搜档网
当前位置:搜档网 › 集电极开路6反相器HD74HC05P

集电极开路6反相器HD74HC05P

集电极开路6反相器HD74HC05P
集电极开路6反相器HD74HC05P

CMOS反相器电路版图设计与仿真

CMOS反相器电路版图设计与仿真 姓名:邓翔 学号:1007010033 导师:马奎 本组成员:邓翔石贵超王大鹏

CMOS反相器电路版图设计与仿真 摘要:本文是基于老师的指导下,对cadence软件的熟悉与使用,进行CMOS反相器的电路设计和电路的仿真以及版图设计与版图验证仿真。 关键字:CMOS反相器;版图设计。 Abstract:This article is based on the teacher's guidance, familiar with cadence software and use, for CMOS inverter circuit design and circuit simulation and landscape and the landscape design of the simulation. Key word:CMOS inverter;Landscape design. 一引言 20世纪70年代后期以来,一个以计算机辅助设计技术为代表的新的技术改革浪潮席卷了全世界,它不仅促进了计算机本身性能的进步和更新换代,而且几乎影响到全部技术领域,冲击着传统的工作模式。以计算机辅助设计这种高技术为代表的先进技术已经、并将进一步给人类带来巨大的影响和利益。计算机辅助设计技术的水平成了衡量一个国家产业技术水平的重要标志。 计算机辅助设计(Computer Aided Design,CAD)是利用计算机强有力的计算功能和高效率的图形处理能力,辅助知识劳动者进行工程和产品的设计与分析,以达到理想的目的或取得创新成果的一种技术。它是综合了计算机科学与工程设计方法的最新发展而形成的一门新兴学科。计算机辅助设计技术的发展是与计算机软件、硬件技术的发展和完善,与工程设计方法的革新紧密相关的。采用计算机辅助设计已是现代工程设计的迫切需要。 电子技术的发展使计算机辅助设计(CAD)技术成为电路设计不可或缺的有力工具。国内外电子线路CAD软件的相继推出与版本更新,是CAD技术的应用渗透到电子线路与系统设计的各个领域,如电路图和版图的绘制、模拟电路仿

集电极开路输出

集电极开路输出 我们先来说说集电极开路输出的结构。集电极开路输出的结构如图1所示,右边的那个三极管集电极什么都不接,所以叫做集电极开路(左边的三极管为反相之用,使输入为“ 0”时,输出也为“ 0”)。对于图1,当左端的输入为“0”时,前面的三极管截止(即集电极c跟发射极e之间相当于断开),所以5v 电源通过1k电阻加到右边的三极管上,右边的三极管导通(即相当于一个开关闭合);当左端的输入为“ T时,前面的三极管导通,而后面的三极管截止(相当于开关断开)。 我们将图1简化成图2的样子。图2中的开关受软件控制,“ 1”时断开,“0”时闭合。很明显可以看出,当开关闭合时,输出直接接地,所以输出电平为0。而当开关断开时,则输出端悬空了,即高阻态。这时电平状态未知,如果后面一个电阻负载(即使很轻的负载)到地,那么输出端的电平就被这个负载拉到低电平了,所以这个电路是不能输出高电平的。 再看图三。图三中那个1k的电阻即是上拉电阻。如果开关闭合,贝U有电流从1k电阻及开关上流过,但由于开关闭和时电阻为0 (方便我们的讨论,实际情况中开关电阻不为0,另外对于三极管还存在饱和压降),所以在开关上的电压为0,即输出电平为0。如果开关断开,则由于开关电阻为无穷大(同上,不考虑实际中的漏电流),所以流过的电流为0,因此在1k电阻上的压降也为0, 所以输出端的电压就是5v 了,这样就能输出高电平了。但是这个输出的内阻是比较大的(即1k?),如果接一个电阻为r的负载,通过分压计算,就可以算得最后的输出电压为5*r/(r+1000)伏,即5/(1+1000/r)伏。所以,如果要达到一定的电压的话,r就不能太小。如果r真的太小,而导致输出电压不够的话,那我们只有通过减小那个1k的上拉电阻来增加驱动能力。但是,上拉电阻又不能取得太小,因为当开关闭合时,将产生电流,由于开关能流过的电流是有限的,因此限制了上拉电阻的取值,另外还需要考虑到,当输出低电平时,负载可能还会给提供一部分电流从开关流过,因此要综合这些电流考虑来选择合适的上拉电阻。 如果我们将一个读数据用的输入端接在输出端,这样就是一个io 口了(51的io 口就是这样的结构,其中p0 口内部不带上拉,而其它三个口带内部上拉),当我们要使用输入功能时,只要将输出口设置为1即可,这样就相当于那个开关断开,而对于p0 口来说,就是高阻态了。 对于漏极开路(od)输出,跟集电极开路输出是十分类似的。将上面的三极管换成场效应管即可。这样集电极就变成了漏极,oc就变成了od,原理 分析是一样的。 另一种输出结构是推挽输出。推挽输出的结构就是把上面的上拉电阻也换成一个开关,当要输出高电平时,上面的开关通,下面的开关断;而要输出低电平时,则刚好相反。比起oc或者od来说,这样的推挽结构高、低电平驱动能力都很强。如果两个输出不同电平的输出口接在一起的话,就会产生很大的电流,有可能将输出口烧坏。而上面说的oc或od输出则不会有这样的情况,因为上拉电阻提供的电流比较小。如果是推挽输出的要设置为高阻态时,则两个开关必须同时断开 (或者在输出口上使用一个传输门),这样可作为输入状态,avr单片机的一些

传感器项目实施方案

传感器项目 实施方案 规划设计/投资分析/实施方案

摘要说明— 在全球传感器市场中,流量传感器、压力传感器和温度传感器所占比重较大。其中,流量传感器约占21%,压力传感器占比19%,温度传感器占比也在10%以上。不过,位移传感器、速度传感器、电量传感器、光纤传感器以及新兴传感器等其他合计占比也接近一半。 该传感器项目计划总投资12171.83万元,其中:固定资产投资8848.18万元,占项目总投资的72.69%;流动资金3323.65万元,占项目总投资的27.31%。 达产年营业收入27977.00万元,总成本费用21154.31万元,税金及附加250.09万元,利润总额6822.69万元,利税总额8013.84万元,税后净利润5117.02万元,达产年纳税总额2896.82万元;达产年投资利润率56.05%,投资利税率65.84%,投资回报率42.04%,全部投资回收期3.88年,提供就业职位533个。 报告内容:项目概况、建设背景及必要性分析、市场分析、调研、建设规划、选址可行性分析、土建工程分析、项目工艺及设备分析、项目环境保护分析、项目安全规范管理、风险评价分析、项目节能概况、实施进度、投资情况说明、经营效益分析、项目评价等。 规划设计/投资分析/产业运营

传感器项目实施方案目录 第一章项目概况 第二章建设背景及必要性分析第三章建设规划 第四章选址可行性分析 第五章土建工程分析 第六章项目工艺及设备分析第七章项目环境保护分析 第八章项目安全规范管理 第九章风险评价分析 第十章项目节能概况 第十一章实施进度 第十二章投资情况说明 第十三章经营效益分析 第十四章招标方案 第十五章项目评价

反相器的设计与仿真

0.18umCMOS反相器的设计与仿真 2016311030103 吴昊 一.实验目的 在SMIC 0.18um CMOS mix-signal环境下设计一个反相器, 使其tpHL二tpLH,并且tp越小越好。利用这个反相器驱动2pf电容, 观察tp。以这个反相器为最小单元,驱动6pf电容,总延迟越小越好。制作版图,后仿真,提取参数。 二.实验原理 1?反相器特性 1、输出高低电平为VDD和GND电压摆幅等于电源电压; 2、逻辑电平与器件尺寸无关; 3、稳态是总存在输出到电源或者地通路; 4、输入阻抗高; 5、稳态时电源和地没通路; 2?开关阈值电压Vm和噪声容限 Vm的值取决于kp/kn L " W k = - 所以P管和N管的宽长比值不同,Vm的值不同。增加P管宽度使Vm移向Vdd,增加N管宽度使Vm移向GNB 当Vm=1/2Vdd时, 得到最大噪声容限。

要使得噪声容限最大,PMOS部分的尺寸要比NMOS大,计算结果是3.5倍,实际设计中一般是2~2.5倍。 3?反向器传播延迟优化 1、使电容最小(负载电容、自载电容、连线电容) 漏端扩散区的面积应尽可能小 输入电容要考虑:(1)Cgs随栅压而变化 (2)密勒效应 (3)自举电路 2、使晶体管的等效导通电阻(输出电阻)较小: 加大晶体管的尺寸(驱动能力) 但这同时加大自载电容和负载电容(下一级晶体管的输入电容) 3、提咼电源电压 提高电源电压可以降低延时,即可用功耗换取性能。但超过一定程度后改善有限。电压过高会引起可靠性问题?当电源电压超过2Vt 以后作用不明显. 4、对称性设计要求 令Wp/Wn二卩p/卩u可得到相等的上升延时和下降延时,即tpHL 二tpLH。仿真结果表明:当P, N管尺寸比为1.9时,延时最小,在2.4时为上升和下降延时相等。 4?反相器驱动能力考虑 1?单个反相器驱动固定负载

集电极开路门与三态输出门的应用

实验 4 集电极开路门与三态输出门的应用 实验目的 1. 掌握 TTL 集电极开路(OC)门的逻辑功能及应用。 2. 掌握 TTL 三态(3S)输出门的逻辑功能及应用。 实验仪器设备与元器件 1.硬件基础电路实验箱,双踪示波器,数字万用表。 2.74LS00,74LS03,CC4011,74LS125 各一块。 实验概述 1.TTL 集电极开路门 图1.4-1所示是一个TTL 二输入集电极开路与非门的逻辑符号和内部电路。 OC 门的使用方法如下: (1) 利用OC 门“线与”特性完成特定逻辑功能。 图1.4.2所示,输出端实现了线与的逻辑功能: 若有一个门的输出为低电平,则F 输出为低,当所有门的输出为高电平,F 输出为高,即在输出端实现了线与的逻辑功能。 (2) 利用OC 门可实现逻辑电平的转换 改变上拉电阻R L 的电源V L 的电压,输出端的逻辑电平会跟V L 改变。不同电平的逻辑电

路可以用OC 门连接。 (3) OC 门用于驱动 OC 门的输出电流较大,可驱动工作电流较大的电子器件。图1.4.3所示是用OC 门驱动发光二级管的低电平驱动电路。 3. TTL 三态门图1. 4.4所示为三态门的逻辑符号和内部结构图,控制端为低有效。 实验内容 1. OC 门的特性及其应用 (1) 参考图1.4.2,用OC 门74LS03验证 OC 门的“线与”功能。R L 为1k Ω时,写出输出F 的表 达式,观测输出与输入信号的逻辑关系,将数据填入自制表格中。 (2) 参考图1.4.7, 验证OC 门74LS03的特性,输入A 、B 接逻辑电平输出信号,输出端Y 接直流电 压表。V L 接+5V,电阻R L 为4.7k, 观测输出与输入信号的逻辑关系,如果去掉R L , 观测输出信号 的变化。V L 改接+15V , 检测输出信号的高电平和低电平电压。 (3) 参考图1.4-8,用OC 门74LS03驱动COMS 电路与非门CD4011,V L 接+5V ,调节电位器R w ,

TE传感器解决方案

TE connEcTiviTy /// 传感器解决方案 水位传感器

88 水位传感器 水位传感器 https://www.sodocs.net/doc/4312329388.html, https://www.sodocs.net/doc/4312329388.html,/sensors T E在设计制造水位传感器方面拥有多年的经验,是水资源监控市场领先的传感器供应商。我们的隔离式压力传感器为客户提供独特的解决方案和可靠的产品性能。TE的水位传感器从量程、精度,到材质和引线连接都可以按照客户要求定制。无论是数字输出,还是模拟输出,我们的传感器都易于适用各种数据系统。此外,客户还可以选择使用带内存的自供电产品。我们的CTD型作为改善和保护水资源的关键,可测量电导率,温度和水深。 水位传感器

89 水位传感器 水位传感器 https://www.sodocs.net/doc/4312329388.html, MEAS TruBlue记录仪 555液位 575气压,585 CTD MEAS TruBlue记录仪 255液位 MEAS TruBlue记录仪 275气压 精度0.05% FS TEB (TruBlue 555,575,585) 读数的1%或 20 μs/cm (TruBlue 585)0.05% FS TEB 0.05% FS TEB 量程0~692 ft (TruBlue 555,585) 8~16 psia (TruBlue 575) 5~200,000 μs/cm (TruBlue 585)0~658 ft H 2O 8~16 psia 过载量程2倍 (TruBlue 555,585) 32 psia (TruBlue 575) 3倍 3倍 输出RS-485,SDI-12 RS-485,SDI-12RS-485,SDI-12数据记录内存8 MB 8 MB或56 MB 8 MB或56 MB 工作温度0℃~50℃0℃~50℃0℃~50℃尺寸(mm)Φ19 x 390 Φ19 x 222 Φ19 x 222典型应用地下水监控,地表水监控,海洋研究,大气压力 监控 洪水和暴风雨监控,波浪研究和快速采样,微水和泵测试,含水层特征 大气压力监控 MEAS KPSI 500,501MEAS KPSI 351,353,355 精度±0.05% FS TEB (KPSI 500) ±0.01 ft H 2O (KPSI 501) ±0.01 ft H 2O (KPSI 351) ±0.10% FS TEB (KPSI 353)±0.05% FS TEB (KPSI 355)量程10~230 ft (KPSI 500) 10~50 ft (KPSI 501) 10~50 ft (KPSI 351) 10~230 ft (KPSI 353,355)过载量程2倍 2倍 输出SDI-12m ,RS-485SDI-12,RS-485工作温度-20℃~60℃-20℃~60℃尺寸(mm)Φ25.4 x 197 Φ19 x 243 典型应用地下水监控,地表水监控,海洋 研究 地下水监控,地表水监控,海洋研究 TruBlue数据记录仪 数字输出水位传感器数字输出温度传感器 MEAS KPSI 380精度±0.1℃量程-20℃~60℃连接顶端开孔 输出SDI-12,RS-485工作温度-20℃~60℃尺寸 (mm)Φ19 x 127 典型应用地下水监控,地表水监控,暴风 雨,大坝和泄洪

CMOS反相器的版图设计

实验一:CMOS反相器的版图设计 一、实验目的 1、创建CMOS反相器的电路原理图(Schematic)、电气符号(symbol)以及版图(layout); 2、利用’gpdk090’工艺库实例化MOS管; 3、运行设计规则验证(Design Rule Check,DRC)确保版图没有设计规则错误。 二、实验要求 1、打印出完整的CMOS反相器的电路原理图以及版图; 2、打印CMOS反相器的DRC报告。 三、实验工具 Virtuoso 四、实验内容 1、创建CMOS反相器的电路原理图; 2、创建CMOS反相器的电气符号; 3、创建CMOS反相器的版图; 4、对版图进行DRC验证。

1、创建CMOS反相器的电路原理图及电气符号图 首先创建自己的工作目录并将/home/iccad/复制到自己的工作目录下(我的工作目录为/home/iccad/iclab),在工作目录内打开终端并打开virtuoso(命令为icfb &). 在打开的icfb –log中选择tools->Library Manager,再创建自己的库,在当前的对话框上选择File->New->Library,创建自己的库并为自己的库命名(我的命名为lab1),点击OK后在弹出的对话框中选择Attach to an exiting techfile并选择的库,此时Library manager的窗口应如图1所示: 图1 创建好的自己的库以及inv 创建好自己的库之后,就可以开始绘制电路原理图,在Library manager窗口中选中lab1,点击File->New->Cell view,将这个视图命名为inv(CMOS反相器)。需要注意的是Library Name一定是自己的库,View Name是schematic,具体如图2所示: 图2 inv电路原理图的创建窗口 点击OK后弹出schematic editing的对话框,就可以开始绘制反相器的电路原理图(schematic view)。其中nmos(宽为120nm,长为100nm.)与pmos(宽为240nm,长为100nm.)从这个库中添加,vdd与gnd在analogLib这个库中添加,将各个原件用wire连接起来,连接好的反相器电路原理图如图3所示:

实验四TTL集电极开路门和三态输出门测试_图文(精)

实验四 TTL 集电极开路门和三态输出门测试 一、实验目的 1 、掌握 TTL 集电极开路门 (OC 门的逻辑功能及应用。 2 、了解集电极负载电阻 RL 对集电极开路门的影响。 3 、掌握 TTL 三态输出门 (3S 门的逻辑功能及冈山。 二、实验原理 数字系统中有时需要把两个或两个以上集成逻辑门的输出端直接并接在一起完成一定的逻辑功能。对于普通的 TTL 电路 , 由于输出级采用了推拉式输出电路 , 无论输出是高电平还是低电平 , 输出阻抗都很低。因此 , 通常不允许将它们的输出端并接在一起使用 , 而集电极开路门和三态输出门是两种特殊的 TTL 门电路 , 它们允许把输出端直接并按在一起使用 , 也就是说 , 它们都具有 " 线与 " 的功能。 1 、 TTL 集电极开路门 (OC 门 本实验所用 OC 门型号为 2 输入四与非门 74LS03, 引脚排列见附录。工作时 , 输出端必须通过一只外接电阻 RL 和电源 Ec 相连接 , 以保证输出电平符合电路要求。 OC 门的应用主要有下述三个方面 : (l 电路的 " 线与 " 特性方便的完成某些特定的逻辑功能。图4 · l 所示 , 将两个 OC 门输出端直接并接在一起 , 则它们的输出 F=FA·FB=A1A2·B1B2 =A1A2+B1B2 图 4-1 0C 与非门 " 线与 " 电路图 4-2 0C 与非门负载电阻 RL 的确定 即把两个 ( 或两个以上〉 OC 与非门 " 线与 " 可完成 " 与或非 " 的逻辑功能。 (2 实现多路信息采集 , 使两路以上的信息共用一个传输通道 ( 总线。

(3 实现逻辑电平转换 , 以推动荧光数码管、继电器、 MOS 器件等多种数字集成电路。 OC 门输出并联运用时负载电阻 RL 的选择 : 如图 43 所示 , 电路由 n 个 OC 与非门 " 线与 " 驱动有 m 个输入端的 N 个 TTL 与 1Hl, 为保证 OC 门输出电平符合逻辑要求 , 负载屯阻 RI 阻值的选抨范围为: 式中 :IOH 一一 -OC 门输出管截止时 ( 输出高电平 VOEf 〉的漏电流〈约为 50uA ILM 一一一 OC 门输出低电平 VOL 时允许最大灌入负载电流 ( 约为 2OmA ItH 一一 -负载门高电平输入电流 (<5011A Itl, 一一负载门低电平输入电流 (<1.6mA Ec 一 -RL 外接电源电压 n 一一 OC 门个数 N 一一负载门个数 M 一一接入电路的负载门输入端总个数 RL 值须小于 RLmax, 否则 VOEt 将下降 ,RL 值须大于 RLmiI1, 否则 VOL 将上升 , 又 RL 的大小会影响输出波形的边沿时间 , 在工作速度较高时 ,RL 应尽量选取接近 RIAin 。 2 、 TTL 三态输出门 (3S 门

集成电路基础实验cadence反相器设计

题目:反相器分析与设计 姓名:白进宝 学院:微电子与固体电子学院 学号:201722030523 签名:教师签名:

摘要 CMOS指互补金属氧化物(PMOS管和NMOS管)共同构成的互补型MOS集成电路制造工艺,它的特点是低功耗。由于CMOS中一对MOS组成的门电路在瞬间看,要么PMOS导通,要么NMOS导通,要么都截至,比线性的三极管(BJT)效率要高得多,因此功耗很低。本次设计的是反相器,通过电路搭建前仿真,实现其功能。然后进行版图设计,提取寄生参数后进项后仿真。 关键词:CMOS、反相器、低功耗、集成电路版图 1、技术指标要求 面积:100um2 速度:大于1GHz 功耗:功耗与电源电压、工作速度、负载等诸多因素有关。 2、电路搭建 工艺库:smic18mmrf 器件参数: 设置NMOS与PMOS宽长比。 电路结构:

如图,电路结构。有两级反相器组成,第二级为负载,因为在实际电路中电路都是带载的。

分别作NMOS和PMOS的直流输出特性曲线,NMOS的阈值电压大约为0.5V左右,PMOS的阈值电压大约为0.6V左右。 3、仿真 (1)进行直流传输特性仿真分析

图一电源电压为5V,图二电源电压为2V。可以看到图二的特性比图一好,这是由于降低的电压,从而使特性变好。继续降低电源电压为1V后,特性更好。但是当降到200mV时,特性反而变差。这是由于当电压降到接近于阈值电压或更低时,管子无法导通,性能变差。 (2)瞬态特性分析 瞬态特性分析,反相器实现非门的功能。

将时间轴拉长,可以看到当输出反向时,存在一个过冲现象,这是由于栅漏电容造成。 (3)工作频率分析 上图为反相器没有带负载的情况下测出的下降时间,下图为带一个反相器测出的下降时间。从而我们可以得出电路的扇出越多,性能越差,所以在数字电路中,我们尽量将扇出控制在4以内。更多的扇出将通过组合电路多级实现。 由图可得上升时间为23.85ps,下降时间为29.25ps。 工作频率=1/(2×max(上升时间,下降时间))=17GHz (4)功耗分析

集电极开路TT门(OC门)

集电极开路TTL门(OC门) ⑴TTL与非门输出端并联后出现的问题 在实际应用与非门时,某些场合希望能将多个门的输出端连在同一根导线上。在数字系统中,称公共导线为总线(BUS),为传输各门信息的公共通道。但是对于推拉输出的TTL与非门,当各个门的输出不是相同的逻辑状态时不能这样使用。有两个推拉输出的TTL与非门,若在一个门输出为高电平(即该门关门),另一个门输出为低电平(即该门开门)时, 图1 两个TTL与非门输出端直接相连的错误接法

将两个门的输出端并联成图1所示电路。由于在具有推拉式输出级的电路中,无论输出是高电平还是低电平,输出电阻都很小,输出端并接后将有很大的电流i同时流过两个门的输出级,该电流远远超过了与非门的正常工作电流,足以使V3、V4 过载而损坏,更为严重的是并联后的输出电压既非逻辑1亦非逻辑0,这种不确定状态是不允许出现的。因此,推拉输出的TTL与非门输出端是不允许并联使用的。 ⑵集电极开路的与非门结构和符号 避开低阻通路,把输出级改为集电极开路的结构就可以解决推拉输出的TTL与非门的输出不允许接至同一总线上的问题。如图2(a)所示,这种门称为集电极开路的与非门(OC门)。它与推拉输出的与非门的区别是用外接电阻RC代替R4、V3、VD3,电源VC与VCC可以不是同一个。这种门电路在工作时需要外接负载电阻和电源。只要电阻的阻值和电源电压的数值选择得当,就能够做到既保证输出的高、低电平符合要求,输出端三极管的负载电流又不过大。

图2 TTL开路门(a)电路结构;(b)符号。 当几个OC门的输出端相连时,一般可共用一个电阻RC和电源VC,如图3(a)、(b)分别给出它们的符号和电路结构。 图3 OC门的线与连接图4 OC门上拉电阻的计算 图3中Y1输出高电平,Y2输出低电平时,负载电流同样会通过RC 流向Y2的输出管V4。但可以把外接电阻RC选得足够大,使得电流很小,确保Y1的输出管能可靠饱和,输出Y为低电平。当然RC也不能过大,否则会降低OC门的输出高电平。图4中,当相连的OC门中至少有一个输出为低电平时,总输出为低电平;当两个OC门的输出都为高电平时,则总输出为高电平。可见它能实现输出端相“与”的功能。输出

传感器项目可行性方案 (1)

传感器项目 可行性方案 规划设计/投资分析/产业运营

传感器项目可行性方案说明 我国传感器行业发展痛点为:关键技术有待突破。国内传感器在高精度、高敏感度分析、成分分析和特殊应用等高端方面与国际水平差距巨大,中高档传感器产品几乎完全从国外进口,绝大部分芯片依赖国外,国内缺 乏对新原理、新器件和新材料传感器的研发和产业化能力;在设计技术、 封装技术、装备技术等方面存在的差距也较大。国内尚无一套有自主知识 产权的传感器设计软件,国产传感器可靠性比国外同类产品低1-2个数量级,传感器封装尚未形成系列、标准和统一接口,部分传感器工艺装备研 发与生产被国外垄断。我国传感器技术的核心及关键技术都有待突破,技 术研发及创新能力亟待提升。企业竞争实力不足。我国的传感器企业虽 然数量众多,但大部分都属于中小型企业,且大都面向中低端领域,基础 薄弱,研究水平不高,整体规模及效益较差。许多企业都是引用国外的芯 片加工,自主创新能力薄弱,自主研发的产品较少,产品结构缺乏合理性,在高端领域几乎没有市场份额。企业的技术实力较弱,很多是与国外合作 或进行二次封装,已经突破的科研成果转化率低,产业发展后劲不足,综 合实力较低。从目前市场份额和市场竞争力指数来看,外资或国际企业仍 占据着有利地位,国内传感器企业的发展面临巨大挑战。国际差距明显。尽管中国传感器制造行业取得长足进步,但与国际发达国家相比仍存在明

显差距。利好政策推动行业快速发展:2014年以来,我国政府出台了多项战略性、指导性政策文件,推动我国传感器及物联网产业向着融合化、创新化、生态化、集群化方向加快发展。2017年5月,工信部聚焦智能终端、物联网、智能制造、汽车电子等重点应用领域,有效提升了中高端产品供给能力,推动了我国智能传感器产业加快发展。总体目标是,到2019年,我国智能传感器产业取得明显突破,产业生态较为完善,涌现出一批创新能力较强的国际先进企业,技术水平稳步提升,产品结构不断优化,供给能力有效提高。在国家政策的大力支持下,本土传感器企业有望提升技术从而摄取更多的市场份额。2017年12月,工信部明确提出要重点发展智能传感器等相关产业,智能传感器技术产品实现突破,支持微型化及可靠性设计、精密制造、集成开发工具、嵌入式算法等关键技术研发,支持基于新需求、新材料、新工艺、新原理设计的智能传感器研发及应用。到2020年,压电传感器、磁传感器、红外传感器、气体传感器等的性能显著提高。在模拟仿真、设计、MEMS工艺、封装及个性化测试技术方面达到国际先进水平,具备在移动式可穿戴、互联网、汽车电子等重点领域的系统方案设计能力。物联网产业发展:一般来说,物联网在结构上通常划分为感知层、网络层和应用层三个部分。其中,感知层作为数据采集的源头,是物联网实现的基础。在感知层,最重要的组件就是各种各样的传感器。在物联网产业的推动下,智能手机、可穿戴、虚拟现实、智能硬件、视频交互与安防监控、机器人、3G/4G通信技术的普及,5G技术

二输入与非门、或非门版图设计

课程名称Course 集成电路设计技术 项目名称 Item 二输入与非门、或非门版图设 计 与非门电路的版图: .spc文件(瞬时分析): * Circuit Extracted by Tanner Research's L-Edit / Extract ; * TDB File: E:\cmos\yufeimen, Cell: Cell0 * Extract Definition File: C:\Program Files\Tanner EDA\L-Edit\spr\ * Extract Date and Time: 05/25/2011 - 10:03 .include H:\ VPower VDD GND 5 va A GND PULSE (0 5 0 5n 5n 100n 200n) vb B GND PULSE (0 5 0 5n 5n 50n 100n) .tran 1n 400n .print tran v(A) v(B) v(F) * WARNING: Layers with Unassigned AREA Capacitance. * * *

*

* *

* WARNING: Layers with Unassigned FRINGE Capacitance. * * * * *

* *

* * WARNING: Layers with Zero Resistance. * * * * * NODE NAME ALIASES * 1 = VDD (34,37) * 2 = A , * 3 = B , * 4 = F , * 6 = GND (25,-22) M1 VDD B F VDD PMOS L=2u W=9u AD=99p PD=58u AS=54p PS=30u * M1 DRAIN GATE SOURCE BULK M2 F A VDD VDD PMOS L=2u W=9u AD=54p PD=30u AS=99p PS=58u * M2 DRAIN GATE SOURCE BULK M3 F B 5 GND NMOS L=2u W= AD= PD=30u AS=57p PS=31u * M3 DRAIN GATE SOURCE BULK -18 M4 5 A GND GND NMOS L=2u W= AD=57p PD=31u AS= PS=30u * M4 DRAIN GATE SOURCE BULK -18 * Total Nodes: 6 * Total Elements: 4 * Extract Elapsed Time: 0 seconds .END 与非门电路仿真波形图(瞬时分析):

器件集电极开路门与三态输出门的应用实验报告

集电极开路门与三态输出门的应用实验报告 一、 实验目的 掌握TTL 集电极开路(OC)门和三态(3S)输出门的逻辑功能及应用。 二、 实验器件 试验箱、万用表 三、 实验内容及数据 1. OC 门的特性及其应用 (1) 参考图1.4.2,用OC 门74LS03验证 OC 门的“线与”功能。R L 为1k Ω时,写出输出F 的表达式,观测输出与输入信号的逻辑关系,将数据填入自制表格中。 电路接线:5V :14 GND :7 十六位逻辑电平输出:4、5、13、12 十六位逻辑电平显示:电阻(1K ) 电阻(1K ):6(6与11相连) A B C D F 0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 0 1 0 1 1 0 1 1 0 1 0 1 1 1 0 1 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1

原理:两个与非门相连,逻辑公式为:逻辑公式:F=(AB)’(CD)’ (2) 参考图1.4.7, 验证OC 门74LS03的特性,输入A 、B 接逻辑电平输出信号,输出端Y 接直流电压表。V L 接+5V,电阻R L 为4.7k, 观测输出与输入信号的逻辑关系,如果去掉R L , 观测输出信号的变化。V L 改接+15V , 检 测输出信号的高电平和低电平电压。 电路接线:5V :14 GND :7 十六位逻辑电平输出:4、5 十六位逻辑电平显示:电阻(1K ) 电阻(1K ):6 原理:两个与非门相连,逻辑公式为:逻辑公式:Y=(AB)’ 逻辑关系表: A B Y 0 0 1 0 1 0 1 0 0 1 1 (3) 参考图1.4-8,用OC 门74LS03驱动COMS 电路与非门CD4011,V L 接+5V ,调节电位器R w ,观察上拉电阻的取值对输出端Y 的电平的影响。要求输出信号Y 的高电平不小于3.5V, 低电平不大于0.3V,实验求出上拉电阻的取值范围。 去掉R L ,信号灯亮度增加,逻辑关系不变。 V L 改接+15V ,高电平电压:3.05 低电平电压:0.22 V L 改接+15V ,高电平电压:9.60 低电平电压:0.10

集成电路版图设计-反相器-传输门

集成电路版图设计 实验报告 学院:电气与控制工程学院班级: XXXXXXXXXX 学号:XXXXXXXX 姓名:XXXX 完成日期:2015年1月22日

一、实验要求 1、掌握Linux常用命令(cd、ls、pwd等)。 (1)cd命令。用于切换子目录。输入cd并在后面跟一个路径名,就可以直接进入到另一个子目录中;cd..返回根目录;cd返回主目录。(2)ls命令。用于列出当前子目录下所有内容清单。 (3)pwd命令。用于显示当前所在位置。 2、掌握集成电路设计流程。 模拟集成电路设计的一般过程: (1)电路设计。依据电路功能完成电路的设计。 (2)前仿真。电路功能的仿真,包括功耗,电流,电压,温度,压摆幅,输入输出特性等参数的仿真。 (3)版图设计(Layout)。依据所设计的电路画版图。一般使用Cadence软件。 (4)后仿真。对所画的版图进行仿真,并与前仿真比较,若达不到要求需修改或重新设计版图。 (5)后续处理。将版图文件生成GDSII文件交予Foundry流片。 3、掌握Cadence软件的使用 (1)使用Cadence SchematicEditor绘制原理图。 (2)由Schematic产生symbol。 (3)在测试电路中使用AnalogEnvironment工具进行功能测试。 (4)使用Cadence Layout Editor根据原理图绘制相应版图,以

0.6umCMOS设计规则为准。 (5)对所设计的版图进行DRC验证,查错并修改。 以PMOS为例,部分设计规则如下:(um) N-Well包含P+Active的宽度:1.8 MOS管沟道最小宽度:0.75最小长度:0.6 Active区伸出栅极Ploy的最小延伸长度:0.5 Contact最小尺寸:0.6*0.6 Contact与Contact之间的最小间距:0.7 Active包最小尺寸Contact的最小宽度:0.4 非最小尺寸Contac t的最小宽度:0.6 Active上的Contact距栅极Poly1的最小距离:0.6 Metal1包最小尺寸的Contact:0.3 Metal1与Metal1之间的最小间距:0.8

三极管集电极开路输出结构图解

三极管集电极开路输出结构图解

————————————————————————————————作者:————————————————————————————————日期:

三极管集电极开路输出结构图解 集电极开路输出的结构如图1所示,右边的那个三极管集电极什么都不接,所以叫做集电极开路;左边的三极管为反相之用,使输入为“0”时,输出也为“0”。 对于图 1,当左端的输入为“0”时,前面的三极管截止,所以5v 电源通过1k电阻加到右边的三极管上,右边的三极管导通;当左端的输入为“1”时,前面的三极管导通,而后面的三极管截止。 我们将图1简化成图2的样子,很明显可以看出,当开关闭合时,输出直接接地,所以输出电平为0。而当开关断开时,则输出端悬空了,即高阻态。这时电平状态未知,如果后面一个电阻负载到地,那么输出端的电平就被这个负载拉到低电平了,所以这个电路是不能

输出高电平的。 图3中那个1k的电阻即是上拉电阻。如果开关闭合,则有电流从1k电阻及开关上流过,但由于开关闭和时电阻为0(方便我们的讨论,实际情况中开关电阻不为0,另外对于三极管还存在饱和压降),所以在开关上的电压为0,即输出电平为0。如果开关断开,则由于开关电阻为无穷大(同上,不考虑实际中的漏电流),所以流过的电流为0,因此在1k 电阻上的压降也为0,所以输出端的电压就是5v了,这样就能输出高电平了。 但是这个输出的内阻是比较大的——即1k,如果接一个电阻为r的负载,通过分压计算,就可以算得最后的输出电压为5*r/(r+1000)伏,所以,如果要达到一定的电压的话,r就不能太小。如果r 真的太小,而导致输出电压不够的话,那我们只有通过减小那个1k的上拉电阻来增加驱动能力。但是,上拉电阻又不能取得太小,因为当开关闭合时,将产生电流,由于开关能流过的电流是有限的,因此限制了上拉电阻的取值。另外还需要考虑到,当输出低电平时,负载可能还会给提供一部分电流从开关流过,因此要综合这些电流考虑来选择合适的上拉电阻。 如果我们将一个读数据用的输入端接在输出端,这样就是一个IO口了,51的IO口就是这样的结构,其中P0口内部不带上拉,而其它三个口带内部上拉。当我们要使用输入功能时,只要将输出口设置为1即可,这样就相当于那个开关断开,而对于P0口来说,就是高阻态了。

PLC与传感器连接解决方案选型参考

PLC与传感器连接方案选型参考 传感器模拟信号数据采集与PLC系统匹配方案选型 概述 在工业现场中,压力、位移、温度、流量、转速等各类模拟量传感器因设计使用的技术方法不同。传感器工作配电的方式主要分为两线制和四线制,其输出的模拟信号也各有差异,而常见的有0-20mA/4-20mA电流信号和0-75mV/0-5V/1-5V电压信号。要把各类传感器模拟信号成功采集到PLC/DCS/FCS/MCU/FA/PC系统,就要根据传感器与数据采集系统的功能和技术特点进行匹配选型,同时也要考虑到工业现场传感器与PLC等数据采集系统的供电差异及各种EMC干扰的影响,通常把传感器输出的模拟信号隔离、放大、转换后送到PLC等数据采集系统。PLC通过信号线采集传感器的模拟或数字信号,然后进行处理,如果传感器是模拟输出,PLC就要接模拟输入接口,如果传感器是数字信号输出,PLC就要接数字输入接口。 开关量传感器就是一个无触点的开关 ,开关量传感器可作为PLC的开关量输入信号。一般 用于开关量控制的设备,机床,机器等。模拟量传感器是把不同的物理量(如 压力、流量、温度) 转换成模拟量(4-20MA的电流或1-5V的电压)。模拟量传感器作为PLC的模拟量输入模块的输入信 号。一般用于过程控制。 数字传感器是指将传统的模拟式传感器经过加装或改造A/D转换模块, 使之输出信号为数字量(或数字编码)的传感器,主要包括:放大器、A/D转换器、微处理器(CPU)、 存储器、通讯接口电路等。 常用的模拟量传感器分为两线制和四线制,两线制和四线制都只有两根信号线,它们之间的 主要区别在于:两线制的两根信号线既要给传感器或者变送器供电,又要提供电流电压信号;而四 线制的两根信号线只提供电流信号。因此,通常提供两线制电流电压信号的传感器或者变送器是无 源的;而提供四线制电流信号的传感器或者变送器是有源的。因此,当PLC等数据采集系统的模板 输入通道设定为连接四线制传感器时,PLC只从模板通道的端子上采集模拟信号,而当PLC等数据 采集系统的模板输入通道设定为连接二线制传感器时,PLC的模拟输入模板的通道上还要向外输出 一个直流24V的电源,以驱动两线制传感器工作。 4-20mA和电工标准有关,4-20mA信号制 是国际电工委员会(IEC)过程控制系统用模拟信号标准。我国从DDZ-Ⅲ型电动仪表开始采用这一国 际标准信号制,仪表传输信号采用4-20mA,联络信号采用1-5VDC,即采用电流传输、电压接收的信 号系统。因为信号起点电流为4mA,为变送器提供了静态工作电流,同时仪表电气零点为4mA,不与 机械零点重合,这种活零点有利于识别断电和断线等故障。 IC封装和标准DIN 35导轨安装的产品图片展示

集电极开路输出

集电极开路输出 在应用PLC、变频器和伺服电机等自动控制设备使时,通常会遇到集电极开路输出的接口输出形式,那么什么是集电极开路输出呢? 集电极开路(Open Collector,在数字电路中简称OC门)电路中的“集”就是指三极管的集电极。集电极开路输出其实就是控制三极管工作在截止区或者饱和区的一种工作状态。三极管符号如图1所示: 图1:左边为PNP型三极管,右边为NPN型三极管。其中,基极用B(base)表示,集电极用C(collector)表示,发射极用E(emitter)表示。 典型的集电极开路电路如图2所示。电路中右侧晶体管的集电极(output)什么都不接,所以叫做集电极开路。右侧的三极管用作反向作用,即左侧(input)输入为0时左侧的三极管截至,VCC通过电阻加到右侧三极管基极,右侧的三极管导通,右侧输出端连接到地,输出0。 图2典型集电极开路电路

从图2中可以看出,集电极开路输出是无法输出高电平的。如果想要输出高电平,;可以在输出端加上上拉电阻。因此集电极开路输出可以用作电平转换,通过上拉电阻上拉至不同的电压,来实现不同的电平转换。用做驱动器时,由于OC门电路的输出管的集电极悬空,使用时需外接一个上拉电阻Rp到电源VCC。OC门通过上拉电阻可以输出高电平,此外,为了加大输出引脚的驱动能力,从降低功耗及芯片的灌电流能力考虑,上拉电阻应当选择足够大,从确保足够的驱动电流考虑应当足够小。 将OC门输出连接在一起时,在通过一个电阻接外电源,可以实现“线与”逻辑关系。只要电阻的阻值和外电源电压的数值选择得当,就即能保证输出的高低电平符合要求,也能保证三极管的负载电流不至于过大。 集电极开路输出除了可以实现多门的线与逻辑关系外,通过使用大功率的三极管还可以直接驱动交大电流的负载,如继电器、脉冲变压器、指示灯等。

[课程]集电极开路输出

[课程]集电极开路输出 集电极开路输出 我们先来说说集电极开路输出的结构。集电极开路输出的结构如图1所示,右边的那个三极管集电极什么都不接,所以叫做集电极开路(左边的三极管为反相之用,使输入为“0”时,输出也为“0”)。对于图1,当左端的输入为“0”时,前面的三极管截止(即集电极c跟发射极e之间相当于断开),所以5v电源通过1k电阻加到右边的三极管上,右边的三极管导通(即相当于一个开关闭合);当左端的输入为“1”时,前面的三极管导通,而后面的三极管截止(相当于开关断开)。 我们将图1简化成图2的样子。图2中的开关受软件控制,“1”时断开,“0”时闭合。很明显可以看出,当开关闭合时,输出直接接地,所以输出电平为0。而当开关断开时,则输出端悬空了,即高阻态。这时电平状态未知,如果后面一个电阻负载(即使很轻的负载)到地,那么输出端的电平就被这个负载拉到低电平了,所以这个电路是不能输出高电平的。 再看图三。图三中那个1k的电阻即是上拉电阻。如果开关闭合,则有电流从1k电阻及开关上流过,但由于开关闭和时电阻为0(方便我们的讨论,实际情况中开关电阻不为0,另外对于三极管还存在饱和压降),所以在开关上的电压为0,即输出电平为0。如果开关断开,则由于开关电阻为无穷大(同上,不考虑实际中的漏电流),所以流过的电流为0,因此在1k电阻上的压降也为0,所以输出端的电压就是5v了,这样就能输出高电平了。但是这个输出的内阻是比较大的(即 1kω),如果接一个电阻为r的负载,通过分压计算,就可以算得最后的输出电压为5*r/(r+1000)伏,即5/(1+1000/r)伏。所以,如果要达到一定的电压的话,r 就不能太小。如果r真的太小,而导致输出电压不够的话,那我们只有通过减小那个1k的上拉电阻来增加驱动能力。但是,上拉电阻又不能取得太小,因为当开关

相关主题