搜档网
当前位置:搜档网 › 图位克隆基因研究进展

图位克隆基因研究进展

图位克隆基因研究进展
图位克隆基因研究进展

图位克隆基因研究进展

宋成标

摘要图位克隆是在不清楚基因产物结构和功能的情况下,根据基因在染色体上都有稳定的基因座实现的。随着各种分子标记技术和高质量基因组文库构建技术的发展,图位克隆现已经成为分离生物体基因的一种常规技术。本文主要概述了图位克隆的一般步骤,包括目的基因的初步定位、精细定位和遗传做图、染色体步行和登陆及利用功能互补实验鉴定目的基因。最后,对图位克隆技术存在的局限和发展前景作了初步的分析。

关键词图位克隆, 分子标记, 精细定位, 基因组文库

Abstract Map-based cloning is based on the functional genes have their particular gene locus on chromosomes,when we know about the structure and function of gene products unclearly.With the rapid development of molecular marker technologies and constructing high quality genomic library technologies, map-based cloning had already become a common bio—technique for gene isolation. This article summarized mainly the processes of the map-based cloning in principle,including first-pass mapping of candidate gene、fine scale-mapping and building genetic map、chromosome walking or landing and finally complement experiment for identifing candidate gene. Finally the problems and the prospects in the map-based cloning are analyzed

Keywords Map-based cloning, Molecular marker, Fine maping, Genomic library

从遗传学观点来看,基因克隆有两条途径:正向遗传学途径和反向遗传学途径。正向遗传学途径指的是通过被克隆基因的产物或表型突变去进行,如传统的功能克隆及近年来迅速发展的表型克隆;反向遗传学途径是根据被克隆的目的基因在染色体上都有稳定的位置来实现的。由于在多数情况下,我们并不清楚基因产物的结构和功能,很难通过正向遗传学途径克隆基因,而反向遗传学途径则显示了较好的前景。其中可以利用的主要有三种方法,分别是转座子标签法、随机突变体筛选法和图位克隆法。转座子标签法中受转座子的种类、转座频率及有些植物存在内源转座子等的影响,随机突变体筛选法则随机性较大且不能控制失活基因的种类和数量等,限制了它们的应用。图位克隆(map-based cloning)又称为定位克隆(positional cloning),1986年首先由剑桥大学的Coulson 等提出,用该方法分离基因是根据目的基因在染色体上的位置进行的,无需预先知道基因的DNA序列,也无需预先知道其表达产物的有关信息。它是通过分析突变位点与已知分子标记的连锁关系来确定突变表型的遗传基础。随着模式物种(拟南芥、水稻)全基因组测序的完成,各种分子标记技术的发展促进了高密度分子标记连锁图谱的建立和各种数据库的完善。图位克隆技术越来越成熟,已经成为分离生物基因的一种常规方法。本文将对图位克隆技术的相关策略作一介绍。

1图位克隆的策略

自1992年图位克隆技术首次在拟南芥中克隆到ABI3(Girauda et al., 1992)基因和F AD3 (Arondel et al., 1992)基因以来,图位克隆技术在其它相关技术快速发展的支持下迅速发展起来。它是依据功能基因在生物基因组中都有相对稳定的基因座,在利用分子标记技术对目的基因进行精细定位的基础上,用与目的基因紧密连锁的分子标记筛选已构建的DNA文库(如Cosmid、YAC、BAC等文库),构建出目的基因区域的遗传图谱和物理图谱,再利用此物理图谱通过染色体步行、跳跃或登陆的方式获得含有目的基因的克隆,最后通过遗传转化和功能互补实验来验证所获得的目的基因(图1)。

初步定位(First-pass maping)-------构建遗传图谱(constructing genetic map)-----精细定位(fine maping)---------构建物理图谱( constructing physical map)------染色体步移、登陆(chromosomal walking、landing)-------确定侯选基因(Consider candidate genes)----遗传互补验证目的基因(Through genetic complementation (transformation) to identify candidate gene)(请帮我画一个简易图表,把内容填进去)

图1 图位克隆的主要步骤

Figure 1 Key steps in map-based cloning process

2图位克隆相关技术的发展

大片段DNA克隆载体的发展和高密度的DNA分子连锁图谱的构建为图位克隆技术的实际应用成为了可能,而一些模式生物基因组测序的完成,则使在这些生物及同科属生物间图位克隆一个目的基因的时间大为缩短。2.1 高质量、容易操作的基因组文库的构建

基因组大片段插入文库的发展主要经历了噬菌体和Cosmid文库和人工染色体文库。作为第一代文库发展的代表噬菌体和Cosmid文库虽然比较稳定、易分离及转化率高等优点,但插入的片段较小,都在25 ~ 45Kb之间。图位克隆理论上可以适用于任何生物,但主要还是用于真核生物。真核生物一般含有大量的内含子,只有容纳大片段插入子的克隆载体,才能携带完整的基因。人工染色体的出现基本上克服了DNA容载的问题,最旱发展的人工染色体是YAC。1983年Murray等(文后无此文献,请补充,已补充)首次构建了总长度为55Kb的Y AC。1987年Burke等(文后无此文献,请补充,后面有)得到了能够克隆大片段DNA的YAC载体。证明Y AC可以构建高等生物的完整基因组文库。酵母人工染色体(YAC)具有着丝粒(CEN)、端粒(TEL)及复制起始点(ARS),能够在酵母细胞中自主复制。Y AC尽管有较大的容量,但也存在着一些缺陷:(1) 嵌合现象(chimeric phenotype)的存在(占全部克隆的40% ~ 60%)。在同一Y AC克隆中嵌合两个不连续的大片段,来自不同染色体或同一染色体的不连续的区域,这些克隆很不适合测序和作图工作;(2) 稳定性差(unstability),在一些克隆中存在序列重排(sequence rearrangem ent)和插入丢失(insert deletion)现象;(3) 插入DNA分离与纯化困难;(4) 转化效率低。这些缺点限制了YAC的应用。后来陆续发展了P1,BAC,PAC等几种以细菌为寄主的载体系统。值得提及的是进展一直缓慢的哺乳动物人工染色体(MAC)和人类人工染色体(HAC)也已取得突破性进展。

2.2分子标记技术的发展

实现基因图位克隆的关键是筛选与目标基因连锁的分子标记。实质上,分子标记是一个特异的DNA片段或能够检出的等位基因,对其有效地利用即可达到图位克隆基因之目的。迄今为止,已有几十种技术可用于分子标记的筛选。其中常用的有限制性内切酶酶切片段长度多态性标记(restriction fragment length polymorphism, RFLP)、随机扩增多态性DNA(randomly amplified polymorphic DNA, RAPD)、测定序列标签位点(sequence tagged site, STS)、表达序列标签(expressed sequence tag, EST)、单核苷酸多态性(single nucleotide polymorphisim, SNP)、简单顺序长度多态性(simple sequcuce length polymorphism, SSLP)、简单重复顺序即微卫星DNA标记(simple sequence repeat, SSR)、扩增的限制性内切酶片段长度多态性(amplified fragment length polymorphism, AFLP)等。这些技术有别于最初的形态标记、细胞学标记和生化标记,一般表现出稳定、可靠的特点,有的使用成本也相对较低,特别适用于筛选与目标基因紧密连锁的标记,尤其是与目标基因共分离的标记。因此能够加快克隆基因的进程,研究者可依据不同的研究目标、对象、目的、条件等,选择使用这些技术。

另外随着分子标记技术的发展,一些植物的遗传图谱构建和比较基因组的研究也取得了很大的进步,现在已经建图的植物达十几种物,其中包括了所有重要的农作物,水稻、玉米、蕃茄、小麦、马铃薯、拟南芥等重要经济作物和模式植物的遗传图谱已相当精细,含有数百甚至数千个标记。如Harushima等(1998)将水稻图谱的分子标记加密到2275个,总遗传距离达到1521. 6cM;同时Takashi等(1998)利用水稻的2 275个分子标记筛选到了2976个Y AC克隆,其中2 445个克隆已被定位于遗传连锁图上,这些阳性克隆组成了213个跨叠克隆群,覆盖水稻基因组约63%;到2001年定位到该图谱上的分子标记己达3000多个,这为克隆基因和研究基因表达及调控奠定了基础。随着比较基因组学的兴起. 可以利用同科异种间染色体的共线性以模式植物为种间图位克隆中介来克隆其它植物基因。Kilian 等(1997)曾以水稻为图位克隆中介来克隆大麦杆锈病抗性基因Rpgl和Rpg4,并建立了3.6个分子标记/0.1cM的区域高密度分子标记连锁图,而且鉴定了一个覆盖Rpgl区域的水稻BAC克隆,精细作图证明一个20 Kb水稻基因组片段包含Rpgl两侧的分子标记。

3图位克隆的一般步骤

3.1筛选与目标基因连锁的分子标记

这一步相当于对目的基因在染色体上进行初步定位,利用分子标记技术在一个目标性状的分离群体中把目的基因定位于一定的染色体区域内。笼统的说,我们是通过验证分子标记的多态性来确立目标基因与分子标记的遗传连锁关系。目前,初定位目的基因常用近等基因系法(near isogenic lines, NILs)和群组分离分析法(bulk segregant analysis, BSA)。近等基因系是一系列回交过程的产物,理论上近等基因系间除了目的基因及邻近区不同外,其它区段应完全一致.因此,如果在近等基因系中检测出多态性,差异就必定在目的基因及其邻近区域中。利用这一

方法,Liang(1994) (文后无此文献,请补充,已补充)定位了一个水稻半矮秆基因Sdy。但近等基因系法由于基因连锁的结果,在回交导入目标性状基因的同时,与目标基因连锁的染色体片段也随之进入子代中,出现连锁累赘现象,且构建NILs周期过长,而限制了该法的广泛应用。群组分离分析法(BSA)是由Michelmore 等(1991)提出的。其原理是将分离群体(F2、BC1、DH系等)中的个体依据研究的目标性状(如抗病、感病)分成两组,在每一组群体中将各个体DNA等量混合,形成两个DNA池(如抗病池和感病池)。由于分组时仅对目标性状进行选择,因此两个池间理论上就应主要在目标基因区段存在差异。通过初步定位我们一般可以筛选出距目的基因的遗传距离一般为5 ~ 10cM的两个侧面连锁的分子标记,这样就可以进行下一步的精细定位工作。

3.2目的基因部位的精细定位和作图

精细定位最终目标是将包含突变基因的遗传间隔缩小到0.5cM甚至更小,显然用于作图的定位群体越大,就越能精确地定位突变基因。一般需要包含3 000~4 000个生物个体的定位群体来精确地定位目的基因就可以了。但如果目的基因是在着丝粒附近,1cM相当于1 000Kb左右,再加上着丝粒附近染色体重组率低,要想获得与目标基因紧密连锁的分子标记就必须建立更大的定位群体,这样可以为后面的染色体步行节省时力。因此,精细定位工作是图位克隆一个基因过程中最为耗时耗力的步骤,也是限速的一步。增加一个已知区域内的分子标记的方法一般有,首先整合已有的遗传图谱,将各种不同遗传图谱中的分子标记整合到一块,可以提高分子标记的密度;再次可以增加新的分子标记,如在水稻、拟南芥这些已经测序的生物上,我们就可以利用目的基因两侧的DNA序列和分子标记设计软件(SSRhunter、Primer Premier 5.0等)来大量设计新的分子标记;另外,也可以利用比较基因组的共线性从其它同科属的生物上获得分子标记。用这些分子标记对建图群体进行精细定位,以期找到与目的基因更紧密连锁的分子标记甚至共分离的分子标记。对定位群体较大需要对单株进行分析、提取大量DNA的问题,可根据Churchill等(1993)提出DNA混合样品作图的方法进行实验设计。DNA混合样品作图是指把大群体中所需进行分子标记多态鉴定的单株(个)分成若干组(可5~ 20个单株一组),以组为单位提取DNA,形成一个组内混合的DNA池,用精细定位的分子标记对混合的DNA池进行分析,根据所有池中的分子标记与目的基因发生的重组数来确定目的基因附近分子标记的顺序。混合样品作图大大地提高分子标记分析效率,减少了DNA提取的工作量,利于扩大群体,加速克隆进程。

通过具有多态的分子标记对作图群体的分析,根据染色体上分子标记与目的基因间的重组率构建出目的基因附近的遗传图谱。但分子标记与目的基因之间的距离是按照实际的碱基数来计算的,所以物理图谱才是真正意义上的基因图谱,它会因不同染色体区域基因重组值不同而造成与遗传距离的差别。物理图谱的种类很多,有染色体分带图、限制酶切图谱、跨叠克隆群、DNA序列图谱等,限制酶切图谱是用几种限制性内切酶消化DNA,通过电泳检查限制性片段长度的办法确定它们的排列顺序;对于较大的基因组,可以利用稀有切点限制性内切酶和脉冲电脉。跨叠克隆群的制作则需具有一定容量的大片段基因组文库。比较各个克隆的插入片段,将它们排列成与原来在染色体中的顺序一样的连续克隆群,即跨叠克隆群。荧光原位杂交技术(Fiber-FISH)是最近几年新发展的方法,它使FISH技术的分辨力接近其理论值1Kb(相当于约0.14μm的DNA纤丝),即光学显微镜的识别范围内。Fiber-FISH适宜于基因组的数量作图,而且由于可以在荧光显微镜下同时观察几种探针的位置和顺序,将有效地排除染色体步行过程中经常遇到的复重序列带来的困难。所有这些技术的发展和出现都为图位克隆基因奠定了坚实的基础。

3.3染色体步行和登陆

染色体步移(chromosome walking)是通过逐一克隆来自染色体基因组DNA的彼此重复的序列,而慢慢的靠近目的基因,开始步移的克隆可以是已知的基因、RFLP、RAPD或其它已鉴定的分子标记,用它来杂交筛选大片段DNA文库中的阳性克隆,找出与目的基因两侧连锁最紧密的分子标记所在的大片段克隆,接着分别从两侧分子标记所在的克隆为起点进行染色体步行,逐步靠近目的基因。以大片段克隆的末端为探针,筛选基因组文库因组文库,鉴定和分离出邻近的基因组片段的克隆,再将这个克隆的远端末端作为探针重新筛选基因组文库,继续这一过程,直到获得具有目标基因两侧分子标记的大片段克隆或跨叠群。当遗传连锁图谱指出基因所在的特定区域时,即可取回需要的克隆,获得目标基因。

染色体步行在实际运用中的主要困难是当在克隆的一端遇到大量重复的DNA序列时,步行的方向会被打乱;另外如果步行必须经过一个间隙时,步行的过程就会把打断。这样都会造成图位克隆的失败。为了克服这些困难,人们相继提出了染色体登陆、跳步和连接等方法。染色体登陆是找出与目标基因的物理距离小于基因组文库插入

片段的平均距离还小的分子标记,一般找到与目的基因共分离的分子标记,通过这样的分子标记筛选文库可直接获得含有目标基因的克隆,完全避开染色体步行的过程。染色体跳步—连接是使用一个识别位点很少的酶和一个识别位点很多的酶构建跳步文库和连接文库。跳步文库的插入片段是大片段克隆末端经过双酶切的部分,由同样的文库进行克隆。连接文库的插入片段是由切点较少的酶产生的,具有切点较少的那个酶的识别位点。在染色体步行的过程中,交替应用两个文库进行跳步和连接,最终逼近目标基因。

3.4目标基因的鉴定

我们得到的目的基因所在的小片段克隆有可能含有多个ORF(open reading frame),从这些ORF中鉴定目的基因是图位克隆技术的最后一个关键环节,常用的方法是用含有目标基因的大片段克隆如BAC克隆或Y AC克隆去筛选cDNA文库,并查询生物数据信息库,待找出侯选基因后,把这些侯选基因进行下列分析以确定目标基因:(1)精细定位法检查cDNA是否与目标基因共分离;(2)检查cDNA时空表达特点是否与表型一致;(3)测定cDNA序列,查询数据库,以了解该基因的功能;(4)筛选突变体文库,找出DNA序列上的变化及与功能的关系;(5)进行功能互补实验,通过转化突变体观察突变体表型是否恢复正常或发生预期的表型变化。功能互补实验是最直接、最终鉴定基因的方法。利用新兴的RNA干扰(RNAi)也可有效地确定目的基因。

4图位克隆技术的局限

利用图位克隆法克隆基因不仅需要构建完整的基因组文库,建立饱和的分子标记连锁图和完善的遗传转化体系,而且还要进行大量的测序工作,所以对基因组大、标记数目不多、重复序列较多的生物采用此法不仅投资大,而且效率低。因而图位克隆法仅局限应用在人类、拟南芥、水稻、番茄等图谱饱和生物上。此外,在分析发生的变异的时候,我们最有可能遇到的复杂情况是一个给定的性状由不止一个的基因位点控制的。例如,在拟南芥Kashmir-1(有抗性的)和Columbia(敏感的)株系之间的杂交实验中,我们发现粉状霉菌抗性基因至少涉及三个遗传位点,它们是以附加的方式起作用的。对这些抗性基因中的任何一个作精细定位都要求降低作图群体的遗传复杂性,例如通过创造只有一个位点保持多态性的重组近交系。因此,当影响这些性状的自然或者诱导的突变被定位的时候,如第二位点修饰成分干扰这些分析而使图位克隆此类基因变的非常困难;关于染色体上位点的物理和遗传距离的比值是变化的。通常这种变化是比较小的,对作图的分辨率也只有较小的影响(Copenhaver等,1998)(文后无此文献,请补充),但如果要定位的基因位于重组被严格限制的着丝粒附近,精细定位的努力就有可能无效,且对常染色体序列1%重组的遗传距离相当于100~400 Kb的物理距离,然而着丝粒区域1%重组的遗传距离相当于1 000~2 500Kb,在现存的物理图谱中很少有着丝粒区域被覆盖等这一切都使图位克隆的染色体步移变的不可能(Georg Jander et al,2002)。

4展望

进入21世纪,生命科学取得了前所未有的发展,一系列模式生物的全基因组序列被测出,与生物研究相关理论方法日新月异。图位克隆是较为通用的基因获得技术,其在理论上适用于一切基因。基因组研究产生了很多便宜但功能强大的工具,同时也有大量的信息被收集在免费的数据库中(高精度遗传图谱、大尺度物理图谱、大片段基因组文库甚至基因组全序列),这为图位克隆的广泛应用提供了前提条件。现在,图位克隆已经成为分离基因的常规方法。有越来越多的生物利用图位克隆技术克隆到了基因,拟南芥、水稻、番茄等都已应用此法成功地克隆到了基因。图位基因克隆不仅适合于单基因克隆,对于那些由多基因控制的数量性状(quantitative trait locis, QTLs)的定位也同样适用,农作物中许多重要的农艺性状都是数量性状,受多个基因的控制(如花时、籽粒大小、生理节律,次生代谢等)。目前,利用图位克隆分离此类基因主要是通过不断的回交,构建QTL近等基因系以减少分离群体的遗传背景来实现对单个QTL遗传效应的分析,并对QTL进行精细定位。随着越来越多的QTL被定位到分子标记连锁图上,利用图位克隆技术克隆单个贡献率较大的基因用来改良作物已成为可能。

致谢

本项目由海南省农作物分子育种重点实验室开放基金的资助。非常感谢方宣钧博士审阅本论文手稿并提出宝贵意见。

参考文献

Arondel V., Lemieux B., Hwang I., Gibson S., Galodman H.M., and Somerville C.R., 1992, Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis,Science, 258: 1353-1355

Burke D.T., 1987, Cloning of large segments of exogeneous DNA into yeast by means of artificial chromosome vectors, Science, 236: 806-812

Churchill G.A., Giovannoni J.J., and Tanksley S.D., 1993, pooled-sampling makes high-resolution mapping practical with DNA markers, Proc. Natl. Acad. Sci., 90(1): 16-20

Coulson A., Sulston J., Brenner S., and Karn J., 1986, Genetics Toward a physical map of the genome of the nematode Caenorhabditis elegans, Proc. Natl. Acad. Sci., 83: 7821-7825

Georg Jander, Susan R. Norris, Steven D. Rounsley, David F. Bush, Irena M. Levin,1 and Robert L. Las,Arabidopsis Map-Based Cloning in the Post-Genome Era ,Plant Physiol, June 2002, V ol. 129, pp. 440-450

Giraudat J., Hauge B.M., Valon C., Smalle J., Parcy F., and Goodman H.M., 1992, Isolation of the Arabidopsis ABI3 gene by positional cloning, Plant Cell, 4(10): 1251-1261

Harushima Y., Yano M., Shomura A., Sato M., Shimano T., Kuboki Y., Yamamoto T., Lin S.Y., Antonio B.A., Parco A., Kajiya H., Huang N., Yamamoto K., Nagamura Y., Kurata N., Khush G.S., and Sasaki T., 1998,A high-density rice genetic linkage map with 2 275 markers using a single F2 population, Genetics, 148: 479-494

Kilian A., Chen J., Han F., Steffenson B. and Kleinhofs A.,(请补全作者,已补全,请修改格式)1997, Toward map-based cloning of the barley stem rust resistance gene Rpg1 and Rpg2 using rice as an intergenomic cloning vehicle, Plant Mol. Biol., 35: 187

Liang C Z, Gu M H, Pan X B et al. 1994. RFLP tagging of a new semidwarfing gene in rice. Theor Appl Genet, 88: 898~900

Michelmore R.W., Paran I., and Kesseleli R.V., 1991, Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using srgregating populations, Proc. Natl. Acad. Sci., 88(21): 9828-9832

Murray, A. W., and Szostak, J. W, 1983, Construction of artificial chromosomes in yeast.

Nature, 305, 189-193.

Takashi H.S., Urnehara Y., Agahiko S.M., et al. (请补全作者)1998, Construction and characterization of rice Y AC library for physical mapping, Genetics, 148: 479

基因图位克隆的策略与途径

基因图位克隆的策略与途径 拟南芥(Arabidopsis thaliana)是一种模式植物,具有基因组小(125 Mbp ) 、生长周期短等特点,而且基因组测序差不多完成 (The Arabidopsis Genomic Initiative, 2000)。同时,拟南芥属十字花科(Cruciferae),具有高等植物的一样特点,拟南芥研究中所取得成果专门容易用于其它高等植物包括农作物的研究,产生重大的经济效益,专门是十字花科中还有许多重要的经济作物,与人类的生产生活紧密有关,因此目前拟南芥的研究越来越多地受到国际植物学及各国政府的重视。 基因(gene是遗传物质的最差不多单位,也是所有生命活动的基础。不论 要揭示某个基因的功能,依旧要改变某个基因的功能,都必须第一将所要研究的基因克隆出来。特定基因的克隆是整个基因工程或分子生物学的起点。本文就基因克隆的几种常用方法介绍如下。 1 、图位克隆 Map-based cloning, also known as positional cloning, first proposed b y Alan Coulson of the University of Cambridge in 1986, Gene isolated b y this method is based on functional genes in the genome has a relativel y stable loci, in the use of genetic linkage analysis or chromosomal abnor malities of separate groups will queue into the chromosome of a specific location, By constructing high-density molecular linkage map, to find mole cular markers tightly linked with the aimed gene, continued to narrow the candidate region and then clone the gene and to clarify its function and biochemical mechanisms. 用该方法分离基因是按照目的基因在染色体上的位置进行的,无需预先明白基因的DNA 序列,也无需预先明白其表达产物的有关信息。它是通过分析突变位点与已知分子标记的连锁关系来确定突变表型的遗传基础。近几年来随着拟南芥基因组测序工作的完成,各种分子标记的日趋丰富和各种数据库的完善,在拟南芥中克隆一个基因所需要的努力差不多大大减少了(图1)。

克隆技术简介

克隆技术介绍 张勋学号:160820216 摘要克隆技术是生命科学技术领域里非常重要的部分,随着新时代的到来,克隆技术在人类生产生活中将发挥更加重要的作用。人们享受着克隆技术带来的巨大好处,但与此同时,克隆技术对人类的可持续发展也提出了问题和挑战。本文是通过从实质、方法、应用价值等方面对克隆技术进行一些介绍。 一、克隆技术实质 1963 年J.B.S.Haldane在题为“人类种族在未来二万年的生物可能性”的演讲上采用“克 隆(Clone)”的术语。学家把人工遗传操作动物繁殖的过程叫“克隆”,这门生物技术叫“克隆技术”,其本身的含义是无性繁殖,即由同一个祖先细胞分裂繁殖而形成的纯细胞系,该细胞系中每个细胞的基因彼此相同。早在1938年,德国胚胎学家Speman 最早提出克隆设想。1962年,英国剑桥大学的Gurdon进行了青蛙胚胎核移植,获得成年蛙。在经历半个多世纪的研究后,终于在1996年的7月5日,在苏格兰罗斯林研究所中,随着用体细胞克隆出来的小羊多莉的诞生,哺乳动物克隆技术真正的来到我们面前。克隆技术作为人类在生物科学领域取得的一项重大技术突破,反映了细胞核分化技术、细胞培养和控制技术的进步,它对于扩大良种动物群体,提高畜群的遗传素质和生产能力,拯救濒危动物等的方面而言是迄今为止最为理想手段。 克隆也可以理解为复制,就是从原型中产生出同样的复制品,它的外表及遗传基因与原型完全相同,但大多行为思想不同。时至今日,“克隆”的含义已不仅仅是“无性繁殖”,凡是来自同一个祖先,无性繁殖出的一群个体,也叫“克隆”。这种来自同一个祖先的无性繁殖的后代群体也叫“无性繁殖系”,简称无性系。简单讲就是一种人工诱导的无性繁殖方式。但克隆与无性繁殖是不同的。克隆是指人工操作动物繁殖的过程,无性繁殖是指:不经过两性生殖细胞的结合由母体直接产生新个体的生殖方式。 植物基因的克隆技术是生命科学研究的重要组成部分,是现代生命科学技术中最核心的内容,它是随着20 世纪70 年代初DNA 体外重组技术的发明而发展起来的,其目标是识别和分离特异基因并获得基因完整序列,确定其在染色体上的位置,阐明其生化功能,并利用生物工程手段应用到生产实践中去。一般来讲,基因克隆的策略可分为两种途径:正向遗传学途径和反向遗传学途径。 正向遗传学途径以待克隆的基因所表现的功能为基础,通过鉴定基因的表达产物或表型性状进行克隆,如功能克隆和表型克隆等;反向遗传学途径则着眼于基因本身特定的序列或者在基因组中的特定位置进行克隆,如定位克隆、同源序列法克隆等;随着DNA测序技术和生物信息学的发展,又产生了电子克隆等新兴克隆技术。目前,在玉米,水稻、油菜、拟南芥、烟草、番茄等多种植物中,已经克隆了许许多多与植物的产量、品质、抗性及农艺性状等相关的基因。现对在植物基因克隆过程中运用的主要技术进行综述,以把握植物基因克隆技术的发展历程,并对未来的发展趋势进行展望。

植物基因克隆实验指导

植物基因克隆实验规则 一、植物基因克隆实验课的目标 根据基因克隆实验操作的整体性和连贯性特点, 将该实验设计为综合性实验课程,实验内容设计上完全抛弃了原来分散的、孤立的单纯学习某一实验技术的缺陷, 将单个实验综合为系统的、连贯的系列型大实验,注重科研成果在教学中的应用,我们从以往的科研项目中选取了部分研究内容用于学生的综合性实验教学,这是基于教学实验与实际科学研究实验之间的新的实验教学模式。 整套实验围绕洋甘菊倍半萜生物合成途径中关键酶基因HMGR的克隆这一研究课题进 行操作, 设计的实验内容具有极强的连续性和综合性,让学生在独立实践操作中学习基因克隆的基本研究方法和体会科学研究的严密逻辑和培养科研理念。 我们将实验内容设置为8个部分, 实验内容前后衔接紧密, 环环相扣, 不可分割, 前一个实验的结果是下一个实验的材料。该课程使学生获得了整个类似科研实践过程的训练和体验, 学习了从事科研工作的基本功, 对完成自己的毕业论文及将来从事生命科学研究奠定了科 研基础。 二、实验的进行程序和要求 1、预习学生在课前应认真预习实验指导以及教材有关章节,必须对该次实验的目的要求、实验内容、基本原理和操作方法有一定的了解。 2、讲解教师对该实验内容的安排及注意事项进行讲解,让学生有充分的时间按实验指导的要求进行独立操作与观察。 3、独立操作与观察除个别实验分组进行外,一般由学生个人独立进行操作和观察。在实验中要按实验指导认真操作,仔细观察,作好记录。有关基本技能的训练,要按操作程序反复练习,以达到一定的熟练程度。

4、演示每次的实验都备有演示内容,其目的是帮助学生了解某些实验中的难点,扩大在实验课有限时间内获得更多感性知识的机会。 5、作业实验报告参照硕士毕业论文的格式写,必须强调科学性,实事求是地记录、分析、综合。在实验结束时呈交。 6、小结每次实验结束后,由师生共同小结本次实验的主要收获及今后应注意的问题。 三、实验规则和注意事项 1、每次上课前,必须认真阅读实验指导,明确本次实验的目的要求、实验原理和注意事项,熟悉实验内容、方法和步骤。 2、上实验课时必须携带实验指导、记录本及文具等。进入实验室要按规定座位入座。 3、实验时要遵守纪律,听从教师指导,保持肃静。有问题时举手提问,严禁彼此谈笑喧或随意走动,也不得私自进行其他活动。 4、实验时要遵守实验操作规程,严格按照教师的安排和实验指导的要求进行。操作观察要认真仔细,边做、边看、边想,认真做好实验记录。 5、要爱护仪器和器材设备,注意节约实验材料、药品和水电。如有损坏器材应立即报告并主动登记、说明情况。 6、实验结束后,应清理实验台面,认真清理好仪器、药品及其他用品,放回原处,放好凳子,方可离开实验室。值日生要负责清扫地面,收拾实验用品,处理垃圾,关好水、电、门窗后再离开。

拟南芥的图位克隆技术

拟南芥基因的图位克隆技术 浙江大学生命科学学院徐冰 浙江杭州310029 1 国内外研究现状 拟南芥(Arabidopsis thaliana)是一种模式植物,具有基因组小(125 Mbp)、生长周期短等特点,而且基因组测序已经完成(The Arabidopsis Genomic Initiative, 2000)。同时,拟南芥属十字花科(Cruciferae),具有高等植物的一般特点,拟南芥研究中所取得成果很容易用于其它高等植物包括农作物的研究,产生重大的经济效益,特别是十字花科中还有许多重要的经济作物,与人类的生产生活密切相关,因此目前拟南芥的研究越来越多地受到国际植物学及各国ZF的重视。 从遗传学的观点来看,基因克隆的途径可概括为正向遗传学和反向遗传学两种。正向遗传学途径指的是通过被克隆基因的产物或表现型突变去进行;反向遗传学途径则指的是依据被克隆基因在染色体上的位置来实现。虽然一些模式生物(如拟南芥)的基因组测序已经完成,但还有40%的基因(在拟南芥中)的功能还是未知的。 图1 图位克隆所需努力的比较(1995年和2002年)(Jander等,2002) 图位克隆(map-based cloning)又称定位克隆(positional cloning),1986年首先由剑桥大学的Alan Coulson提出(Coulson等,1986),用该方法分离基因是根据目的基因在染色体上的位置进行的,无需预先知道基因的DNA序列,也无需预先知道其表达产物的有关信息。它是通过分析突变位点与已知分子标记的连锁关系来确定突变表型的遗传基础。近几年来随着拟南芥基因组测序工作的完成,各种分子标记的日趋丰富和各种数据库的完善,在拟南芥中克隆一个基因所需要的努力已经大大减少了(图1)。 目前完成整个拟南芥的图位克隆过程大约需要一年时间。在这个过程中,我们从筛选突变体开始,逐渐找到和表型相关的基因。这和反向遗传学的方法正好相反。图位克隆能实现,关键在于全基因组测序计划的完成和各种分子标记的发现。这些数据被储存在专门的数据库中

红豆杉中MYB家族基因克隆及表达分析 开题报告 于凯

毕业设计/论文 开题报告 课题名称红豆杉中MYB家族基因克隆及表达分析类别毕业论文 系别城市建设学院 专业班生物工程0701班 姓名于凯 评分 指导教师 华中科技大学武昌分校

华中科技大学武昌分校学生毕业论文开题报告

癌活性,对于治疗卵巢癌、乳腺癌等疗效突出。但是由于含量少、提取困难等诸多因素,高纯度紫杉醇价格昂贵,每公斤200万元人民币左右。因此,近年来国内外许研究人员、实验室和公司一直试图通过生物合成、化学合成、微生物提取、组织和细胞培养、寻找类似物等途径来解决紫杉醇的药源短缺问题。 研究紫杉醇的生物合成,尤其一些限速反应步骤机理的阐明对于人为定向的提高合成效率,克隆重组形成关键酶基因从而提高紫杉醇的产量意义重大。从理论上来说这是一个好方法,但是紫杉醇的合成途径非常复杂,涉及到多种酶以及很多分支途径,单纯依靠转化一、两种限速酶基因,只能保证转入的限速酶表达量提高,使之不再是限速因素,但其它阶段对于最终产量的限制依然存在,而且同时转入多种基因的可行性非常低,这种方法的缺陷很明显。 若采用化学合成,如从红豆杉植物中分离得到的巴卡亭Ⅲ经过四步化学过程可合成紫杉醇,为合成紫杉醇提供了新途径[5]。但化学合成从实质意义上说还没有取得彻底的突破,目前还不具备应用价值。 如果从共生真菌中直接提取紫杉醇,能够利用真菌生长速度快的优势,但目前分离的菌株无论从种类还是数量上都远不够工业化的要求,而且还存在很多不确定因素[1]。生产紫杉醇的微生物大多是与红豆杉共生的真菌,其紫杉醇含量极微,并且这些真菌的培养和大规模发酵困难,菌株衰退也是一个难题。 另外,红豆杉愈伤组织和细胞培养生产紫杉醇是研究的热点之一,是工厂化大规模生产紫杉醇的重要手段之一。但运用植物组织、细胞培养技术生产紫杉醇仍处在实验室阶段,如何获得高含量、产紫杉醇稳定的愈伤组织一直都是组织培养、细胞培养生产紫杉醇的关键。 1.1.3关于MYB基因 ①MYB基因 目前,在几乎所有的真核生物中都发现了与禽类逆转录病毒癌基因和细胞原癌基因c-MYB相似的基因,它们的编码产物在结构和功能上具有高度保守的DNA结合域,是一类转录因子[6]。在植物中首先从玉米中克隆了含有MYB结构域的转录因子C1基因,之后在植物中发现的MYB相关基因的数量迅速增加[7]。

基因的克隆、表达载体构建与功能验证

基因的克隆、表达载体构建及功能验证(一般性方法) 一、基因克隆 ★事前三问 a.克隆这个基因干什么?它有什么功能? b.这个基因在哪种材料中扩增? c.材料需要怎么处理? ◎实验前准备工作 a.设计引物,准备材料, b.购置试剂:Taq酶、反转录试剂盒、凝胶回收试剂盒、质粒提取试剂盒、连接试 剂盒 c.实验试剂及用具:枪头、离心管、培养皿、滤纸灭菌;Amp+ 、Kan+等抗生素准 备 ※基本流程 提取和纯化RNA—cDNA第一条链合成—PCR—凝胶电泳—胶回收—连接—转化—涂平板—挑单菌落—摇菌—提质粒—测序 1.总RNA的提取、纯化及cDNA第一链合成 1.1叶片、根总RNA的提取 Trizol是一种高效的总RNA抽提试剂,内含异硫氰酸胍等物质,能迅速裂解植物细胞,抑制细胞释放出的核酸酶,所提取的RNA完整性好且纯度高,以利于下一步的实验。 1)实验前准备 预先配制0.1%的DEPC水(ddH2O中含0.1%DEPC,V/V,37 ℃过夜处理12 h),高温灭菌后,用DEPC水配制75%乙醇,研钵、量筒、试剂瓶等需200℃灭菌至少4 h,所用枪头和枪盒均去RNA酶处理(直接购买)。 2)Trizol 法(小麦)叶片或根的总RNA实验步骤如下: (1)提前在1.5 ml离心管中加入1 mlTrizol,然后将200 mg样品液氮中研磨成白色粉末,

移入管内,用力摇15 s,在15-30℃温育5 min,使核酸蛋白复合物完全分离。 (2)4℃,12000g离心10min,取上清,离心得到的沉淀中包括细胞外膜、多糖、高分子量DNA,上清中含有RNA。 (3)吸取上清液加0.2 ml氯仿,盖好盖,用力摇15 s,15~30 ℃温育2~3 min。(4)在≤12000g,4℃离心10 min,样品分为三层:底层为黄色有机相,上层为无色水相和一个中间层,RNA主要在水相中,水相体积约为所用TRIzol试剂的60%。 (5)将上层水相转移到新的1.5 ml离心管中,加2倍体积的无水乙醇沉淀RNA,室温静止30 min。 (6)在≤12000g,4℃离心10 min,离心前看不出RNA沉淀,离心后在管侧和管底出现胶状沉淀。 (7)用≥1 ml的75%乙醇洗RNA,涡旋振荡样品,在≤7500g,4℃离心5 min,弃上清。(8)室温放置干燥或真空抽干RNA沉淀,大约晾5-10分钟,加无RNase的水100μl用枪头吸几次,55~60℃温育10 min使RNA溶解。 (9)配制以下体系: 10×DNase buffer 5 μl DNase I (RNase-free)(40 μg/μl) 1 μl RNasin Inhibitor(40 μg/μl) 1 μl Total RNA 70 μg 加去RNase水至总体积为50 μl (10)37 ℃水浴1h,加DEPC处理的水至总体积为100 μl,加入等体积氯仿抽提一次。(11)取上清,加入10 μl的3 mol/L NaAC溶液,200 μl的无水乙醇,-80 ℃沉淀30 min。 (12)2~8 ℃,12000g离心10 min,弃清液,干燥后取50μl无RNase的水溶解RNA。3)RNA的质量及纯度检测 (1)电泳检测取2ul RNA 与1 ul 10×Loading buffer上样缓冲液混合均匀在1% 的琼脂糖凝胶上电泳,在紫外灯下观察RNA 条带并记录实验结果。 (2)分光光度计RNA纯度检测 取1ul RNA液,以DEPC水为空白对照,测定A260/ A280 比值,估测RNA质 量。 4)cDNA第一条链的合成 按照以下体系将提取的总RNA反转录成第一链cDNA: 1)在Eppendorf管中配制下列混合液:

植物基因的克隆|植物基因克隆的基本步骤

植物基因的克隆 08医用二班姚桂鹏0807508245 简介 克隆(clone)是指一个细胞或一个生物个体无性繁殖所产生的后代群体。通常所说的基因克隆是指基于大肠埃希菌的DNA片段(或基因)的扩增,主要过程包括目标DNA的获取、重组载体的构建、受体细胞的转化以及重组细胞的筛选和繁殖等。本文主要介绍植物基因的特点、基因克隆的载体、基因克隆的工具酶、基因克隆的策略以及植物目的基因的分离克隆方法等内容。 关键词 植物基因基因克隆载体工具酶克隆策略分离克隆方法 Plant gene cloning Introduction Cloning (clone) refers to a cell or an individual organisms asexual reproduction produced offspring. Usually said cloning genes means

based on escherichia coli segment of DNA (or genes), including the main course target DNA, restructuring of the carrier, transformation of receptor cells and reorganization of screening and reproductive cells. This paper mainly introduces the characteristics of plant gene and gene cloning and carrier, gene clone tool enzyme, gene cloning and plant gene strategy of separation cloning method, etc. Keywords Plant gene cloning tool enzyme gene cloning vector method of separation of cloning strategy 一、植物基因的结构和功能 基因(gene)是核酸分子中包含了遗传信息的遗传单位。一般来说,植物基因都可分为转录区和非转录的调控区两部分。 (一)植物基因的启动子 启动子(promoter)是指在位于结构基因上游决定基因转录起始的区域,植物积阴德启动子包括三个较重要的区域,一时转录起始位点,而是转录起始位点上游25~40bp的区域,三是转录起始位点上游-75bp处或更远些的区域。 (二)植物基因的增强子序列

基因克隆技术的研究进展_钟军

第6卷第4期(专辑) 2002年12月 生命科学研究 Life Science Research Vol.6No.4(Suppl.) Dec.2002基因克隆技术的研究进展X 钟军,李,官春云 (湖南农业大学油料作物研究所,中国湖南长沙410128) 摘要:为能快速而准确地克隆目的基因,综述了一些基因克隆常用技术,包括差异表达基因分离技术、转座子标签技术、图位克隆技术、同源序列技术、表达序列标签技术的原理、应用及应用潜力,并对其作了简要的评价. 这些技术有利有弊,应根据不同的实验目的和水平来选择相应的技术. 关键词:基因;克隆;差异表达基因分离技术;转座子标签技术;图位克隆技术;同源序列技术;表达序列标签技术 中图分类号:Q78文献标识码:A文章编号:1007-7847(2002)S1-0148-05 Advances in Gene Cloning Technique ZHONG Jun,LI Xun,GUAN Chun-yun (T he Oil Crop Institute of H unan Agriculture University,Chan gsha410128,H unan,China) Abstract:To clone candidate gene quickly and correctly,advances about gene cloning included map-based cloning, transposon tagging,homology-based candidate gene method,expressed sequence tagging methods and some differen-tially expressed gene clone method are introduced and appraised.Because of the advantages and disadvanta ges of those techniques,various technique should be selected according special purpose and level. Key words:gene;clone;differentially e xpressed gene clone method;transposon tagging;map-based cloning;ho-mology-based candidate gene method;e xpressed sequence ta gging method (Li f e Science Research,2002,6(Suppl):148~152) 克隆基因的途径有两种,正向遗传学和反向遗传学途径.前者是依据目标基因所表现的功能为基础,通过鉴定其产物或某种表型突变而进行的;后者则着眼于基因本身,通过特定的序列或在基因组中的位置进行.近几十年来,许多重点实验室致力于植物基因的克隆,到1992年取得了突破性进展.基因的克隆一般采用下列技术:差异表达基因分离技术、转座子标签技术、表达序列标签技术、图位克隆技术和同源序列技术等. 1差异表达基因分离技术 1.1扣除杂交技术 扣除杂交技术的原理是用有特异性表达基因的目标样提取mRNA经逆转录形成cDNA探针,与无特异性表达基因的参照样的过量mRNA或cDNA杂交,经两轮充分杂交后,移去杂交分子和过量的无特异性表达基因的参照样mRNA或cD-NA,将不形成杂交体的有特异性表达基因的目标样cDNA纯化富集、扩增,建立相应cDNA文库即为差异表达基因cDNA文库.此技术最早是由Lamar和Palmer于1984年提出[1],他们先用超声波打断雌性小鼠的DNA,用Mbo1完全消化雄性小鼠DNA;将两者一起变性、复性,再将产物克隆入表达载体的Bam H I位点中,只有那些两端有GATC序列的基因才能被克隆入载体,这样就达到了扣除两者共有序列的目的,并得到雄性小鼠 X收稿日期:2002-06-11;修回日期:2002-10-14 作者简介:钟军(1973-),女,湖南沅江人,博士研究生,从事分子遗传学研究.Tel:+86-0731-*******,E-mail:zhhjp@s https://www.sodocs.net/doc/469081455.html,

植物基因克隆

来自dxy 22003luocong 植物基因全长克隆几种方法的比较 基因是遗传物质基本的功能单位,分离和克隆目的基因是研究基因结构、揭示基因功能及表达的基础,因此,克隆某个功能基因是生物工程及分子生物学研究的一个重点。经典克隆未知基因的方法比如通过筛选文库等有个共同的弊病, 即实验操作繁琐, 周期较长、工作量繁重,且不易得到全长序列。又由于在不同植物中目的基因mRNA丰度不同,所以获得目的基因的难易程度又不一样,特别是对于丰度比较低的目的基因即使使用不用的方法也不一定能获得成功。近年来随着PCR技术的快速发展和成熟.已经有多种方法可以获得基因的全长序列, 比如经典的RACE技术,染色体步移法和同源克隆法等,本文主要综述几种重要的克隆方法的原理和运用,并且比较分析这几种方法的优缺点,为你的实验节约时间和成本。 1 RACE技术 1985年由美国PE-Cetus公司的科学家Mulis等[1]发明的PCR技术使生命科学得到了飞跃性的发展。1988年Frohman等[2] 在PCR技术的基础上发明了一项新技术, 即cDNA末端快速扩增技术( rapid amplification of cDNA ends, RACE), 其实质是长距PCR( long distance, PCR)。通过PCR由已知的部分cDNA 序列, 获得5′端和3′端完整的cDNA, 该方法也被称为锚定PCR ( anchored PCR) [3] 和单边PCR( one-sidePCR) [4]。RACE技术又分为3?RACE和5?端RACE。3′RACE 的原理是利用mRNA 的3′端天然的poly(A) 尾巴作为一个引物结合位点进行PCR, 以Oligo( dT) 和一个接头组成的接头引物( adaptor primer, AP)反转录mRNA得到加接头的第一链cDNA。然后用一个正向的基因特异性引物( gene-specific primer, GSP) 和一个含有接头序列的引物分别与已知序列区和poly(A) 尾区退火, 经PCR扩增位于已知序列区域和poly( A) 尾区之间的未知序列,若为了防止非特异性条带的产生, 可采用巢式引物( nested primer) 进行第二轮扩增, 即巢式PCR( nested PCR) [5,6]。5?RACE 跟3?RACE原理基本一样,但是相对于3?RACE来说难度较大。 5'-RACE受到诸多因素的影响而常常不能获取全长,因此研究者都着手改进它。这些措施主要是通过逆转录酶、5'接头引物等的改变来实现的,因此出现了包括基于“模板跳转反转录”的SMART RACE技术( switching mechanism at 5′ end of RNA transcript) [7] , 基于5′脱帽和RNA酶连接技术的RLM-RACE技术(RNA ligase mediated RACE)[8], 利用RNA连接酶为cDNA第一链接上寡聚核苷酸接头的SLC RACE技术(single strand ligation to single-stranded cDNA)[9] , 以及以内部环化的cDNA第一链为模板进行扩增的自连接或环化RACE技术(self-ligation RACE or circular RACE)[10],和通过末端脱氧核苷酸转移酶( TdT)加尾后引入锚定引物的锚定RACE技术( anchored RACE)[11]。 笔者主要介绍两种比较新的RACE技术,基于…模板跳转?的SMART RACE 技术和末端脱氧核苷酸转移酶( TdT)加尾技术。 1.1基于‘模板跳转’的SMART RACE技术[7,12]

植物基因克隆的策略与方法

植物基因克隆的策略与方法 基因的克隆就是利用体外重组技术,将特定的基因和其它DNA顺序插入到载体分子中。基因克隆的主要目标是识别、分离特异基因并获得基因的完整的全序列,确定染色体定位,阐明基因的生化功能,明确其对特定性状的遗传控制关系。通过几十年的努力由于植物发育,生理生化,分子遗传等学科的迅速发展,使人们掌握了大量有关植物优良性状基因的生物学和遗传学知识,再运用先进的酶学和生物学技术已经克隆出了与植物抗病、抗虫、抗除草剂、抗逆,育性、高蛋白质及与植物发育有关的许多基因。我们实验室对天麻抗真菌蛋白基因作了功能克隆的研究(舒群芳等,1995;舒群芳等,1997),为了克隆植物基因也探讨了其它克隆方法,本文论述基因克隆的策略、方法及取得的一些进展。 1 功能克隆(functional Cloning) 功能克隆就是根据性状的基本生化特性这一功能信息,在鉴定和已知基因的功能后克隆(Collis,1995)。其具体作法是:在纯化相应的编码蛋白后构建cDNA文库或基因组文库,DNA文库中基因的筛选根据情况主要可用二种办法进行,(1)将纯化的蛋白质进行氨基酸测序,据此合成寡核苷酸探针从cDNA库或基因组文库中筛选编码基因,(2)将相应的编码蛋白制成相应抗体探针,从cDNA入载体表达库中筛选相应克隆。功能克隆是一种经典的基因克隆策略,很多基因的分离利用这种策略。 Hain等从葡萄中克隆了两个编码白藜芦醇合成的二苯乙烯合成酶基因(Vst1和Vst2),葡萄中抗菌化合物白藜芦醇的存在,可以提高对灰质葡萄孢(Botrytis cinerce)的抗性,在烟草和其它一些植物中无二苯乙烯合成酶,因此

功能基因的克隆及生物信息学分析

功能基因的克隆及其生物信息学分析 摘要:随着多种生物全基因组序列的获得,基因组研究正从结构基因组学(structural genomics)转向功能基因组学(functional genomics)的整体研究。功能基因组学利用结构基因组学研究获得的大量数据与信息评价基因功能(包括生化功能、细胞功能、发育功能、适应功能等),其主要手段结合了高通量的大规模的实验方法、统计和计算机分析技术[1],它代表了基因分析的新阶段,已成为21世纪国际生命科学研究的前沿。功能基因组学是利用基因组测序获得的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使生物学研究从对单一基因或蛋白的研究转向多个基因或蛋白同时进行系统的研究,是在基因组静态的组成序列基础上转入对基因组动态的生物学功能学研究[2]。如何研究功能基因,也成为我们面临的一个课题,本文就克隆和生物信息学分析在研究功能基因方面的应用做一个简要的阐述。 关键词:功能基因、克隆、生物信息学分析。 1.功能基因的克隆 1.1 图位克隆方法 图位克隆又称定位克隆,它是根据目标基因在染色体上确切位置,寻找与其紧密连锁的分子标记,筛选BCA克隆,通过染色体步移法逐步逼近目的基因区域,根据测序结果或用BAC、YAC克隆筛选cDNA表达文库寻找候选基因,得到候选基因后再确定目标基因。优点是无需掌握基因产物的任何信息,从突变体开始,逐步找到基因,最后证实该基因就是造成突变的原因。通过图位克隆许多控制质量性状的单基因得以克隆,最近也有报道某些控制数量性状的主效基因(控制蕃茄果实大小的基因克隆[3]、控制水稻成熟后稻谷脱落基因克隆[4]以及小麦VRN2 基因克隆[5]等)也通过图位克隆法获得。

图位克隆基因研究进展

图位克隆基因研究进展 宋成标 摘要图位克隆是在不清楚基因产物结构和功能的情况下,根据基因在染色体上都有稳定的基因座实现的。随着各种分子标记技术和高质量基因组文库构建技术的发展,图位克隆现已经成为分离生物体基因的一种常规技术。本文主要概述了图位克隆的一般步骤,包括目的基因的初步定位、精细定位和遗传做图、染色体步行和登陆及利用功能互补实验鉴定目的基因。最后,对图位克隆技术存在的局限和发展前景作了初步的分析。 关键词图位克隆, 分子标记, 精细定位, 基因组文库 Abstract Map-based cloning is based on the functional genes have their particular gene locus on chromosomes,when we know about the structure and function of gene products unclearly.With the rapid development of molecular marker technologies and constructing high quality genomic library technologies, map-based cloning had already become a common bio—technique for gene isolation. This article summarized mainly the processes of the map-based cloning in principle,including first-pass mapping of candidate gene、fine scale-mapping and building genetic map、chromosome walking or landing and finally complement experiment for identifing candidate gene. Finally the problems and the prospects in the map-based cloning are analyzed Keywords Map-based cloning, Molecular marker, Fine maping, Genomic library 从遗传学观点来看,基因克隆有两条途径:正向遗传学途径和反向遗传学途径。正向遗传学途径指的是通过被克隆基因的产物或表型突变去进行,如传统的功能克隆及近年来迅速发展的表型克隆;反向遗传学途径是根据被克隆的目的基因在染色体上都有稳定的位置来实现的。由于在多数情况下,我们并不清楚基因产物的结构和功能,很难通过正向遗传学途径克隆基因,而反向遗传学途径则显示了较好的前景。其中可以利用的主要有三种方法,分别是转座子标签法、随机突变体筛选法和图位克隆法。转座子标签法中受转座子的种类、转座频率及有些植物存在内源转座子等的影响,随机突变体筛选法则随机性较大且不能控制失活基因的种类和数量等,限制了它们的应用。图位克隆(map-based cloning)又称为定位克隆(positional cloning),1986年首先由剑桥大学的Coulson 等提出,用该方法分离基因是根据目的基因在染色体上的位置进行的,无需预先知道基因的DNA序列,也无需预先知道其表达产物的有关信息。它是通过分析突变位点与已知分子标记的连锁关系来确定突变表型的遗传基础。随着模式物种(拟南芥、水稻)全基因组测序的完成,各种分子标记技术的发展促进了高密度分子标记连锁图谱的建立和各种数据库的完善。图位克隆技术越来越成熟,已经成为分离生物基因的一种常规方法。本文将对图位克隆技术的相关策略作一介绍。 1图位克隆的策略 自1992年图位克隆技术首次在拟南芥中克隆到ABI3(Girauda et al., 1992)基因和F AD3 (Arondel et al., 1992)基因以来,图位克隆技术在其它相关技术快速发展的支持下迅速发展起来。它是依据功能基因在生物基因组中都有相对稳定的基因座,在利用分子标记技术对目的基因进行精细定位的基础上,用与目的基因紧密连锁的分子标记筛选已构建的DNA文库(如Cosmid、YAC、BAC等文库),构建出目的基因区域的遗传图谱和物理图谱,再利用此物理图谱通过染色体步行、跳跃或登陆的方式获得含有目的基因的克隆,最后通过遗传转化和功能互补实验来验证所获得的目的基因(图1)。 初步定位(First-pass maping)-------构建遗传图谱(constructing genetic map)-----精细定位(fine maping)---------构建物理图谱( constructing physical map)------染色体步移、登陆(chromosomal walking、landing)-------确定侯选基因(Consider candidate genes)----遗传互补验证目的基因(Through genetic complementation (transformation) to identify candidate gene)(请帮我画一个简易图表,把内容填进去) 图1 图位克隆的主要步骤 Figure 1 Key steps in map-based cloning process

基因图位克隆的策略与途径拟南芥

基因图位克隆的策略与途 径拟南芥 Ting Bao was revised on January 6, 20021

拟南芥基因克隆的策略与途径 拟南芥(Arabidopsis thaliana)是一种模式植物,具有基因组小(125 Mbp)、生长周期短等特点,而且基因组测序已经完成(The Arabidopsis Genomic Initiative, 2000)。同时,拟南芥属十字花科(Cruciferae),具有高等植 物的一般特点,拟南芥研究中所取得成果很容易用于其它高等植物包括农作物的研究,产生重大的经济效益,特别是 十字花科中还有许多重要的经济作物,与人类的生产生活密切相关,因此目前拟南芥的研究越来越多地受到国际植物 学及各国政府的重视。 基因(gene)是遗传物质的最基本单位,也是所有生命活动的基础。不论要揭示某个基因的功能,还是要改变某个基因的 功能,都必须首先将所要研究的基因克隆出来。特定基因的克隆是整个基因工程或分子生物学的起点。本文就基因克隆 的几种常用方法介绍如下。 1、图位克隆 Map-based cloning, also known as positional cloning, first proposed by Alan Coulson of the University of Cambridge in 1986, Gene isolated by this method is based on functional genes in the genome has a relatively stable loci, in the use of genetic linkage analysis or chromosomal abnormalities of separate groups will queue into the chromosome of a specific location, By constructing high-density molecular linkage map, to find molecular markers tightly linked with the aimed gene, continued to narrow the candidate region and then clone the gene and to clarify its function and biochemical mechanisms.图位(map-based clonig)又称克隆(positoinal cloning),1986年首先由剑桥大学的Alan Coulson提出。用该方法分离基因是根据功能基因在中都有相对较稳定的基因座,在利用分离群体的遗传连锁分析或将基因伫到染色体的1 个具体位置的基础上,通过构建高密度的分子连锁图,找到与目的基因紧密连锁的分子标记,不断缩小候选区域进而克隆该基因,并阐明其功能和生化。 用该方法分离基因是根据目的基因在染色体上的位置进行的,无需预先知道基因的DNA序列,也无需预先知道其表达产物的有关信息。它是通过分析突变位点与已知分子标记的连锁关系来确定突变表型的遗传基础。近几年来随着拟南芥基因组测序工作的完成,各种分子标记的日趋丰富和各种数据库的完善,在拟南芥中克隆一个基因所需要的努力已经大大减少了(图1)。

什么是克隆植物的克隆教案-浙科版高中生物选修3

第一节什么是克隆第二节植物的克隆 课标解读 重点难点 1.比较有性繁殖与无性繁殖,简述克隆的含义。 2.通过举例,概述克隆的基本条件。 3.结合单细胞培养成完整植株的示意图,理解细胞的全能性 及简述植物组织培养的程序。 4.联系植物克隆的实例,阐明植物克隆的概念、成就及应用 前景。 1.克隆的定义及其基本条 件。(重点) 2.植物细胞的全能性的含 义。(重点) 3.植物组织培养。(重难点) 无性繁殖与克隆 1.克隆就是无性繁殖,即只要不通过两个分子、两个细胞或两个个体的结合,只由一个模板分子、母细胞或母体直接形成新一代分子、细胞或个体。 2.在分子水平上,基因克隆是指某种目的基因的复制、分离过程。 3.在细胞水平上,细胞克隆技术应用在杂交瘤制备单克隆抗体的操作中。 4.在个体水平上,植物可由母体的特定部位或结构产生新个体,而动物的克隆较复杂,经历了由胚胎细胞克隆到体细胞克隆的发展过程。 5.克隆的基本条件:具有完整基因组的细胞核的活细胞;能有效调控细胞核发育的细胞质物质;完成胚胎发育的必要的环境条件。 1.克隆技术的发展经历了哪几个阶段?请尝试举例加以说明。 【提示】微生物克隆,如菌落的形成;遗传工程克隆,如DNA克隆或基因克隆;个体水平上克隆,如克隆动物。 植物细胞的全能性 1.基本含义:植物体的每一个生活细胞,都具有发育成完整植株的潜能。 2.全能性的原因:每个细胞都含有本物种所特有的全套遗传物质。 3.特点:不同植物或同种植物不同基因型个体间,细胞全能性的表达程度大不相同。 2.有人说只要找到秋海棠的一个细胞,就能再生出秋海棠,这依据的生物学原理是什么? 【提示】能让一个细胞发育成一个个体,依据的是细胞的全能性。

水稻基因的图位克隆技术

水稻基因的图位克隆技术 吴自明 (江西农业大学,作物生理生态与遗传育种教育部重点实验室,农业部双季稻生理生态与栽培重点实验室,江西省作物生理生态与遗 传育种重点实验室,江西南昌330045) 摘要 综述了水稻图位克隆技术的原理、技术环节及其在水稻基因克隆上的应用,分析了当前存在的主要问题,并对其应用前景作出了展望。 关键词 水稻;图位克隆;基因 中图分类号 S 511 文献标识码 A 文章编号 0517-6611(2008)34-14905-02 Map based C lo ning T echnique of R ice Genes WU Zi m ing (Key Laboratory of C rop Ph ysiology,Ecol ogy and Genetic B reeding,Mi nistry of Ed ucation,Key Laboratory of Ph ysiology,Ecology and C ultivati on of Double C roppin g Rice,Mini stry of Agriculture,Key Lab oratory of Crop Physi ology,Ecology an d Genetic Breedin g of Jian gxi Province,Jiangxi Agricultural Uni versi ty,Nanchang,Jiangxi 330045)Abstract The p rinciple an d tech nical links of m ap based gene cloni ng techniq ue i n rice an d its applications in the gene cloni ng of rice were s um ma rized .And the mai n existing problems at present were analyzed .And its applicati on foregrou nd was p redicted.Key w ords Rice;Map based cloni ng;Gene 基金项目 江西省教育厅项目(GJJ09477);江西农业大学博士启动基 金;江西农业大学校自然科学基金。 作者简介 吴自明(1974-),男,江西鄱阳人,副教授,从事植物分子 生物学研究。 收稿日期 2008 10 06 近年来,水稻基因组研究进展非常迅速,高密度遗传图谱和物理图谱的构建,全基因组序列的公布,数以万计ES T 、全长c DN A 等序列及功能分析数据的释放以及新型水稻分子标记及其高效检测技术的发展等,为基因的图位克隆带来了新的思路和方法。同时,这些新的进展也能够使基因的精细定位和物理图谱构建等相关工作大大简化,使基因的图位克隆朝着更加简便、快速的方向发展。1 图位克隆技术原理 图位克隆(Ma p based Cloning)又称定位克隆(Positional Cloning),1986年首先由剑桥大学的Alan Co ulson 提出[1]。用该方法分离基因是根据目的基因在染色体上的位置进行,无需预先知道基因的D N A 序列,也无需预先知道其表达产物的有关信息,而是通过分析突变位点与已知分子标记的连锁关系来确定突变表型的遗传基础。实现基因图位克隆的关键是筛选与目标基因连锁的分子标记。 近几年来,水稻各种分子标记的日趋丰富和各种数据库的日趋完善,在很大程度上得益于以粳稻日本晴和籼稻9311为代表的基因组测序的完成[2-3]。目前已有几十种技术可用于分子标记筛选,其中最常用的是简单序列长度多态性(SSLPs)、单核苷酸多态性(SNPs)和插入缺失多态性(Inser tio n/Deletio n,InDel)[4-7]。Shen 等利用日本晴和9311基因组序列构建了水稻基因组水平的D NA 多态性数据库,其中包括1703176个单核苷酸多态性(Single Nucleo tide Polymor phis m,SNP)和479406个插入缺失多态性(InDel)[8]。Fe ltus 等通过对除去多重拷贝序列及低质量序列后的日本晴和9311基因组草图的比对分析,得到408898个D N A 多态性,包括SNP 和单碱基I nD el [9],这些差别的核苷酸通常位于非编码区[10]。 目前,常把SNP 多态性转化成基于P CR 的剪切扩增多态性(Cle ave d Amplified P olymorphic Se que nc es,CAPS)或CAPS 衍生的dCAPS 标记[11-12]。CAPS 标记是PCR 反应和酶切相结 合产生的一种分子标记。如果不同材料间在PCR 扩增区域有S NP 位点,且该位点是限制性内切酶作用位点,那么不同 材料的PCR 扩增产物经特定的酶切后,再进行琼脂糖凝胶电泳就会表现多态性。当SNP 恰好位于限制性酶切位点比较少时,这种情况可以在CAPS 标记的基础上通过在扩增引物中引入错配碱基,则可以结合SNP 位点引入新的限制性内切酶作用位点,产生和CAPS 标记类似的多态性,这就是dCAPS 的方法。用CAPS 或dCAPS 的方法则可以将几乎所有的SNP 位点转化成以P CR 为基础的分子标记[12] 。 2 图位克隆技术环节 2.1 构建遗传作图群体 对于基因图位克隆而言,构建特殊的遗传作图群体是筛选与目标基因紧密连锁分子标记的关键环节。常用的作图群体有F 2、近等基因系、重组自交系等群体,水稻常用F 2群体。创建F 2群体应注意优先选择基因组已测序的日本晴、9311和培矮64S 等品种为亲本之一。2.2 基因初定位 一般说来,当标记为显性遗传时,欲获得最大遗传信息量的F 2群体,需借助于进一步子代测验,以分辨F 2中的杂合体。为此,Mic helmo re 等发明分离群体分组分析法(Bulke d Se gre ga nt Ana lysis,BS A)以筛选目标基因所在局部区域的分子标记[13]。其原理是将目标基因的F 2(或BC)代分离群体各个体仅以目标基因所控制的性状按双亲表型分为2群,每一群中各个体D N A 等量混合,形成2个D N A 混合池(如抗病和感病、不育和可育),并且用目的基因附近的所有分子标记对混合D NA 样品池进行分析,根据所有池中包含有交换的DN A 池的比例来确定与目的基因连锁最紧密的分子标记和目的基因附近所有分子标记的顺序。混合样品作图可以极大提高分子标记分析效率,减小D NA 提取工作量。 2.3 基因精细定位 一旦把目标基因初步定位在2个标记之间后,就可以从国际水稻基因组测序计划(IRG SP)公布的序列中下载这2个标记区域的部分P AC/BAC 克隆序列。利用软件SSRI T 搜索克隆序列中的微卫星序列,然后选择合适的微卫星序列进行特异PCR 引物的设计。也可以直接借助于公共数据库的序列进行比较,如寻找R GP 基因组数据库(粳稻)与中国华大基因组数据库(籼稻)的单核苷酸多态性(SNP)序列差异,设计CAPS 或dCAPS 标记和插入/缺失多态 安徽农业科学,J ou rn al of An hui Agri.Sci.2008,36(34):14905-14906 责任编辑 张彩丽 责任校对 张士敏

相关主题