertical and optimally inclined plane,optimal inclination and ratio of diffuse to global solar irradiation for some cities where CSP plants are installed in the world and some cities in Serbia obtained by programs in Refs.[34,43].

Location Solar irradiation on

horizontal plane

(W h/m2/year)Solar irradiation on

vertical plane

(W h/m2/year)

Solar irradiation on

optimally inclined plane

(W h/m2/year)

Optimal inclination

(?)

Ratio of diffuse to

global solar

irradiation

Reference

Bakers?eld,USA53113623587955[43] Peoria,USA52813696590056[43] Sanlúcar la Mayor,Spain474033905380330.37[34] Guadix,Spain475034005390330.38[34] Calasparra,Spain465034505350340.37[34] Jülich,Germany263020502960340.59[34] Newcastle,Australia45903154503157[43] Subotica,Serbia343026203910340.49[34] Beograd,Serbia362027504130350.47[34] Kragujevac,Serbia371027904210340.47[34] Niˇs,Serbia370026904140330.48[34] Novi Pazar,Serbia389029904470350.46[34]

Serbia manufactures?at solar collectors with water and the equipment for thermal conversion of sun irradiation.In Serbia,for water heating one uses?at,and rarely,vacuum collectors with forced water circulation.Apart from locally manufactured collec-tors at the market of Serbia one can also?nd?at collectors of foreign manufacturers.Serbia does not manufacture solar cells.In Serbia nowadays there are four PV solar power plants of3–5kW p installed on the roofs of schools.Very rare are the cases of the application of solar cells in private households.

Number of installed facilities for the exploitation of renewable sources of energy in Serbia and their current annual energy pro-duction is insigni?cant.Capital invested in up-to-date installed facilities is of small value and is mainly domestic one.From the point of view of the national level?nancial results,achieved by running these facilities,are humble.

Serbia nowadays almost does not have manufacturers and main-tenance service for the equipment used in the exploitation of renewable sources of energy.However,in the area of the exploita-tion of water energy,biomass and sun irradiation energy for heating purposes there are viable possibilities to include domestic equip-ment manufacturers.

Most signi?cant barriers for the increased use of renewable sources of energy in Serbia are:

-Lack of clearly de?ned obligations of the operator of the trans-mitting,i.e.distribution system to give priority to connecting manufacturers using renewable sources of energy to the grid and giving priority to renewable sources of energy in distribution.

-Lack of large number of equipment standards and procedures for the exploitation of renewable sources of energy.

-Insuf?cient number of legislative acts on designing,manufactur-ing,monitoring and installation of the devices that use renewable sources of energy.

-Insuf?cient number of accredited test laboratories for the facili-ties using renewable sources of energy.

-Non-economic prices of electrical energy and disparity of the prices of energy related products.

Signi?cant administrative barrier in the course of renewable sources of energy fueled power plant construction is the Law on public companies and public interest activities.This law equates the procedure for giving permission for installation of power plants, fueled by renewable sources of energy,to the permission given to the plants whose power is bigger than10MW,which in turn exerts negative in?uence on the motivation of the potential investors [53,54].6.Future solar power projects in Serbia

The main aims of Serbia in the area of renewable sources of energy are:more ef?cient use of one’s own potential in energy production;reduction of greenhouse gas emission;decrease in fos-sil fuels import;development of the local industry and new job openings.

The aim of Serbia up to the end of2012is to increase the partici-pation rate of electrical energy generated by the renewable sources of energy by2.2%,compared to the total national consumption of electrical energy in2007.Realization of the set goal will be achieved by the increase in the production of electrical energy generated by renewable sources of energy in the scope of739.1million kW h in 2012,which is enough to provide for the annual needs for energy of179,000households,having average monthly consumption of 350kW h of electrical energy.Detailed survey and dynamics of the realization of target participation of renewable sources of energy generated electrical energy in Serbia is given in Table16.

In2011the installation of the?rst PV power plant of10MW was begun inˇCajetina,on the mountain Zlatibor,in Serbia.Beside this plant several other PV plants are planned to be installed in Serbia.

Up to now Serbia did not install a single CSP plant.Legislative of Serbia does not even mention CSP plant as a source of electrical energy.

Due to a favorable climatic and geographic conditions in Serbia it is possible to install CSP power plants.Having in mind that for the installation of solar tower power plants the largest area is needed, such plants are best to install in Vojvodina.Other parts of Serbia are suitable for the installation of parabolic trough power plants, parabolic dish power plants and power plants with Fresnel re?ec-tors.Parabolic dishes can operate independently of power grids in remote sunny locations so they are appropriate for providing power to people living in isolated villages.

7.Serbian government initiatives and support

Energy policy de?ned by the Law on energy among other things envisages taking steps to create conditions for stimulation of the use of renewable sources of energy.Congruent with this initiative the Law on energy introduces categories of subsidized energy pro-ducers who in their production process use renewable sources of energy,and who are entitled to subsidies,tax,customs and other exemptions in the line with Law and other regulations on taxes, customs and other subsidies and incentives.

Since production of electrical energy from renewable sources of energy is more expensive than the fossil fuels energy pro-duction some incentive systems are introduced,that is?nancial

T.M.Pavlovi′c et al./Renewable and Sustainable Energy Reviews16 (2012) 3891–39023901 Table16

Detailed survey and dynamics of the realization of target participation of renewable sources of energy generated electrical energy in Serbia[54].

200720082009201020112012

Hydro power plants over10MW MWe2835.002835.002835.002835.002835.002835.00 GWh9974.0010,032.0010,368.0010,368.0010,368.0010,368.00

Hydro power plants up to10MW MWe00 1.07.020.045.0 GWh00 3.927.378.0175.4

Wind energy MWe0000045.0

GWh00000114.7 Solar energy MWe000 5.0 5.0 5.0

GWh00010.510.510.5 Biomass MWe00000 2.0

GWh0000012.0 Biogas MWe00000 5.0

GWh0000032.5 Total production GWh9974.010,032.010,371.910,405.810,456.510,713.1 Total consumption GWh32,946.032,946.032,946.032,946.032,946.032,946.0 Participation of RES in el.energy consumption30.3%30.4%31.5%31.6%31.7%32.5%

and non-?nancial incentive measures to invest into facilities using renewable sources of energy.

Most used?nancial stimulating measure is the increased price of purchased energy produced by renewable sources of energy dur-ing the year.Other model deploys application of de?ned purchase prices for the energy produced by renewable sources of energy,so called Feed-in tariff.Most European countries apply the Feed-in tariff model.

One of the signi?cant characteristics of the stimulating mea-sures to increase the use of renewable sources of energy is selective stimulation of the development of chosen technologies.Besides ?nancing research–development projects it is needed to?nance installation of demonstration projects.Basic criteria for the selec-tion of renewable sources of energy and technologies that are to be stimulated are available energy potential,ability of its own econ-omy and degree of the international development of technologies and the market[54].

8.Conclusions

In the light of all afore said one can conclude that each day more and more CSP plants are being used for electricity genera-tion worldwide.CSP plants are composed of solar concentrators, receiver,steam turbine and electric generator.Depending on the type of concentrator there are parabolic trough power plants,solar tower power plants,parabolic dish power plants and power plants with Fresnel re?ectors.First CSP plant Solar One was installed in 1982,in USA.Nowadays there are29active CSP plants while31 are being constructed worldwide.Power of parabolic trough power plants is between0.25and354MW,solar tower power plants1.5 and20MW,parabolic dish power plants1.5MW and power plants with Fresnel re?ectors1.4and5MW.The biggest active CSP plant SEGS of354MW is located in the Mojave Desert in USA.

Serbia has favorable climatic conditions for the construction of CSP plants.Annual average of daily energy of global solar irradia-tion on the horizontal plane in Serbia is less than3.4kW h/m2in the north and more than4.2kW h/m2in the south part of Serbia. Average daily global solar irradiation on the horizontal plane in July is less than6kW h/m2in the north and more than6.5kW h/m2in the south part of Serbia.

In Serbia sun irradiation is mainly utilized for the heating of sanitary water by?at collectors.Very rare are the cases of the use of solar cells to generate electrical energy.In Serbia?rst PV solar plant of10MW is being installed inˇCajetina near Zlatibor.There are also plans to construct several more PV solar plants in https://www.sodocs.net/doc/4e14659200.html,w on Energy from2004and2011has brought Serbia solid legislative grounds to use more sun irradiation.In2009Act of the government determined the purchase price of electrical energy generated by PV plants.Public and expert audience in Serbia is hardly informed of the possibilities of electricity generation by CSP plants.Due to this fact legislative regulations do not mention utilization of renewable sources of energy by CSP plants and none of them has been yet installed.Due to favorable climatic and geographic conditions in Serbia it is possible to install CSP tower plants in Vojvodina and in other parts of Serbia parabolic trough power plants,parabolic dish power plants and power plants with Fresnel re?ectors.Parabolic dishes can operate independently of power grids in remote sunny locations so they are appropriate for providing power to people liv-ing in isolated villages.More informed population on the positive experiences of the use of CSP plants in the world to generate electri-cal energy would contribute to a greater extent to the construction and use of CSP plants in Serbia.

Acknowledgments

This paper was done with the?nancial support of the project TR33009approved by the Ministry of Science and Technological Development of the Republic of Serbia.

References

[1]Markovi′c D,ˇCeperkovi′c B,Vlajˇc i′c A,Ressl S.The white book of the electric

power industry of Serbia.Belgrade:PE Electric Power Industry of Serbia;2011.

[2]Hasan MH,Mahlia TMI,Nur H.A review on energy scenario and sus-

tainable energy in Indonesia.Renewable and Sustainable Energy Reviews 2012;16(4):2316–28.

[3]Ummadisingu A,Soni MS.Concentrating solar power–technology,poten-

tial and policy in India.Renewable and Sustainable Energy Reviews 2011;15(9):5169–75.

[4]Parajuli R.Looking into the Danish energy system:lesson to be learned by other

communities.Renewable and Sustainable Energy Reviews2012;16(4):2191–9.

[5]Pavlovi′c T,ˇCabri′c B.Physics and techniques of solar energy.Belgrade:

Gra–devinska knjiga;2007[in Serbian].

[6]Fernández-García A,Zarza E,Valenzuela L,Pérez M.Parabolic-trough solar

collectors and their applications.Renewable and Sustainable Energy Reviews 2010;14(7):1695–721.

[7]Pitz-Paal R.High temperature solar concentrators.In:Blanco Galvez J,Malato

Rodriguez S,editors.Solar energy conversion and photoenergy systems.Ency-clopedia of life support systems(EOLSS).Oxford,UK:Developed under the Auspices of the UNESCO,Eolss Publishers;2007.https://www.sodocs.net/doc/4e14659200.html,.

[8]Peters M,Schmidt TS,Wiederkehr D,Schneider M.Shedding light on solar tech-

nologies–a techno-economic assessment and its policy implications.Energy Policy2011;39(10):6422–39.

[9]Timilsina GR,Kurdgelashvili L,Narbel PA.Solar energy:markets,economics

and policies.Renewable and Sustainable Energy Reviews2012;16(1):449–65.

[10]Sharma A.A comprehensive study of solar power in India and World.Renew-

able and Sustainable Energy Reviews2011;15(4):1767–76.

[11]Kaygusuz K.Prospect of concentrating solar power in Turkey:the sustainable

future.Renewable and Sustainable Energy Reviews2011;15(1):808–14. [12]Cavallaro F.Multi-criteria decision aid to assess concentrated solar thermal

technologies.Renewable Energy2009;34(7):1678–85.

[13]Zainal Abidin Ab Kadir M,Rafeeu Y,Mariah Adam N.Prospective scenarios

for the full solar energy development in Malaysia.Renewable and Sustainable Energy Reviews2010;14(9):3023–31.

3902T.M.Pavlovi′c et al./Renewable and Sustainable Energy Reviews16 (2012) 3891–3902

[14]Tyagi VV,Kaushik SC,Tyagi SK.Advancement in solar photovoltaic/thermal

(PV/T)hybrid collector technology.Renewable and Sustainable Energy Reviews 2012;16(3):1383–98.

[15]Braun FG,Hooper E,Wand R,Zloczysti P.Holding a candle to innovation in con-

centrating solar power technologies:a study drawing on patent data.Energy Policy2011;39(5):2441–56.

[16]Manzolini G,Giostri A,Saccilotto C,Silva P,Macchi E.Development of an inno-

vative code for the design of thermodynamic solar power plants part A:code description and test case.Renewable Energy2011;36(7):1993–2003.

[17]https://www.sodocs.net/doc/4e14659200.html,/en/group/focus/climate change/insurance and

?nancial solutions/sunny future/graphic.aspx.

[18]Alexopoulos S,Hoffschmidt B.Solar tower power plant in Germany and future

perspectives of the development of the technology in Greece and Cyprus.

Renewable Energy2010;35(7):1352–6.

[19]Medrano M,Gil A,Martorell I,Potau X,Cabeza LF.State of the art on high-

temperature thermal energy storage for power generation.Part2.Case studies.

Renewable and Sustainable Energy Reviews2010;14(1):56–72.

[20]Poullikkas A,Kourtis G,Hadjipaschalis I.Parametric analysis for the installation

of solar dish technologies in Mediterranean regions.Renewable and Sustain-able Energy Reviews2010;14(9):2772–83.

[21]Beerbaum S,Weinrebe G.Solar thermal power generation in India–a techno-

economic analysis.Renewable Energy2000;21(2):153–74.

[22]https://www.sodocs.net/doc/4e14659200.html,/wiki/Solar thermal energy.

[23]https://www.sodocs.net/doc/4e14659200.html,/environment/renewable-

energy/articles/66917.aspx.

[24]https://www.sodocs.net/doc/4e14659200.html,/technology/howitworks.html.

[25]Viebahn P,Lechon Y,Trieb F.The potential role of concentrated solar power

(CSP)in Africa and Europe–a dynamic assessment of technology develop-ment,cost development and life cycle inventories until2050.Energy Policy 2011;39(8):4420–30.

[26]https://www.sodocs.net/doc/4e14659200.html,/wiki/List of solar thermal power stations.

[27]Poullikkas A.Economic analysis of power generation from parabolic trough

solar thermal plants for the Mediterranean region–a case study for the island of Cyprus.Renewable and Sustainable Energy Reviews2009;13(9):2474–84.

[28]https://www.sodocs.net/doc/4e14659200.html,/csp/solarpaces/.

[29]https://www.sodocs.net/doc/4e14659200.html,/csp/troughnet/solar?eld.html.

[30]Manzolini G,Bellarmino M,Macchi E,Silva P.Solar thermodynamic plants for

cogenerative industrial applications in southern Europe.Renewable Energy 2011;36(1):235–43.

[31]The parabolic trough power plants Andasol1to 3.The largest solar

power plants in the world–technology premiere in Europe,Solar Millennium AG;2008.Available at:http://www.solarmillennium.de/ upload/Download/Technologie/eng/Andasol1-3engl.pdf.

[32]https://www.sodocs.net/doc/4e14659200.html,/wiki/The Solar Project.

[33]http://www.alpiq.no/en/news-stories/stories/stories.jsp?story=tcm:143-

56493.

[34]http://re.jrc.ec.europa.eu/pvgis/.

[35]https://www.sodocs.net/doc/4e14659200.html,/suncatcher-solar-power-generation/12684/.

[36]https://www.sodocs.net/doc/4e14659200.html,/csp page.html.[37]https://www.sodocs.net/doc/4e14659200.html,/business/articles/2010/01/22/20100122biz-

stirlingsolar0123.html.

[38]https://www.sodocs.net/doc/4e14659200.html,.au/news/liddell thermal power station-

greening coal-?red power/002076/.

[39]https://www.sodocs.net/doc/4e14659200.html,/.

[40]Pavlovic M.Geographic regions of Serbia.University textbook.Belgrade:Savre-

mena Administracija;2000[in Serbian].

[41]Study of the energy potential of Serbia for the use of sun radiation and wind

energy.NPPE.Register no.EE704-1052A.Belgrade:Ministry of Science and Environmental protection;2004.

[42]Pavlovi′c T,Milosavljevi′c D,Lambi′c M,Stefanovi′c V,Manˇc i′c D,Pirˇs l

D.Solar energy in Serbia.Contemporary Materials(Renewable Energy

Sources)2011;II-2:204–20.doi:10.5767/anurs.cmat.110202.en.204P,UDK 620.92:523.9(497.11).

[43]https://www.sodocs.net/doc/4e14659200.html,/solar-irradiance.html.

[44]Teˇs i′c M,Kiss F,Zavargo Z.Renewable energy policy in the Republic of Serbia.

Renewable and Sustainable Energy Reviews2011;15(1):752–8.

[45]Golusin M,Tesi′c Z,Ostoji′c A.The analysis of the renewable energy

production sector in Serbia.Renewable and Sustainable Energy Reviews 2010;14(5):1477–83.

[46]Mihajlov A.Opportunities and challenges for a sustainable energy policy in SE

Europe:SE European Energy Community Treaty.Renewable and Sustainable Energy Reviews2010;14(2):872–5.

[47]Munitlak Ivanovi′c O,Goluˇs in M,Dodi′c S,Dodi′c J.Perspectives of sustainable

development in countries of Southeastern Europe.Renewable and Sustainable Energy Reviews2009;13(8):2079–87.

[48]Goluˇs in M,Munitlak Ivanovi′c O.Kyoto Protocol implementation in Serbia as

precognition of sustainable energetic and economic development.Energy Pol-icy2011;39(5):2800–7.

[49]Oka S,Sedmak A,Durovi′c-Petrovi′c M.Energy ef?ciency in Serbia–research

and development activity.Thermal Science2006;10(2):5–32.

[50]Oka S,Sedmak A,Durovi′c-Petrovi′c M.Energy ef?ciency in Serbia,national

energy ef?ciency program-strategy and priorities for future.Thermal Science 2006;10(4):7–16.

[51]Pavlovi′c T,Milosavljevi′c D,Radivojevi′c A,Pavlovi′c https://www.sodocs.net/doc/4e14659200.html,parison and

assessment of electricity generation capacity for different types of PV solar plants of1MW in Soko Banja,Serbia.Thermal Science2011;15(3):605–18, doi:10.2298/TSCI110322065P.

[52]Djurdjevi′c D.Perspectives and assessments of solar PV power engineer-

ing in the Republic of Serbia.Renewable and Sustainable Energy Reviews 2011;15(5):2431–46.

[53]National Assembly of the Republic of Serbia.Energy law[Zakon o energetici].

Of?cial Gazette of the Republic of Serbia84/04;2004.Available online at: https://www.sodocs.net/doc/4e14659200.html,.rs/content/eng/[in Serbian].

[54]National Assembly of the Republic of Serbia.Act for incentive measures for

privileged producers of electricity[Uredba o merama podsticaja za povlaˇs′cene proizvo–daˇc e elektriˇc ne energije];2008.Available at:https://www.sodocs.net/doc/4e14659200.html,.rs/ [in Serbian].

脐带干细胞综述

脐带间充质干细胞的研究进展 间充质干细胞(mesenchymal stem cells,MSC S )是来源于发育早期中胚层 的一类多能干细胞[1-5],MSC S 由于它的自我更新和多项分化潜能,而具有巨大的 治疗价值 ,日益受到关注。MSC S 有以下特点:(1)多向分化潜能,在适当的诱导条件下可分化为肌细胞[2]、成骨细胞[3、4]、脂肪细胞、神经细胞[9]、肝细胞[6]、心肌细胞[10]和表皮细胞[11, 12];(2)通过分泌可溶性因子和转分化促进创面愈合;(3) 免疫调控功能,骨髓源(bone marrow )MSC S 表达MHC-I类分子,不表达MHC-II 类分子,不表达CD80、CD86、CD40等协同刺激分子,体外抑制混合淋巴细胞反应,体内诱导免疫耐受[11, 15],在预防和治疗移植物抗宿主病、诱导器官移植免疫耐受等领域有较好的应用前景;(4)连续传代培养和冷冻保存后仍具有多向分化潜能,可作为理想的种子细胞用于组织工程和细胞替代治疗。1974年Friedenstein [16] 首先证明了骨髓中存在MSC S ,以后的研究证明MSC S 不仅存在于骨髓中,也存在 于其他一些组织与器官的间质中:如外周血[17],脐血[5],松质骨[1, 18],脂肪组织[1],滑膜[18]和脐带。在所有这些来源中,脐血(umbilical cord blood)和脐带(umbilical cord)是MSC S 最理想的来源,因为它们可以通过非侵入性手段容易获 得,并且病毒污染的风险低,还可冷冻保存后行自体移植。然而,脐血MSC的培养成功率不高[19, 23-24],Shetty 的研究认为只有6%,而脐带MSC的培养成功率可 达100%[25]。另外从脐血中分离MSC S ,就浪费了其中的造血干/祖细胞(hematopoietic stem cells/hematopoietic progenitor cells,HSCs/HPCs) [26, 27],因此,脐带MSC S (umbilical cord mesenchymal stem cells, UC-MSC S )就成 为重要来源。 一.概述 人脐带约40 g, 它的长度约60–65 cm, 足月脐带的平均直径约1.5 cm[28, 29]。脐带被覆着鳞状上皮,叫脐带上皮,是单层或复层结构,这层上皮由羊膜延续过来[30, 31]。脐带的内部是两根动脉和一根静脉,血管之间是粘液样的结缔组织,叫做沃顿胶质,充当血管外膜的功能。脐带中无毛细血管和淋巴系统。沃顿胶质的网状系统是糖蛋白微纤维和胶原纤维。沃顿胶质中最多的葡萄糖胺聚糖是透明质酸,它是包绕在成纤维样细胞和胶原纤维周围的并维持脐带形状的水合凝胶,使脐带免受挤压。沃顿胶质的基质细胞是成纤维样细胞[32],这种中间丝蛋白表达于间充质来源的细胞如成纤维细胞的,而不表达于平滑肌细胞。共表达波形蛋白和索蛋白提示这些细胞本质上肌纤维母细胞。 脐带基质细胞也是一种具有多能干细胞特点的细胞,具有多项分化潜能,其 形态和生物学特点与骨髓源性MSC S 相似[5, 20, 21, 38, 46],但脐带MSC S 更原始,是介 于成体干细胞和胚胎干细胞之间的一种干细胞,表达Oct-4, Sox-2和Nanog等多

二、分析天平的基本操作

模块二滴定分析基本操作任务一分析天平的基本操作 一、分析天平的分类 分析天平是定量分析中最常用的准确称量物质的仪器。分析天平分类:等臂(双盘)分析天平、不等臂(单盘)分析天平、电子天平。 二、电子天平的介绍 1、工作原理:电磁平衡原理,秤盘通过支架连杆支架作用于线圈上,重力方向向下。线圈内有电流通过时,根据电磁基本理论,通电的导线在磁场中将产生一个向上作用的电磁力,与秤盘重力方向相反大小相同,与之相平衡,而通过导线的电流与被称物体的质量成正比。 2、性能特点:a.使用寿命长,性能稳定,灵敏度高,体积小,操作方便 b.称 量速度快、精度高 c.具有自动校准、累计称量、超载显示、自动去皮等功能 3、称量的一般程序 水平调节——打扫——预热——开启显示器——校准——称量——结束工作 ①水平调节检查水平仪,调节水平调节脚,使水泡位于水平仪中心。 ②打扫打扫天平秤盘 ③预热通电预热30min以上 ④开启显示器按ON键,显示器亮,显示屏出现0.0000g ⑤校准按“校准”键 ⑥称量被称物置于秤盘中间进行称量 ⑦称量结束工作取下被称物,核对零点,关闭天平,进行使用登记 4、基本称量方法 ①直接称量法将称量物直接放在天平盘上直接称量物体的质量。例如,称量 小烧杯的质量,容量器皿校正中称量某容量瓶的质量,重量分析实验中称量某坩埚的质量等,都使用这种称量法。 ②固定质量称量法

用于称量某一固定质量的试剂(如基准物质)或试样。适于称量不易吸潮、在空气中能稳定存在的粉末状或小颗粒样品。 A、去皮将干燥的容器置于秤盘上,待显示平衡后按“去皮”键扣除皮重并显示零点 B、加样打开天平门,用药匙将试样抖入容器内,使之达到所需质量。 固定质量称量法注意:若不慎加入试剂超过指定质量,用牛角匙取出多余试剂,直至试剂质量符合指定要求为止。严格要求时,取出的多余试剂应弃去,不要放回原试剂瓶中。操作时不能将试剂散落于天平盘等容器以外的地方,称好的试剂必须定量地由表面皿等容器直接转入接受容器,此即所谓“定量转移”。 ③递减称量法(减量法) 用于称量一定质量范围的样品或试剂。样品易吸水、易氧化或易与二氧化碳等反应时,可选择此法。。 称量步骤:试样的保存——取出盛试样的称量瓶——称出称量瓶质量——敲样——再称出其质量——样品质量——连续称样——称量工作结束 A、试样保存待称样品放于洁净的干燥容器(称量瓶)中,置于干燥器中保存 B、取出称量瓶左手戴手套取出称量瓶或者用折叠成约1cm的纸取出 C、称出称量瓶质量称出称量瓶质量,记录数据 D、敲样将称量瓶取出,在接收容器的上方倾斜瓶身,用称量瓶盖轻敲瓶口上部使试样慢慢落入容器中,瓶盖始终不要离开接受器上方。当倾出的试样接近所需量时,一边继续用瓶盖轻敲瓶口,一边逐渐将瓶身竖直,使粘附在瓶口上的试样落回称量瓶,然后盖好瓶盖,准确称其质量。两次质量之差,即为试样的质量。按上述方法连续递减,可称量多份试样。

精神分裂症的病因及发病机理

精神分裂症的病因及发病机理 精神分裂症病因:尚未明,近百年来的研究结果也仅发现一些可能的致病因素。(一)生物学因素1.遗传遗传因素是精神分裂症最可能的一种素质因素。国内家系调查资料表明:精神分裂症患者亲属中的患病率比一般居民高6.2倍,血缘关系愈近,患病率也愈高。双生子研究表明:遗传信息几乎相同的单卵双生子的同病率远较遗传信息不完全相同 的双卵双生子为高,综合近年来11项研究资料:单卵双生子同病率(56.7%),是双卵双生子同病率(12.7%)的4.5倍,是一般人口患难与共病率的35-60倍。说明遗传因素在本病发生中具有重要作用,寄养子研究也证明遗传因素是本症发病的主要因素,而环境因素的重要性较小。以往的研究证明疾病并不按类型进行遗传,目前认为多基因遗传方式的可能性最大,也有人认为是常染色体单基因遗传或多源性遗传。Shields发现病情愈轻,病因愈复杂,愈属多源性遗传。高发家系的前瞻性研究与分子遗传的研究相结合,可能阐明一些问题。国内有报道用人类原癌基因Ha-ras-1为探针,对精神病患者基因组进行限止性片段长度多态性的分析,结果提示11号染色体上可能存在着精神分裂症与双相情感性精神病有关的DNA序列。2.性格特征:约40%患者的病前性格具有孤僻、冷淡、敏感、多疑、富于幻想等特征,即内向

型性格。3.其它:精神分裂症发病与年龄有一定关系,多发生于青壮年,约1/2患者于20~30岁发病。发病年龄与临床类型有关,偏执型发病较晚,有资料提示偏执型平均发病年龄为35岁,其它型为23岁。80年代国内12地区调查资料:女性总患病率(7.07%。)与时点患病率(5.91%。)明显高于男性(4.33%。与3.68%。)。Kretschmer在描述性格与精神分裂症关系时指出:61%患者为瘦长型和运动家型,12.8%为肥胖型,11.3%发育不良型。在躯体疾病或分娩之后发生精神分裂症是很常见的现象,可能是心理性生理性应激的非特异性影响。部分患者在脑外伤后或感染性疾病后发病;有报告在精神分裂症患者的脑脊液中发现病毒性物质;月经期内病情加重等躯体因素都可能是诱发因素,但在精神分裂症发病机理中的价值有待进一步证实。(二)心理社会因素1.环境因素①家庭中父母的性格,言行、举止和教育方式(如放纵、溺爱、过严)等都会影响子女的心身健康或导致个性偏离常态。②家庭成员间的关系及其精神交流的紊乱。③生活不安定、居住拥挤、职业不固定、人际关系不良、噪音干扰、环境污染等均对发病有一定作用。农村精神分裂症发病率明显低于城市。2.心理因素一般认为生活事件可发诱发精神分裂症。诸如失学、失恋、学习紧张、家庭纠纷、夫妻不和、意处事故等均对发病有一定影响,但这些事件的性质均无特殊性。因此,心理因素也仅属诱发因

脐带血造血干细胞库管理办法(试行)

脐带血造血干细胞库管理办法(试行) 第一章总则 第一条为合理利用我国脐带血造血干细胞资源,促进脐带血造血干细胞移植高新技术的发展,确保脐带血 造血干细胞应用的安全性和有效性,特制定本管理办法。 第二条脐带血造血干细胞库是指以人体造血干细胞移植为目的,具有采集、处理、保存和提供造血干细胞 的能力,并具有相当研究实力的特殊血站。 任何单位和个人不得以营利为目的进行脐带血采供活动。 第三条本办法所指脐带血为与孕妇和新生儿血容量和血循环无关的,由新生儿脐带扎断后的远端所采集的 胎盘血。 第四条对脐带血造血干细胞库实行全国统一规划,统一布局,统一标准,统一规范和统一管理制度。 第二章设置审批 第五条国务院卫生行政部门根据我国人口分布、卫生资源、临床造血干细胞移植需要等实际情况,制订我 国脐带血造血干细胞库设置的总体布局和发展规划。 第六条脐带血造血干细胞库的设置必须经国务院卫生行政部门批准。 第七条国务院卫生行政部门成立由有关方面专家组成的脐带血造血干细胞库专家委员会(以下简称专家委

员会),负责对脐带血造血干细胞库设置的申请、验收和考评提出论证意见。专家委员会负责制订脐带血 造血干细胞库建设、操作、运行等技术标准。 第八条脐带血造血干细胞库设置的申请者除符合国家规划和布局要求,具备设置一般血站基本条件之外, 还需具备下列条件: (一)具有基本的血液学研究基础和造血干细胞研究能力; (二)具有符合储存不低于1 万份脐带血的高清洁度的空间和冷冻设备的设计规划; (三)具有血细胞生物学、HLA 配型、相关病原体检测、遗传学和冷冻生物学、专供脐带血处理等符合GMP、 GLP 标准的实验室、资料保存室; (四)具有流式细胞仪、程控冷冻仪、PCR 仪和细胞冷冻及相关检测及计算机网络管理等仪器设备; (五)具有独立开展实验血液学、免疫学、造血细胞培养、检测、HLA 配型、病原体检测、冷冻生物学、 管理、质量控制和监测、仪器操作、资料保管和共享等方面的技术、管理和服务人员; (六)具有安全可靠的脐带血来源保证; (七)具备多渠道筹集建设资金运转经费的能力。 第九条设置脐带血造血干细胞库应向所在地省级卫生行政部门提交设置可行性研究报告,内容包括:

电子天平使用说明书.

电子天平使用说明书 使用方法 ◎准备 1、将天平安放在稳定及水平的工作台上,避免振动、气流、阳光直射和剧烈的温度波动; 2、安装称盘; 3、接通电源前请确认当地交流电压是否与天平所附的电源适配器所需电压一致; 4、为获得准确的称量结果,在进行称量前天平应接通电源预热30分钟。 ◎电源 1. 天平随机附配交流电源适配器,输入220+22-33V ~ 50Hz 输出9V 300mA 2. 天平选用电池供电时可打开天平底部的电池盖按极性指示装入电池即可,建议使用9伏碱性电池,可连续工作约12小时。 当天平电池供电时,显示屏左上角电量指示框显示段数表明电池的状态(显示3段:电池充足,显示0段:电池耗尽,当电池电量将耗尽时,最后一个显示段闪烁。 ◎开机 在称盘空载情况下按<开/关>键,天平依次进入自检显示(显示屏所有字段短时点亮、型号显示和零状态显示,当天平显示零状态时即可进行称量; 当遇到相关功能键设置有误无法恢复时,按<开/关>键重新开机即可恢复初始设置状态。

◎校准 为获得准确的称量结果,必须对天平进行校准以适应当地的重力加速度。校准应在天平预热结束后进行,遇到以下情况必须使用外部校准砝码对天平进行校准。 1. 首次使用天平称量之前; 2. 天平改变安放位置后。 校准方法与步骤: 1.准备好校准用的标准砝码并确保称盘空载; 2.按<去皮>键:天平显示零状态; 3.按<校准>键:天平显示闪烁的CAL—XXX,(XXX一般为100、200或其它数字,提醒使用相对应的100g、200g或其它规格的标准砝码 4.将标准砝码放到称盘中心位置,天平显示CAL-XXX,等待几秒钟后,显示标准砝码的量值。此时移去砝码,天平显示零状态,则表示校准结束,可以进行称量。如天平不零状态,应重复进行一次校准工作。 ◎称量 天平经校准后即可进行称量,称量时必须等显示器左下角的“○”标志熄灭后才可读数,称量过程中被称物必须轻拿轻放,并确保不使天平超载,以免损坏天平的传感器。 ◎清零或去皮 清零:当天平空载时,如显示不在零状态,可按<去皮>键,使天平显示零状态。此时才可进行正常称量。

分析天平使用说明书

TG-328分析天平使用说明书 一、分析天平结构及作用原理: 1.该分析天平,是属于双盘等臂式,横梁采用铜镍合金制成,上面装有玛瑙刀三把,中间为固定的支点刀,两边可调整的承重刀。 好仪器,好资料,尽在沧州建仪(https://www.sodocs.net/doc/4e14659200.html,)。欢迎查询。 打造中国建仪销售第一品牌,树立沧州产品全新形象 2.支点刀位于支点刀垫上,支点刀垫固定在天平立柱上端。 3.横梁停动装置为双层折翼式,在天平开启时,横梁上的承重刀必须比支点刀先接角触,为了避免刀锋损坏和保证横梁位置的再现性,开启天平求轻稳,避免冲击,摇晃。 4.横梁的左右两端悬挂承重挂钩,左承重挂钩上装有砝码承重架,该二零碎件分别挂在小刀刃上,另有秤盘各一件分别挂在承重挂钩上。 5.整个天平固定在大理石的基座板上,底板前下部装有二只可供调整水平位置的螺旋脚,后面装有一只固定脚,天平木框前面有一扇可供启闭及随意停止在上下位置的玻璃门,右侧有一扇玻璃移门。 6.秤盘上节中间的阻尼装置,是用铝合金板制成,固定在中柱上。是利用空气阻力来减少横梁的摆动时间,达到静止迅速,从而提高工作效率。

7.光学报影装置,固定在底板上前方,可直接读出0.1-10毫克以内的重量值。 8.天平外框左侧装有机械加码装置,通过三档增减砝码的指示旋钮来变换自10毫克-199.99克砝码以内所需重量值。 二、分析天平主要技术指标: 规格型号技术参数:秤盘尺寸 TG328A200g/0.1mg80mm TG328B200g/0.1mg80mm1 TG628A200g/1mg80mm 三、分析天平性能特点: 1.TG系列双盘机械天平,采用空气阻尼,光电读数,具有称量准确,读数简便,价格实惠。 2.专供实验室,学校,工矿等作精密称量分析用。 四、天平的安装方法: a.安装前的准备工作安装前的准备工作安装前的准备工作安装前的准备工作 1.安装选择:天平必须放在牢固的台上,不准有震动,气流存在,室内气温要求干燥明亮,温度最好保持在20℃±2℃左右,避免阳光晒射单面受热和气温潮湿,反之影响天平的灵敏度和正确性。

精神分裂症的发病原因是什么

精神分裂症的发病原因是什么 精神分裂症是一种精神病,对于我们的影响是很大的,如果不幸患上就要及时做好治疗,不然后果会很严重,无法进行正常的工作和生活,是一件很尴尬的事情。因此为了避免患上这样的疾病,我们就要做好预防,今天我们就请广州协佳的专家张可斌来介绍一下精神分裂症的发病原因。 精神分裂症是严重影响人们身体健康的一种疾病,这种疾病会让我们整体看起来不正常,会出现胡言乱语的情况,甚至还会出现幻想幻听,可见精神分裂症这种病的危害程度。 (1)精神刺激:人的心理与社会因素密切相关,个人与社会环境不相适应,就产生了精神刺激,精神刺激导致大脑功能紊乱,出现精神障碍。不管是令人愉快的良性刺激,还是使人痛苦的恶性刺激,超过一定的限度都会对人的心理造成影响。 (2)遗传因素:精神病中如精神分裂症、情感性精神障碍,家族中精神病的患病率明显高于一般普通人群,而且血缘关系愈近,发病机会愈高。此外,精神发育迟滞、癫痫性精神障碍的遗传性在发病因素中也占相当的比重。这也是精神病的病因之一。 (3)自身:在同样的环境中,承受同样的精神刺激,那些心理素质差、对精神刺激耐受力低的人易发病。通常情况下,性格内向、心胸狭窄、过分自尊的人,不与人交往、孤僻懒散的人受挫折后容易出现精神异常。 (4)躯体因素:感染、中毒、颅脑外伤、肿瘤、内分泌、代谢及营养障碍等均可导致精神障碍,。但应注意,精神障碍伴有的躯体因素,并不完全与精神症状直接相关,有些是由躯体因素直接引起的,有些则是以躯体因素只作为一种诱因而存在。 孕期感染。如果在怀孕期间,孕妇感染了某种病毒,病毒也传染给了胎儿的话,那么,胎儿出生长大后患上精神分裂症的可能性是极其的大。所以怀孕中的女性朋友要注意卫生,尽量不要接触病毒源。 上述就是关于精神分裂症的发病原因,想必大家都已经知道了吧。患上精神分裂症之后,大家也不必过于伤心,现在我国的医疗水平是足以让大家快速恢复过来的,所以说一定要保持良好的情绪。

电子精密天平秤的使用方法及注意事项(正式版)

电子精密天平秤的使用方法及注意事项 刘维彬电子精密天平秤是定量分析工作中不可缺少的重要仪器,充分了解仪器性能及熟练掌握其使用方法,是获得可靠分析结果的保证。精密天平的种类很多,有普通精密天平、半自动/全自动加码电光投影阻尼精密天平及电子精密天平等。下面就电子精密天平的使用方法及注意事项做一介绍。 操作方法: 1.检查并调整天平至水平位置。 2.事先检查电源电压是否匹配(必要时配置稳压器),按仪器要求通电预热至所需时间。 3.预热足够时间后打开天平开关,天平则自动进行灵敏度及零点调节。待稳定标志显示后,可进行正式称量。 4.称量时将洁净称量瓶或称量纸置于称盘上,关上侧门,轻按一下去皮键,天平将自动校对零点,然后逐渐加入待称物质,直到所需重量为止。 5.称量结束应及时除去称量瓶(纸),关上侧门,切断电源,并做好使用情况登记。 注意事项: 1.天平应放置在牢固平稳水泥台或木台上,室内要求清洁、干燥及较恒定的温度,同时应避免光线直接照射到天平上。 2.称量时应从侧门取放物质,读数时应关闭箱门以免空气流动引起天平摆动。前门仅在检修或清除残留物质时使用。 3.电子精密天平若长时间不使用,则应定时通电预热,每周一次,每次预热

2h,以确保仪器始终处于良好使用状态。 4.天平箱内应放置吸潮剂(如硅胶),当吸潮剂吸水变色,应立即高温烘烤更换,以确保吸湿性能。 5.挥发性、腐蚀性、强酸强碱类物质应盛于带盖称量瓶内称量,防止腐蚀天平。 6.称量重量不得过天平的最大载荷。 7.经常对电子天平进行自校或定期外校,保证其处于最佳状态。 8.天平发生故障,不得擅自修理,应立即报告测试中心质量负责人。 9.天平放妥后不宜经常搬动。必须搬动时,移动天平位置后,应由市计量部门校正计量合格后,方可使用。

精神分裂症的病因是什么

精神分裂症的病因是什么 精神分裂症是一种精神方面的疾病,青壮年发生的概率高,一般 在16~40岁间,没有正常器官的疾病出现,为一种功能性精神病。 精神分裂症大部分的患者是由于在日常的生活和工作当中受到的压力 过大,而患者没有一个良好的疏导的方式所导致。患者在出现该情况 不仅影响本人的正常社会生活,且对家庭和社会也造成很严重的影响。 精神分裂症常见的致病因素: 1、环境因素:工作环境比如经济水平低低收入人群、无职业的人群中,精神分裂症的患病率明显高于经济水平高的职业人群的患病率。还有实际的生活环境生活中的不如意不开心也会诱发该病。 2、心理因素:生活工作中的不开心不满意,导致情绪上的失控,心里长期受到压抑没有办法和没有正确的途径去发泄,如恋爱失败, 婚姻破裂,学习、工作中不愉快都会成为本病的原因。 3、遗传因素:家族中长辈或者亲属中曾经有过这样的病人,后代会出现精神分裂症的机会比正常人要高。 4、精神影响:人的心里与社会要各个方面都有着不可缺少的联系,对社会环境不适应,自己无法融入到社会中去,自己与社会环境不相

适应,精神和心情就会受到一定的影响,大脑控制着人的精神世界, 有可能促发精神分裂症。 5、身体方面:细菌感染、出现中毒情况、大脑外伤、肿瘤、身体的代谢及营养不良等均可能导致使精神分裂症,身体受到外界环境的 影响受到一定程度的伤害,心里受到打击,无法承受伤害造成的痛苦,可能会出现精神的问题。 对于精神分裂症一定要配合治疗,接受全面正确的治疗,最好的 疗法就是中医疗法加心理疗法。早发现并及时治疗并且科学合理的治疗,不要相信迷信,要去正规的医院接受合理的治疗,接受正确的治 疗按照医生的要求对症下药,配合医生和家人,给病人创造一个良好 的治疗环境,对于该病的康复和痊愈会起到意想不到的效果。

卫生部办公厅关于印发《脐带血造血干细胞治疗技术管理规范(试行)

卫生部办公厅关于印发《脐带血造血干细胞治疗技术管理规 范(试行)》的通知 【法规类别】采供血机构和血液管理 【发文字号】卫办医政发[2009]189号 【失效依据】国家卫生计生委办公厅关于印发造血干细胞移植技术管理规范(2017年版)等15个“限制临床应用”医疗技术管理规范和质量控制指标的通知 【发布部门】卫生部(已撤销) 【发布日期】2009.11.13 【实施日期】2009.11.13 【时效性】失效 【效力级别】部门规范性文件 卫生部办公厅关于印发《脐带血造血干细胞治疗技术管理规范(试行)》的通知 (卫办医政发〔2009〕189号) 各省、自治区、直辖市卫生厅局,新疆生产建设兵团卫生局: 为贯彻落实《医疗技术临床应用管理办法》,做好脐带血造血干细胞治疗技术审核和临床应用管理,保障医疗质量和医疗安全,我部组织制定了《脐带血造血干细胞治疗技术管理规范(试行)》。现印发给你们,请遵照执行。 二〇〇九年十一月十三日

脐带血造血干细胞 治疗技术管理规范(试行) 为规范脐带血造血干细胞治疗技术的临床应用,保证医疗质量和医疗安全,制定本规范。本规范为技术审核机构对医疗机构申请临床应用脐带血造血干细胞治疗技术进行技术审核的依据,是医疗机构及其医师开展脐带血造血干细胞治疗技术的最低要求。 本治疗技术管理规范适用于脐带血造血干细胞移植技术。 一、医疗机构基本要求 (一)开展脐带血造血干细胞治疗技术的医疗机构应当与其功能、任务相适应,有合法脐带血造血干细胞来源。 (二)三级综合医院、血液病医院或儿童医院,具有卫生行政部门核准登记的血液内科或儿科专业诊疗科目。 1.三级综合医院血液内科开展成人脐带血造血干细胞治疗技术的,还应当具备以下条件: (1)近3年内独立开展脐带血造血干细胞和(或)同种异基因造血干细胞移植15例以上。 (2)有4张床位以上的百级层流病房,配备病人呼叫系统、心电监护仪、电动吸引器、供氧设施。 (3)开展儿童脐带血造血干细胞治疗技术的,还应至少有1名具有副主任医师以上专业技术职务任职资格的儿科医师。 2.三级综合医院儿科开展儿童脐带血造血干细胞治疗技术的,还应当具备以下条件:

精神分裂症应该怎么治疗

精神分裂症应该怎么治疗 1、坚持服药治疗 服药治疗是最有效的预防复发措施临床大量统计资料表明,大多数精神分裂症的复发与自行停药有关。坚持维持量服药的病人复发率为40%。而没坚持维持量服药者复发率高达80%。因此,病人和家属要高度重视维持治疗。 2、及时发现复发的先兆,及时处理 精神分裂症的复发是有先兆的,只要及时发现,及时调整药物和剂量,一般都能防止复发,常见的复发先兆为:病人无原因出现睡眠不好、懒散、不愿起床、发呆发愣、情绪不稳、无故发脾气、烦躁易怒、胡思乱想、说话离谱,或病中的想法又露头等。这时就应该及时就医,调整治疗病情波动时的及时处理可免于疾病的复发。 3、坚持定期门诊复查 一定要坚持定期到门诊复查,使医生连续地、动态地了解病情,使病人经常处于精神科医生的医疗监护之下,及时根据病情变化调整药量。通过复查也可使端正人及时得到咨询和心理治疗解除病人在生活、工作和药物治疗中的各种困惑,这对预防精神分裂症的复发也起着重要作用。 4、减少诱发因素 家属及周围人要充分认识到精神分裂症病人病后精神状态的薄弱性,帮助安排好日常的生活、工作、学习。经常与病人谈心,帮助病人正确对待疾病,正确对待现实生活,帮助病人提高心理承受能力,学会对待应激事件的方法,鼓励病人增强信心,指导病人充实生活,使病人在没有心理压力和精神困扰的环境中生活。 首先是性格上的改变,塬本活泼开朗爱玩的人,突然变得沉默寡言,独自发呆,不与人交往,爱干净的人也变的不注意卫生、生活

懒散、纪律松弛、做事注意力不集中,总是和患病之前的性格完全 相悖。 再者就是语言表达异常,在谈话中说一些无关的谈话内容,使人无法理解。连最简单的话语都无法准确称述,与之谈话完全感觉不 到重心。 第三个就是行为的异常,行为怪异让人无法理解,喜欢独处、不适意的追逐异性,不知廉耻,自语自笑、生活懒散、时常发呆、蒙 头大睡、四处乱跑,夜不归宿等。 还有情感上的变化,失去了以往的热情,开始变的冷淡、对亲人不关心、和友人疏远,对周围事情不感兴趣,一点消失都可大动干戈。 最后就是敏感多疑,对任何事情比较敏感,精神分裂症患者,总认为有人针对自己。甚至有时认为有人要害自己,从而不吃不喝。 但是也有的会出现难以入眠、容易被惊醒或睡眠不深,整晚做恶梦或者长睡不醒的现象。这些都有可能是患上了精神分裂症。 1.加强心理护理 心理护理是家庭护理中的重要方面,由于社会上普遍存在对精神病人的歧视和偏见,给病人造成很大的精神压力,常表现为自卑、 抑郁、绝望等,有的病人会因无法承受压力而自杀。家属应多给予 些爱心和理解,满足其心理需求,尽力消除病人的悲观情绪。病人 生活在家庭中,与亲人朝夕相处,接触密切,家属便于对病人的情感、行为进行细致的观察,病人的思想活动也易于向家属暴露。家 属应掌握适当的心理护理方法,随时对病人进行启发与帮助,启发 病人对病态的认识,帮助他们树立自信,以积极的心态好地回归社会。 2.重视服药的依从性 精神分裂症病人家庭护理的关键就在于要让病人按时按量吃药维持治疗。如果不按时服药,精神病尤其是精神分裂症的复发率很高。精神病人在医院经过一系统的治疗痊愈后,一般需要维持2~3年的

卫生部关于印发《脐带血造血干细胞库设置管理规范(试行)》的通知

卫生部关于印发《脐带血造血干细胞库设置管理规范(试行)》的通知 发文机关:卫生部(已撤销) 发布日期: 2001.01.09 生效日期: 2001.02.01 时效性:现行有效 文号:卫医发(2001)10号 各省、自治区、直辖市卫生厅局: 为贯彻实施《脐带血造血干细胞库管理办法(试行)》,保证脐带血临床使用的安全、有效,我部制定了《脐带血造血干细胞库设计管理规范(试行)》。现印发给你们,请遵照执行。 附件:《脐带血造血干细胞库设置管理规范(试行)》 二○○一年一月九日 附件: 脐带血造血干细胞库设置管理规范(试行) 脐带血造血干细胞库的设置管理必须符合本规范的规定。 一、机构设置 (一)脐带血造血干细胞库(以下简称脐带血库)实行主任负责制。 (二)部门设置 脐带血库设置业务科室至少应涵盖以下功能:脐带血采运、处理、细胞培养、组织配型、微生物、深低温冻存及融化、脐带血档案资料及独立的质量管理部分。 二、人员要求

(一)脐带血库主任应具有医学高级职称。脐带血库可设副主任,应具有临床医学或生物学中、高级职称。 (二)各部门负责人员要求 1.负责脐带血采运的人员应具有医学中专以上学历,2年以上医护工作经验,经专业培训并考核合格者。 2.负责细胞培养、组织配型、微生物、深低温冻存及融化、质量保证的人员应具有医学或相关学科本科以上学历,4年以上专业工作经历,并具有丰富的相关专业技术经验和较高的业务指导水平。 3.负责档案资料的人员应具相关专业中专以上学历,具有计算机基础知识和一定的医学知识,熟悉脐带血库的生产全过程。 4.负责其它业务工作的人员应具有相关专业大学以上学历,熟悉相关业务,具有2年以上相关专业工作经验。 (三)各部门工作人员任职条件 1.脐带血采集人员为经过严格专业培训的护士或助产士职称以上卫生专业技术人员并经考核合格者。 2.脐带血处理技术人员为医学、生物学专业大专以上学历,经培训并考核合格者。 3.脐带血冻存技术人员为大专以上学历、经培训并考核合格者。 4.脐带血库实验室技术人员为相关专业大专以上学历,经培训并考核合格者。 三、建筑和设施 (一)脐带血库建筑选址应保证周围无污染源。 (二)脐带血库建筑设施应符合国家有关规定,总体结构与装修要符合抗震、消防、安全、合理、坚固的要求。 (三)脐带血库要布局合理,建筑面积应达到至少能够储存一万份脐带血的空间;并具有脐带血处理洁净室、深低温冻存室、组织配型室、细菌检测室、病毒检测室、造血干/祖细胞检测室、流式细胞仪室、档案资料室、收/发血室、消毒室等专业房。 (四)业务工作区域应与行政区域分开。

精神分裂症患者在怎样的情况下会自杀

精神分裂症患者在怎样的情况下会自杀 精神分裂症是最常见的一种精神病。早期主要表现为性格改变,如不理采亲人、不讲卫生、对镜子独笑等。病情进一步发展,即表现为思维紊乱,病人的思考过程缺乏逻辑性和连贯性,言语零乱、词不达意。精神分裂症患者随时有可能出现危险行为,这主要是指伤人毁物、自伤自杀和忽然出走。这些危险行为是受特定的精神症状支配的.那么精神分裂症患者在什么情况下会自杀呢? 被害妄想:这是所有精神病人最常见的症状之一,多数病人采取忍耐、逃避的态度,少数病人也会“先下手为强”,对他的“假想敌”主动攻击。对此,最重要的是弄清病人的妄想对象,即:病人以为是谁要害他。假如病人的妄想对象是某个家里人,则应尽量让这位家属阔别病人,至少不要让他与病人单独在一起。 抑郁情绪:精神分裂症病人在疾病的不同时期,可能出现情绪低落,甚至悲观厌世。特别需要留意的是,有相当一部分自杀成功的病人,是在疾病的恢复期实施自杀行为的。病人在精神病症状消除以后,因自己的病背上了沉重的思想包袱,不能正确对待升学、就业、婚姻等现实问题,感到走投无路,因此选择了轻生。对此,家属一定要防患于未然,要尽早发现病人的心理困扰,及时疏导。 对已经明确表示出自杀观念的病人,家属既不要惊慌失措,也不要躲躲闪闪,要主动与病人讨论自杀的利弊,帮助病人全面、客观地评估现实中碰到的各种困难,找出切实可行的解决办法。 另外,这种病人在自杀之前,是经过周密考虑,并且做了充分预备的,例如写遗书、收拾旧物、向家人离别、选择自杀时间、预备自杀工具等。这类病人的自杀方式也是比较温顺的,多数是服药自杀。因此,他需要一定的时间来积攒足足数目的药物,这时就能看出由家属保管药品的重要性了。只要家属密切观察病人的情绪变化,是不难早期发现病人的自杀企图的。 药源性焦虑:抗精神病药的副作用之一是可能引起病人莫名的焦躁不安、手足无措,并伴有心慌、出汗、恐惧等。这些表现多是发作性的,多数发生在下午到傍晚时分,也有的病人在打长效针以后的2?3天内出现上述表现。这种时间上的规律性,有助于家属判定病人的焦虑情绪是否由于药物所致。病人急于摆脱这种强烈的痛苦,会出现冲动伤人或自伤,这些行为只是为了发泄和解脱,并不以死为终极目的。家属可以在病人发作时,给他服用小剂量的安定类药物,或者在医生的指导下,调整抗精神病药的剂量或品种,这样就可以有效地控制病人的焦虑发作。 极度兴奋:病人的精神症状表现为严重的思维紊乱、言语杂乱无章、行为缺乏目的性,这类病人也可能出现自伤或伤人毁物。由于病人的兴奋躁动是持续性的,家属有充分的思想预备,一般比较轻易防范。家属要保管好家里的刀、剪、火、煤气等危险物品,但最根本的办法,是使用大剂量的、具有强烈镇静作用的药物来控制病人的兴奋。假如在家里护理病人确有困难,则可以强制病人住院治

脐带血间充质干细胞的分离培养和鉴定

脐带血间充质干细胞的分离培养和鉴定 【摘要】目的分离培养脐带血间充质干细胞并检测其生物学特性。方法在无菌条件下用密度梯度离心的方法获得脐血单个核细胞,接种含10%胎牛血清的DMEM培养基中。单个核细胞行贴壁培养后,进行细胞形态学观察,绘制细胞生长曲线,分析细胞周期,检测细胞表面抗原。结果采用Percoll(1.073 g/mL)分离的脐血间充质干细胞大小较为均匀,梭形或星形的成纤维细胞样细胞。细胞生长曲线测定表明接后第5天细胞进入指数增生期,至第9天后数量减少;流式细胞检测表明50%~70%细胞为CD29和CD45阳性。结论体外分离培养脐血间充质干细胞生长稳定,可作为组织工程的种子细胞。 【关键词】脐血;间充质干细胞;细胞周期;免疫细胞化学 Abstract: Objective Isolation and cultivation of mesenchymal stem cells (MSCs) in human umbilical cord in vitro, and determine their biological properties. Methods The mononuclear cells were isolated by density gradient centrifugation from human umbilical cord blood in sterile condition, and cultured in DMEM medium containing 10% fetal bovine serum. After the adherent mononuclear cells were obtained, the shape of cells were observed by microscope, then the cell growth curve, the cell cycle and the cell surface antigens were obtained by immunocytochemistry and flow cytometry methods. Results MSCs obtained by Percoll (1.073 g/mL) were similar in size, spindle-shaped or star-shaped fibroblasts-liked cells. Cell growth curve analysis indicated that MSCs were in the exponential stage after 5d and in the stationary stages after 9d. Flow cytometry analysis showed that the CD29 and CD44 positive cells were about 50%~70%. Conclusions The human umbilical cord derived mesenchymal stem cells were grown stably in vitro and can be used as the seed-cells in tissue engineering. Key words:human umbilical cord blood; mesenchymal stem cells; cell cycle; immunocytochemistry 间充质干细胞(mesenchymal stem cells,MSCs)在一定条件下具有多向分化的潜能,是组织工程研究中重要的种子细胞来源。寻找来源丰富并不受伦理学制约的间充质干细胞成为近年来的研究热点[1]。脐血(umbilical cord blood, UCB)在胚胎娩出后,与胎盘一起存在的医疗废物。与骨髓相比,UCB来源更丰富,取材方便,具有肿瘤和微生物污染机会少等优点。有人认为脐血中也存在间充质干细胞(Umbilical cord blood-derived mesenchymal stem cells,UCB-MSCs)。如果从脐血中培养出MSCs,与胚胎干细胞相比,应用和研究则不受伦理的制约,蕴藏着巨大的临床应用价值[2,3]。本研究将探讨人UCB-MSCs体外培养的方法、细胞的生长曲线、增殖周期和细胞表面标志等方面,分析UCB-MSCs 作为间充质干细胞来源的可行性。

(完整版)电子天平的使用方法

电子天平的使用方法 一、概述 分析天平是定量分析操作中最主要最常用的仪器,常规的分析操作都要使用天平,天平的称量误差直接影响分析结果。因此,必须了解常见天平的结构,学会正确的称量方法。我们用到的天平有以下二类:普通的托盘天平和电子天平。 普通的托盘天平是采用杠杆平衡原理,使用前须先调节调平螺丝调平。称量误差较大,一般用于对质量精度要求不太高的场合。调节1g以上质量使 用砝码,以下使用游标。砝码不能用手去拿,要用镊子夹。 电子天平是最新一代的天平,它是根据电磁力平衡原理,直接称量,全量程不需要砝码,放上被测物质后,在几秒钟内达到平衡,直接显示读数,具有称量速度快,精度高的特点。它的支撑点采取弹簧片代替机械天平的的玛瑙刀口,用差动变压器取代升降枢装置,用数字显示代替指针刻度。因此具有体积小、使用寿命长、性能稳定、操作简便和灵敏度高的特点。此外,电子天平还具有自动校正、自动去皮、超载显示、故障报警等功能。以及具有质量电信号如何输出功能,且可与打印机计算机联用,进一步扩展其功能,如统计称量的最大值、最小值、平均值和标准偏差等。由于电子天平具有机械天平无法比拟的优点,尽管其价格偏高,但也越来越广泛的应用于各个领域,并逐步取代机械天平。 称量时,要根据不同的称量对象和不同的天平,应当根据实际情况选用合适的称量方法操作。一般称量使用普通托盘天平即可,对于质量精度要求高的样品和基准物质应使用电子天平来称量。电子天平的称量: 二、称量前的检查 1、取下天平罩,叠好,放于天平后。 2、检查天平盘内是否干净,必要的话予以清扫。 3、检查天平是否水平,若不水平,调节底座螺丝,使气泡位于水平仪中心。 4、检查硅胶是否变色失效,若是,应及时更换。 三、开机 关好天平门,轻按ON/OFF键,LTD指示灯全亮,松开手,天平先显示型号,稍后显示为0.0000g,即可开始使用。 四、电子天平的一般使用方法 电子天平的使用方法较半自动电光天平来说大为简化,无需加减砝码,调节质量。复杂的操作由程序代替。下面简单介绍电子天平的两种快捷称量方法: 1、直接称量 在LTD指示灯显示为0.0000g时,打开天平侧门,将被测物小心置于秤盘上,关闭天平门,待数字不再变动后即得被测物的质量。打开天平门,取出被测物,关闭天平门。2、去皮称量 将容器至于秤盘上,关闭天平门,待天平稳定后按TAR键清零,LTD指示灯显示重量为0.0000g,取出容器,变动容器中物质的量,将容器放回托盘,不关闭天平门粗略读数,看质量变动是否达到要求,若在所需范围之内,则关闭天平门,读出质量变动的准确值。

我的精神分裂症形成和发展史

出生前背景 母亲是地道、淳朴、专一,文化程度不高的农村主妇,父亲是当地的混混,好色成性,道德观念淡薄,无责任感,为非作歹,攻击性强,专横,常聚众斗殴,浪荡无比。他的放荡从和母亲接姻前持续到今。从母亲断断断断续的回忆中我恍知我没呱呱落地前就已有不寻常的经历,失职的母亲怀着我和父亲怄气经常绝食威胁,奢望唤醒父亲的为父为夫的责任感。可怜的女人,痴痴的等待,身心俱损终换不来一时的真爱。他从不掩饰自己的劣迹,而是将其当作显示自己无限魅力和能耐的招牌加以渲染,毫无顾忌在当众谈论。 童年背景 除父母,还有两兄,我是幼女,相比较受宠爱。 爷爷 奶奶,传统的封建妇女,极重男轻女,从未给过我好脸色。爷爷、奶奶在家中居从属地位,对我没产生至关重要的影响。 儿时家里很穷,主要靠母亲支撑维系家族。她非常辛苦,在纺织厂,三班制。歇工还要步行到七八公里外的田地里劳作。很难照顾到我们的感受,她所能做的就是竭尽所能维系家庭的完整,让我们能生存下去。与此同时,她还要忍受父亲周而复始的背叛,虐待、暴打。生活不如意加之贫困无比,让她难免脾气暴躁,我是她时常爆发时的接纳对象。如此妇女,受封建思想灌输至深,永远铭记自己要恪守妇道,她始终如一的忠诚与父亲,永不离弃他,爱护他,疼爱他(她比父亲年长些,父亲相貌俊秀,而母亲姿色平平)。我可怜而鄙视她,丈夫如果某天一改往日作贱她的口吻,她会像孩子似的受宠若惊的心花怒放。 父亲霸道无比,家里人人惧怕他,他无比自恋。除了母亲,伤害最深的是大哥,每天无缘无故的遭受父亲的暴打。他性情多变,无法揣摩,吃饭时一家人欢声笑语,吃完饭看看大哥不顺眼他操起皮鞭就抽。看到大哥在皮鞭下嚎哭,新的皮鞭疤痕烙在旧疤痕上,我和二哥感到恐惧,怜悯大哥,然而我们是无助的,谁也不能阻挡皮鞭的落下。尽管如此,父亲当时在我心目中是高大的,令人崇拜的,对我产生的正负影响也是最强烈的。他多才多艺,知识渊博,开明,前卫,聪明,而母亲相比之下平庸很多,她每天只是起早贪黑的工作,思想保守,愚昧,无任何才华而言。 童年,虽说不是幸福的,但也算不上痛苦。 童年转青春期阶段 邻居是一个恶老太婆,和当时大多传统村妇一样,没知识、没修养也没教养。她确实很恶,不允许她看不顺眼的小孩从她家旁边的小巷经过,她不喜欢我。每次我冒险经过她都会如同恶狗样在我刚出现在她视野中就开始狂吠,连同我的老祖宗也一起骂,持续到我再次从原路返回,躲到家里,她的吠声还要延续十分钟。 被爱妄想出现在五年级,应该更早些。我喜欢上一个家境优越的的男生,尽管那时他已经有“女朋友”。从爱上他那刻起我就很明确他也是爱我的,他和同桌说话其实余光是在看我,尽管没有任何证实,我非常明确他就是偷偷看我的。即使在上课,即使他没有和同桌说话,我感觉他在狠狠的想着我。他回答老师的提问也暗示着对我的爱意。比如他的回答里有“她”,那就是暗示他说的是我。或是我读书看到书上的“他”字样,心便狂喜的乱跳,认为这是我暗恋对象给我的暗示,他一直在我身边! 妄想形成初期就有泛化倾向,我似乎对自己相貌无限自信,觉得自己是最美的,一上街满街的男孩都为我的美貌所折服,他们都不由自主的盯着我看,我的一举一动都被他们密切关注着,一出门便有那么多双眼睛注视着我。

脐带血干细胞检测

脐带血干细胞检测 对每份脐血干细胞进行下列检测: ①母体血样做梅毒、HIV和CMV等病原体检测,这一检测使脐血干细胞适合于其它家庭成员应用。如任何一种病原体测试阳性,需重复测定。 ②每份脐血干细胞样本同时检测确定没有微生物污染。 ③细胞活性检测、有核细胞数、CD34+细胞数、集落形成试验等。CD34是分子量115KD 的糖蛋白分子,使用特定单克隆抗体(抗-CD34)确定,脐血祖细胞的大部分,包括体外培养产生造血集落的细胞都包含在表达CD34抗原的细胞群中。 ④HLA组织配型、ABO血型。 一、采血方式及其优点 再生缘生物科技公司采用最严谨的封闭式血袋收集法,避免在收集脐带血液时可能遭受微生物污染的发生,且以最少之操作步骤,收集最大量之脐带血液方式,在产房内即可完成。 二、脐带血处理与保存 脐带血收集于血袋,经专人运送至再生缘生物科技公司之无菌细胞分离实验室后,由专业的技术人员于完全无菌的环境下,依标准操作程序将血液进行分离,收集具有细胞核的细胞,其中含有丰富的血液干细胞,经加入冷冻保护剂和适当品管检测后,并进行以最适合

血液干细胞的冷冻降温程序方式,进行细胞冷冻程序,达到避免细胞受到冷冻过程之伤害。完成后,冷冻细胞立刻保存于摄氏零下196度的液态氮槽中。所有操作程序记录和细胞保存相关数据,均由计算机条形码系统追踪确认,完全符合国际脐带血库之标准操作程序和品管要求。 母亲血液之检测 为确保所操作和保存的脐带血液细胞,符合国际血液操作规范,并提供客户最大的保障,对于产妇血液必须同时进行一些病毒传染病的检测,以确保没有下列病毒,如艾滋病毒(HIV)、C型肝炎病毒(HCV)、人类T细胞淋巴病毒(HTLV)和梅毒(syphilis),同时对于B型肝炎病毒(HBV)和巨细胞病毒(CMV)加以侦测和纪录,作为将来可能应用脐带血细胞时之必要参考数据并符合卫生医疗之要求。 脐带血细胞之品管 对于所保存之脐带血细胞均进行多项操作流程监控和品管检测,如微生物污染检测、血液细胞浓度、细胞存活率、细胞活性测定等,每一步骤均有详细之纪录,在操作方法和使用仪器方面均定期进行验证和校验,以符合国际医疗标准。 三、实验室、贮存处所介绍 再生缘生物科技公司拥有符合美国联邦标准(FED-STD-209E)和中华民国优良药品制造标准(一区、二区、三区)的生物安全实验室和无菌操作设备,在专业的技术人员依标准操作程序下进行血液分离和保存步骤,保障客户珍贵样品和权益。 分离后之细胞将依浓度分装入4-6个冷冻管,计算机降温冷冻完成后,即由食品工业发展研究所国家细胞库专业液态氮库房人员,将冷冻细胞分别存放于二个不同的脐带血细胞专属液态氮槽中保存,在安全机制上更有保障。液态氮库房拥有五吨的液态氮供应系统,每一液氮槽均有自动充填装置和异常警报系统,和每日值勤人员监控,确保冷冻细胞处于最佳的冷冻状态。 四、安全管制措施 脐带血液经快递送达无菌细胞分离实验室后,每一步骤均有专业技术人员操作和监督,并将所有分析数值详细填于具有条形码管制之分析表格和计算机数据表中,利用条形码和读码系统确认样品之专一性,避免人为失误,且便于追溯和数据品管。 在冷冻细胞保存上

相关主题