搜档网
当前位置:搜档网 › u-boot2011.09源码分析

u-boot2011.09源码分析

u-boot2011.09源码分析
u-boot2011.09源码分析

操作系统课程设计-模拟文件系统

目录 第1章需求分析 (1) 第2章概要设计 (1) 系统的主要功能 (1) 系统模块功能结构 (1) 运行环境要求 (2) 数据结构设计 (2) 第3章详细设计 (3) 模块设计 (3) 算法流程图 (3) 第4章系统源代码 (4) 第5章系统测试及调试 (4) 运行结果及分析 (4) 系统测试结论 (5) 第6章总结与体会 (6) 第7章参考文献 (6) 附录 (7)

第1章需求分析 通过模拟文件系统的实现,深入理解操作系统中文件系统的理论知识, 加深对教材中的重要算法的理解。同时通过编程实现这些算法,更好地掌握操作系统的原理及实现方法,提高综合运用各专业课知识的能力;掌握操作系统结构、实现机理和各种典型算法,系统地了解操作系统的设计和实现思路,并了解操作系统的发展动向和趋势。 模拟二级文件管理系统的课程设计目的是通过研究Linux的文件系统结构,模拟设计一个简单的二级文件系统,第一级为主目录文件,第二级为用户文件。 第2章概要设计 系统的主要功能 1) 系统运行时根据输入的用户数目创建主目录 2) 能够实现下列命令: Login 用户登录 Create 建立文件 Read 读取文件 Write 写入文件 Delete 删除文件 Mkdir 建立目录 Cd 切换目录 Logout 退出登录 系统模块功能结构

运行环境要求 操作系统windows xp ,开发工具vc++ 数据结构设计 用户结构:账号与密码结构 typedef struct users { char name[8]; char pwd[10]; }users; 本系统有8个默认的用户名,前面是用户名,后面为密码,用户登陆时只要输入正确便可进入系统,否则提示失败要求重新输入。 users usrarray[8] = { "usr1","usr1", "usr2","usr2", "usr3","usr3", "usr4","usr4",

u-boot启动分析

背景: Board →ar7240(ap93) Cpu →mips 1、首先弄清楚什么是u-boot Uboot是德国DENX小组的开发,它用于多种嵌入式CPU的bootloader程序, uboot不仅支持嵌入式linux系统的引导,当前,它还支持其他的很多嵌入式操作系统。 除了PowerPC系列,还支持MIPS,x86,ARM,NIOS,XScale。 2、下载完uboot后解压,在根目录下,有如下重要的信息(目录或者文件): 以下为为每个目录的说明: Board:和一些已有开发板有关的文件。每一个开发板都以一个子目录出现在当前目录中,子目录存放和开发板相关的配置文件。它的每个子文件夹里都有如下文件(以ar7240/ap93为例): Makefile Config.mk Ap93.c 和板子相关的代码 Flash.c Flash操作代码 u-boot.lds 对应的链接文件 common:实现uboot命令行下支持的命令,每一条命令都对应一个文件。例如bootm命令对应就是cmd_bootm.c cpu:与特定CPU架构相关目录,每一款Uboot下支持的CPU在该目录下对应一个子目录,比如有子目录mips等。它的每个子文件夹里都有入下文件: Makefile Config.mk Cpu.c 和处理器相关的代码s Interrupts.c 中断处理代码 Serial.c 串口初始化代码 Start.s 全局开始启动代码 Disk:对磁盘的支持

Doc:文档目录。Uboot有非常完善的文档。 Drivers:Uboot支持的设备驱动程序都放在该目录,比如网卡,支持CFI的Flash,串口和USB等。 Fs:支持的文件系统,Uboot现在支持cramfs、fat、fdos、jffs2和registerfs。 Include:Uboot使用的头文件,还有对各种硬件平台支持的汇编文件,系统的配置文件和对文件系统支持的文件。该目下configs目录有与开发板相关的配置文件,如 ar7240_soc.h。该目录下的asm目录有与CPU体系结构相关的头文件,比如说mips 对应的有asm-mips。 Lib_xxx:与体系结构相关的库文件。如与ARM相关的库放在lib_arm中。 Net:与网络协议栈相关的代码,BOOTP协议、TFTP协议、RARP协议和NFS文件系统的实现。 Tools:生成Uboot的工具,如:mkimage等等。 3、mips架构u-boot启动流程 u-boot的启动过程大致做如下工作: 1、cpu初始化 2、时钟、串口、内存(ddr ram)初始化 3、内存划分、分配栈、数据、配置参数、以及u-boot代码在内存中的位置。 4、对u-boot代码作relocate 5、初始化malloc、flash、pci以及外设(比如,网口) 6、进入命令行或者直接启动Linux kernel 刚一开始由于参考网上代码,我一个劲的对基于smdk2410的板子,arm926ejs的cpu看了N 久,启动过程和这个大致相同。 整个启动中要涉及到四个文件: Start.S →cpu/mips/start.S Cache.S →cpu/mips/cache.S Lowlevel_init.S →board/ar7240/common/lowlevel_init.S Board.c →lib_mips/board.c 整个启动过程分为两个阶段来看: Stage1:系统上电后通过汇编执行代码 Stage2:通过一些列设置搭建了C环境,通过汇编指令跳转到C语言执行. Stage1: 程序从Start.S的_start开始执行.(至于为什么,参考u-boot.lds分析.doc) 先查看start.S文件吧!~ 从_start标记开始会看到一长串莫名奇妙的代码:

Android Hotfix 新方案——Amigo 源码解读

Android Hotfix 新方案——Amigo 源码解读 首先我们先来看看如何使用这个库。 用法 在project 的build.gradle中 dependencies { classpath 'me.ele:amigo:0.0.3' } 在module 的build.gradle中 apply plugin: 'me.ele.amigo' 就这样轻松的集成了Amigo。 生效补丁包 补丁包生效有两种方式可以选择: ? 稍后生效补丁包 ? 如果不想立即生效而是用户第二次打开App 时才打入补丁包,则可以将新的Apk 放到/data/data/{your pkg}/files/amigo/demo.apk,第二次打开时就会自动生效。可以通过这个方法 ? File hotfixApk = Amigo.getHotfixApk(context); ?

获取到新的Apk。 同时,你也可以使用Amigo 提供的工具类将你的补丁包拷贝到指定的目录当中。 ? FileUtils.copyFile(yourApkFile, amigoApkFile); ? ? 立即生效补丁包 ? 如果想要补丁包立即生效,调用以下两个方法之一,App 会立即重启, 并且打入补丁包。 ? Amigo.work(context); ? Amigo.work(context, apkFile); ? 删除补丁包 如果需要删除掉已经下好的补丁包,可以通过这个方法 Amigo.clear(context); 提示:如果apk 发生了变化,Amigo 会自动清除之前的apk。 自定义界面 在热修复的过程中会有一些耗时的操作,这些操作会在一个新的进程中的Activity 中执行,所以你可以通过以下方式来自定义这个Activity。

UBoot移植详解

u-boot 移植步骤详解 1 U-Boot简介 U-Boot,全称Universal Boot Loader,是遵循GPL条款的开放源码项目。从FADSROM、8xxROM、PPCBOOT逐步发展演化而来。其源码目录、编译形式与Linux内核很相似,事实上,不少U-Boot源码就是相应的Linux内核源程序的简化,尤其是一些设备的驱动程序,这从U-Boot源码的注释中能体现这一点。但是U-Boot不仅仅支持嵌入式Linux 系统的引导,当前,它还支持NetBSD, VxWorks, QNX, RTEMS, ARTOS, LynxOS嵌入式操作系统。其目前要支持的目标操作系统是OpenBSD, NetBSD, FreeBSD,4.4BSD, Linux, SVR4, Esix, Solaris, Irix, SCO, Dell, NCR, VxWorks, LynxOS, pSOS, QNX, RTEMS, ARTOS。这是U-Boot中Universal的一层含义,另外一层含义则是U-Boot除了支持PowerPC系列的处理器外,还能支持MIPS、x86、ARM、NIOS、XScale等诸多常用系列的处理器。这两个特点正是U-Boot项目的开发目标,即支持尽可能多的嵌入式处理器和嵌入式操作系统。就目前来看,U-Boot对PowerPC系列处理器支持最为丰富,对Linux的支持最完善。其它系列的处理器和操作系统基本是在2002年11 月PPCBOOT 改名为U-Boot后逐步扩充的。从PPCBOOT向U-Boot的顺利过渡,很大程度上归功于U-Boot的维护人德国DENX软件工程中心Wolfgang Denk[以下简称W.D]本人精湛专业水平和持着不懈的努力。当前,U-Boot项目正在他的领军之下,众多有志于开放源码BOOT LOADER移植工作的嵌入式开发人员正如火如荼地将各个不同系列嵌入式处理器的移植工作不断展开和深入,以支持更多的嵌入式操作系统的装载与引导。 选择U-Boot的理由: ①开放源码; ②支持多种嵌入式操作系统内核,如Linux、NetBSD, VxWorks, QNX, RTEMS, ARTOS, LynxOS; ③支持多个处理器系列,如PowerPC、ARM、x86、MIPS、XScale; ④较高的可靠性和稳定性; ④较高的可靠性和稳定性; ⑤高度灵活的功能设置,适合U-Boot调试、操作系统不同引导要求、产品发布等; ⑥丰富的设备驱动源码,如串口、以太网、SDRAM、FLASH、LCD、NVRAM、EEPROM、RTC、键盘等; ⑦较为丰富的开发调试文档与强大的网络技术支持; 2 U-Boot主要目录结构 - board 目标板相关文件,主要包含SDRAM、FLASH驱动; - common 独立于处理器体系结构的通用代码,如内存大小探测与故障检测;

Linux 0.1.1文件系统的源码阅读

Linux 0.11文件系统的源码阅读总结 1.minix文件系统 对于linux 0.11内核的文件系统的开发,Linus主要参考了Andrew S.Tanenbaum 所写的《MINIX操作系统设计与实现》,使用的是其中的1.0版本的MINIX文件系统。而高速缓冲区的工作原理参见M.J.Bach的《UNIX操作系统设计》第三章内容。 通过对源代码的分析,我们可以将minix文件系统分为四个部分,如下如1-1。 ●高速缓冲区的管理程序。主要实现了对硬盘等块设备进行数据高速存取的函数。 ●文件系统的底层通用函数。包括文件索引节点的管理、磁盘数据块的分配和释放 以及文件名与i节点的转换算法。 ●有关对文件中的数据进行读写操作的函数。包括字符设备、块设备、管道、常规 文件的读写操作,由read_write.c函数进行总调度。 ●涉及到文件的系统调用接口的实现,这里主要涉及文件的打开、关闭、创建以及 文件目录等系统调用,分布在namei和inode等文件中。 图1-1 文件系统四部分之间关系图

1.1超级块 首先我们了解一下MINIX文件系统的组成,主要包括六部分。对于一个360K软盘,其各部分的分布如下图1-2所示: 图 1-2 建有MINIX文件系统的一个360K软盘中文件系统各部分的布局示意图 注释1:硬盘的一个扇区是512B,而文件系统的数据块正好是两个扇区。 注释2:引导块是计算机自动加电启动时可由ROM BIOS自动读入得执行代码和数据。 注释3:逻辑块一般是数据块的2幂次方倍数。MINIX文件系统的逻辑块和数据块同等大小 对于硬盘块设备,通常会划分几个分区,每个分区所存放的不同的文件系统。硬盘的第一个扇区是主引导扇区,其中存放着硬盘引导程序和分区表信息。分区表中得信息指明了硬盘上每个分区的类型、在硬盘中其实位置参数和结束位置参数以及占用的扇区总数。其结构如下图1-3所示。 图1-3 硬盘设备上的分区和文件系统 对于可以建立不同的多个文件系统的硬盘设备来说,minix文件系统引入超级块进行管理硬盘的文件系统结构信息。其结构如下图1-4所示。其中,s_ninodes表示设备上得i节点总数,s_nzones表示设备上的逻辑块为单位的总逻辑块数。s_imap_blocks 和s_zmap_blocks分别表示i节点位图和逻辑块位图所占用的磁盘块数。 s_firstdatazone表示设备上数据区开始处占用的第一个逻辑块块号。s_log_zone_size 是使用2为底的对数表示的每个逻辑块包含的磁盘块数。对于MINIX1.0文件系统该值为0,因此其逻辑块的大小就等于磁盘块大小。s_magic是文件系统魔幻数,用以指明文件系统的类型。对于MINIX1.0文件系统,它的魔幻数是0x137f。

AM335x uboot spl分析

AM335x uboot spl分析 芯片到uboot启动流程 ROM → SPL→ uboot.img 简介 在335x 中ROM code是第一级的bootlader。mpu上电后将会自动执行这里的代码,完成部分初始化和引导第二级的bootlader,第二级的bootlader引导第三级bootader,在 ti官方上对于第二级和第三级的bootlader由uboot提供。 SPL To unify all existing implementations for a secondary program loader (SPL) and to allow simply adding of new implementations this generic SPL framework has been created. With this framework almost all source files for a board can be reused. No code duplication or symlinking is necessary anymore. 1> Basic ARM initialization 2> UART console initialization 3> Clocks and DPLL locking (minimal) 4> SDRAM initialization 5> Mux (minimal) 6> BootDevice initialization(based on where we are booting from.MMC1/MMC2/Nand/Onenand) 7> Bootloading real u-boot from the BootDevice and passing control to it. uboot spl源代码分析 一、makefile分析 打开spl文件夹只有一个makefile 可见spl都是复用uboot原先的代码。 主要涉及的代码文件为u-boot-2011.09-psp04.06.00.03/arch/arm/cpu/armv7 u-boot-2011.09-psp04.06.00.03/arch/arm/lib u-boot-2011.09-psp04.06.00.03/drivers LDSCRIPT := $(TOPDIR)/board/$(BOARDDIR)/u-boot-spl.lds 这个为链接脚本 __image_copy_end _end 三、代码解析 __start 为程序开始(arch/arm/cpu/armv7/start.S) .globl _start 这是在定义u-boot的启动定义入口点,汇编程序的缺省入口是 start 标号,用户也可以在连接脚本文件中用ENTRY标志指明其它入口点。

Android源码下载方法详解

Android: Android源码下载方法详解 分类:Android平台 安卓源码下载地址:https://www.sodocs.net/doc/436994822.html,/source/downloading.html 相信很多下载过内核的人都对这个很熟悉 git clone git://https://www.sodocs.net/doc/436994822.html,/kernel/common.git kernel 但是这是在以前,现在如果这么执行的话,会显示如下内容 Initialized empty Git repository in /home/star/working/kernel/.git/ https://www.sodocs.net/doc/436994822.html,[0: 149.20.4.77]: errno=Connection refused fatal: unable to connect a socket (Connection refused) 通过浏览器输入https://www.sodocs.net/doc/436994822.html,/,发现该网站已经被重定向为 https://www.sodocs.net/doc/436994822.html,/source/downloading.html 可以在该页面的最后发现内核的下载方法。 下面我们介绍一下Android源码下载的步骤。 工作环境: 操作系统:Ubuntu 10.04 或Ubuntu10.10 git程序:1.7.0.4 或1.7.1 转载请注明出处:https://www.sodocs.net/doc/436994822.html,/pku_android 方法一: 1.1 初始化安装环境 参考网页https://www.sodocs.net/doc/436994822.html,/source/initializing.html 主要要做的就是安装jdk和安装一些软件包 $ sudo apt-get install git-core gnupg flex bison gperf build-essential \ zip curl zlib1g-dev libc6-dev libncurses5-dev x11proto-core-dev \ libx11-dev libreadline6-dev libgl1-mesa-dev tofrodos python-markdown \ libxml2-utils 如果已经安装了,就不许要这步了 1.2 无论下载内核和源码,都需要进行如下操作 参考网页https://www.sodocs.net/doc/436994822.html,/source/downloading.html $ mkdir ~/bin $ PATH=~/bin:$PATH $ curl https://https://www.sodocs.net/doc/436994822.html,/dl/googlesource/git-repo/repo > ~/bin/repo 如果出现: repo init error: could not verify the tag 'v1.12.7',

UBoot源码分析1

?UBoot源码解析(一)

主要内容 ?分析UBoot是如何引导Linux内核 ?UBoot源码的一阶段解析

BootLoader概念?Boot Loader 就是在操作系统内核运行之前运行 的一段小程序。通过这段小程序,我们可以初始 化硬件设备、建立内存空间的映射图,从而将系 统的软硬件环境带到一个合适的状态,以便为最 终调用操作系统内核准备好正确的环境 ?通常,Boot Loader 是严重地依赖于硬件而实现 的,特别是在嵌入式世界。因此,在嵌入式世界 里建立一个通用的Boot Loader 几乎是不可能的。 尽管如此,我们仍然可以对Boot Loader 归纳出 一些通用的概念来,以指导用户特定的Boot Loader 设计与实现。

UBoot来源?U-Boot 是 Das U-Boot 的简称,其含义是 Universal Boot Loader,是遵循 GPL 条款的开放源码项目。最早德国 DENX 软件工程中心的 Wolfgang Denk 基于 8xxROM 和 FADSROM 的源码创建了 PPCBoot 工程项目,此后不断 添加处理器的支持。而后,Sysgo Gmbh 把 PPCBoot 移 植到 ARM 平台上,创建了 ARMBoot 工程项目。最终, 以 PPCBoot 工程和 ARMBoot 工程为基础,创建了 U- Boot 工程。 ?而今,U-Boot 作为一个主流、通用的 BootLoader,成功地被移植到包括 PowerPC、ARM、X86 、MIPS、NIOS、XScale 等主流体系结构上的百种开发板,成为功能最多、 灵活性最强,并且开发最积极的开源 BootLoader。目前。 U-Boot 仍然由 DENX 的 Wolfgang Denk 维护

uboot版本文件结构

uboot版本文件结构的更新改变 分类:ARM2011-09-22 12:57 339人阅读评论(0) 收藏举报本来是开始分析uboot代码的,但是无论是教材还是网上资料都对于我最新下的uboot原码结构不同,对于还是小白的我不容易找到相应的文件,下面是uboot版本中文件组织结构的改变,,,,, u-boot版本情况 网站:http://ftp.denx.de/pub/u-boot/ 1、版本号变化: 2008年8月及以前 按版本号命名:u-boot-1.3.4.tar.bz2(2008年8月更新) 2008年8月以后均按日期命名。 目前最新版本:u-boot-2011.06.tar.bz2(2011年6月更新) 2、目录结构变化: u-boot目录结构主要经历过2次变化,u-boot版本第一次从u-boot-1.3.2开始发生变化,主要增加了api的内容;变化最大的是第二次,从2010.6版本开始。 u-boot-2010.03及以前版本 ├── api存放uboot提供的接口函数 ├── board根据不同开发板定制的代码,代码也不少 ├── common通用的代码,涵盖各个方面,已命令行处理为主 ├── cpu与体系结构相关的代码,uboot的重头戏 ├── disk磁盘分区相关代码 ├── doc文档,一堆README开头的文件 ├── drivers驱动,很丰富,每种类型的设备驱动占用一个子目录 ├── examples示例程序 ├── fs文件系统,支持嵌入式开发板常见的文件系统 ├── include头文件,已通用的头文件为主 ├── lib_【arch】与体系结构相关的通用库文件 ├── nand_spl NAND存储器相关代码 ├── net网络相关代码,小型的协议栈 ├── onenand_ipl

Android源代码结构分析

目录 一、源代码结构 (2) 第一层次目录 (2) bionic目录 (3) bootloader目录 (5) build目录 (7) dalvik目录 (9) development目录 (9) external目录 (13) frameworks目录 (19) Hardware (20) Out (22) Kernel (22) packages目录 (22) prebuilt目录 (27) SDK (28) system目录 (28) Vendor (32)

一、源代码结构 第一层次目录 Google提供的Android包含了原始Android的目标机代码,主机编译工具、仿真环境,代码包经过解压缩后,第一级别的目录和文件如下所示: . |-- Makefile (全局的Makefile) |-- bionic (Bionic含义为仿生,这里面是一些基础的库的源代码) |-- bootloader (引导加载器),我们的是bootable, |-- build (build目录中的内容不是目标所用的代码,而是编译和配置所需要的脚本和工具) |-- dalvik (JAVA虚拟机) |-- development (程序开发所需要的模板和工具) |-- external (目标机器使用的一些库) |-- frameworks (应用程序的框架层) |-- hardware (与硬件相关的库) |-- kernel (Linux2.6的源代码) |-- packages (Android的各种应用程序) |-- prebuilt (Android在各种平台下编译的预置脚本) |-- recovery (与目标的恢复功能相关) `-- system (Android的底层的一些库)

iTop4412的uboot第一阶段

2 uboo t 源码分析 2.5.1.star t.S 2.5.1.star t.S 引入引入 2.5.1.1、u-boot.lds中找到start.S入口 (1)在C语言中整个项目的入口就是 main函数(这是 个.c文件的项目,第一个要分析的文件就是包含了C语言规定的),所以譬如说一 个有 main函数的那个文件。 10000 ( 2 方。ENTRY(_start)因此 _start 符号所在的文件就是整个程序的起始文 件, _sta rt 所在处的 代码就是整个程序的起始代码。 2.5.1.2、SourceInsight中如何找到 文件 (1)当前状况:我们知道在uboot中的1000多个文件中有一个符号 叫 _start,但是我们不知道 这个符号在哪个文件中。这种情况下要查找一个符号在所有项目中文件中的引用,要使用SourceInsight的搜索功能。 (2)start.s 在cpu/arm_cortexa9/start.s (3)然后进入start.S文件中,发现 个uboot的入口代码,就是第57 57行中就 是行。_sta rt 标号的定义处,于是乎我们就找到了整 2.5.1.3、SI中找文件技巧 (1)以上,找到了start.S文件,下面我们就从start.S文件开始分析uboot第一阶段。 (2)在SI中,如果我们知道我们要找的文件的名字,但是我们又不知道他在哪个目录下,我 们要怎样找到并打开这个文件?方法是在 SI中先打开右边的工程项目管理栏目,然后点击 最左边那个(这个是以文件为单位来浏览的),然后在上面输入栏中输入要找的文件的名 字。我们在输入的时候,SI在不断帮我们进行匹配,即使你不记得文件的全名只是大概记 得名字,也能帮助你找到你要找的文件。 2.5.2.start.S解析1 2.5.2.1、不简单的头文件包含

uboot环境变量总结

Common目录下面与环境变量有关的文件有以下几个:env_common.c,env_dataflash.c,env_eeprom.c,env_flash.c,env_nand.c,env_nowhere.c,env_nvram.c,environment.c。 env_common.c中包含的是default_environment[]的定义; env_dataflash.c,env_eeprom.c,env_flash.c,env_nand.c, env_nvram.c 中包含的是相应存储器与环境变量有关的函数:env_init(void),saveenv(void),env_relocate_spec (void),env_relocate_spec (void),use_default()。至于env_nowhere.c,因为我们没有定义CFG_ENV_IS_NOWHERE,所以这个文件实际上没有用。 environment.c这个文件时是我真正理解环境变量的一个关键。在这个文件里定义了一个完整的环境变量的结构体,即包含了这两个ENV_CRC(用于CRC校验),Flags(标志有没有环境变量的备份,根据CFG_REDUNDAND_ENVIRONMENT这个宏定义判断)。定义这个环境变量结构体的时候还有一个非常重要的关键字: __PPCENV__,而__PPCENV__在该.c文件中好像说是gnu c编译器的属性,如下: # define __PPCENV__ __attribute__ ((section(".text"))) 意思是把这个环境变量表作为代码段,所以在编译完UBOOT后,UBOOT的代码段就会有环境变量表。当然,这要在我们定义了ENV_IS_EMBEDDED之后才行,具体而言,环境变量表会在以下几个地方出现(以nand flash为例): 1、UBOOT中的代码段(定义了ENV_IS_EMBEDDED), 2、UBOOT中的默认环 境变量, 3、紧接UBOOT(0x0 ~ 0x1ffff)后面:0x20000 ~ 0x3ffff 之间,包括备份的环境变量,我们读取,保存也是对这个区域(即参数区)进行的。3、SDRAM中的UBOOT中,包括代码段部分和默认部分,4、SDRAM中的melloc分配的内存空间中。 Environment.c代码如下: env_t environment __PPCENV__ = { ENV_CRC, /* CRC Sum */ #ifdef CFG_REDUNDAND_ENVIRONMENT 1, /* Flags: valid */ #endif { #if defined(CONFIG_BOOTARGS) "bootargs=" CONFIG_BOOTARGS "\0" #endif #if defined(CONFIG_BOOTCOMMAND) "bootcmd=" CONFIG_BOOTCOMMAND "\0" #endif #if defined(CONFIG_RAMBOOTCOMMAND) "ramboot=" CONFIG_RAMBOOTCOMMAND "\0"

Android USB 驱动分析

Android USB 驱动分析 一、USB驱动代码架构和使用 1、代码简介 USB驱动代码在/drivers/usb/gadget下,有三个文件:android.c, f_adb.c, f_mass_storage.c;g_android.ko 是由这三个文件编译而来,其中android.c 依赖于 f_adb.c 和 f_mass_storage.c(这两个文件之间无依赖关系)。 可在android.c中看到: static int __init android_bind_config(struct usb_configuration *c) { struct android_dev *dev = _android_dev; int ret; printk(KERN_DEBUG "android_bind_config\n"); ret = mass_storage_function_add(dev->cdev, c, dev->nluns); if (ret) return ret; return adb_function_add(dev->cdev, c); } 2、驱动使用 要使USB mass storage连接到主机: 打开/sys/devices/platform/usb_mass_storage/lun0/file文件,向 file文件写入一个存储 设备的路径,例如/dev/block/vold/179:0 (major:minor)路径; 这里的usb_mass_storage根据实际应用可以改的,由 platform_device_register函数的参数决 定。 例如: static struct platform_device fsg_platform_device = { .name = "usb_mass_storage", .id = -1, }; static void __init tegra_machine_init(void) { .... (void) platform_device_register(&fsg_platform_device); .... }

嵌入式Linux之我行 史上最牛最详细的uboot移植,不看别后悔

嵌入式Linux之我行——u-boot-2009.08在2440上的移植详解(一) 嵌入式Linux之我行,主要讲述和总结了本人在学习嵌入式linux中的每个步骤。一为总结经验,二希望能给想入门嵌入式Linux 的朋友提供方便。如有错误之处,谢请指正。 ?共享资源,欢迎转载:https://www.sodocs.net/doc/436994822.html, 一、移植环境 ?主机:VMWare--Fedora 9 ?开发板:Mini2440--64MB Nand,Kernel:2.6.30.4 ?编译器:arm-linux-gcc-4.3.2.tgz ?u-boot:u-boot-2009.08.tar.bz2 二、移植步骤 本次移植的功能特点包括: ?支持Nand Flash读写 ?支持从Nor/Nand Flash启动 ?支持CS8900或者DM9000网卡 ?支持Yaffs文件系统 ?支持USB下载(还未实现) 1.了解u-boot主要的目录结构和启动流程,如下图。

u-boot的stage1代码通常放在cpu/xxxx/start.S文件中,他用汇编语言写成;u-boot的stage2代码通常放在lib_xxxx/board.c文件中,他用C语言写成。各个部分的流程图如下:

2. 建立自己的开发板项目并测试编译。 目前u-boot对很多CPU直接支持,可以查看board目录的一些子目录,如:board/samsung/目录下就是对三星一些ARM 处理器的支持,有smdk2400、smdk2410和smdk6400,但没有2440,所以我们就在这里建立自己的开发板项目。 1)因2440和2410的资源差不多,主频和外设有点差别,所以我们就在board/samsung/下建立自己开发板的项目,取名叫my2440 2)因2440和2410的资源差不多,所以就以2410项目的代码作为模板,以后再修改

stm32sdiofatfs文件系统源码分析

、概述 1、目的 在移植之前,先将源代码大概的阅读一遍,主要是了解文件系统的结构、 各个函数的功能和接口、与移植相关的代码等等。 2、准备工作 在官方网站下载了0.07c 版本的源代码,利用记事本进行阅读。 二、源代码的结构 1、源代码组成 源代码压缩包解压后,共两个文件夹,doc是说明,src里就是代码。src文件夹里共五个文件和一个文件夹。文件夹是option,还有OOreadme.txt、 diskio.c、diskio.h、ff.c、ff.h、integer.h。对比网上的文章,版本已经不同了,已经没有所谓的tff.c 和tff.h 了,估计现在都采用条件编译解决这个问题了,当然文件更少,可能编译选项可能越复杂。 2、00readme.txt 的说明 Low level disk I/O module is not included in this archive because the FatFs module is only a generic file system layer and not depend on any specific storage device. You have to provide a low level disk I/O module that written to control your storage device .主要是说不包含底层10代码,这是个通用文 件系统可以在各种介质上使用。我们移植时针对具体存储设备提供底层代码。 接下来做了版权声明-可以自由使用和传播。 然后对版本的变迁做了说明。 3、源代码阅读次序

先读integer.h,了解所用的数据类型,然后是ff.h, 了解文件系统所用的数据结构和各种函数声明,然后是diskio.h,了解与介质相关的数据结构和操作函数。再把ff.c和diskio.c两个文件所实现的函数大致扫描一遍。最后根据用户应用层程序调用函数的次序仔细阅读相关代码。 三、源代码阅读 1、integer.h 头文件 这个文件主要是类型声明。以下是部分代码。 typedef intINT; typedef unsigned int UINT; typedef signed charCHAR;/* These types must be 8-bit integer */ 都是用typedef 做类型定义。移植时可以修改这部分代码,特别是某些定义与你所在工程的类型定义有冲突的时候。 2、ff.h 头文件 以下是部分代码的分析 #include “ intege使用i n teger.h 的类型定义 #ifndef _FATFS #define _FATFS 0x007版本号007c, 0.07c #define _WORD_ACCESS 0如//果定义为1,则可以使用word 访问。 中间有一些看着说明很容易弄清楚意思。这里就不例举了。 #define _CODE_PAGE 936 /* The _CODE_PAGE specifies the OEM code page to be used on the target system. /936 -Simplified Chinese GBK (DBCS, OEM, WindoW跟据这个中国应该是936.

U_Boot第一启动阶段Uboot启动分析笔记-----Stage1(start.S与lowlevel_init.S详解)

Uboot启动分析笔记-----Stage1(start.S与lowlevel_init.S详解) Uboot启动分析笔记-----Stage1(start.S与lowlevel_init.S详解) 1 u-boot.lds 首先了解uboot的链接脚本board/my2410/u-boot.lds,它定义了目标程序各部分的链接顺序。OUTPUT_FORMAT("elf32-littlearm", "elf32-littlearm", "elf32-littlearm") /*指定输出可执行文件为ELF格式,32为,ARM小端*/ OUTPUT_ARCH(arm) /*指定输出可执行文件为ARM平台*/ ENTRY(_start) /*起始代码段为_start*/ SECTIONS { /* 指定可执行image文件的全局入口点,通常这个地址都放在ROM(flash)0x0位置*、. = 0x00000000;从0x0位置开始 . = ALIGN(4); 4字节对齐 .text : {

cpu/arm920t/start.o (.text) board/my2440/lowlevel_init.o (.text) *(.text) } . = ALIGN(4); .rodata : { *(SORT_BY_ALIGNMENT(SORT_BY_NAME(.rodata*))) } . = ALIGN(4); .data : { *(.data) } /* 只读数据段,所有的只读数据段都放在这个位置*/ . = ALIGN(4); .got : { *(.got) } /*指定got段, got段式是uboot自定义的一个段, 非标准段*/ . = .; __u_boot_cmd_start = .; /*把__u_boot_cmd_start赋值为当前位置, 即起始位置*/ .u_boot_cmd : { *(.u_boot_cmd) } /* u_boot_cmd段,所有的u-boot命令相关的定义都放在这个位置,因为每个命令定义等长,所以只要以__u_boot_cmd_start为起始地址进行查找就可以很快查找到某一个命令的定义,并依据定义的命令指针调用相应的函数进行处理用户的任务*/ __u_boot_cmd_end = .; /* u_boot_cmd段结束位置,由此可以看出,这段空间的长度并没有严格限制,用户可以添加一些u-boot的命令,最终都会在连接是存放在这个位置。*/

Android 串口编程原理和实现方式附源码

提到串口编程,就不得不提到JNI,不得不提到JavaAPI中的文件描述符类:。下面我分别对JNI、以及串口的一些知识点和实现的源码进行分析说明。这里主要是参考了开源项目android-serialport-api。 串口编程需要了解的基本知识点:对于串口编程,我们只需对串口进行一系列的设置,然后打开串口,这些操作我们可以参考串口调试助手的源码进行学习。在Java中如果要实现串口的读写功能只需操作文件设备类:即可,其他的事都由驱动来完成不用多管!当然,你想了解,那就得看驱动代码了。这里并不打算对驱动进行说明,只初略阐述应用层的实现方式。 (一)JNI: 关于JNI的文章网上有很多,不再多做解释,想详细了解的朋友可以查看云中漫步的技术文章,写得很好,分析也很全面,那么在这篇拙文中我强调3点: 1、如何将编译好的SO文件打包到APK中?(方法很简单,直接在工程目录下新建文件夹libs/armeabi,将SO文件Copy到此目录即可) 2、命名要注意的地方?(在编译好的SO文件中,将文件重命名为:lib即可。其中是编译好后生成的文件) 3、MakeFile文件的编写(不用多说,可以直接参考package/apps目录下用到JNI的相关项目写法) 这是关键的代码: [cpp]view plaincopy

(二):

文件描述符类的实例用作与基础机器有关的某种结构的不透明句柄,该结构表示开放文件、开放套接字或者字节的另一个源或接收者。文件描述符的主要实际用途是创建一个包含该结构的或。这是API的描述,不太好理解,其实可简单的理解为:就是对一个文件进行读写。 (三)实现串口通信细节 1) 建工程:SerialDemo包名:org.winplus.serial,并在工程目录下新建jni和libs两个文件夹和一个org.winplus.serial.utils,如下图: 2) 新建一个类:SerialPortFinder,添加如下代码: [java]view plaincopy 1.package org.winplus.serial.utils; 2. 3.import java.io.File; 4.import java.io.; 5.import java.io.IOException; 6.import java.io.LineNumberReader; 7.import java.util.Iterator; 8.import java.util.Vector; 9. 10.import android.util.Log; 11. 12.public class SerialPortFinder { 13. 14.private static final String TAG = "SerialPort"; 15.

相关主题