搜档网
当前位置:搜档网 › 超精密平面磨床自动对刀方法研究

超精密平面磨床自动对刀方法研究

超精密平面磨床自动对刀方法研究
超精密平面磨床自动对刀方法研究

精密和超精密加工的应用和发展趋势

精密和超精密加工的应用和发展趋势 [摘要]本文以精密和超精密加工为研究对象,对世界上精密和超精密加工的应用和发展趋,势进行了分析和阐释,结合我国目前发展状况,提出今后努力方向和发展目标。 【关键词】精密和超精密加工;精度;发展趋势 精密和超精密制造技术是当前各个工业国家发展的核心技术之一,各技术先进国家在高技术领域(如国防工业、集成电路、信息技术产业等)之所以一直领先,与这些国家高度重视和发展精密、超精密制造技术有极其重要的关系。超精密加工当前是指被加工零件的尺寸精度高于0.1μm,表面粗糙度Ra小于0.025μm,以及所用机床定位精度的分辨率和重复性高于0.01μm的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展。超精密加工技术在国际上处于领先地位的国家有美国、英国和日本。这些国家的超精密加工技术不仅总体成套水平高,而且商品化的程度也非常高。 美国是开展超精密加工技术研究最早的国家,也是迄今处于世界领先地位的国家。早在20世纪50年代末,由于航天等尖端技术发展的需要,美国首先发展了金刚石刀具的超精密切削技术,称为“SPDT技术”(Single Point Diamond Turning)或“微英寸技术”(1微英寸=0.025μm),并发展了相应的空气轴承主轴的超精密机床。用于加工激光核聚变反射镜、战术导弹及载人飞船用球面非球面大型零件等等。如美国LLL实验室和Y-12工厂在美国能源部支持下,于1983年7月研制成功大型超精密金刚石车床DTM-3型,该机床可加工最大零件¢2100mm、重量4500kg的激光核聚变用的各种金属反射镜、红外装置用零件、大型天体望远镜(包括X光天体望远镜)等。该机床的加工精度可达到形状误差为28nm(半径),圆度和平面度为12.5nm,加工表面粗糙度为Ra4.2nm。 在超精密加工技术领域,英国克兰菲尔德技术学院所属的克兰菲尔德精密工程研究所(简称CUPE)享有较高声誉,它是当今世界上精密工程的研究中心之一,是英国超精密加工技术水平的独特代表。如CUPE生产的Nanocentre(纳米加工中心)既可进行超精密车削,又带有磨头,也可进行超精密磨削,加工工件的形状精度可达0.1μm,表面粗糙度Ra<10nm。 日本对超精密加工技术的研究相对于美、英来说起步较晚,但是当今世界上超精密加工技术发展最快的国家。日本的研究重点不同于美国,是以民品应用为主要对象。所以日本在用于声、光、图象、办公设备中的小型、超小型电子和光学零件的超精密加工技术方面,是更加先进和具有优势的,甚至超过了美国。 我国的精密、超精密加工技术在20世纪70年代末期有了长足进步,80年代中期出现了具有世界水平的超精密机床和部件。北京机床研究所是国内进行超

数控机床常用对刀方法与机内对刀仪

数控机床常用对刀方法与机内对刀仪 基本的坐标关系一般来讲,通常使用的有两个坐标系:一个是机床坐标系,另外一个是工件坐标系。机床坐标系是机床固有的坐标系,机床坐标系的原点称为机床原点或机床零点。 为了计算和编程方便,我们需要在机床坐标系中建立工件坐标系。将工件上的某一点作为坐标系原点(也称为程序原点)建立坐标系,这个坐标系就是工件坐标系。日常工作中,我们要尽量使编程基准与设计、装配基准重合。 通常情况下,一台机床的机床坐标系是固定的,而工件坐标系可以根据加工工艺的实际需求分别建立若干个,例如由G54、G55等来选择不同的工件坐标系。 对刀的目的进行数控加工时,数控程序所走的路径均是主轴上刀具的刀尖的运动轨迹。刀具刀位点的运动轨迹自始至终需要在机床坐标系下进行精确控制,这是因为机床坐标系是机床唯一的基准。编程人员在进行程序编制时不可能知道各种规格刀具的具体尺寸,为了简化编程,这就需要在进行程序编制时采用统一的基准,然后在使用刀具进行加工时,将刀具准确的长度和半径尺寸相对于该基准进行相应的偏置,从而得到刀具刀尖的准确位置。所以对刀的目的就是确定刀具长度和半径值,从而在加工时确定刀尖在工件坐标系中的准确位置。 常用对刀方法机外对刀 刀具预调仪是一种可预先调整和测量刀尖长度、直径的测量仪器,该仪器若和数控机床组成DNC网络后,还可以将刀具长度、直径数据远程输入加工中心NC中的刀具参数中。此种方法的优点是预先将刀具在机床外校对好,装上机床即可以使用,大大节省辅助时间。但是主要缺点是测量结果为静态值,实际加工过程中不能实时地对刀具磨损或破损状态进行更新,并且不能实时对由机床热变形引起的刀具伸缩进行测量。 试切法对刀 试切法对刀就是在工件正式加工前,先由操作者以手动模式操作机床,对工件进行一个微小量的切削,操作者以眼观、耳听为判断依据,确定当前刀尖的位置,然后进行正式加工。该方法的优点是不需要额外投资添置工具设备,经济实惠。主要缺点是效率低,对操作者技术水平要求高,并且容易产生人为误差。在实际生产中,试切法还有许多衍生方法,如量块法、涂色法等。

精密和超精密加工技术复习思考题答案

精密和超精密加工技术复习思考题答案 第一章 1.试述精密和超精密加工技术对发展国防和尖端技术的重要意义。 答:超精密加工技术在尖端产品和现代化武器的制造中占有非常重要的地位。国防方面,例如:对于导弹来说,具有决定意义的是导弹的命中精度,而命中精度是由惯性仪表的精度所决定的。制造惯性仪表,需要有超精密加工技术和相应的设备。 尖端技术方面,大规模集成电路的发展,促进了微细工程的发展,并且密切依赖于微细工程的发展。因为集成电路的发展要求电路中各种元件微型化,使有限的微小面积上能容纳更多的电子元件,以形成功能复杂和完备的电路。因此,提高超精密加工水平以减小电路微细图案的最小线条宽度就成了提高集成电路集成度的技术关键。 2.从机械制造技术发展看,过去和现在达到怎样的精度可被称为精密和超精密加工。 答:通常将加工精度在0.1-lμm,加工表面粗糙度在Ra 0.02-0.1μm之间的加工方法称为精密加工。而将加工精度高于0.1μm,加工表面粗糙度小于Ra 0.01μm的加工方法称为超精密加工。 3.精密和超精密加工现在包括哪些领域。 答:精密和超精密加工目前包含三个领域: 1)超精密切削,如超精密金刚石刀具切削,可加工各种镜面。它成功地解决了高精度陀螺仪,激光反射镜和某些大型反射镜的加工。 2)精密和超精密磨削研磨。例如解决了大规模集成电路基片的加工和高精度硬磁盘等的加工。 3)精密特种加工。如电子束,离子束加工。使美国超大规模集成电路线宽达到0.1μm。 4.试展望精密和超精密加工技术的发展。 答:精密和超精密加工的发展分为两大方面:一是高密度高能量的粒子束加工的研究和开发;另一方面是以三维曲面加工为主的高性能的超精密机械加工技术以及作为配套的三维超精密检测技术和加工环境的控制技术。 5.我国的精密和超精密加工技术和发达国家相比情况如何。 答:我国当前某些精密产品尚靠进口,有些精密产品靠老工人于艺,因而废品率极高,例如现在生产的某种高精度惯性仪表,从十几台甚至几十台中才能挑选出一台合格品。磁盘生产质量尚未完全过关,激光打印机的多面棱镜尚不能生产。1996年我国进口精密机床价值达32亿多美元(主要是精密机床和数控机床)。相当于同年我国机床的总产值,某些大型精密机械和仪器国外还对我们禁运。这些都说明我国必须大力发展精密和高精密加工技术。 6.我目要发展精密和超精密加工技术,应重点发展哪些方面的内容。

对刀仪用法

对刀仪用法 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

最新款对刀仪安装及操作注意事项 ■线路接法: 棕色:24V 绿色:0V 黄色:信号线(NO) 白色/红色:过行程保护开关(常闭型) ■检查对刀仪好坏方法: 接好线路,检查无误后,压下对刀仪,左侧白色灯亮,同时测量黄色同绿色之间有24V电压,松开则没有,表明动作状态正常。 特别注意:此信号的输出为常开型! 采用LNC系列控制器,加装对刀仪时,原点需要接到继电器板输入点 ■宝元系统更改如下参数: a:参数175=1 设定HOME DOG I 点(0 lobal,1 remote) b:参数176=1 设定G31信号源HS接口1/2 c:参数177=1 设定G31信号接点类别(0 NC,1 NO) d:参数161=6 设定宏O9004呼叫M码 e:参数166=36 设定宏O9010呼叫G码 OFFSET页面系统变量里设定C401为对刀仪位置的X轴机械坐标 OFFSET页面系统变量里设定C402为对刀仪位置的Y轴机械坐标 ■对刀仪保护写法范例: 保护开关由常闭转变为常开状态时,PLC即刻接收到信号,并触发控制器内部警报:Z轴超过负向软件极限,对刀动作将会停止,起到保护作用。用户只有通过手动将Z轴向正方向移动,即可解除报警。 保护信号请务必接好,以防止外力造成损伤! ■对刀仪安装: 对刀仪通过底部两个圆弧槽,安装于工作台面或者其它位置时,请特别注意对刀仪表面的水平精度,安装过程中请用千分表对其测量,以确保平面精度,进而得到精确的测量值! 对刀思路: 1一般的加工方式: X Y分好中心点后,校对Z轴坐标,如果是工件表面加工则直接把Z轴移到工件表面,然后将坐标设入控制器的坐标系中,完成对刀工作。如果客人加工程序里有几把刀具,后处理出来的程序也是以平面为基准加工,而第一把刀加工就可能把整个平面切掉,所以大多数客户都采用的是取差值的方式,即:测量出工件表面和工作台面的数值,设入到偏移坐标里面等。 2用对刀仪加工方式: 同上面手动抄数理论一样,用对刀仪时也要进行两个步骤:

精密和超精密加工论文

精密和超精密加工论文 一、精密和超精密加工的概念与范畴 通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。目前,精密加工是指加工精度为1~0.1?;m,表面粗糙度为Ra0.1~0.01?;m的加工技术,但这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。精密加工包括微细加工和超微细加工、光整加工等加工技术。传统的精密加工方法有砂带磨削、精密切削、珩磨、精密研磨与抛光等。 a.砂带磨削是用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。 b.精密切削,也称金刚石刀具切削(SPDT),用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般切削加工精度要高1~2个等级。 c.珩磨,用油石砂条组成的珩磨头,在一定压力下沿工件表面往复运动,加工后的表面粗糙度可达Ra0.4~0.1?;m,最好可到Ra0.025?;m,主要用来加工铸铁及钢,不宜用来加工硬度小、韧性好的有色金属。 d.精密研磨与抛光通过介于工件和工具间的磨料及加工液,工件及研具作相互机械摩擦,使工件达到所要求的尺寸与精度的加工方法。精密研磨与抛光对于金属和非金属工件都可以达到其他加工方法所不能达到的精度和表面粗糙度,被研磨表面的粗糙度Ra≤0.025?;m加工变质层很小,表面质量高,精密研磨的设备简单,

精密和超精密加工现状与发展趋势

精密和超精密加工现状与发展趋势 一、精密和超精密加工的概念与范畴 通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。目前,精密加工是指加工精度为1~0.1μ;m,表面粗糙度为Ra0.1~0.01μ;m的加工技术,但这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。精密加工包括微细加工和超微细加工、光整加工等加工技术。传统的精密加工方法有砂带磨削、精密切削、珩磨、精密研磨与抛光等。 a. 砂带磨削是用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。 b. 精密切削,也称金刚石刀具切削(SPDT),用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般切削加工精度要高1~2个等级。 c. 珩磨,用油石砂条组成的珩磨头,在一定压力下沿工件表面往复运动,加工后的表面粗糙度可达Ra0.4~0.1μ;m,最好可到Ra0.025μ;m,主要用来加工铸铁及钢,不宜用来加工硬度小、韧性好的有色金属。 d. 精密研磨与抛光通过介于工件和工具间的磨料及加工液,工件及研具作相互机械摩擦,使工件达到所要求的尺寸与精度的加工方法。精密研磨与抛光对于金属和非金属工件都可以达到其他加工方法所不能达到的精度和表面粗糙度,被研磨表面的粗糙度Ra≤0.025μ;m加工变质层很小,表面质量高,精密研磨的设备简单,主要用于平面、圆柱面、齿轮齿面及有密封要求的配偶件的加工,也可用于量规、量块、喷油嘴、阀体与阀芯的光整加工。 e. 抛光是利用机械、化学、电化学的方法对工件表面进行的一种微细加工,主要用来降低工件表面粗糙度,常用的方法有:手工或机械抛光、超声波抛光、化学抛光、电化学抛光及电化学机械复合加工等。手工或机械抛光加工后工件表面粗糙度Ra≤0.05μ;m,可用于平面、柱面、曲面及模具型腔的抛光加工。超声波抛光加工精度0.01~0.02μ;m,表面粗糙度Ra0.1μ;m。化学抛光加工的表面粗糙度一般为Ra≤0.2μ;m。电化学抛光可提高到Ra0.1~0.08μm。 超精密加工就是在超精密机床设备上,利用零件与刀具之间产生的具有严格约束的相对运动,对材料进行微量切削,以获得极高形状精度和表面光洁度的加工过程。当前的超精密加工是指被加工零件的尺寸精度高于0.1μm,表面粗糙度Ra小于0.025μm,以及所用机床定位精度的分辨率和重复性高于0.01μm的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展。 超精密加工包括微细加工、超微细加工、光整加工、精整加工等加工技术。微细加工技术是指制造微小尺寸零件的加工技术;超微细加工技术是指制造超微小尺寸零件的加工技术,它们是针对集成电路的制造要求而提出的,由于尺寸微小,其精度是用切除尺寸的绝对

对刀仪使用办法

对刀仪使用办法 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

对刀仪使用方法随着的广泛使用,许多用户也开始使用刀具装置。它不仅可以检测刀具的磨损情况,而且可实现自动补偿(通过修改刀补值实现),极大的提高了加工效率和精度。另外,同时使用其刀具破损检测功能与刀具寿命管理功能,还可以实现自动寻找同组刀具的功能,节约了刀具检查和更换的时间。但由于用户对原理不是很了解,使用时容易产生误区,有时补偿后的精度反而不如补偿前,这就使用户产生了迷惑,限制了测量装置的广泛使用。本文以英国.html"target="_blank"class="keylink">雷尼绍()公司TS27R测头的安装调试为例,就如何更好的使用刀具测量装置做一详细介绍,供读者参考借鉴。 刀具测量的基本原理是利用系统的跳步功能(G31):在程序中指令“G31ZxxxFxxx”(与GO1的动作相同)。但此时如果SKIP信号由“0”变为“1”时,Z轴将停止运动,再用宏程序控制坐标轴后退,然后再次碰触量块,反复测量并运算后得出刀具的实际长度和直径,最后修改系统宏变量从而达到修改刀补值的目的。 刀具测量装置的使用主要包括三个步骤:安装和接线;标定;测量。 1安装和接线

刀具侧量装置通常包括测头和信号转换装置(硬件)及相关的测量程序(软件包)。测头(TS27R)安装在工作台上,并尽量远离加工区域,外部应加防护装置,使用前先将防护装置打开并将刀具用风吹干净(用M代码控制气动元件可实现自动),确保刀具表面无杂物,测量完成后关闭防护。 测头安装完成后,首先要调整测头接触面的平行度和直线度。将一只百分表(或千分表DTI)吸在头上,表头打在量块(圆形或方形)的上表面;用手轮控制X轴沿量块表面来回移动,观察表针变化,同时调整测头上的调节螺钉,使X向的直线度保证在0.010mm,调整好后紧固螺钉。再控制Y轴沿量块表面来回移动,同时调整测头上的调节螺钉,使Y向的直线度也保证在0.010mm,调整好后紧固螺钉。 转换装置(MI8-4)用35mm标准导轨安装在电气柜里。需要注意的是,给转换装置提供DC24V的稳压电源最好是单独的,尽量不要和电磁阀或中间继电器共用电源,如果必须共用,就要考虑信号的抗干扰能力,否则可能会影响测量结果。 安装结束后,按照图1(三菱系统)或图2(系统)正确接线。 图1测量装置接线原理图(三菱64M系统) 图2测量装置接线原理图(-0i-M系统) 2测头的标定

精密和超精密加工基础试题

《精密超精密加工技术》期末试题 1~6题为必答题(每题10分)。 1.精密和超精密加工的精度范围分别为多少?超精密加工包括哪些领 域? 答:精密加工的精度范围为1μm~0.1μm、表面粗糙度为0.1μm~0.025μm;超精密加工的精度范围为高于0.1μm、表面粗糙度小于0.025μm。 超精密加工领域包括: (1)超精密切削加工。如采用金刚石刀具进行超精密切削,可进行各种镜面、反射镜、透镜等大型器件的精密加工。它成功地解决了激光核聚变系统和天体望远镜中地大型抛物面加工。 (2)超精密磨削和研磨抛光加工。如高密度硬磁盘地涂覆表面加工和大规模集成电路基片的加工,以及高等级的量块加工等。 (3)精密特种加工。如在大规模集成电路芯片上,采用电子束、离子束的刻蚀方法制造图形,目前可以实现0.1μm线宽。 2.超精密切削对刀具有什么要求?天然单晶金刚石、人造单晶金刚石、人 造聚晶金刚石和立方氮化硼刀具是否适用于超精密切削? 答:超精密切削对刀具性能的要求:1)极高的硬度、极高的耐磨性和极高的弹性模量,以保证刀具有很长的寿命和尺寸耐用度。2)切削刃钝圆半径要极小,这样才能实现超薄切削厚度。3)切削刃无缺陷,因为切削时刃形将复印在加工表面上,切削刃无缺陷能得到超光滑的镜面。4)和工件材料的抗粘结性好、化学亲和性小、摩擦因数低,能得到极好的加工表面完整性。 天然单晶金刚石有着一系列优异的特性,如硬度强度耐磨性极高导热性好,与有色金属摩擦因数低,刀具钝圆半径极小等。虽然价格昂贵,仍被公认为理想不能替代的超精密切削刀具材料。 人造单晶金刚石现在已能工业生产,并已开始用于超精密切削,但它的价格仍很昂贵。 人造聚晶金刚石无法磨出极锋锐的切削刃,钝圆半径很难小于1微米,因此它只能用于有色金属和非金属的精切,很难达到超精密镜面切削。

对刀仪使用说明

美徳龍美徳龍對刀儀使用說明對刀儀使用說明 1. 概要 美得龍所生產對刀儀是加工中心機專用對刀儀,對刀儀輸出開關量信號由數控系統接收信號再由程式控制執行刀具長度設定、刀具磨耗檢測、刀具破損折斷檢測,在沒有震動誤動作情況下,按照額定電壓電流及規定速度內,可以對機器熱變形做補正。 2. 構造 尺寸及主要規格 請參照對刀儀圖紙。 3. 特別注意事項 對刀速度請控制在50~200mm/min 。 使用環境溫度範圍0℃~80℃。 電壓請控制在DC24V ,電流在20mA 以下。 4. 安裝注意事項 (1) 機械關係 1) 請盡量安裝在工作台上鐵屑比較少的位置。 2) 請正確安裝對刀儀後再使用。 立式安裝改成臥式安裝需注意動作部分鐵屑堆積,以免發生故障。 3)安裝支架時請注意支架剛性,以免發生熱變形。 (2) 電器關係 1)請必須在額定電源範圍內使用。 2)機械本體有接地保護或屏蔽的請將對刀儀安裝在附近。 3)電源線抗拉力在30N(3Kgf)以下,電源線彎曲半徑為R7,保護管彎曲半徑為R25。 (3) 氣源關係 請使用正確氣管接頭,防止氣管爆裂。

5. 使用上注意事項 (1) 對刀儀對刀儀對刀方式對刀方式 1)刀具與對刀儀接觸面必須垂直,並且測量時需垂直向下與接觸面接觸。 2)接觸時不可以超過對刀儀行程,否則會造成對刀儀或刀具損壞。 3)對刀時速度與機械電氣影響速度有關,所以請依照我公司所指定內速度設定, 為了確保對刀時重覆精度,我公司推薦對刀速度50~200mm/min 。 4)當使用手按壓對刀儀時,請不 要立即放手,以免損壞對刀儀內 部機械接點結構。 5)當刀具和對刀儀接觸對刀結束 時,必須垂直提刀離開接觸面,不 可橫向移動,因橫向移動會損壞 對刀儀接觸面,而導致精度不良。 (2) 接觸面接觸面清掃清掃 接觸面吹氣吹不到或除不掉的鐵屑和切削油等,請經常清掃保持對刀面清潔。 6. 維修事項 (1) 吹氣管吹氣管交換交換 吹氣管連接螺絲材質比其它部位脆弱,是為了防止刀具或大塊鐵屑在過負荷情況下碰到吹氣管先折斷連接螺絲,起到保護對刀儀的其它部位。 如果折斷請按照下面步驟交換 1)將折斷連接螺絲(TS15)擰出,擰上新連接螺絲(TS15),短螺紋部分擰到對刀 儀氣管支架上。 2)氣管(TS23)和連接螺絲(TS15)連接後由螺母(M5)調節固定。 3)氣管頂部距離接觸面約3.5mm ,然後將螺母(M5)擰緊定位。 (2) 對刀儀輸出信號對刀儀輸出信號確認方確認方確認方法法 接點構造常閉(NC )反向輸出(NO )。 對刀儀在常態時用萬用表歐姆檔Ω進行檢測。

超精密加工技术的发展现状与趋势

超精密加工技术的发展现状与趋势 一、精密和超精密加工的概念与范畴 通常,按加工精度划分,机械加工可分为一般加工、精密加工、超精密加工三个阶段。目前,精密加工是指加工精度为1~0.1?;m,表面粗糙度为Ra0.1~0.01?;m的加工技术,但 这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的一般加工。精密加工所要解决的问题,一是加工精度,包括形位公差、尺寸精度及表面状况;二是加 工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。精密加工包括微细加工和超微细加工、光整加工等加工技术。传统的精密加工方法有砂带磨削、精密切削、珩磨、精密研磨与抛光等。 1.1砂带磨削 用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。 1.2精密切割 也称金刚石刀具切削(SPDT),用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般切削加工精度要高1~2个等级。 1.3珩磨 用油石砂条组成的珩磨头,在一定压力下沿工件表面往复运动,加工后的表面粗糙度可达Ra0.4~0.1?;m,最好可到Ra0.025?;m,主要用来加工铸铁及钢,不宜用来加工硬度小、 韧性好的有色金属。 1.4精密研磨与抛光 通过介于工件和工具间的磨料及加工液,工件及研具作相互机械摩擦,使工件达到所要求 的尺寸与精度的加工方法。精密研磨与抛光对于金属和非金属工件都可以达到其他加工方 法所不能达到的精度和表面粗糙度,被研磨表面的粗糙度Ra≤0.025?;m加工变质层很小,表面质量高,精密研磨的设备简单,主要用于平面、圆柱面、齿轮齿面及有密封要求的配 偶件的加工,也可用于量规、量块、喷油嘴、阀体与阀芯的光整加工。 二、精密加工的发展现状 2.1精密成型加工的发展现状与应用 精密成型加工的发展现状与应用精密铸造成形、精密模压成形、塑性加工、薄板精密成形 技术在工业发达国家受到高度重视,并投入大量资金优先发展。70年代美国空军主持制

对刀仪使用方法

对刀仪使用方法 随着加工中心的广泛使用,许多用户也开始使用刀具测量装置。它不仅可以检测刀具 的磨损情况,而且可实现自动补偿(通过修改刀补值实现),极大的提高了加工效率和精度。 另外,同时使用其刀具破损检测功能与刀具寿命管理功能,还可以实现自动寻找同组刀具的 功能,节约了刀具检查和更换的时间。但由于用户对测量原理不是很了解,使用时容易产生 误区,有时补偿后的精度反而不如补偿前,这就使用户产生了迷惑,限制了测量装置的广泛 使用。本文以英国RENISHAWtml" target="_blank" class="keylink"> 雷尼绍(RENISHAW 公司TS27 R测头的安装调试为例,就如何更好的使用刀具测量装置做一详细介绍,供读者 刀具测量的基本原理是利用系统的跳步功能(G31):在程序中指令“G31 Zx x x Fx x x” (与GO1的动作相同)。但此时如果SKIP信号由“0”变为“ 1”时,Z轴将停止运动,再用宏程序控制坐标轴后退,然后再次碰触量块,反复测量并运算后得出刀具的实际长度和直 径,最后修改系统宏变量从而达到修改刀补值的目的。 刀具测量装置的使用主要包括三个步骤:安装和接线;标定;测量。 1安装和接线

刀具侧量装置通常包括测头和信号转换装置(硬件)及相关的测量程序(软件包)。测头(TS27R)安装在工作台上,并尽量远离加工区域,外部应加防护装置,使用前先将防护装置 打开并将刀具用风吹干净(用M代码控制气动元件可实现自动),确保刀具表面无杂物,测量完成后关闭防护。 测头安装完成后,首先要调整测头接触面的平行度和直线度。将一只百分表(或千分表DTI)吸在主轴头上,表头打在量块(圆形或方形)的上表面;用手轮控制X轴沿量块表面来回移动,观察表针变化,同时调整测头上的调节螺钉,使X向的直线度保证在0.010mm调整 好后紧固螺钉。再控制Y轴沿量块表面来回移动,同时调整测头上的调节螺钉,使Y向的直线度也保证在0.010mm,调整好后紧固螺钉。 转换装置(Ml 8-4)用35mm标准导轨安装在电气柜里。需要注意的是,给转换装置提供DC24V勺稳压电源最好是单独的,尽量不要和电磁阀或中间继电器共用电源,如果必须共用, 就要考虑信号的抗干扰能力,否则可能会影响测量结果。 安装结束后,按照图1(三菱系统)或图2( FANU係统)正确接线。 图1测量装置接线原理图(三菱64M系统) 图2测量装置接线原理图(FANUCDi-M系统) 2测头的标定

对刀仪使用说明

自动对刀仪使用说明及调试说明书 一、使用自动对刀仪进行刀具长度测量 本自动对刀仪可以实现自动测量刀具长度并写入到指定的补偿号中。进行刀具长度测量使用的指令为: G910H*B*M* ——G910:调用9010号宏程序 ——H:刀具偏置号 ——B:假象刀具长度(略长于实际刀具长度) ——M:设定测量之前是否转动一下主轴(0:转动/不设置:不转动) 如指令为G910H11B200M0,则以假象刀具长度为200定位到对刀仪上方,测量之前刀具转动一下后停止,测量出的实际刀具长度将写入11号刀具偏置中。 执行指令机床的动作过程为: 1.Z轴返回机床坐标零点 2.X轴Y轴移动,对刀仪移动到刀具正下方。 3.Z轴向负方向移动到接近对刀仪的一安全位置。 4.Z轴慢速向负方向移动进行长度测量。 5.完成测量,Z轴上升5毫米。 6.刀具长度写入对应偏置中。 7.Z轴返回机床坐标零点。刀具长度测量完成。 二、工件坐标系的建立 完成所有刀具的长度测量后,需执行刀具长度补偿(G43 H*)后再进行建立工件坐标系。 注意:由于刀具长度测量后,在刀具偏置中的长度偏置都为正值,故执行G43H*指令时,Z轴会向正方向移动。 三、对刀仪调试 修改6050号系统参数为910。 宏程序中相关宏变量意义见下表 注:需要重新进行对刀仪的调试。

四、附件 宏程序: O9010(AUTOMATIC TOOL OFFSET) (S.T X500.0 Y400.0 Z330.0+150+HC) (TOOL OFFSET MACRO PROGRAM FOR OFFSET MEMORY B,C V4.0) (G910 H** B*** M0 ) (CHANGE PARAMETER NO.6050 DA TA 910) (START) #30=#4001 #31=#4003 IF[#900GE100.0]GOTO10 #3000=110(SETTING DATA ERROR #900) N10 IF[#901NE#0]GOTO20 #3000=110(SETTING DATA ERROR #901) N20 IF[#902NE#0]GOTO30 #3000=110(SETTING DATA ERROR #902) N30 IF[#903NE#0]GOTO40 #3000=110(SETTING DATA ERROR #903) N40 IF[#11NE#0]GOTO50 #3000=110(DATA ERROR "H" NOT EXIST) N50 IF[#905EQ0]GOTO60 IF[#905EQ#0]GOTO60 #24=#905 GOTO70 N60 #24=5.0 N70 IF[#906EQ480.0]GOTO80 IF[#906EQ580.0]GOTO80 IF[#906EQ680.0]GOTO80 IF[#906EQ780.0]GOTO80 #3000=110(SETTING DATA ERROR #906) N80 G91G28G00Z0 #22=#5043

精密加工和超精密加工技术期末复习资料

考试复习题库 一、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、精密和超精密加工目前包含的三个领域:(超精密切削)、(精密和超精密磨削研磨)和(精密特种加工)。 2、金刚石晶体的激光定向原理是利用金刚石在不同的(结晶方向)上因晶体结构不同而对激光放射形成不同的(衍射图像)进行的。 3、金刚石刀具在超精密切削时所产生的积屑瘤,将影响加工零件的(表面质量)和(尺寸精度)。 4、目前金刚石刀具主要用于(铝、铜及其合金等软金属)材料的精密与超精密加工,而对于(黑色金属、硬脆)材料的精密与超精密加工,则主要应用精密和超精密磨料加工。 5、金刚石刀具在超精密切削时所产生的积屑瘤,将影响加工零件的(表面质量)和(尺寸精度)。 6、金刚石有(人工目测定向)、(X射线定向)和(激光定向)三种方法。 7、由于金刚石的脆性,在保证获得较小的加工表面粗糙度前提下,为增加切削刃的强度,应采用(较大)的刀具楔角β,故刀具的前角和后角都取得(较小)。 8、金刚石刀具适合加工(铝合金)、无氧铜、黄铜、(非电解镍)等有色金属和某些非金属材料。 9、单晶金刚石有(100 )、(110 )、(111 )三个主要晶面。 10、研磨金刚石晶体时,(110 )晶面摩擦因数最大,(100 )晶面次之,(111 )晶面最小。 11、在高磨削率方向上,(110 )晶面的磨削率最高,最容易磨;(100 )晶面的磨削率次之,(111 )晶面磨削率最低,最不容易磨。 12、单晶金刚石的(破损)机理主要产生于(111 )晶面的解理。 13、单晶金刚石的磨损机理主要属(机械磨损),其磨损的本质是(微观解理)的积累。 14、超硬磨料在当前是指(金刚石)和(立方氮化硼)以及它们为主

对刀仪的对刀步骤【详述】

对刀仪的对刀步骤【详述】 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、自动化、数字无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展。 一、刀位点 刀位点是刀具上的一个基准点,刀位点相对运动的轨迹即加工路线,也称编程轨迹。 二、对刀和对刀点 对刀是指操作员在启动数控程序之前,通过一定的测量手段,使刀位点与对刀点重合。可以用对刀仪对刀,其操作比较简单,测量数据也比较准确。还可以在数控机床上定位好夹具和安装好零件之后,使用量块、塞尺、千分表等,利用数控机床上的坐标对刀。对于操作者来说,确定对刀点将是非常重要的,会直接影响零件的加工精度和程序控制的准确性。在批生产过程中,更要考虑到对刀点的重复精度,操作者有必要加深对数控设备的了解,掌握更多的对刀技巧 1、对刀点的选择原则 在机床上容易找正,在加工中便于检查,编程时便于计算,而且对刀误差小。 对刀点可以选择零件上的某个点(如零件的定位孔中心),也可以选择零件外的某一点(如夹具或机床上的某一点),但必须与零件的定位基准有一定的坐标关系。 提高对刀的准确性和精度,即便零件要求精度不高或者程序要求不严格,所选对刀部位的加工精度也应高于其他位置的加工精度。

选择接触面大、容易监测、加工过程稳定的部位作为对刀点。 对刀点尽可能与设计基准或工艺基准统一,避免由于尺寸换算导致对刀精度甚至加工精度降低,增加数控程序或零件数控加工的难度。 为了提高零件的加工精度,对刀点应尽量选在零件的设计基准或工艺基准上。例如以孔定位的零件,以孔的中心作为对刀点较为适宜。 对刀点的精度既取决于数控设备的精度,也取决于零件加工的要求,人工检查对刀精度以提高零件数控加工的质量。尤其在批生产中要考虑到对刀点的重复精度,该精度可用对刀点相对机床原点的坐标值来进行校核。 2、对刀点的选择方法 对于数控车床或车铣加工中心类数控设备,由于中心位置(X0,Y0,A0)已有数控设备确定,确定轴向位置即可确定整个加工坐标系。因此,只需要确定轴向(Z0或相对位置)的某个端面作为对刀点即可。 对于三坐标数控铣床或三坐标加工中心,相对数控车床或车铣加工中心复杂很多,根据数控程序的要求,不仅需要确定坐标系的原点位置(X0,Y0,Z0),而且要同加工坐标系G54、G55、G56、G57等的确定有关,有时也取决于操作者的习惯。对刀点可以设在被加工零件上,也可以设在夹具上,但是必须与零件的定位基准有一定的坐标关系,Z方向可以简单的通过确定一个容易检测的平面确定,而X、Y方向确定需要根据具体零件选择与定位基准有关的平面、圆。 对于四轴或五轴数控设备,增加了第4、第5个旋转轴,同三坐标数控设备选择对刀点类似,由于设备更加复杂,同时数控系统智能化,提供了更多的对刀方法,需要根据具体数控设备和具体加工零件确定。

精密和超精密加工

精密和超精密加工 1、微细加工:指制造微小尺寸零件的生产加工技术 2、电子束加工:利用电子束的高能量密度进行钻孔,切槽,光刻等工作 3、空气洁净度:指空气中含尘埃量多少的程度 4、恒温精度:指相对于空气平均温度所允许的偏差值 5、镜面磨削:一般指加工表面粗糙度达到Ra0.02-0.01um,表面光泽如镜的磨削方法 6、解理现象:是某些晶体特有的现象,晶体受到定向的机械力作用时,可以沿平行于某个平面平整地劈开的现象。 7、进化原则:即在精度比工件要求较低的机床上,利用误差补偿技术,提高加工精度,使加工精度比机床原有精度高。也称创造性原则。 8、研磨加工:是指利用硬度比被加工材料更高的微米级磨粒,在硬质研磨盘作用下产生的微切削和滚扎作用实现被加工表面的微量材料去除,使工件的形状,尺寸精度达到要求值,并降低表面粗糙度、减小变质层的加工方法。 1、最近出现的隧道扫描显微镜的分辨率是0.01nm,是目前世界上精度最高的测量仪,可用于测量金属和半导体零件表面的原子分布的形貌。最新研究,在扫描隧道显微镜下可移动原子实现精密工程最终目标--原子的精密加工 2、用金刚石刀具进行超精密切削,用于加工铝合金,无氧铜,黄铜,非电解镍等有色金属和某些非金属材料 3、使用切削液后,以消除了积屑瘤对加工表面粗糙度的影响,这时切屑速度已和加工表面粗糙度无关,这种情况和普通切削时钢的规律不同 4、超精密切削实际能达到的最小切削厚度和金刚石刀具的锋锐度,使用的超精密机床的机能状态,切削的环境条件等都直接有关 4、金刚石有较大的热容量和良好的导热性,不适宜磨削,钢铁材料,不能加工黑色金属材料 5、无论是正电压或者负电压,传感器的伸长量是相同的 6、保证零件加工精密途径 1)靠所用机床保证即机床精度高于工件所要求精度,{蜕化原则母性原则}2)精度比工件要求较低的机床利用误差补偿技术提高加工精度,使加工精度化机床原有精度高{进化原则,创造性原则} 1、精度和超精度的三个领域 1)超精密切削 2)精密和超精密磨削研磨 3)精密特种加工 2、金刚石具有两个比较重要的问题 1)晶面的选择 2)金刚石刀具的研磨质量--切削刀钝圆半径rn

宝元接对刀仪说明

宝元接对刀仪 根据用户的反馈,特别编辑了对刀仪接宝元系统的说明 一:硬件准备与识别 1:对刀仪一个。(通常用常闭的,不过宝元系统改常开常闭比较方便,如果实在没常闭的常开也一样使用。) 2:弄清楚对刀仪每根线的定义。(一般由这几个定义组成:对刀信号,过行程保护信号,对刀信号输入端,过行程保护信号输入端,24V,0V) 3:找到宝元系统对刀信号输入端口,宝元系统对于对刀仪端口是专用的端口。这点比新代系统做的好一点。一般在显示屏背面,一个标有SH1或(L-IN1)的接线端口。如下图: 4:找到上图报警接口OT1和OT2,把上面的跳线卸掉。然后这两个接口分别接对刀仪过行程保护的两条线即可。(这是在机床没有写对刀过行程保护PLC接口时的最简单有效的接法。) 5:以上四点都完成了,开始对刀仪信号线与宝元系统连接。如下图: 二:以上硬件准备就绪后接下来是参数设置和对刀程序的设置了。 1:对刀命令的设置如下图:

上图是设定对刀变数的G码和M码。一般G码为36,M码为06. 2:设定对刀信号的常开或常闭极性,如下图: 上图是对刀信号点的常开和常闭设定,NC表示常闭,NO表示常开。 3:设定对刀信号输入点的接口,是1口还是2口。如下图: 上图是接口设定窗口。宝元对刀信号口提供了两个,可以任意选择1或者2接口。4:对刀宏程序的导入和编辑。

上图为对刀宏程序显示窗口,宝元一般为O9004和O9010两个。一个设定落差用,一个对刀用。在宏程序里面可以修改对刀速度,对刀次数,对刀吹气的时间。一般更换对刀仪不需要宏程序,如果是新装对刀仪就需要宏程序。如果需要可以加我个人微信号(szzww314)获取下载地址。 5:开启是否使用对刀仪功能,如下图: 上图是开启对刀仪是否使用的功能和对刀报警功能。 三:以上为宝元系统安装对刀仪到参数设定的全部图文内容,如果感觉还是不是很详细。可以关注我们的微信公众号:qq28336389(国雕数控维修)。里面有更多详细的内容可分享朋友圈。

对刀方法

数控车床对刀方法教学设计 一、教学准备 1、学生分析 经过之前的数控车床理论知识的学习,学生对数控车及数控车相关的指令有一定的了解。学习本课程要求学生对数控车床具相应的基础知识,了解机床坐标系的概念和作用,熟练掌握基本量具(游标卡尺、外径千分尺、内径千分尺)的使用。学完本课程应熟练掌握数控车床试切对法。 2、学习及教学策略分析 按照课前教师布置的任务目标,查找相关资料,初步了解机床坐标和试切对刀。通过老师详细的讲解机床坐标和试切对刀方法、示范操作试切对刀,分组讨论和练习操作,完成对试切对刀方法的学习和掌握。并解决学习过程中遇到的问题。坚持以学生为主,理论结合操作,教师为辅的教学理念。努力为学生创造良好的学习环境,培养解决实际问题的能力。 二、教学用具 1、设备:华中HNC-21T数控车床、广数GSK980TD系列数控车床 2、工具:卡盘扳手、刀架扳手、 90°外圆车刀 25~50mm外径千分尺、0~200mm游标卡尺 3、材料:φ40塑料棒、φ40 45#钢材 4、教学文件:多媒体课件、项目任务书、实训指导书、实训评价表 三、教学目标 1、知识目标: (1)深刻记忆数控车床坐标系的定义和作用 (2)掌握刀位点的概念 (3)掌握对刀的基本概念

(4)了解对刀的作用和意义 2、技能目标: (1)定位对刀法和光学对刀法 (2)熟练掌握数控车床试切对刀方法。 3、情感目标: (1)培养学生的沟通能力及团队协作精神; (2)培养学生勤于思考、认真负责的良好作风; (3)培养学生在实践操作中获得成就感,树立学习信心;。 4、职业素养目标: (1)遵守车间管理制度和安全操作规程 (2)培养学生的时间观念,规定时间内完成规定任务。 四、重点与难点 1、对刀操作步骤的熟练掌握 2、通过小组讨论合作共同学习和完成实训任务。 五、教学内容 1、应知部分 (1)、机床坐标系;是以机床原点O为坐标系原点并遵循右手笛卡尔直角坐标系建立的由X、Y、Z轴组成的直角坐标系。机床坐标系是用来确定工件坐标系的基本坐标系。是机床上固有的坐标系,并设有固定的坐标原点。 (2)、刀位点;刀位点是指在加工程序编制中,用以表示刀具特征的点,也是对刀和加工的基准点。 (3)、对刀的基本概念;对刀是数控加工中较为复杂的工艺准备工作之一,对刀的好与差将直接影响到加工程序的编制及零件的尺寸精度。 通过对刀或刀具预调,还可同时测定其各号刀的刀位偏差,有利于设定刀具补偿量。

Fanuc机床TS27R对刀仪安装调试说明

Fanuc机床TS27R对刀仪安装调试说明 1.参数设置 打开“快捷数控”模式,在“维修/设定”下选择“外部接口”,将输出信号Y2.2设置为“M103”,M代码类型为脉冲0.1秒,将输入信号X4.7设置为“跳转”; 在“参数”中设置6200=10000000, 6201=00000010, 6202=00000001; 2.安装测量软件 将程序O8000,O8100,O8101,O8200,O8300,O9750,O9751,O9752,O9753,O9754,O9759,O9855,O9857拷贝到CF卡中。 在机床上电的情况下,先将参数3202.4设置为0(取消O9000~O9999程序的写保护); 将CF卡插入机床卡槽中,导入上述程序到机床内存里,放在SYSTEM文件夹内。 完成后恢复参数3202.4为1,程序导入结束。 3.TS27R对刀仪的安装 将对刀仪底座拆下,与130mm加高块一起锁紧到机床导轨梯形槽中; 取1米长1/4’’软管套在对刀仪导线上,用扳手紧固; 将对刀仪安装到机床上,锁紧螺丝H; 将测针安装到TS27R对刀仪上; 将吹气装置安装到TS27R对刀仪上并紧固。 4.TS27R对刀仪的校正 如果测针松动或需要更换,应把它拧紧、用千分表测量、并作相应的调整,把它的顶面设为水平面。

按本说明内容调整测针:先通过L1,L2调整前后,前高后低则松开L1,紧固L2;前低后高则松开L2,紧固L1;通过L3,L4调整左右,左高右低则松开L4,紧固L3;左低右高则松开L3,紧固L4。最终将测针平台校正到5um内。 5.对刀仪及控制盒MI8-4的连接 1)电源供给 B1--24V B2--0V B3--地 2)X4.7跳转信号 A10--24V A11--X4.7 A12--0V 3)连接对刀仪 A1--地A2--蓝色A3--红色 6.TS27R对刀仪的标定 调出各工序中固定的对刀仪校正程序O8000 确认程序的内容正确:如标准刀尺寸:长度及直径值等; 将标准到手动定位到探针大致中心上方约10mm高度位置; 确认以上无误后,按下程序启动进行测头标定; 标定程序将找到测针的半径大小以及其机床坐标位置,结果 存储在宏变量#520~#525中;

精密和超精密加工机床的现状及发展对策

精密和超精密加工机床的现状及发展对策 摘要:精密和超精密加工技术的发展直接影响尖端技术和国防工业的发展。精密和超精密加工机床是精密和超精密加工技术的基础,本文在论述目前国内外超精密加工机床的现状的同时,介绍了国内外有代表性的几种超精密加工机床,并通过对比说明提出了我国应重视超精密加工机床的研究、加大投入的观点,对精密超精密加工机床的发展对策给出了几条建议。 关键词:精密;超精密;机床;发展 正文:1精密和超精密加工机床发展的意义 精密和超精密加工技术的发展直接影响到一个国家尖端技术和国防工业的发展,因此,世界各国对此都极为重视,投入很大力量进行研究开发,同时实行技术保密,控制关键加工技术及设备出口。随着航空航天、高精密仪器仪表、惯导平台、光学和激光等技术的迅猛发展和多领域的广泛应用,对各种高精度复杂零件、光学零件、高精度平而、曲而和复杂形状的加工需求日益迫切。目前,国外己开发了多种精密和超精密车削、磨削、抛光等机床设备,发展了新的精密加工和精密测量技术。 制造业是一个国家或地区国民经济的重要支柱.其竞争能力最终体现在新生产的工业产品市场占有率上,而制造技术则是发展制造业并提高其产品竞争力的关键。随着高技术的蓬勃发展和应用,发达国家提出了“先进制造技术”(AMT)新概念。所谓先进制造技术,就是将机械工程技术、电子信息技术(包括微电子、光电子、计算机软硬件、现代通信技术)和自动化技术,以及材料技术、现代管理技术综合应用于产品的计划、设计、制造、检测、管理、供销和售后服务全过程的综合集成生产技术。先进制造技术追求的目标就是实现优质、精确、省料、节能、清洁、高效、灵活生产,满足社会需求。 从先进制造技术的技术实质性而论,主要有精密和超精密加工技术和制造自动化两大领域,前者追求加工上的精度和表而质量极限.后者包括了产品设计、制造和管理的自动化,它不仅是快速响应市场需求、提高生产率、改善劳动条件的重要手段,而且是保证产品质量的有效举措。两者有密切关系,许多精密和超精密加工要依靠自动化技术得以达到预期指标,而不少制造自动化有赖于精密加工才能准确可靠地实现。两者具有全局的、决定性的作用,是先进制造技术的支柱。 最近几年,我国的机床制造业虽然发展很快,年产量和出口量都明显增加,成为世界机床最大消费国和第一大进口国,在精密机床设备制造方而取得不小进展,但仍和国外有较大差距。我国还没有根本扭转大量进口昂贵的数控和精密机床、出口廉价中低档次机床的基本状况。 由于国外对我们封锁禁运一些重要的高精度机床设备和仪器,而这些精密设备仪器正是国防和尖端技术发展所迫切需要的,因此,我们必须投入必要的人力物力,自主发展精密和超精密加工机床,使我国的国防和科技发展不会受制于人。 2我国精密和超精密加工机床的现状及发展趋势 超精密加工目前尚没有统一的定义,在不同的历史时期、不同的科学技术发展水平情况下,有不同的理解。目前,工业发达国家的一般工厂己能稳定掌握3um的加工精度(我国为5um )。因此,通常称低于此值的加工为普通精度加工,而高于此值的加工则称之为高精度加工。在高精度加工的范畴内,根据精度水平的不同。分为3个档次:

相关主题