搜档网
当前位置:搜档网 › 手算剪力流,弯心分析 2

手算剪力流,弯心分析 2

手算剪力流,弯心分析 2
手算剪力流,弯心分析 2

弯曲切应力,剪力流,弯心分析

四、剪切中心

由对称关系可以知道,对于双轴对称截面的梁(例如图6-13的工形截面梁),当横向荷载作用在形心轴上时,梁只产生弯曲,不产生扭转。这时,截面上三角形分布弯曲应力的合力等于弯矩M ,截面上剪力流的合力是通过形心轴的剪力V,正好平衡。

对于槽形、T形、L形等非双轴对称截面,当横向荷载作用在非对称轴的形心轴上时,梁除产生弯曲外,还伴随有扭转。现以图6-15糟形截面梁为例来说明。

如图6-15所示,当横向荷载F不通过截面的某一特定点S时,梁将产生弯曲并同时有扭转变形,其外扭矩为Fe。若荷载逐渐平行地向腹板一侧移动,外扭矩和扭转变形就逐渐减小;直到荷载移到通过S点时,梁将只产生平面弯曲而不产生扭转,亦即S点正是梁弯曲产生的剪力流的合力作用线通过点(下段再详述)。因此,S点称为截面的剪切中心。荷载通过S点时梁只受弯曲而无扭转,故也称为弯曲中心。根据位移互等定理,既然荷载通过S点时截面不发生扭转即扭转角为零,则构件承受扭矩作用而扭转时,S点将无线位移,亦即截面将绕S点发生扭转变形,同时扭转荷载的扭矩也是以S点为中心取矩计算(图 6-15C);故 S点也称为扭转中心。

现根据截面内力的平衡来求剪切中心S的位置:

——当梁承受通过S 的横向荷载时,梁只产生三角形分布的弯曲应力和按剪力流理论的剪应力。截面弯曲应力的合力正好等于弯矩M ;截面剪力流的合力正好等于剪力V ,而且合力作用线必然通过S 才能正好与横向荷载平衡。因此,求出剪力流合力的作用线位置也就是确定了剪切中心S 的位置。

槽形截面剪力流的计算公式与工形截面的式(6-21、6-22)相同,即(图6-15a ): 翼缘剪力流(S 自中线自由端算起,对A 、B 点为S =0,b ):

x

x x x 2I Vht I 2)sth V(I VS ===?=t q τ (6-24) 0=A q ,x B I Vbht q 2=

腹板剪力流(S 自腹板与翼缘中线交点算起,对B 、D 点为S =0,h /2): [][])(t tbh 2I V I 2)sth (2)(2bth V I VS w x

x x x s h s s h st t q w w -+=-+==?=τ (6-25) x B I Vbht q 2=, x

w x D I t Vh I Vbht q 822+= 槽形截面惯性矩为:

2

1223t bh t h I w w += (概算公式) 上翼缘或下翼缘剪力流的合力P (图6-15b )可按式(6-24)取S =0~b 积分,或按图6-15a 该部分剪力流图的面积:

x

B I ht Vb b q P 422== (6-26)

腹板剪力流的合力可按式(6-25)取S =0~h 积分,或按图6-15a 腹板部分剪力流图(抛物线形)的面积;应正好等于竖向剪力V (图6-15b ),现于复核如下:

V I t Vh I t Vbh h q q h q V x

w x B D B =+=-+=122)(3232 上、下翼缘和腹板部分剪力流合力P 、P 、V 的总会力仍是V ,但其作用线位置偏离腹板轴线一个距离a (图6-15b ):

bt

ht b ht bt t b I t h b V Ph a w w x 6112634222+=+=== (6-27) 剪切中心S 的纵坐标位置可同样按水平弯曲时剪力流的合力点位置来确定;但利用槽形截面的对称关系可知剪切中心S 必在对称轴上(图6-15C )。

梁的横向荷载通过S 点时,梁只受弯曲而无扭转;当不通过S 点时,梁除弯曲外还承受

扭矩Fe(图 6-15C)。

关于剪切中心 S位置的一些简单规律如下:(a)有对称轴的截面,S在对称轴上;(b)双轴对称截面和点对称截面(如Z形截面),S与截面形。肝重合;(c)由矩形薄板相交于一点组成的截面,S在交点处(图6-16),这是由于该种截面受弯时的全部剪力流都通过此交点,故总合力也必通过此交点。

一些常用开口薄壁截面的剪切中心位置见表6-2,

各类梁的弯矩剪力计算汇总表

表1 简单载荷下基本梁的剪力图与弯矩图

表2 各种载荷下剪力图与弯矩图的特征 表3 各种约束类型对应的边界条件 注:力边界条件即剪力图、弯矩图在该约束处的特征。

常用截面几何与力学特征表 表2-5 注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4 )。基本计算公式如下:??= A dA y I 2 2.W 称为截面抵抗矩(mm 3 ),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:max y I W = 3.i 称截面回转半径(mm ),其基本计算公式如下:A I i = 4.上列各式中,A 为截面面积(mm 2 ),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。 5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。

2.单跨梁的内力及变形表(表2-6~表2-10) (1)简支梁的反力、剪力、弯矩、挠度 表2-6 (2)悬臂梁的反力、剪力、弯矩和挠度 表2-7 (3)一端简支另一端固定梁的反力、剪力、弯矩和挠度 表2-8 (4)两端固定梁的反力、剪力、弯矩和挠度 表2-9 (5)外伸梁的反力、剪力、弯矩和挠度 表2-10 3.等截面连续梁的内力及变形表 (1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14) 1)二跨等跨梁的内力和挠度系数 表2-11 注:1.在均布荷载作用下:M =表中系数×ql 2 ;V =表中系数×ql ;EI w 100ql 表中系数4 ?=。 2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ;EI w 100Fl 表中系数3 ?=。 [例1] 已知二跨等跨梁l =5m ,均布荷载q =m ,每跨各有一集中荷载F =,求中间支

剪力墙结构平面设计(整理)

剪力墙结构平面设计(整理) 墙体结构平面设计 1. 墙体施工图设计要求底部加强部位 《建筑抗震设计规范》规定:底部加强部位的高度,应从地下室顶板算起;建筑高度大于24m时,底部加强部位的高度可取底部两层和建筑总高度的1/10二者的较大值;当结构计算嵌固端位于地下一层的地板或以下时,底部加强部位尚宜向下延伸到计算嵌固端;房屋高度不大于24m时,底部加强部位可取底部一层。《高层建筑混凝土结构技术规程》中的规定与《建筑抗震设计规范》一致。按照规范条文说明及SATWE使用说明的精神,对于有地下室的建筑,剪力墙的底部总加强范围应按计算所得的加强部位高度在往下延伸一层。剪力墙厚度 《建筑抗震设计规范》,底部加强部位的墙厚,二级不应小于200mm且不宜小于层高或无支长度的1/16,无端柱或翼墙时,二级不宜小于层高或无支长度的1/12;非底部加强部位,抗震墙厚度二级不应小于160mm且不宜小于层高或无支长度的1/20;无端柱或翼墙时,厚度不宜小于层高或无支长度的1/16。 《高层建筑混凝土结构技术规程》,底部加强部位的墙厚,二级不应小于200mm,其它部位不应小于160mm;一字

形独立剪力墙底部加强部位不应小于220mm,其它部位不应小于180mm。高层剪力墙结构墙厚的确定应按《高层建筑混凝土结构技术规程》 附录D进行墙体稳定验算;尚应满足剪力墙受剪截面限制条件、剪力墙正截面受压承载力要求以及剪力墙轴压比限值要求。 依据《建筑抗震设计规范》、《高层建筑混凝土结构技术规程》要求,剪力墙常用厚度见表汇总表: 墙体部位住宅 250~350 200~250 200~250 200~250 180、200~250 180、200 220~250 外墙内墙外墙内墙外墙内墙加强区地下室加强区部位加强区以上各层角窗边墙非加强区表墙体厚度汇总表200 角窗设置限制 建筑物角部是结构的关键性部位,抗震设计时,8度及8度以上设防区的高层建筑不宜在角部剪力墙上开设转角窗;必须设置时,应采取相应的技术措施:宜提高角窗两侧墙肢的抗震等级,并按提高后的抗震等级满足轴压比限值的要求;角窗两侧的墙肢应沿全高设置约束边缘构件;抗震计算时应考虑扭转耦联影响;转角窗房间的楼板宜适当加厚、配筋适当加强;加强角窗窗台连梁的配件与构造;角窗墙肢厚度不宜小于250mm。 必要时,可于转角处板内设置连接两侧墙体的暗梁。

剪力墙结构设计计算要点和实例

剪力墙计算 第5章剪力墙结构设计 本章主要内容: 5.1概述 结构布置 剪力墙的分类 剪力墙的分析方法 5.2整体剪力墙和整体小开口剪力墙的计算 整体剪力墙的计算 整体小开口剪力墙的计算 5.3联肢剪力墙的计算 双肢剪力墙的计算 多肢墙的计算 5.4壁式框架的计算 计算简图 内力计算 位移的计算 5.5剪力墙结构的分类 按整体参数分类 按剪力墙墙肢惯性矩的比值 剪力墙类别的判定 5.6剪力墙截面的设计 墙肢正截面抗弯承载力 墙肢斜截面抗剪承载力 施工缝的抗滑移验算 5.7剪力墙轴压比限制及边缘构建配筋要求 5.8短肢剪力墙的设计要求 5.9剪力墙设计构造要求 5.10连梁截面设计及配筋构造 连梁的配筋计算 连梁的配筋构造 5.1概述 一、概述 1、利用建筑物的墙体作为竖向承重和抵抗侧力的结构,称为剪力墙结构体系。墙体同时也作为维护及房间分隔构件。 2、剪力墙的间距受楼板构件跨度的限制,一般为3~8m。因而剪力墙结构适用于要求小房间的住宅、旅馆等建筑,此时可省去大量砌筑填充墙的工序及材料,如果采用滑升模板及大模板等先进的施工方法,施工速度很快。 3、剪力墙沿竖向应贯通建筑物全高,墙厚在高度方向可以逐步减少,但要注意

避免突然减少很多。剪力墙厚度不应小于楼层高度的1/25及160mm。 4、现浇钢筋混凝土剪力墙结构的整体性好,刚度大,在水平力作用下侧向变形很小。墙体截面面积大,承载力要求也比较容易满足,剪力墙的抗震性能也较好。因此,它适宜于建造高层建筑,在10~50层范围内都适用,目前我国10~30 层的高层公寓式住宅大多采用这种体系。 5、剪力墙结构的缺点和局限性也是很明显的,主要是剪力墙间距太小,平面布置不灵活,不适应于建造公共建筑,结构自重较大。 6、为了减轻自重和充分利用剪力墙的承载力和刚度,剪力墙的间距要尽可能做大些,如做成6m左右。 7、剪力墙上常因开门开窗、穿越管线而需要开有洞口,这时应尽量使洞口上下对齐、布置规则,洞与洞之间、洞到墙边的距离不能太小。 8、因为地震对建筑物的作用方向是任意的,因此,在建筑物的从纵横两个方向都应布置剪力墙,且各榀剪力墙应尽量拉通对直。 9、在竖向,剪力墙应伸至基础,直至地下室底板,避免在竖向出现结构刚度突变。但有时,这一点往往与建筑要求相矛盾。例如在沿街布置的高层建筑中,一般要求在建筑物的底层或底部若干层布置商店,这就要求在建筑物底部取消部分隔墙以形成大空间,这时也可将部分剪力墙落地、部分剪力墙在底部改为框架,即成为框支剪力墙结构,也称为底部大空间剪力墙结构。 10、当把墙的底层做成框架柱时,称为框支剪力墙,底层柱的刚度小,形成上下刚度突变,在地震作用下底层柱会产生很大的内力和塑性变形,致使结构破坏。因此,在地震区不允许单独采用这种框支剪力墙结构。 11、剪力墙的开洞:在剪力墙上往往需要开门窗或设备所需的孔洞,当洞口沿竖向成列布置时,根据洞口的分布和大小的不同,在结构上就有实体剪力墙、整体小开口剪力墙、联肢剪力墙、壁式框架等。

第11章剪力墙截面设计与构造

第11章 剪力墙截面设计与构造 1.剪力墙与钢筋混凝土压弯构件相比有何特点?在剪力墙内,各种钢筋的作用如何?需要进行哪些计算与验算? 答:墙体承受轴力,弯矩和剪力的共同作用,它应当符合钢筋混凝土压弯构件的基本规律。但与柱子相比,它的截面往往薄而长(受力方向截面高宽比远大于4),沿截面长方向要布置许多分布钢筋,同时,截面剪力大,抗剪问题较为突出。这使剪力墙和柱截面的配筋计算和配筋构造都略有不同。 在剪力墙内,由竖向分布筋和受力纵筋抗弯、水平钢筋抗剪,需要进行正截面抗弯承载能力和斜截面抗剪承载能力计算,必要时,还要进行抗裂度或裂缝宽度的验算。剪力墙必须依赖各层楼板作为支撑,保持平面外稳定。在楼层之间也要保持局部稳定,必要时还应进行平面外的稳定验算。 2.如何判别剪力墙的大、小偏心受压? 答:与偏心受压柱类似,在极限状态下,当剪力墙的相对受压区高度ξ(x /h w0)≤ξb 时,为大偏心受压破坏;ξ>ξb 时为小偏心受压破坏。 3.剪力墙按大偏心受压进行强度计算时,应满足哪两个条件? 答:剪力墙按大偏心受压进行强度计算时,应满足的两个条件: (1)必须验算是否满足ξ≤ξb 。若不满足,则应按小偏压计算配筋。 (2)无论在哪种情况下,均应符合'2a x ≥的条件,否则按' 2a x =进行计算。 4.剪力墙大、小偏心受压破坏的特点与假定如何? 答:大偏压破坏时,远离中和轴的受拉、受压钢筋都可以达到流限f y ,压区混凝土达到极限强度α1f c ,但是靠近中和轴处的竖向分布筋不能达到流限。按照平截面假定,未达流限的范围可以由计算确定。但为了简化计算,在剪力墙正截面计算时,假定只在1.5x 范围(x 为受压区高度)以外的受拉竖向分布筋达到流限并参加受力。在1.5x 范围内的钢筋未达流限或受压,均不参与受力计算。 与小偏压柱相同,剪力墙截面小偏压破坏时,截面上大部分受压或全部受压。在压应力较大的一侧,混凝土达到极限抗压强度而丧失承载能力,端部钢筋及分布钢筋均达到抗压屈服强度,但计算中不考虑分布压筋的作用。在受拉区分布钢筋应力较小,因而受拉区分布钢筋的作用也不考虑。这样,剪力墙截面极限状态的应力分布与小偏压柱完全相同,配筋计算方法也完全相同。 5.如何判别剪力墙的大、小偏心受拉?它们各有何受力特点?设计思路如何? 答:剪力墙在弯矩M 和轴向拉力N 作用下,当拉力较大,使偏心矩a h N M e -<=2//0时,全截面受拉,属于小偏心受拉情况。当偏心矩a h N M e ->=2//0,即为大偏心受拉。 在小偏心受拉情况下,整个截面处在拉应力状态下,混凝土由于抗拉性能很差将开裂贯通整个截面,所有拉力分别由墙肢腹部竖向分布钢筋和端部钢筋承担。因此,剪力墙一般不可能也不允许发生小偏心受拉破坏。 在大偏心受拉情况下,截面上大部分受拉,仍有小部分受压。与大偏压一样,假定1.5x 范围以外的受拉分布钢筋都参加工作并达到屈服,同时忽略受压竖向分布钢筋的作用。 6.剪力墙斜截面受剪破坏主要有哪三种破坏形态?在剪力墙设计中,分别如何处理?

梁弯矩图梁内力图(剪力图与弯矩图)

简单载荷 梁内力图(剪力图与弯矩图) 梁的简图 剪力Fs 图 弯矩M 图 1 l a F s F F l a F l a l -+ - F l a l a ) (-+ M 2 l e M s F l M e + M e M + 3 l a e M s F l M e + M e M l a l -e M l a + - 4 l q s F + -2 ql 2 ql M 8 2ql + 2 l 5 l q a s F + -l a l qa 2) 2(-l qa 22 M 2 228)2(l a l qa -+ l a l qa 2) (2 -l a l a 2)2(- 6 l q s F + -3 0l q 6 0l q M 3 92 0l q + 3 )33(l - 7 a F l s F F + Fa -M

8 a l e M s F + e M M 9 l q s F ql + M 2 2ql - 10 l q s F 2 l q + M 6 20l q - 注:外伸梁 = 悬臂梁 + 端部作用集中力偶的简支梁 表2 各种载荷下剪力图与弯矩图的特征 某一段梁上的外力情况 剪力图的特征 弯矩图的特征 无载荷 水平直线 斜直线 或 集中力 F 突变 F 转折 或 或 集中力偶 e M 无变化 突变 e M 均布载荷 q 斜直线 抛物线 或 零点 极值 表3 各种约束类型对应的边界条件 约束类型 位移边界条件 力边界条件 (约束端无集中载荷) 固定端 0=w ,0=θ — 简支端 0=w 0=M

ANSYS中弯矩、剪力图的绘制

ansys中如何生成命令流方法: GUI是:Utility Menu>File>Write DB Log File 怎么用ansys绘制弯矩,剪力图:GUI: General Postproc-> lot Result->Contour Plot- >Line Element Result 弹出画单元结果的对话框,分别在Labi和Labj依次选取SMIS6和SMIS12(弯矩图)、SMIS1和SMIS7(轴力图)、SMIS2和SMIS8(剪力图) ! 建立单元表 ETABLE,NI,SMISC,1 !单元I点轴力 ETABLE,NJ,SMISC,7 !单元J点轴力 ETABLE,QI,SMISC,2 !单元I点剪力 ETABLE,QJ,SMISC,8 !单元J点剪力 ETABLE,MI,SMISC,6 !单元I点弯矩 ETABLE,MJ,SMISC,12 !单元J点弯矩 ! 更新单元表 ETABLE,REFL ! 画轴力分布图 /TITLE,Axial force diagram PLLS,NI,NJ,1.0,0 /image,save,'Axial_force_%T%',jpg ! 画剪力分布图 /TITLE,Shearing force diagram PLLS,QI,QJ,1.0,0 /image,save,'Shearing_force_%T%',jpg ! 画弯矩分布图 /TITLE,Bending moment diagram PLLS,MI,MJ,-0.8,0 /image,save,'Bending_moment_%T%',jpg ANSYS中弯矩、剪力图的绘制 GUI: General Postproc-plot Result-Contour Plot-Line Element Result 弹出画单元结果的对话框,分别在Labi和Labj依次选取SMIS6和SMIS12(弯矩图)、SMIS1和SMIS7(轴力图)、SMIS2和SMIS8(剪力图)

剪力墙结构设计要点.

剪力墙结构设计要点 整体规定◆ A级高度乙类、丙类高层建筑的剪力墙结构最大适用高度: 全部落地剪力墙——非抗震、6度、7度、8度、9度抗震时,分别为150、140、120、100、60m 部分框支剪力墙——非抗震、6度、7度、8度抗震时,分别为130、120、100、80m,9度抗震时不宜采用 A级高度甲类高层建筑的剪力墙结构最大适用高度: 6度、7度、8度抗震时,将本地区设防烈度提高一级后,按乙类、丙类建筑采用 9度抗震时,应专门研究 (说明:房屋高度指室外地面至主要屋面高度,不包括局部突出屋面的电梯机房、水箱、构架等高度) ◆ B级高度乙类、丙类高层建筑的剪力墙结构最大适用高度: 全部落地剪力墙——非抗震、6度、7度、8度抗震时,分别为180、170、150、130m 部分框支剪力墙——非抗震、6度、7度、8度抗震时,分别为150、140、120、100m B级高度甲类高层建筑的剪力墙结构最大适用高度: 6度、7度抗震时,按本地区设防烈度提高一级后,按乙类、丙类建筑采用 8度抗震时,应专门研究 ◆ 结构的最大高宽比: A级高度——非抗震、6度、7度、8度、9度抗震时,分别为6、6、6、5、4 B级高度——非抗震、6度、7度、8度抗震时,分别为8、7、 7、6 ◆ 质量与刚度分布明显不对称、不均匀的结构,应计算双向水平地震作用下的扭转影响; 其他情况,应计算单向水平地震作用的扭转影响 ◆ 考虑非承重墙的刚度影响,结构自振周期折减系数取值0.9~ 1.0 ◆ 平面规则检查,需满足: 扭转: A级高度—— B级高度、混合结构高层、复杂高层—— 楼板:有效楼板宽≥ 该层楼板典型宽度的50% 开洞面积≤ 该层楼面面积的30% 无较大的楼层错层 凹凸:平面凹进的一侧尺寸≤ 相应投影方向总尺寸的30% ◆ 竖向规则检查,需满足: 侧向刚度: 除顶层外,局部收进的水平向尺寸≤ 相邻下一层的25% 楼层承载力:A级高度——抗侧力结构的层间受剪承载力(宜)

ansys查轴力弯矩新版

查轴力:首先定义单元表 grneral postproc>element table >define table add 左侧选by sequence num,右侧选择smisc, 在下面输入smisc,1 然后在plot results>contour plot》line elem res 查看 弯矩 1.绘制弯矩图 建立弯矩单元表。例如梁单元 i节点单元表名称为imom,j节点单元表名称为jmom, ETABLE,NI,SMISC,1 !单元I点轴力 ETABLE,NJ,SMISC,7 !单元J点轴力 ETABLE,QI,SMISC,2 !单元I点剪力 ETABLE,QJ,SMISC,8 !单元J点剪力 ETABLE,MI,SMISC,6 !单元I点弯矩 ETABLE,MJ,SMISC,12 !单元J点弯矩 plls,MI,MJ 2.标注弯矩图 PLOTCTRLS>>NUMBERING>>SVAL ON即可在画出弯矩图的同时在图上标出弯矩值的大小 3.调整弯矩图 如果弯矩图方向错误,则绘制弯矩图命令为 plls,imom,jmom,-1 同一个节点处两边的单元力有细微差别, 导致力数字标注出现重影。观察上面整体轴力图也可以发现, 一段一段的,好像马赛克,其实上面整体弯矩图也是,不过不是 很明显罢了。这是EULER-BEONOULI梁理论以及ANSYS输出定义造成 的(详细原因就不展开了,看看梁理论的书和ANSYS的说明吧)。 为了修正重影和节点两边力值不一样的问题,遍制了宏文件ITFAVG.MAC 命令文件容如下: !--------------------------------------------------------------------- !宏:ITFAVG.MAC(INTERNAL FORCE AVERAGE MACRO) !获取线性单元力,并对单元边界处的力进行平衡 !输入信息 !力类型:MFORX,MFORY,MFORZ,MMOMX,MMOMY,MMOMZ *ASK,ITFTYPE,'PLEASE INPUT THE TYPE OF INTERNAL FORCE','MMOMY' !需处理的单元包 *ASK,EASSEMBLY,'PLEASE INPUT THE COMPONENT NAME OF ELEMENTS TO BE PROCESSED!', 'EOUTER' !需处理的节点包

ANSYS中弯矩剪力图的绘制

ansys中如何生成命令流方法: 令狐采学 GUI是:Utility Menu>File>Write DB Log File 怎么用ansys绘制弯矩,剪力图:GUI:General Postproc- > lot Result->Contour Plot->Line Element Result弹出画单元结果的对话框,分别在Labi和Labj依次选取SMIS6和SMIS12(弯矩图)、SMIS1和SMIS7(轴力图)、SMIS2和SMIS8(剪力图) ! 建立单元表 ETABLE,NI,SMISC,1 !单元I点轴力 ETABLE,NJ,SMISC,7 !单元J点轴力 ETABLE,QI,SMISC,2 !单元I点剪力 ETABLE,QJ,SMISC,8 !单元J点剪力 ETABLE,MI,SMISC,6 !单元I点弯矩 ETABLE,MJ,SMISC,12 !单元J点弯矩 ! 更新单元表 ETABLE,REFL ! 画轴力分布图 /TITLE,Axial force diagram PLLS,NI,NJ,1.0,0 /image,save,'Axial_force_%T%',jpg

! 画剪力分布图 /TITLE,Shearing force diagram PLLS,QI,QJ,1.0,0 /image,save,'Shearing_force_%T%',jpg ! 画弯矩分布图 /TITLE,Bending moment diagram PLLS,MI,MJ,-0.8,0 /image,save,'Bending_moment_%T%',jpg ANSYS中弯矩、剪力图的绘制 GUI: General Postproc-plot Result-Contour Plot-Line Element Result弹出画单元结果的对话框,分别在Labi和Labj依次选取SMIS6和SMIS12(弯矩图)、SMIS1和SMIS7(轴力图)、SMIS2和SMIS8(剪力图) ! 建立单元表 ETABLE,NI,SMISC,1 !单元I点轴力 ETABLE,NJ,SMISC,7 !单元J点轴力 ETABLE,QI,SMISC,2 !单元I点剪力 ETABLE,QJ,SMISC,8 !单元J点剪力

弯矩剪力支反力计算例题

第三章静定梁与静定刚架 目的要求:熟练掌握静定梁和静定刚架的内力计算和内力图的绘制方法,熟练掌握绘制弯矩图的叠加法及内力图的形状特征,掌握绘制弯矩图的技巧。掌握多跨静定梁的几何组成特点和受力特点。能恰当选取隔离体和平衡方程计算静定结构的内力。 重点:截面法、微分关系的应用、简支梁叠加法。 难点:简支梁叠加法,绘制弯矩图的技巧 §3-1 单跨静定梁 1.反力 常见的单跨静定梁有简支梁、伸臂梁和悬臂梁三种,如图3-1(a)、(b)、(c)所示,其支座反力都只有三个,可取全梁为隔离体,由三个平衡条件求出。 图3-1 2.内力 截面法是将结构沿所求内力的截面截开,取截面任一侧的部分为隔离体,由平衡条件计算截面内力的一种基本方法。 (1)内力正负号规定 轴力以拉力为正;剪力以绕隔离体有顺时 针转动趋势者为正;弯矩以使梁的下侧纤维受 拉者为正,如图3-2(b)所示。 (2)梁的内力与截面一侧外力的关系图3-2 1) 轴力的数值等于截面一侧的所有外力(包括荷载和反力)沿截面法线方向的投影代数和。 2) 剪力的数值等于截面一侧所有外力沿截面方向的投影代数和。 3) 弯矩的数值等于截面一侧所有外力对截面形心的力矩代数和。 3.利用微分关系作内力图 表示结构上各截面内力数值的图形称为内力图。内力图常用平行于杆轴线的坐标表示截面位置(此坐标轴常称为基线),而用垂直于杆轴线的坐标(亦称竖标)表示内力的数值而绘出的。弯矩图要画在杆件的受拉侧,不标注正负号;剪力图和轴力图将正值的竖标绘在基线的上方,同时要标注正负号。绘内力图的基本方法是先写出内力方程,即以变量x表示任意截面的位置并由截面法写出所求内力与x之间的函数关系式,然后由方程作图。但通常采用的是利用微分关系来作内力图的方法。 (1)荷载与内力之间的微分关系

梁的剪力方程和弯矩方程常用弯矩图

5-7.试列出下列梁的剪力方程和弯矩方程,并画出剪力图和弯矩图。 1、 解:首先求出支座反力。考虑梁的整体平衡 由 0,0=+?=∑e RA B M l F M 得 l M F e RA - = 由 0,0=-?=∑e RB A M l F M 得 l M F e RB = 则距左端为x 的任一横截面上的剪力和 剪力图 弯矩表达式为: ()l M F x F e RA S -== ()x l M x F x M e RA ?- =?= 剪力方程为常数,表明剪图应是一条平行梁轴线的直线;弯矩方程是x 的一次函数,表明弯矩图是一条斜直线。(如图) 解:首先求出支座反力。考虑梁的平衡 由 04 5 2,0=??-?=∑l l q l F M RB c 得 ql F RB 8 5= 由 021 ,02=+?=∑ql l F M RC B 得 ql F RC 2 1 -= 则相应的剪力方程和弯矩方程为: AB 段:(2 01l x ≤≤) ()()21 11 12 1qx x M qx x F S -=-= BC 段:(2 322l x l ≤ ≤)l F RB 剪力图 弯矩图

()()? ?? ??-?+??? ??-??-==-= 285428 21852222l x ql l x l q x M ql ql ql x F S AB 段剪力方程为x 1的一次函数,弯矩方程为x 1的二次函数,因此AB 段的剪力图 为斜直线,弯矩图为二次抛物线;BC 段剪力方程为常数,弯矩方程为x 2的一次函数,所以BC 段剪力图为平行梁轴线的水平线段,弯矩图为斜直线。(如图) 5-9 用简便方法画下列各梁的剪力图和弯矩图。 解:由梁的平衡求出支座反力: KN F KN F RB RA 12,8== AB 段作用有均布荷载,所以 AB 段的剪力图为下倾直线,弯矩图为下凹二次抛物线;BC 段没有荷载作用,所以BC 段的剪力图为平行梁轴线的水平线段,弯矩图为直线。 在B 支座处,剪力图有突变,突变值大小等于集中力(支座反力F RB )的大小;弯矩图有转折,转折方向与集中力方向一致。(如图) (5) 解:由梁的平衡求出支座反力: KN F KN F RB RA 5.6,5.3== AB 与BC 段没有外载作用,所以AB 、BC 段的剪力图为平行梁轴线的水平线段,弯矩图为直线;CD 段作用均布荷载,所以CD 段的剪力图为下倾直线,弯矩图为下凹二次抛物线。

剪力墙截面设计步骤_secret

【例题】已知剪力墙b=180mm ,h=4020mm ,采用混凝土强度等级为C25,211.9/c f N mm =。配有竖向分布钢筋2φ8@250mm ,2210/yv f N mm =。墙肢两端200mm 范围内配置纵向钢筋,采用HRB335级钢筋,2300/,0.55y b f kN mm ξ==。作用在墙肢计算截面上的内力设计值为M=1600kN ·m ,N=4370kN (压)。试确定墙肢内的纵向钢筋截面面积',s s A A 。 【解】(1)确定计算数据。 已知纵向钢筋集中配在两端的200mm 范围内,故合力中心点到边缘的距离'100s s a a mm ==,则 040201003920s h h a mm =-=-= 沿截面腹部均匀配置竖向分布钢筋区段的长度为: '0392********sw s h h a mm =-=-= 038200.9743920 sw h h ω=== 竖向钢筋的排数40202200115.48250 n -?=+=取16排,则: 221650.31610sw A mm =??= 竖向分布钢筋的配筋率min 16100.002340.0023820180 ρρ= =>=? 满足构造要求。 (2)求偏心距。 6 003 1600103660.31176437010M e mm h mm N ?===<=? 402013430 a e mm == 0366134500i a e e e mm =+=+=,取1η= 500i e mm η= /25004020/21002410i s e e h a mm η=+-=+-= (3)判断大小偏心受压。 采用对称配筋:

剪力墙的设计方法(2016)

剪力墙的设计方法 一、剪力墙布置及尺寸确定的基本原则 1、结构布置时剪力墙的经济长度 “短肢剪力墙结构”是指“截面高度不大于1600mm,且截面厚度小于300的剪力墙”,具有较多短肢剪力墙的剪力墙结构是指,“在规定水平地震作用下,短肢剪力墙承担的底部倾覆力矩不小于结构底部总地震倾覆力矩的30%的剪力墙结构”(省《高规》)。 当结构体系属短肢剪力墙结构时,按省《高规》第7.1.8条规定,结构的最大适用高度有所降低,7度的剪力墙结构限高100米,同时短肢剪力墙在底部所占倾覆力矩的比例不得大于50%。采用短肢剪力墙时,需相应采取加强措施,对实际设计影响较大的有“一、二、三级短肢剪力墙轴压比,在底部加强部位分别不宜大于0.45、0.50、0.55,一字形截面短肢剪力墙的轴压比限值相应减少0.05;在底部加强部位以上的其他部位不宜大于上述规定值加0.05”、“…其他各层(非底部加强部位)一、二、三级短肢剪力墙的剪力设计值应分别乘以增大系数1.4、1.2和1.1”、“截面高厚比不大于6时,墙全部竖向钢筋配筋率,一、二级和三、四级,底部加强和非底部加强部位分别不宜小于1.2%、1.0%和1.0%、0.8%;截面高厚比大于6时,仍设边缘构件,配筋率分别不宜小于1.6%、1.4%和1.4%、1.2%”等。经与长度为1650mm厚度为200mm的经济长度剪力墙作经济比较,结论为:从考虑混凝土、模板与钢筋的综合造价来看,长度缩短了的短肢剪力墙总是更经济或造价基本相当;仅从钢筋含量的角度来看,则抗震等级分别为一、二或三、四级时,当短肢剪力墙分别不大于1400mm、1200mm、1000mm时,含钢量更低,可称为短肢剪力墙的经济界限长度。故实际设计时,为节省造价,可适当采用短肢剪力墙,一般情况下控制不达到属于较多短肢剪力墙的程度,且其长度小于经济界限长度,在满足高厚比不小于4仍属剪力墙的前提下,厚度相同时长度越短越经济。 根据省《高规》,通常上部标准层剪力墙厚度在200-250mm之间,长度可取1650mm以上则属一般剪力墙;下部楼层层高较大时,可将墙厚取至300mm及

剪力和弯矩

根据作用在梁上的已知载荷,求出静定梁的支座反力以后,梁横截面上的内力可利用前面讲过的“截面法”来求解,如图7-8a所示简支梁在外力作用下处于平衡状态,现在讨论距支座距离为的截面上的内力... 步骤/方法 1.剪力和弯矩 根据作用在梁上的已知载荷,求出静定梁的支座反力以后,梁横截面上的内力可利用前面讲过的“截面法”来求解,如图7-8a所示简支梁在外力作用下处于平衡状态,现在讨论距支座距离为的截面上的内力。 图7-8 简支梁指定截面的剪力、弯矩计算 根据截面法计算内力的基本步骤“切、代、平”,计算梁的内力的步骤为: ①、首先根据静力平衡方程求支座反力和,为推导计算的一般过程, 暂且用和代替。

②、用截面假想沿处把梁切开为左、右两段,如图7-8b、7-8c所示, 取左段梁为脱离体,因梁原来处于平衡状态,所以被截取的左段梁也同样保持平衡状态。从图7-8b中可看到,左段梁上有一向上的支座反力、向下的已知力作用,要使左段梁不发生竖向移动,则在截面上必定存在一个竖直方向的内力与之平衡;同时,、对截面形心点有一个力矩,会引起左段梁转动,为了使其不发生转动,在截面上必须有一个力偶矩与之平衡,才能保持左段梁的平衡。和即为梁横截面上的内力,其中内力使横截面有被剪开的趋势,称为剪力;力偶矩将使梁发生弯曲变形,称为弯矩。 由于外载荷的作用线垂直于梁的轴线,所以轴力为零,通常不予考虑。 剪力和弯矩的大小可由左段梁的静力平衡方程来求解。 2.剪力与弯矩的正负号规定 从上面的分析可知,用截面法将梁切开分成两段,同一截面上的内力,取左段梁为脱离体和取右段梁为脱离体所得结果虽然数值相等,但方向却是相反的,为此根据剪力和弯矩引起梁的变形情况来规定它们的正负号。

剪力墙设计的若干问题

剪力墙设计的若干问题 (节选.转载) 【摘要】 给大家推荐一个用于结构设计的好资料。该资料特别适合刚从事结构设计的人员。 【关键词】 基本原则、边缘构件、构造配筋 一、剪力墙布置及尺寸确定的基本原则 1、结构布置时宜尽量避免短肢剪力墙结构 避免剪力墙结构成为短肢剪力墙结构体系的做法为:保证一般剪力墙(截面高度与厚度之比不小于8的非短肢剪力墙)的面积数超过剪力墙总面积的50%,具体操作如下: 1.1分别使X向和Y向的一般剪力墙面积均超过相应方向剪力墙总面积的50%; 1.23某方向的剪力墙,当截面高度与厚度之比大于8时,按一般剪力墙计算;当长度与厚度之比在5~8之间,或为小于5的独立墙肢,或为小于5的非独立墙肢且与之相连的垂直方向剪力墙截面高宽比也小于5时,按短肢剪力墙计算;当非独立墙肢截面高度与厚度之比小于5且与之相连的垂直方向剪力墙截面高度与厚度之比不小于5时,可将该墙肢看作是属于与之相连的垂直方向剪力墙的翼缘,不按剪力墙计算面积。但应注意,当剪力墙满足规定,即“厚度不小于层高的1/15,且不小于300mm,高度与厚度之比大于4时”,仍属一般剪力墙。 2、控制合理的剪力墙折算厚度 某楼层的剪力墙折算厚度我们这里定义为:该楼层的剪力墙混凝土体积与楼层的结构面积之比,这是反映剪力墙结构体系经济性的一个重要指标。当剪力墙折算厚度在一个合适的范围时,只要我们将剪力墙的配筋率在满足规范及受力要求的前提下控制在一个合理的数值,那么我们就可以基本保证该剪力墙结构造价是经济的。根据我司以往设计的若干剪力墙结构工程的统计经验,当建筑为12层左右的小高层时,标准层剪力墙折算厚度控制在90~100mm左右;当为18层左右时,控制在120~130m左右;当为25层左右时,控制在140~150mm左右,则该工程会达到一个较好的经济指标。若剪力墙折算厚度偏大较多,则说明该工程布置的剪力墙数量或面积过多了,计算结果的具体表现为:轴压比普遍较小,层间位移角比规范限制有较大富余(即侧向刚度较大),这时应考虑对剪力墙的布置或截面进行优化,以控制结构成本。 3、合理确定剪力墙的截面高度与厚度 3.1标准层:一般住宅标准层剪力墙的厚度取为200mm则基本可满足稳定性和轴压比的要求,这时,除提高刚度需要或建筑构造需要或减少梁跨需要等情况外,剪力墙截面高度可取1650mm,即可满足成为一般剪力墙,我们可称之为200厚剪力墙的经济长度。 3.2底部层高较大的楼层:由于建筑使用功能的需要,建筑物在底部的地下室、架空层、裙楼等楼层往往具有较大的层高,这时剪力墙因稳定性的要求(构造或稳定验算)需有较大的厚度,对上部标准层长度为1650的一般剪力墙,则会因剪力墙厚度增大而使其在底部楼层变为短肢剪力墙,为使底部层高较大楼层的剪力墙仍能满足不属“短肢剪力墙”的要求,可考虑如下的处理方法:

剪力与弯矩的计算方法

1.剪力和弯矩 根据作用在梁上的已知载荷,求出静定梁的支座反力以后,梁横截面上的内力可利用前面讲过的“截面法”来求解,如图7-8a所示简支梁在外力作用下处于平衡状态,现在讨论距支座距离为的截面上的内力。 图7-8 简支梁指定截面的剪力、弯矩计算 根据截面法计算内力的基本步骤“切、代、平”,计算梁的内力的步骤为: ①、首先根据静力平衡方程求支座反力和,为推导计算的一般过程,暂且用和 代替。 ②、用截面假想沿处把梁切开为左、右两段,如图7-8b、7-8c所示,取左段梁 为脱离体,因梁原来处于平衡状态,所以被截取的左段梁也同样保持平衡状态。从图7-8b中可看到,左段梁上有一向上的支座反力、向下的已知力作用,要使左段梁不发生竖向移动,则在截面上必定存在一个竖直方向的内力与之平衡;同时,、对截面形心点有一个力矩,会引起左段梁转动,为了使其不发生转动,在截面上必须有一个力偶矩与之平衡,才能保持左段梁的平衡。和即为梁横截面上的内力,其中内力使横截面有被剪开的趋势,称为剪力;力偶矩将使梁发生弯曲变形,称为弯矩。 由于外载荷的作用线垂直于梁的轴线,所以轴力为零,通常不予考虑。 剪力和弯矩的大小可由左段梁的静力平衡方程来求解。

2.剪力与弯矩的正负号规定 从上面的分析可知,用截面法将梁切开分成两段,同一截面上的内力,取左段梁为脱离体和取右段梁为脱离体所得结果虽然数值相等,但方向却是相反的,为此根据剪力和弯矩引起梁的变形情况来规定它们的正负号。 图7-9 剪力、弯矩的符号规定 ①、剪力正负号的规定如图7-9a、7-9b所示,在横截面处,从梁中取出一微段,若剪力使微段顺时针方向转动,则该截面上的剪力为正;反之为负。 ②、弯矩正负号的规定如图7-9c、7-9d所示,在横截面处,从梁中取出一微段,若弯矩使微段产生向下凸的变形,即上部受压,下部受拉,则该截面上的弯矩为正;反之为负。

剪力墙结构设计注意要点

剪力墙结构设计要点 整体规定 ◆ A级高度乙类、丙类高层建筑的剪力墙结构最大适用高度: 全部落地剪力墙——非抗震、6度、7度、8度、9度抗震时,分别为150、140、120、100、60m 部分框支剪力墙——非抗震、6度、7度、8度抗震时,分别为130、120、100、80m,9度抗震时不宜采用 A级高度甲类高层建筑的剪力墙结构最大适用高度: 6度、7度、8度抗震时,将本地区设防烈度提高一级后,按乙类、丙类建筑采用 9度抗震时,应专门研究 (说明:房屋高度指室外地面至主要屋面高度,不包括局部突出屋面的电梯机房、水箱、构架等高度) ◆ B级高度乙类、丙类高层建筑的剪力墙结构最大适用高度: 全部落地剪力墙——非抗震、6度、7度、8度抗震时,分别为180、170、150、130m 部分框支剪力墙——非抗震、6度、7度、8度抗震时,分别为150、140、120、100m B级高度甲类高层建筑的剪力墙结构最大适用高度: 6度、7度抗震时,按本地区设防烈度提高一级后,按乙类、丙类建筑采用 8度抗震时,应专门研究 ◆结构的最大高宽比: A级高度——非抗震、6度、7度、8度、9度抗震时,分别为6、6、6、5、4 B级高度——非抗震、6度、7度、8度抗震时,分别为8、7、7、6 ◆质量与刚度分布明显不对称、不均匀的结构,应计算双向水平地震作用下的扭转影响;其他情况,应计算单向水平地震作用的扭转影响

◆考虑非承重墙的刚度影响,结构自振周期折减系数取值0.9~1.0 ◆平面规则检查,需满足: 扭转: A级高度—— B级高度、混合结构高层、复杂高层—— 楼板:有效楼板宽≥该层楼板典型宽度的50% 开洞面积≤该层楼面面积的30% 无较大的楼层错层 凹凸:平面凹进的一侧尺寸≤相应投影方向总尺寸的30% ◆竖向规则检查,需满足: 侧向刚度: 除顶层外,局部收进的水平向尺寸≤相邻下一层的25% 楼层承载力:A级高度——抗侧力结构的层间受剪承载力(宜)≥相邻上一层的80% 薄弱层抗侧力结构的受剪承载力(应)≥相邻上一层的65% B级高度——抗侧力结构的层间受剪承载力(应)≥相邻上一层的75% (说明:楼层层间抗侧力结构受剪承载力指在所考虑的水平地震作用方向,该层全部柱及剪力墙的受剪承载力之和) 竖向连续:竖向抗侧力构件(柱、抗震墙、抗震支撑)的力不得由水平转换构件(梁等)向下传递 ◆水平位移验算: 多遇地震作用下的最大层间位移角≤ 罕遇地震作用下的薄弱层层间弹塑性位移角≤ 1/120 ◆舒适度要求: 高度超过150m的高层建筑,按10年一遇的风荷载取值计算的顺风向与横风向结构顶点的

各类梁的弯矩剪力计算汇总表

表1简单载荷下基本梁的剪力图与弯矩图 注:外伸梁 = 悬臂梁 + 端部作用集中力偶的简支梁 表2 各种载荷下剪力图与弯矩图的特征

注:力边界条件即剪力图、弯矩图在该约束处的特征。

常用截面几何与力学特征表 表2-5 注:1.I 称为截面对主轴(形心轴)的截面惯性矩(mm 4)。基本计算公式如下:??=A dA y I 2 2.W 称为截面抵抗矩(mm 3),它表示截面抵抗弯曲变形能力的大小,基本计算公式如下:max y I W = 3.i 称截面回转半径(mm ),其基本计算公式如下:A I i = 4.上列各式中,A 为截面面积(mm 2),y 为截面边缘到主轴(形心轴)的距离(mm ),I 为对主轴(形心轴)的惯性矩。 5.上列各项几何及力学特征,主要用于验算构件截面的承载力和刚度。

2.单跨梁的内力及变形表(表2-6~表2-10) (1)简支梁的反力、剪力、弯矩、挠度 表2-6 (2)悬臂梁的反力、剪力、弯矩和挠度 表2-7 (3)一端简支另一端固定梁的反力、剪力、弯矩和挠度 表2-8 (4)两端固定梁的反力、剪力、弯矩和挠度 表2-9 (5)外伸梁的反力、剪力、弯矩和挠度 表2-10 3.等截面连续梁的内力及变形表 (1)等跨连续梁的弯矩、剪力及挠度系数表(表2-11~表2-14) 1)二跨等跨梁的内力和挠度系数 表2-11 注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ; EI w 100ql 表中系数4 ? =。 2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ; EI w 100Fl 表中系数3 ? =。 2)三跨等跨梁的内力和挠度系数 表2-12 注:1.在均布荷载作用下:M =表中系数×ql 2;V =表中系数×ql ; EI w 100ql 表中系数4 ? =。 2.在集中荷载作用下:M =表中系数×Fl ;V =表中系数×F ; EI w 100Fl 表中系数3 ? =。 3)四跨等跨连续梁内力和挠度系数 表2-13 注:同三跨等跨连续梁。 4)五跨等跨连续梁内力和挠度系数 表2-14 注:同三跨等跨连续梁。

十字相交悬臂梁弯矩及剪力简化计算

十字相交悬臂梁弯矩及剪力简化计算 在工程设计中,会碰到十字相交悬臂梁,这种结构体系受力性能有别于一般的平面悬臂梁,但也不能将其考虑成两端固支的梁,本文将从结构力学的角度着手,考虑十字相交悬臂梁的变形协调性,分析这类结构在收到集荷载和均布荷载的弯矩与剪力。 Key words:compatibility deformation;intersecting;cantilever beams;shearing force;bending moment 1.前言 实际工程中,存在十字相交悬臂梁结构,如图1,这类结构由于相互垂直的梁的影响,不能将两根梁简单地考虑为平面内悬臂梁,若相交的两段梁中仅有一根梁上有荷载作用,那么另一根梁就可以对这根梁起到一定的支撑作用,如若两段梁的跨度、受力的大小、受力位置、刚度均不相同,该如何进行受力分析。参照结构力学[1],本文将从两段梁受力,变形协调方面来分析此类结构受力。 2.理论计算 为方便计算,本文忽略扭矩的影响。AB:惯性矩I1,长度l1。AC:惯性矩为I2,长度l2。 2.1 受集中荷载作用 AB受集中力F1,距离端部α1l1,AC受集中力F2,距离端部α2l2,假设AB端部相对于AC端部有下降的趋势,故而,此时可认为AB收到AC向上的支撑力P的作用,反之,AC收到AB向上的支撑力P的作用。AB,AC的MP 图和图分别如图2,图3所示。 2.2 受均布荷载作用 AB梁受均布荷载q1,AC梁受均布荷载q2,则AB与AC的MP图和图分别如图4,图5所示 3.结论 考虑十字相交悬臂梁相交点有相同位移,本文应用结构力学的方法,推导出了受集中荷载和均布荷载时梁固端弯矩值和梁上剪力值: (1)受集中荷载作用时,AB梁固端弯矩值如式(6),剪力(7)和(8),AC梁固端弯矩值如式(9),剪力值如式(10)和(11);并计算得到了当I1=I2,l1=l2=l时,B端弯矩值如式(12),C端弯矩如式(13),当集中力作用在梁的交

相关主题