搜档网
当前位置:搜档网 › 基于地学信息图谱的重庆岩溶石漠化植被恢复演替研究_郑惠茹

基于地学信息图谱的重庆岩溶石漠化植被恢复演替研究_郑惠茹

基金项目:国家自然科学基金(41201436)

收稿日期:2014?11?12;一一网络出版日期:2015?00?00?通讯作者Correspondingauthor.E?mail:tam_7236@swu.edu.cn

基于地学信息图谱的重庆岩溶石漠化植被恢复演替研究

郑惠茹,罗红霞?,邹扬庆,程玉丝,张一锐

西南大学地理科学学院,重庆一400700

摘要:重庆岩溶石漠化区的植被恢复演替动态变化研究对于该地区的石漠化治理和生态恢复具有十分重要的指导意义三而多时相的遥感数据和地学图谱分析法为植被恢复的研究提供了一种动态性和综合性的研究方法三以重庆市中梁山的典型植被恢复区为例,在基于1996二2001二2007和2013年4期遥感影像解译分类的基础上,采用 空间代替时间 的生态学植被演替研究方法,建立重庆市中梁山区退耕还林前后的植被恢复演替图谱,并结合地学图谱的相关分析方法,得到该区的植被恢复演替动态格局演变规律,体现了空间信息科学技术二生态学方法和地学信息图谱分析法在植被恢复演替研究中的有效结合三结果表明:(1)运用BP神经网络和BP算法进行分类,分类精度达到87.42%,比传统监督分类提高了5.57%三(2)自2002年全国范围内

的 退耕还林(草) 工程全面启动后,该区域植被恢复演变特征明显,耕地面积明显减少而植被面积明显增加三(3)从2001 2013年,植被演替在该时期内依然存在着进展演替和逆向演替两个方向三虽然逆向演替比例仅占到18.63%,但它却使该区的演替研究变得复杂三(4)质心反映了各植被类型在恢复演替过程中的聚散与迁移,1996 2013年,马尾松群落和落叶阔叶林群落的质心变化较小,其他植被群落的质心都有很明显的变化三

关键词:岩溶石漠化;植被演替;多时相遥感影像;地学信息图谱;格局演变

QuantifyingvegetationrestorationinakarstrockydesertificationareainChongqingbasedonGeo?informaticTupu

ZHENGHuiru,LUOHongxia?,ZOUYangqing,CHENGYusi,ZHANGRui

SchoolofGeographicalScience,SouthwestUniversity,Chongqing400700,China

Abstract:Karstrockydesertification(KRD)hasbecomeoneofthemostimportantecologicalandenvironmentalproblemsinChina,andthecontrolofrockydesertificationhasbeenlistedasagoalofbothsocialdevelopmentandnationalenvironmentalmanagmentprojects.However,patternsofplantsuccessionintheprocessofKRDreversalactivitiesarestill

unclear.Understandingplantdynamicsisimportantforboththetheoryandpracticeforsuccessfulecosystemrestoration.Weusedmulti?temporal,remotelysensedimagesandaGeo?informaticTupumethodtoinvestigatethesuccessionpatternsofvegetationrestorationatZhongliangMountaininChongqing,SouthwestChina.ThisregionisatypicalKRDvegetationrestorationarea,witharichdiversityofregionalvegetationtypes.Inthisstudy,remotelysensedimagesforfourdifferenttimeperiods(1996,2001,2007,and2013),representingfourdifferentstagesinvegetationsuccession,wereselectedandanalyzedusingback?propagation(BP)neuralnetworkmodelsforinterpretationandclassification.Thisresultedinmapsofvegetationrestorationbasedspatialstructureratherthantimeseriesimages,capturedbeforeandaftertheGrainforGreen

project,andthus,establishedinformationaboutprinciplesforvegetationrestorationsuccessionintheregion.Thereafter,

本文摘自赤峰学院学报杂志https://www.sodocs.net/doc/4c12971893.html,

themapswereanalyzedusingGeo?informaticTuputoidentifythedynamicpatternsofvegetationrestorationsuccessionin

theregion.Ourresultsindicatethefollowing.(1)TheBPneuralnetworkmodelprovidesanefficientvegetation

classificationmethodintheZhongliangMountainregion.Theoverallaccuracyofthe(BP)neuralnetworkclassificationwas87.42%,whichwas5.57%higherthantraditionalsupervisedmethods.(2)Since2002,aseriesofecologicalrestoration

projects,includingtheGrainforGreenproject(theconversionofcroplandintoforestorpasture),havebeenimplemented

inthisregion,leadingtoareductionintheareaoffarmlandandanincreaseintheareaofnaturalvegetation.Thepositivetrendsobservedinthestudysiteareinterpretedasbeingtheresultofhuman?inducedrestoration.Comparingvegetationchangeinthedifferentsub?regionsofthestudysite,themostsignificantvegetationchangesoccurredonfarmlandthatwaslocatedinthevalleyandfoothillsofZhongliangMountain.Incontrast,regionswithmoderatechangeincludedtheacidandthealkalinesoilareasathigherelevationsofZhongliangMountain.Here,theMassonpinecommunityandkashiwagi

community,respectively,aredominant.Thesecommunitieshaveeffectiveenergyandnutrientconversioncapabilitiesand

formstableecosystemsthatmoderatechangesinthenaturalsuccessionofvegetation.(3)TheZhongliangMountaincommunitieswereclassifiedintotwodifferentstages,forwardsuccessionandreversesuccession,duringtheperiod2001 2013.In18.63%oftheregion,reversesuccessionoccurred,resultingincomplexpatternsofvegetationchange.(4)

Analysisofchangesinvegetationstructurewasperformedbasedonthecentroidshiftingmethod.From1996to2013,thecentroidoftheMassonpinecommunityanddeciduousbroad?leavedforestcommunitieschangedonlyslightly,whilechangesobservedinothervegetationtypesweremoremarked.TheTupumethodquantifiedthespatialpattern,distribution,and

changeprocessesofvegetationindifferentsuccessionalstages.ItappearsthattheTupumethodcanidentifythestateofeachimageelementineachsamplingtimeandachieveanintegrationofSpace?Property?Process,providingastrongscientific

basisandtechnicalmeansforvegetationrestorationinkarstrockydesertificationregions.

KeyWords:karstrockydesertification;vegetationsuccession;multi?temporalremotesensingimages;geo?informaticTupu;patternevolution

岩溶石漠化现象是我国南方热带岩溶地区严峻的生态问题,据资料统计,截止2005年底,南方石漠化土地的总面积为12.96万km2[1],占该地区岩溶面积的28.7%三地学信息图谱是在继承中国传统图谱研究成果的基础上运用先进技术获取及其丰富的信息源,并以数据库为依托,通过交互式的操作系统,显示事物或现象的三维图形或空间动态变化,并建立相关模型的地理时空分析方法论[2?4]三继1998年陈述彭院士提出地学信息图谱的思想后,地学信息图谱无论是从理论二方法还是应用中都逐渐深入和成熟,其主要研究主要集中在对土地利用的时空动态格局演变[5?7]二城市空间的扩展研究[8?9]二生态景观的格局演变[10?11]和自然灾害的宏观分

析和预测[12?13]等方面三国内外学者对植被群落演替的研究大都集中在使用单一技术手段来对演替的现象二规律和生理生态特性的研究,使用空间信息科学技术与生态学研究方法结合的较少;对中梁山的植被恢复研

究也主要集中在使用生态学的方法对其生态恢复重建模式的研究三本研究在岩溶石漠化植被恢复区植被演替研究中引入地学信息图谱的相关理论方法,在获取1996二2001二2007和2013年4期遥感影像的基础上,结合野外实地所获取的高光谱数据,采用加入高程数据的神经网络分类方法对四个时相中不同的植被群落类型进行分类,并结合地学图谱的相关分析方法[14?16],探讨了中梁山植被演替时空变化规律,实现了空间 属性 过程的一体化,能够定量和直观地反映植被恢复过程中的演替时空变化规律三为生态工作者在植被恢复

研究方面提供新的研究手段和技术方法,为研究区退化生态系统的恢复二重建与生态工程实施给予理论指导三1一研究区域与数据来源1.1一研究区概况

为了探讨重庆市岩溶植被恢复区植被的演替规律与特征,本研究选取了位于重庆市市区北部的中梁山

2一

36卷一

延边医学杂志投稿官网https://www.sodocs.net/doc/4c12971893.html,

(106?18?14? 106?56?53?E,29?39?10? 10?3?53?N)约7354.8hm2范围作为研究区域,该区域植被群落类型比较丰富,是石漠化植被恢复具有代表性的区域,如图1所示三中梁山是川东平行岭谷主体山脉华蓥山的三条支脉之一,年均温18?,年均降水量1000 1300mm,属于亚热带湿润季风气候,相对湿度大;海拔400 700

m,坡度0 40?,属于中低山丘陵地区三由于中梁山缺土二缺水和偏碱性的岩溶环境导致该地区植物种多具有

耐旱二石生和喜钙的特性三其中,中梁山轴部以旱生二喜钙性植物种类为主,如五节芒二黄花蒿等以及一些散生的落叶乔木树种,主要植被类型包括草丛二灌草丛二藤刺灌丛和乔幼灌丛三两翼以马尾松林和杉木次生林为主,形成较大面积的常绿针叶林和针阔混交林三竹林主要分布于居民居住区附近和山麓地区

图1一研究区地理位置

Fig.1一Locationoftheresearcharea

1.2一数据资料及其来源

考虑到八月份是该地区植被生长比较茂盛的时期,因此本文选取了1996年8月20日二2001年8月2日二2007年8月19日的LandsatTM影像和2013年8月19日的LandsatOLI影像共4期遥感影像作为基本数据,所有影像的轨道号均为128/39三影像数据来源于中国科学院计算机网络信息中心国际科学数据镜像网站(http://www.gscloud.cn)三其他数据包括:美国AnalyticalSpectralDevices公司生产的FieldSpecHandHeld便携式光谱仪结合手持GPS机于2013年10月1 10日野外实测的主要植被群落的地物波谱数据,主要用于支持遥感图像的解译;吴征镒‘中国植被“分类系统二1:400万中国植被图分类系统二中国1?100万陆地地表覆被分类系统和林业相关部门的森林资源调查专题矢量图和野外实测数据主要用于植被类型的确定和遥感影像的解译;重庆地理信息公共服务平台提供的大比例尺高清航拍影像图以及Quickbird高空间分辨率卫星影像图等主要用于后期的辅助解译和精度校准三2一研究方法

2.1一植被分类信息提取

(1)数据的预处理三首先进行传感器端的辐射定标(获得地物的辅亮度图)二大气校正(获得地物实际反

射率图)二图像增强处理和研究区裁剪等,并选用基于辐射传输理论的MODTRAN模型进行大气校正;然后用

ViewSpecPro软件对野外采集的各个群落类型样本的地物波谱数据进行预处理并重采样到与遥感影像可见

光?近红外?短波红外(450 900nm)一致的波段;结合重采样后的高光谱曲线特征和野外实测的影像像元光

一19期一一一郑惠茹一等:基于地学信息图谱的重庆岩溶石漠化植被恢复演替研究一

谱的特点,最后选择OLI563(RGB)二TM452(RGB)波段进行假彩色影像合成,能明显地突出具有岩溶地质背景的地貌景观和不同用地类型的色调差异和纹理信息

图2一研究区植被群落调查样方分布图Fig.2一Thedistributionofplotsinresearcharea

(2)分类方案的获取三参考吴征镒‘中国植被“分类系统二1?400万中国植被图分类系统二中国1?100万陆

地地表覆被分类系统和本次研究重点即重庆中梁山岩溶石漠化区的植被恢复演替研究,并结合对野外实测光谱数据的光谱特征分析,最终确定研究区的遥感分类为:Ⅰ暖性针叶林:马尾松林二柏木林二杉木林;Ⅱ竹林:慈竹林;Ⅲ亚热带常绿落叶阔叶林(栓皮栎林二板栗林等);Ⅳ针阔混交林;Ⅴ灌丛(酸性土和碱性土上的常绿灌丛二矮林,常绿阔叶落叶乔幼灌丛,以及灌草丛);Ⅵ草丛共5大类8小类三其余的非植被包括耕地二人工建筑二采石场二水体4类三

(3)遥感图像的解译分类三人工神经网络(ArtificialNeuralNetwork)是大量简单神经元联接而成的非线

性复杂网络系统并大量应用于遥感影像的分类研究[17]三本研究选择具有三层网络结构的BP神经网络模型,包括输入层二隐含层和输出层三层拓扑结构三BP算法通过网络对样本数据的自学习和利用学习结果对整个影像数据进行分类两个阶段来实现三首先,在训练样本选取的基础上确定网络系统,对相关控制参数和样本进行输入三根据2013年OLI多光谱数据的波普特性,分别选取OLI3二5二6波段为输入层节点,输出层节点数目设置为分类方案中的地物类别数即12,隐含层的节点数目选择从6开始并根据网络训练来不断调整三传递函数采用logistic非线性函数,训练学习的样本数据采用传统监督分类时的样本数据,控制参数主要包括学习率(0,1)二动量因子(0,1),权值和阈值的初始化根据经验值随机设定三经过大量的学习和相关参数的多次调整,最终确定在学习率η=0.2二动量因子α=0.9二训练1500次和隐含层为1时,达到多次调整后的较佳精度三由于精度的局限性,在之后的试验中,尝试使用OLI2二3二4二5二6二7波段为输入层节点,并分别加入可能影响分类精度的阴影影响参数RA5/4(OLI5/OLI4)和RA7/3(OLI7/OLI3)二纹理特征值(均值二方差二均匀值二对比度二相异性和熵)二高程二坡度二坡向等因子分别进行试验;然后,在保证小类别有足够的分析点的前提下,采用简单随机采样法对随机样本进行采样三

(4)精度评价三验证样本主要来源于研究区野外

实地调查所收集到的实测资料,植被群落调查样方如图2,林业部门所提供的研究区森林资源调查专题矢量图和Quickbird高空间分辨率卫星影像图以及2012年中梁山土地利用现状图,通过经纬度定位和目视判读选定2106个检验样本并一一确定像元点的实际类别;最后,采用混淆矩阵对分类结果进行定量评价三结果表明,运用加入高程数据的神经网络分类方法对四个时相中不同的植被群落类型进行分类所取得效果最好,分类总精度达到87.42%,总体精度比传统监督分类的结果提高了5.57%,分类混淆矩阵如表1三使用同样的分类方法对前3期影像进行解译分类,最终分类结果如图3三2.2一岩溶区植被演替图谱分析方法

(1)地学信息图谱分析法

地学信息图谱以图像二图表的形式来反映事物和现象的形态结构二成因机制二动态变化等综合性二复杂性的规律[2?4,18?19]三图谱单元是将不同时刻所采集到的空间数据进行融合或代数运算从而得到的空间二时间和属性等一体化的数据

[20]

4一生一态一学一报一一一36卷一

表1一加入DEM的神经网络分类误差矩阵Table1一TheconfusionmatrixoftheneuralnetworkclassificationjoinedbyDEM

分类类型Categorytype

马尾松

Pi杉木

Ch柏木

Ka

竹林

Ba

阔叶林

Br针阔混交林

Co灌丛

Sh草丛

Gr人工建筑

Ac采石场

Qu耕地

Al水体

Wa合计

Total错分误差/%

Misclassificationdeviation用户精度/%

Useraccuracy

马尾松Pi873610

30

038000000101614.07

85.93

杉木Ch1450

00000000462.17

97.83

柏木Ka00134

600000001404.29

95.71

竹林Ba000

1055

00160001010721.59

98.41

阔叶林Br85892

17

227192600000474

52.11

47.89

针阔混交林Co000

03700002039

5.13

94.87

灌丛Sh0024

16

15028910010346

16.47

83.53

草丛Gr005

10101263180

154

18.18

81.82

人工建筑Ac000

0000199000

202

1.49

98.51

采石场Qu000

000082660

275

3.27

96.73

耕地Al000

681804224897

998

10.12

89.88

水体Wa000

0000200

141

143

1.40

98.60

合计Total959114258

1122

291102359127254291

909

142

4906

漏分误差/%

Leakagedeviation

8.9760.5348.06

5.97

15.6163.7319.500.7921.658.59

1.32

0.70

制图精度/%

Cartographicaccuracy

91.0339.4751.94

94.0384.3936.2780.5099.2178.35

91.41

98.68

99.30

一一总体精度=87.4236%Overallaccuracy=87.4236%;Kappa系数=0.85Kappacoefficient=0.85;Pi:马尾松Pinusmassoninana;Ch:杉木Chinesefir;Ka:柏木Kashiwagi;Ba:竹林Bambooforest;Br:阔叶林

Broadforest;Sh:灌丛Shrub;Co:针阔混交林Coniferousandbroad?leavedmixedforest;Gr:草丛Grass;Ac:人工建筑Artificialconstruction;Qu:采石场Quarry;Wa:水体Waterarea;Al:耕地Arableland

一19期

一一一郑惠茹一等:基于地学信息图谱的重庆岩溶石漠化植被恢复演替研究

图3一不同时相遥感影像植被分类图

Fig.3一Theclassificationforremotesensingimagesinfourperiod杉木林由于面积过小,而将其归并为马尾松林中

(2)转移矩阵法

转移矩阵可以定量化地识别不同地类在不同时间上的空间格局变化三在图谱的基础上通过ArcGIS软件

进行数据的融合二叠置分析二面积的计算和转移矩阵的制作等,得到定量化的图谱变化数据三转移矩阵的数学表达式如下:

Pij=P11P12...P1nP21P22...

P2nPn1Pn1

...

Pnné?êêêê

êêêù?

úúúúúúú(1)

Ai=

en

j=1Pij;Bj=en

i=1Pij

(2)

其中,Pij表示地类i转变为地类j的转移量,Ai表示t1时期第i种地物类型的面积;Bj表示t2时期第j种地物类

型的面积三

(3)质心迁移法地类分布质心的变化情况可以反映在一定历史发展时期中地类在空间上的聚散与迁移[12]三质心坐标的

计算公式如下:

Xt=

en

i=1(Cti?Xi)/eni=1Cti;Yt=

en

i=1(Cti?Yi)/en

i=1Cti

(3)

式中,Xt二Yt分别表示在t年某地类分布区域的质心坐标,Cti表示在t年某地类分布区域第i斑块的面积,Xi二Yi

6一生一态一学一报一一一36卷一

分别表示在t年该地类第i斑块的质心坐标三分布质心迁移距离采用欧氏距离来量算三

3一结果与分析

3.1一植被群落面积变化分析

经过对多源数据的处理分析,得到植被群落的面积变化(图4)和变化幅度情况(图5)三从图中可知:(1)在1996年,耕地和马尾松在研究区内所占的比重相对较大(分别占研究区总面积的29.50%和24.52%),而2013年,马尾松二耕地二灌丛和阔叶林所占比重较大(分别占研究区总面积的28.16%二19.98%二20.55%和15.01%);(2)1996 2001年间,马尾松二阔叶林二竹林二灌丛4种主要植被的面积均呈减少趋势,发生了逆行演替

的现象三其中竹林减少幅度最大(较1996年减少了57.32%),马尾松二阔叶林和灌丛次之,这主要与人们对竹

工程全面启动后,15.49%),2007 2013三(3)

丛>马尾松>>竹林>柏木>针阔混交林三

图4一研究区主要植被群落及非林地面积变化图

Fig.4一Thevariationmapofthemainvegetationcommunitiesandnonforestinthestudyarea

3.2一植被恢复演替系列图谱分析

在遥感影像地物信息提取的基础上,构建了研究区退耕还林后(2001 2013)植被恢复演替变化图谱(图6),并根据地表覆被类型转移矩阵制作了研究区主要植被群落变化图谱单元排序表(表2)三结合图表的信息可知:在该时期内,研究区地表覆被发生变化的总面积为3862.62hm2,变化区域和未变化区域呈斑块状交错

7一19期一一一郑惠茹一等:基于地学信息图谱的重庆岩溶石漠化植被恢复演替研究一

分布,积)三具体来讲:为了草本群落二展演替的hm2二249.93hm2丛群落二阔叶林22%,hm2;落,占进展演替hm2二68.49hm2林二竹林二计550.26hm2

三人为干扰,图6一植被群落演替图谱(2001 2013)

Fig.6一Thesuccessionmapofmainvegetationcommunities(2001 2013)

由表2可知,从2001 2013年研究区内植被恢复演替过程中,由最初的耕地转变为草本群落所占的变化比例最大,但在研究区内的部分区域已经构成了一个完整的植被恢复演替序列(如图7)三由图7可知,在2001年为耕地的区域经过6年的自然恢复过程先演变为灌草丛(2007年),并在此基础上进一步演变为阔叶

8一生一态一学一报一一一36卷一

林二马尾松等乔木种群(2013年),其中2001 2007年间二2007 2013年间植被的变化强度分别为14.99%和

28.24%三

表2一主要植被群落变化图谱单元排序(2001 2013)

Table2一Themapunitsortingofmainchangedvegetationcommunity(2001 2013)

面积排序Arearank

图谱单元面积Changearea/hm2

占总变化比例Proportionintotalchange/%

累计变化Grandproportionintotalchange/%

植被群落的主要变化类型Mainchangetype1730.8024.0824.08耕地?灌丛群落

2361.2611.9035.98常绿落叶阔叶林群落?马尾松群落3257.948.5044.48草本群落?灌丛群落4249.938.2352.71耕地?常绿落叶阔叶林群落5233.467.6960.40耕地?草本群落

8138.694.5764.97灌丛?常绿落叶阔叶林群落9

111.603.6868.65草本群落?常绿落叶阔叶林群落

1074.522.4671.10竹林群落?马尾松群落1168.492.2673.36灌丛群落?马尾松群落1350.581.6775.03灌丛群落?竹林群落1441.581.3876.40人工建筑?灌丛群落1630.961.0277.42草本群落?柏木群落1828.530.9478.36耕地?柏木群落

1926.010.8679.22针阔混交林群落?马尾松群落2022.770.7579.97人工建筑?常绿落叶阔叶林群落

2122.50.7480.71人工建筑?草本群落2219.98

0.6681.37人工建筑?灌丛群落

6164.345.4186.78常绿落叶阔叶林群落?灌丛群落7143.644.7391.52马尾松群落?常绿落叶阔叶林群落

1261.292.0293.54常绿落叶阔叶林群落?竹林群落1540.771.3494.88柏木群落?常绿落叶阔叶林群落17

30.69

1.01

95.89

竹林群落?灌丛群落

一一粗体字表示植被逆行演替变化部分

3.3一植被恢复演替时空迁移图谱分析

将4个时期不同演替阶段的植被群落质心坐标进行叠合,形成了植被群落质心分布图(图8)和质心迁移图(图9),以及基于欧式距离的植被群落质心迁移距离和迁移方向表(表3)三

表3一不同演替阶段植被群落质心迁移距离与方向

Table3一Migrationdistanceanddirectionofdifferentsuccessionstagesofvegetationcommunity

主要植被群落类型Vegetationtypes1996 2001年

2001 2007年

2007 2013年

2001 2013年

迁移距离Migrationdistance/m迁移方向Migrationdirection迁移距离Migrationdistance/m迁移方向Migrationdirection迁移距离Migrationdistance/m迁移方向Migrationdirection迁移距离Migrationdistance/m迁移方向Migrationdirection马尾松Pi185.0北偏东196.4南偏西192.7正北28.3正南柏木Ka917.2南偏西619.1北偏东1972.2

南偏西1353.3南偏西阔叶林Br727.2

南偏东

435.3北偏西367.7南偏东425.4南偏西针阔混交林Co3735.2南偏西2680.0北偏东1083.4正南竹林Ba389.9东南1804.2东北207.7西南1599.8北偏东灌丛Sh511.0东南1252.9西南1206.7正北905.8西北草丛Gr

895.1

正北

664.7

东北

3347.3南偏西

2791.7

南偏西

一19期一一一郑惠茹一等:基于地学信息图谱的重庆岩溶石漠化植被恢复演替研究一

图7一研究区内典型植被恢复样区图

Fig.7一sample?landsoftypicalvegetationinstudyarea

图8一不同演替阶段植被群落的质心分布

Fig.8一Centroiddistributionofdifferentsuccessionstagesofvegetationcommunity

由图表信息可知,1996年和2001年,除柏木林外的其他群落类型质心基本集聚在了研究区的几何中心位置;2007年作为过度阶段,除柏木群落二竹林质心偏北而针阔混交林二灌丛群落质心偏南外,阔叶林二马尾

01一生一态一学一报一一一36卷一

图9一不同演替阶段植被群落的质心迁移方向

Fig.9一Centroidmigrationdirectionofdifferentsuccessionstagesofvegetationcommunity

松二草本群落质心居中;到2013年,阔叶林二灌丛群落二马尾松群落质心又集聚在了研究区中部,说明在1996 2013年间阔叶林和马尾松林在该区域内分布均匀且生长均衡三植被群落质心多在南北方向上迁移,这与该区南北走向的地势有关,且在2001 2013年间,质心迁移距离依次由大到小为草本群落>竹林群落>柏木群落>针阔混交林>灌丛群落>常绿落叶阔叶林群落>马尾松群落三具体表现为:马尾松群落和阔叶林群

1一19期一一一郑惠茹一等:基于地学信息图谱的重庆岩溶石漠化植被恢复演替研究一

21一生一态一学一报一一一36卷一

落的质心仅仅是在南北方向略有变动,并没有一个明显的迁移变化方向;柏木群落在2001 2007年期间质心向北迁移,在2007 2013年又向南移动,这表明在该时期里原质心所在地南部出现了柏木群落的分布,这与中梁山中部海石公园封山育林下的柏木自然恢复和退耕坡地上人工种植柏木的实际情况相符;常绿针阔混交林作为阔叶林到针叶林的过渡阶段,其分布质心在2001 2007年期间明显南移,在2007 2013年又向北移,但总体上针阔混交林还是向南迁移,说明这个时期研究区南部有更多的阔叶林群落在向针叶林群落演进;竹林的分布质心从2001 2007年向东北方向迁移,之后变化一直较小,这是由于中梁山的竹林以速生慈竹林群落为主;灌丛群落的质心迁移较明显,2001 2013年整体向西北方向移动,且移动距离较大,说明在研究区的西北方向上有较多的非灌丛群落转变为了灌丛群落,且增加面积较大;草本群落的质心迁移也很显著,1996 2001年向北移动,之后又向东北移动,2007 2013年长距离的向南偏西方向迁移,说明草本群落在这个时期里变化最大三总的来说,植被群落质心多在南北方向上迁移,这与该区南北走向的地势有关三

4一结论与讨论

4.1一主要研究结论

本研究是在区域尺度的基础上,结合3S技术二野外实测高光谱技术及生态学方法实现区域尺度的植被类型划分三分类试验结果和分类精度表明:①植被演替识别分类中涉及到多个时期植被种群的识别,中分辨率多光谱影像混合像元问题又不可避免,BP神经网络较强的自学习能力和高度的容错能力,以及BP神经网络的并行式分布结构可以很方便地引入非光谱信息参与分类,使得遥感影像分类精度达到87.42%,比传统监督分类精度提高了5.57%,但在区分杉木林二柏木林和针阔混交林精度依然很低,存在错分和误分的现象;②在研究时段内,研究区域植被群落在不同的时间段内面积变化特征明显三1996年 2001年,以竹林的减少为主,2001年 2007年,以马尾松林的增加为主,2007年 2013年,以灌丛的增加为主,分别占各变化时期植被变化面积的36.36%二38.47%和55.75%三从演替序列来看,中梁山岩溶石漠化地区的植被恢复整体上遵循了旱生进展演替的一般规律,即草本群落到灌木群落再到乔木群落,但是由于中梁山属于中低山地区,受人为影响因素大,研究区内海拔高差相对较小加之土壤稀薄不均的生境条件的限制,使得该地区的顶级群落更多的表现为土壤顶级[21?22]三人工林的种植加速了该区域的进展演替,但由于其物种构成和群落结构比较简单,不如自然恢复植被稳定,更容易被破坏和入侵三因此,在进行该地区的生态功能的恢复时,选择和引入自然恢复演替过程中后期的植物种如柏木二马尾松等对中梁山石漠化地区进行植被重建应该更有利于该地区稳定植被生态系统的形成三

4.2一讨论

①仅有光谱数据的网络分类完全不能识别杉木二柏木和针阔混交林,而随着其他类型波段(比值波段二纹理二坡度二坡向二高程)的加入整个分类精度才有所提高,但并不是影响因子的全部加入就会起到提高分类精度的作用,反而可能造成一定的干扰;②由于数据源二野外采集高光谱仪的局限性和研究区地形等方面的影响,使得在对研究区不同演替阶段具有代表性群落的划分比较粗略,例如常绿落叶阔叶林并未给出具体的建群种或共优种类型三此外,本研究只是重点探讨了小区域尺度上人工神经网络方法在植被群落划分和演替中的应用,在实际工作中,还应根据研究对象二研究目的和数据源的不同,尝试将多源数据多方法相结合的分类方法以提高分类精度三③从所得到的结果看,自国家在西南喀斯特地区实施退耕还林还草等一系列生态建设工程特别是2008年国务院批复了‘岩溶地区石漠化综合治理大纲(2006 2015)“以来,喀斯特地区植被恢复变化明显三中梁山属中低山地区,受人类活动影响大,加之特殊的地质环境和薄厚不均的土壤分布,使得该区域的植被恢复情况有特定的变化特征三变化较显著的是中梁山两侧外围的耕地和中轴山丘的耕地,而未变化植被群落类型主要是分布在中梁山 两翼 酸性土壤上的顶级群落 马尾松(少量杉木)群落和分布在钙质土壤上的顶级群落 柏木群落,它们具有较好的能量物质转换能力和稳定的生态系统功能,因此在自然演替过程中变化小三④植被恢复演替图谱很好地诠释了地学信息图谱的特点和内涵,能够定量和直观地反映各

植被类型在不同演替阶段的空间格局二分布规律和变化过程,图谱单元可以研究各影像单元在各采样时刻的利用状态,实现空间?属性?过程的一体化,可见地学信息图谱在分析植被恢复演替的时空变化方面具有非常好的图形表现形式和分析手段,从而为岩溶石漠化地区的植被恢复提供强有力的科学依据和技术手段三

参考文献(References):

[1]一国家林业局.岩溶地区石漠化状况公报.中国绿色时报,2006?6?23.

[2]一陈述彭,岳天祥,励惠国.地学信息图谱研究及其应用.地理研究,2000,19(4):337?343.

[3]一廖克.地学信息图谱的探讨与展望.地球信息科学,2002,(1):14?20.[4]一齐清文.地学信息图谱的最新进展.测绘科学,2004,29(6):15?23.

[5]一张国坤,邓伟,张洪岩,宋开山,李恒达.新开河流域土地利用格局变化图谱分析.地理学报,2010,65(9):1111?1120.

[6]一孙晓芳,岳天祥,范泽孟.中国土地利用空间格局动态变化模拟 以规划情景为例.生态学报,2012,32(20):6440?6451.

[7]一孙倩,塔西甫拉提四特依拜,张飞,丁建丽,买买提四沙吾提,韩桂红,桂东伟.渭干河?库车河三角洲绿洲土地利用/覆被时空变化遥感

研究.生态学报,2012,32(10):3252?3265.

[8]一韩晨.基于地学信息图谱的西安城市空间扩展研究[D].西安:陕西师范大学,2007.

[9]一李锋,叶亚平,宋博文,王如松.城市生态用地的空间结构及其生态系统服务动态演变 以常州市为例.生态学报,2011,31(19):5623?5631.

[10]一雷璇,杨波,蒋卫国,杨一鹏,ClaudiaK,陈强.东洞庭湿地植被格局变化及其影响因素.地理研究,2012,31(3):461?470.

[11]一叶庆华,田国良,刘高焕,叶景敏,娄维国.黄河三角洲新生湿地土地覆被演替图谱.地理研究,2004,23(2):257?264.

[12]一陈菁,廖克.基于地学信息图谱的福建省生态环境脆弱性分析.世界地理研究,2009,18(2):169?176.

[13]一安静.区域滑坡灾害危险性评价信息图谱研究[D].长沙:中南大学,2009.

[14]一XiaoJY,GeJF,ShenYJetal.Researchonlanduse/coverchangeinShijazhuangusinglandsatTMandETM+data.GeographicalScience,2005,25(4):495?500.

[15]一MuldersMA.AdvancesintheapplicationofremotesensingandGISforsurveyingmountainousland.InternationalJournalofAppliedEarthObservationandGeoinformation,2001,3(1):3?10.[16]一Soares?FilhoBS.CerqueiraGC,PennachinCL.Dinamica astochasticcellularautomatamodeldesignedtosimulatethelandscapedynamicsinanAmazoniancolonizationfrontier.EcologicalModelling,2002,154(3):217?235.[17]一李双成,郑度.人工神经网络模型在地学研究中的应用进展.地球科学进展,2003,18(1):68?76.

[18]一韦玉春,汤国安,杨昕.遥感数字图像处理教程.北京:科学出版社,2011:235.

[19]一田永中,岳天祥.地学信息图谱的研究及其模型应用探讨.地球信息科学,2003,(3):103?106.

[20]一YeQH,TianGL,LiuGH,YeJM,YaoX,LiuQS,LouWG,WuSG.Tupumethodsofspatial?temporalpatternonlandusechanges:AcasestudyintheYellowRiverDelta.JournalofGeographicalSciences,2004,14(2):131?142.

[21]一范文武,陈晓德,李加海,张淑琴,李艳霞.重庆中梁山海石公园石灰岩山地植物多样性研究.西南大学学报:自然科学版,2009,31(5):106?110.

[22]一贾红杰,傅瓦利,赵俊丽,张文晖,甄晓君,杜富芝,马志敏,段正峰.重庆中梁山岩溶区耕作侵蚀影响因素研究.水土保持学报,2008,

22(1):28?32.3

1一19期一一一郑惠茹一等:基于地学信息图谱的重庆岩溶石漠化植被恢复演替研究一

相关主题