搜档网
当前位置:搜档网 › Screening for EGFR Mutation in Lung Cancer

Screening for EGFR Mutation in Lung Cancer

Screening for EGFR Mutation in Lung Cancer
Screening for EGFR Mutation in Lung Cancer

T h e ne w engl a nd jour na l o f medicine

10.1056/nejm oa 0904554 https://www.sodocs.net/doc/3b17159022.html,

1

Screening for Epidermal Growth Factor Receptor Mutations in Lung Cancer

Rafael Rosell, M.D., Teresa Moran, M.D., Cristina Queralt, B.S., Rut Porta, M.D.,

Felipe Cardenal, M.D., Carlos Camps, M.D., Margarita Majem, M.D., Guillermo Lopez-Vivanco, M.D., Dolores Isla, M.D., Mariano Provencio, M.D., Amelia Insa, M.D., Bartomeu Massuti, M.D., Jose Luis Gonzalez-Larriba, M.D., Luis Paz-Ares, M.D., Isabel Bover, M.D., Rosario Garcia-Campelo, M.D., Miguel Angel Moreno, M.D., Silvia Catot, M.D., Christian Rolfo, M.D., Noemi Reguart, M.D., Ramon Palmero, M.D., José Miguel Sánchez, M.D., Roman Bastus, M.D., Clara Mayo, Ph.D., Jordi Bertran-Alamillo, B.S.,

Miguel Angel Molina, Ph.D., Jose Javier Sanchez, M.D., and Miquel Taron, Ph.D.,

for the Spanish Lung Cancer Group

The authors’ affiliations and the names of additional investigators are listed in the Appendix. Address reprint requests to Dr. Rosell at Catalan Institute of Oncol-ogy, Hospital Germans Trias i Pujol, Ctra Canyet, 08916 Badalona, Spain, or at rrosell@ico.scs.es.

This article (10.1056/NEJMoa0904554) was published on August 19, 2009, at https://www.sodocs.net/doc/3b17159022.html,.

N Engl J Med 2009;361.

Copyright ? 2009 Massachusetts Medical Society.

Abstr act

Background

Activating mutations in the epidermal growth factor receptor gene (EGFR ) confer hy-persensitivity to the tyrosine kinase inhibitors gefitinib and erlotinib in patients with advanced non–small-cell lung cancer. We evaluated the feasibility of large-scale screen-ing for EGFR mutations in such patients and analyzed the association between the mutations and the outcome of erlotinib treatment.

Methods

From April 2005 through November 2008, lung cancers from 2105 patients in 129 in-stitutions in Spain were screened for EGFR mutations. The analysis was performed in a central laboratory. Patients with tumors carrying EGFR mutations were eligible for erlotinib treatment.

Results

EGFR mutations were found in 350 of 2105 patients (16.6%). Mutations were more fre-quent in women (69.7%), in patients who had never smoked (66.6%), and in those with adenocarcinomas (80.9%) (P<0.001 for all comparisons). The mutations were dele-tions in exon 19 (62.2%) and L858R (37.8%). Median progression-free survival and overall survival for 217 patients who received erlotinib were 14 months and 27 months, respectively. The adjusted hazard ratios for the duration of progression-free survival were 2.94 for men (P<0.001); 1.92 for the presence of the L858R muta-tion, as compared with a deletion in exon 19 (P = 0.02); and 1.68 for the presence of the L858R mutation in paired serum DNA, as compared with the absence of the mutation (P = 0.02). The most common adverse events were mild rashes and diar-rhea; grade 3 cutaneous toxic effects were recorded in 16 patients (7.4%) and grade 3 diarrhea in 8 patients (3.7%).

Conclusions

Large-scale screening of patients with lung cancer for EGFR mutations is feasible and can have a role in decisions about treatment.

T h e ne w engl a nd jour na l o f medicine

10.1056/nejm oa 0904554 https://www.sodocs.net/doc/3b17159022.html,

2

M

olecular-profiling studies indi-cate that activating mutations in the epi-dermal growth factor receptor (EGFR ),

PI3K , BRAF, and K-ras genes are generally nonover-lapping and identifiable in approximately 40% of non–small-cell lung cancers. These mutations, plus others that contribute to tumor progression (“driv-er” mutations), can be found in almost half of all non–small-cell lung cancers.1,2

The two proto-oncogenes that are most com-monly mutated in pulmonary adenocarcinomas are K-ras and EGFR . Nearly 90% of lung-cancer–specific EGFR mutations comprise a leucine-to-arginine substitution at position 858 (L858R) and deletion mutants in exon 19 that affect the con-served sequence LREA (delE746-A750).3-7 These mutations cause constitutive activation of the ty-rosine kinase of the EGFR by destabilizing its au-toinhibited conformation, which is normally main-tained in the absence of ligand stimulation.8 The activating mutations confer hypersensitivity to the tyrosine kinase inhibitors gefitinib and erlotinib.3-5 In transgenic mouse models, EGFR mutations in-duced adenocarcinomas that responded to sup-pression of the EGFR driving signal and to EGFR tyrosine kinase inhibitors.9,10 Furthermore, lung-cancer–specific EGFR mutants can transform fi-broblasts and Ba/F3 cells.11,12 A kinetic analysis of these mutations showed that exon 19 deletions are more sensitive to erlotinib inhibition than the L858R mutation,13 a finding that has been con-firmed in retrospective clinical studies.14-16

In retrospective studies, we 17,18 and others 14,19,20 found that EGFR mutations were an independent predictor of response, progression-free survival, and overall survival in patients with non–small-cell lung cancer who were treated with gefitinib; most of the patients in these studies had under-gone previous chemotherapy. Consistent with pre-vious findings,6,7 EGFR mutations were more fre-quent in women, patients with adenocarcinomas, those who had never smoked, and Asians, all of whom also had the best response to gefiti-nib.14,17,19,20 Two small, prospective, multicenter studies customized gefitinib as first-line therapy or after up to two previous chemotherapy regi-mens in patients with non–small-cell lung cancer with EGFR mutations.21,22 Response rates were as high as 75%, and 1-year survival was as high as 79%.21,22 At least five additional prospective, sin-gle-institution studies in Japan have reported simi-lar outcomes.23 However, all these studies had a

relatively short observation period and included small numbers of selected patients. Moreover, most of the studies were carried out in Japan, whereas the incidence of EGFR mutations in Eu-rope has not been defined.

We now report a prospective study of screening for EGFR mutations in patients with advanced non–small-cell lung cancer, conducted by the Spanish Lung Cancer Group. We registered patients from 129 centers from all regions of Spain and used a central laboratory and database. Patients with EGFR mutations were considered for customized erlo-tinib treatment, and we evaluated the association between EGFR mutations and outcome.

Methods

Patients

We prospectively screened 2105 patients with non–small-cell lung cancer for EGFR mutations. Patients with mutations were then considered for erlotinib treatment at a dose of 150 mg daily until disease progression or the advent of intolerable adverse effects. The registration of patients in the database, pathological review, and EGFR mutation assessment were performed centrally at the Catalan Institute of Oncology. Eligibility criteria were the diagnosis of stage IIIB disease with pleural effusion or stage IV non–small-cell lung cancer. The smoking his-tory of the patients was obtained at baseline, and patients were categorized as those who had never smoked (<100 lifetime cigarettes), former smokers (≥1 year since cessation), or current smokers (still smoking, or <1 year since cessation).

All patients provided written informed consent. Approval was obtained from the institutional re-view board and the ethics committee at each hos-pital. Details on inclusion and exclusion criteria and on treatment and evaluation are provided in the Supplementary Appendix, available with the full text of this article at https://www.sodocs.net/doc/3b17159022.html,.

Assessment of EGFR Mutations

A total of 2105 samples of tumor tissue from pa-tients with non–small-cell lung cancer were ana-lyzed: 2060 paraffin-embedded tissues and 45 fresh specimens. All specimens were obtained from the original biopsy, before any treatment. Genomic DNA was derived from tumor tissue after laser capture microdissection (Palm Microlaser Tech-nologies). Baseline blood samples were available from 164 patients. DNA from serum, plasma, or

Screening for EGFR Mutations in Lung Cancer

10.1056/nejm oa 0904554 https://www.sodocs.net/doc/3b17159022.html,

3

both was isolated with the use of the QIAamp DNA Blood Mini Kit (Qiagen), starting from 0.4 ml of material.

For tissue samples, deletions in exon 19 (del 19) were determined by length analysis after poly-merase-chain-reaction (PCR) amplification with the use of a FAM-labeled primer in an ABI Prism 3130 DNA Analyzer (Applied Biosystems). Exon 21 point mutations in codon 858 were detected with a 5′ nuclease PCR assay (TaqMan assay) using FAM and VIC MGB-labeled probes for the wild-type and the mutant sequence, respectively. All mutants were confirmed by DNA sequencing.17,24 For blood samples, both reactions were performed in the presence of a protein nucleic acid (PNA) clamp, designed to inhibit the amplification of the wild-type allele. For L858R in exon 21, a PNA clamp was also added to the 5′ nuclease PCR reaction (TaqMan assay). (For additional details, see the Supplementary Appendix.)

Study Oversight

None of the funding agencies were involved in the study’s design or conduct, data management or analysis, manuscript preparation or review, or the decision to submit the manuscript for publication. The erlotinib that was used in the study was pur-chased from the manufacturer, which had no role in the study.

Statistical Analysis

Approximately 18,800 new cases of lung cancer are diagnosed per year in Spain.25 On the basis of our preliminary study (unpublished data), we ex-pected approximately 15% of these patients to carry EGFR mutations. With an estimated error rate of 5%, we calculated that 2105 patients would need to be enrolled during a 3-year period for a power of 80%. We randomly chose 100 of the 879 public hospitals in Spain to contact with a request for samples for inclusion in the database. However, because of extensive media coverage of this proj-ect, other centers requested permission to send samples for inclusion in the database, and these samples were also included. All centers sent sam-ples from patients who had received a diagnosis of lung cancer in a nonconsecutive manner, and there was no stratification according to sex, per-formance status, smoking history, or previous treatment. A database and a case-record form were designed and sent to all participating hospitals.Progression-free survival was defined as sur-

vival without disease progression or death and was calculated from the start of erlotinib therapy until the first observation of disease progression. Survival was calculated from the start of erlotinib therapy until death or the last follow-up visit. The associations between EGFR status, clinical charac-teristics, and tumor response to erlotinib were analyzed with the use of the chi-square test or Fisher’s exact test. The normality of quantitative variables was analyzed with the use of the Kolm-ogorov–Smirnov test and compared by Student’s t-test analysis of variance or Mann–Whitney and Kruskal–Wallis tests. Confidence intervals were calculated with the use of binomial distribution. Progression-free survival and survival curves were constructed by the Kaplan–Meier method and compared with the use of the log-rank test and the Tarone–Ware test.

In addition to the principal analyses, we per-formed five post hoc analyses of patients’ char-acteristics and response according to sex, smoking history, age, Eastern Cooperative Oncology Group (ECOG) performance status, and treatment. The Bonferroni method was used in multiple com-parisons.

All statistical calculations were performed with the use of SPSS software (version 17.0) and S-Plus (version 6.1). Two-sided P values of less than 0.05 were considered to indicate statistical significance.

R esults

Patients

From April 2005 through November 2008, a total of 2105 patients with non–small-cell lung cancer from 129 institutions were prospectively screened for EGFR mutations. The median time required for such analysis was 7 days (range, 5 to 9) from the time the sample arrived at the laboratory until the results were reported to the investigators. Muta-tions in the EGFR gene were detected in 350 of 2105 patients (16.6%). Mutations were found more fre-quently in women (69.7%), in patients who had never smoked (66.6%), and in those with adeno-carcinomas (80.9%) (P<0.001 for all comparisons) (Table 1). Although no special call for an enriched population was made, the participating centers in-cluded more samples from women and patients who had never smoked, since physicians were aware that EGFR mutations are more frequent in these subgroups. We considered 296 patients with tu-mors carrying EGFR mutations for treatment with

T h e ne w engl a nd jour na l o f medicine

10.1056/nejm oa 0904554 https://www.sodocs.net/doc/3b17159022.html,

4

erlotinib; of these patients, 79 did not receive er-lotinib for a variety of reasons (Fig. 1). Of the 217 patients who received erlotinib, 197 could be eval-uated for a response. EGFR mutations were also assessed in paired serum samples from the 164 patients for whom baseline blood samples were available (Table 2 and Fig. 1).

Table 2 shows characteristics of the 217 pa-tients who received erlotinib. The median age was 67 years; most of the patients were white women who had never smoked and had an adenocarcino-ma, with an ECOG performance status of 1. Of these patients, 113 received erlotinib as first-line therapy, and 104 received the drug as second- or third-line therapy. EGFR del 19 mutations were de-tected in 135 tumors, and the L858R mutation in 82 tumors. Of the 164 patients in whom EGFR mu-tations were assessed in serum, 97 carried muta-tions: del 19 in 64 patients and L858R in 33 pa-tients. (For additional details on patients with an EGFR mutation, see the Supplementary Appendix.)

Response

Of the 197 patients who could be evaluated, 24 had a complete response, and 115 had a partial re-sponse; 38 had stable disease, and 20 had progres-sive disease (Table 2, and Tables 1 through 5 in the Supplementary Appendix). A better response was associated with the del 19 mutation than with the L858R mutation (odds ratio, 3.08; 95% confi-dence interval [CI], 1.63 to 5.81; P = 0.001) and an age between 61 and 70 years (odds ratio, 2.55; 95% CI, 1.32 to 4.96; P = 0.006).

Progression-free and Overall Survival

Median follow-up was 14 months (range, 1 to 42). Median progression-free survival was 14.0 months

(95% CI, 11.3 to 16.7) (Fig. 2A). The duration of

* CI denotes confidence interval.

Screening for EGFR Mutations in Lung Cancer

10.1056/nejm oa 0904554 https://www.sodocs.net/doc/3b17159022.html,

5

response was similar for patients receiving first-line therapy (14.0 months; 95% CI, 9.7 to 18.3) and second-line therapy (13.0 months; 95% CI, 9.7 to 16.3; P = 0.62) (Fig. 2B). Median overall survival was 27.0 months (95% CI, 22.7 to 31.3) (Fig. 2C). Me-dian overall survival for patients receiving first-line therapy was 28.0 months (95% CI, 22.7 to 33), and for those receiving second-line therapy, it was 27.0 months (95% CI, 19.9 to 34.1; P = 0.67) (Fig. 2D).

Median progression-free survival was 16.0 months (95% CI, 12.7 to 19.2) in women and 9.0 months (95% CI, 6.1 to 11.9) in men (P = 0.003). Median overall survival was 29.0 months (95% CI, 24.9 to 33.1) in women and 18.0 months (95% CI, 14.5 to 21.5) in men (P = 0.05) (Fig. 1A and 1B in the Supplementary Appendix). There were no sig-nificant differences in progression-free survival according to performance status, age, first-line therapy versus second-line or third-line therapy, smoking history, or type of mutation (data not shown). (For details regarding differences ob-served in specific subgroups and for differences according to response, see the Supplementary Ap-pendix.)

In a multivariate analysis (including sex, smok-ing status, performance status, first-line therapy vs. second-line or third-line therapy, del 19 vs. L858R, the presence or absence of brain or bone metastases, and the presence or absence of EGFR mutations in serum DNA), there was an associa-tion between poor progression-free survival and male sex (hazard ratio, 2.94; 95% CI, 1.72 to 5.03; P<0.001) and the presence of the L858R mu-

T h e ne w engl a nd jour na l o f medicine

10.1056/nejm oa 0904554 https://www.sodocs.net/doc/3b17159022.html,

6

tation (hazard ratio, 1.92; 95% CI, 1.19 to 3.10; P = 0.02). In the multivariate analysis of overall survival, an ECOG performance status of 1, male sex, the presence of the L858R mutation, and the diagnosis of bronchioloalveolar adenocarcinoma were associated with poor prognosis (Table 3).

Therapy after Disease Progression

A total of 55 patients received additional treatment after the discontinuation of erlotinib: 49% received cisplatin-based chemotherapy; 25.5% received sin-gle-agent chemotherapy; 14.5% received erlotinib plus vorinostat, fulvestrant, or bevacizumab; and 11% received neratinib (HKI-272). The objective re-sponse rate for first-line post-erlotinib treatment was 33%, including one complete and nine partial remissions. For 11 patients receiving a second-line post-erlotinib treatment, the response rate was 40%. Median survival for all 55 patients was 29.0 months (95% CI, 20.2 to 31.4); survival for the 159 patients who did not receive post-erlotinib treatment was 27.0 months (95% CI, 22.4 to 31.6; P = 0.48).

Adverse Events

The most common adverse events were skin rash-es in 151 patients (69.6%) and diarrhea in 95 pa-tients (43.8%); most events were grade 1 or 2 in severity. Grade 3 skin toxic effects were recorded in 16 patients (7.4%) and grade 3 diarrhea in 8 pa-tients (3.7%). One 62-year-old man with del 19 had interstitial lung disease 1 month after the start of erlotinib, resulting in temporary interruption of treatment with the drug; he recovered with corti-costeroid therapy and reinitiated erlotinib therapy at a lower dose. No patient was withdrawn from the study because of adverse events (Table 7 in the Supplementary Appendix).

Discussion

We prospectively examined 2105 patients from Spain with adenocarcinoma of the lung and de-termined that 350 carried EGFR mutations (16.6%). Mutations were more frequent in women who had never smoked and in those with adenocarcinomas. In Europe, the only report of lung-cancer–specific EGFR mutations to date involved two sites in Italy, where EGFR mutations were found in 10% of 375 lung adenocarcinomas but in none of 31 large-cell carcinomas.26 In our study, EGFR mutations were also found in 33 of 287 large-cell carcinomas.

The overall rate of complete or partial response

* ECOG denotes Eastern Cooperative Oncology Group.? Race was self-reported.

? The EGFR mutation was evaluated in the serum of 164 patients.§ The response to erlotinib therapy was evaluated in 197 patients.

Screening for EGFR Mutations in Lung Cancer

10.1056/nejm oa 0904554 https://www.sodocs.net/doc/3b17159022.html,

7

to erlotinib was 70.6%, akin to that reported for gefitinib in retrospective 14,17-20 and prospective 21-23 studies. A higher probability of response was as-sociated with del 19 (odds ratio, 3.08; 95% CI, 1.63 to 5.81; P = 0.001) and an age between 61 and 70 years (odds ratio, 2.55; 95% CI, 1.32 to 4.96; P = 0.006) but not with other factors. Overall, me-dian progression-free survival for the 217 patients treated with erlotinib (as first-, second-, or third-line therapy) was 14 months, and median overall survival was 27 months, which is an improvement over findings in patients with lung cancer that have been reported previously. These results high-light the idea that EGFR -mutant lung cancer is a distinct class of non–small-cell lung cancer; in patients who do not have this mutation, chemo-therapy normally yields a 30% response, a 5-month progression-free survival, and a 12-month median survival.27 Outcomes in our study were not influ-enced by smoking status or previous chemotherapy,

T h e ne w engl a nd jour na l o f medicine

10.1056/nejm oa 0904554 https://www.sodocs.net/doc/3b17159022.html,

8

* ECOG denotes Eastern Cooperative Oncology Group.

Screening for EGFR Mutations in Lung Cancer

10.1056/nejm oa 0904554 https://www.sodocs.net/doc/3b17159022.html,

9

which is in line with the results of a small phase 2 trial of gefitinib.21 (For details on planned ge-netic analyses, see the Supplementary Appendix.)In conclusion, screening for EGFR mutations is warranted in women with lung cancer, in those who have never smoked, and in those with non-squamous tumors. Large-scale screening of pa-tients for EGFR mutations, with subsequent cus-tomization of erlotinib, is feasible and improves the outcome.

Supported by a grant from the Spanish Ministry of Science and Innovation (RD06/0020/0056), by the Fundación Badalona Contra el Cáncer, and by the Bonnie J. Addario Lung Cancer Foundation.

Preliminary data were presented in part at the annual meetings of the American Society of Clinical Oncology in Atlanta, June 2–6, 2006 (abstract 7020); in Chicago, June 1–5, 2007 (abstract 7505); and in Chicago, May 30–June 3, 2008 (abstract 8038).

No potential conflict of interest relevant to this article was reported.

We thank Maria Sanchez-Ronco for her assistance in interpret-ing the statistical analyses; Maria Fernandez for coordinating the study in the Spanish Lung Cancer Group; Esther Carrasco, Mireia Tomas, and Emma Costas for data management; Ana Pradas for laboratory analyses; Maria Perez and Monica Botia for their work

on laser microdissection; and Maria Luz Amador and Juan Lobera for their support throughout the study.

Appendix

The authors’ affiliations are as follows: Catalan Institute of Oncology and Autonomous University of Barcelona, Hospital Germans Trias i Pujol, Barcelona (R.R., T.M., C.Q., M.T.); Pangaea Biotech, USP Institut Universitari Dexeus, Barcelona (R.R., C.M., J.B.-A., M.A. Molina, M.T.); Catalan Institute of Oncology, Hospital Josep Trueta, Girona (R. Porta); Catalan Institute of Oncology, Hospital Duran i Reynals, Bellvitge, Barcelona (F.C., R. Palmero); Hospital General Universitario de Valencia, Valencia (C.C.); Hospital de Sant Pau, Barcelona (M.M.); Hospital de Cruces, Baracaldo, Vizcaya (G.L.-V.); Hospital Lozano Blesa, Zaragoza (D.I.); Clinica Puerta de Hierro, Madrid (M.P.); Hospital Clínico Universitario de Valencia, Valencia (A.I.); Hospital General Universitario de Alicante, Alicante (B.M.); Hospital Clínico San Carlos, Madrid (J.L.G.-L.); Hospital Universitario Virgen del Rocío, Seville (L.P.-A.); Hospital Son Llatzer, Palma de Mallorca (I.B.); Hospital Juan Canalejo, La Coru?a (R.G.-C.); Complejo Hospitalario de Jaén, Jaén (M.A. Moreno); Hospital Althaia, Manresa (S.C.); Clínica Rotger, Palma de Mallorca (C.R.); Hospital Clínic, Barcelona (N.R.); Hospital 12 de Octubre, Madrid (J.M.S.); Hospital Mutua de Terrassa, Barcelona (R.B.); and Autonomous University of Madrid, Madrid (J.J.S.) — all in Spain.

The following investigators participated in the study: M. Cuello, C. Pallares, P. Lianes, J. Remon, R. Ibeas, P. Martinez del Prado, M. Angeles Sala, C. Santander-Lobera, E. Velez de Mendizabal, N. Vi?olas, J. Terrasa, J. Valdivia, P. Diz, U. Jimenez-Berlana, A. Velasco-Ortiz de Taranco, E. Ales Martinez, R. Sanchez-Escribano, A. Carrato, C. Guillen-Ponce, C. Mesia, J. Antonio Macias, M. Lopez-Brea, J. Oramas, I. Barneto, P. Garrido, M.J. Mayol, A. Lopez, A. Artal, A. Saenz, S. Hernando, M. Cobo, R. Blanco, R. Bernabe, V. Guillem, M. Angel Mu-?oz, I. Maestu, A. Salvatierra, R. De Las Pe?as, J. Alfaro, V. Alberola, O. Juan, C. Martin, J. Puertas, E. Felip, J.F. González-González, L. Iglesias-Docampo, F.J. Dorta, M. Martinez-Aguillo, E. Salgado, R. Mesia, E. Lastra-Aras, J.P. Garcia-Mu?oz, R. Lastra, I. Alvarez, J. Roig, J. Oruezabal, A. Poveda, J. Lavernia, D. Gutierrez, E. Filipovich, D. Aguiar, D. Rodriguez, J. Buxo, A.F. Cardona, P. Bes, A. Paredes, A.M. Tortorella, J.A. Moreno, J. Martinez-Garcia, J.L. Alonso, A. Lopez-Martin, M.J. Echarri-Gonzalez, M. Van Kooten, A. Guerrero, M. Domine, I. Diaz, L. Heras, R. Garcia, I. Anton, G. Jarchum, R. E. Bartolucci, M. Lomas, A. Rubiales, J.L. Duque, S. Escriva de Romani, E. Barbeta, J.J. Reina, J. Castro, C. Belda, J.M. Vidal, J.M. Trigo, C. Vadell, J.J. Zarba, P. Esunza, I. Garau, A. Lopez-Pousa, I. De la Gandara, J. Wida-kowich, S. Morales, M. Martinez, R. Luis, M. De la Colina, J. Calzas, I. Garcia-Castro, C. Ruiz, P. Lopez-Criado.References

Rikova K, Guo A, Zeng Q, et al. Glob-1. al survey of phosphotyrosine signaling identifies oncogenic kinases in lung can-cer. Cell 2007;131:1190-203.

Ding L, Getz G, Wheeler DA, et al. 2. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 2008;455: 1069-75.

Lynch TJ, Bell DW, Sordella R, et al. 3. Activating mutations in the epidermal growth factor receptor underlying respon-siveness of non–small-cell lung cancer to gefitinib. N Engl J Med 2004;350:2129-39.Paez JG, J?nne PA, Lee JC, et al. EGFR 4. mutations in lung cancer: correlation with clinical response to gefitinib thera-py. Science 2004;304:1497-500.

Pao W, Miller V, Zakowski M, et al. 5. EGF receptor gene mutations are com-mon in lung cancers from “never smok-ers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A 2004;101:13306-11.Shigematsu H, Lin L, Takahashi T, et 6. al. Clinical and biological features associ-ated with epidermal growth factor recep-

tor gene mutations in lung cancers. J Natl Cancer Inst 2005;97:339-46.

Kosaka T, Yatabe Y, Endoh H, Kuwano 7. H, Takahashi T, Mitsudomi T. Mutations of the epidermal growth factor receptor gene in lung cancer: biological and clini-cal implications. Cancer Res 2004;64: 8919-23.

Yun CH, Boggon TJ, Li Y, et al. Struc-8. tures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell 2007;11: 217-27.

Politi K, Zakowski MF, Fan PD, Schon-9. feld EA, Pao W, Varmus HE. Lung adeno-carcinomas induced in mice by mutant EGF receptors found in human lung can-cers respond to a tyrosine kinase inhibi-tor or to down-regulation of the recep-tors. Genes Dev 2006;20:1496-510.

Ji H, Li D, Chen L, et al. The impact of 10. human EGFR kinase domain mutations on lung tumorigenesis and in vivo sensi-tivity to EGFR-targeted therapies. Cancer Cell 2006;9:485-95.

Greulich H, Chen TH, Feng W, et al.

11. Oncogenic transformation by inhibitor-sensitive and -resistant EGFR mutants. PLoS Med 2005;2(11):e313.

Jiang J, Greulich H, J?nne PA, Sellers 12. WR, Meyerson M, Griffin JD. Epidermal growth factor-independent transformation of Ba/F3 cells with cancer-derived epider-mal growth factor receptor mutants in-duces gefitinib-sensitive cell cycle progres-sion. Cancer Res 2005;65:8968-74.

Carey KD, Garton AJ, Romero MS, et 13. al. Kinetic analysis of epidermal growth factor receptor somatic mutant proteins shows increased sensitivity to the epider-mal growth factor receptor tyrosine kinase inhibitor, erlotinib. Cancer Res 2006;66: 8163-71.

Mitsudomi T, Kosaka T, Endoh H, et 14. al. Mutations of the epidermal growth factor receptor gene predict prolonged survival after gefitinib treatment in pa-tients with non-small-cell lung cancer with postoperative recurrence. J Clin On-col 2005;23:2513-20.

Riely GJ, Pao W, Pham D, et al. Clini-

15.

Screening for EGFR Mutations in Lung Cancer

cal course of patients with non-small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib. Clin Cancer Res 2006;12:839-44.

Jackman DM, Yeap BY, Sequist LV, et 16.

al. Exon 19 deletion mutations of epider-mal growth factor receptor are associated with prolonged survival in non-small cell lung cancer patients treated with gefi-tinib or erlotinib. Clin Cancer Res 2006; 12:3908-14.

Taron M, Ichinose Y, Rosell R, et al.

17.

Activating mutations in the tyrosine ki-nase domain of the epidermal growth fac-tor receptor are associated with improved survival in gefitinib-treated chemorefrac-tory lung adenocarcinomas. Clin Cancer Res 2005;11:5878-85.

Cortes-Funes H, Gomez C, Rosell R, 18.

et al. Epidermal growth factor receptor activating mutations in Spanish gefitinib-treated non-small-cell lung cancer patients. Ann Oncol 2005;16:1081-6.

Han SW, Kim TY, Hwang PG, et al.

19.

Predictive and prognostic impact of epi-dermal growth factor receptor mutation in

non-small-cell lung cancer patients treated

with gefitinib. J Clin Oncol 2005;23:2493-

501.

Takano T, Ohe Y, Sakamoto H, et al.

20.

Epidermal growth factor receptor gene

mutations and increased copy numbers

predict gefitinib sensitivity in patients

with recurrent non-small-cell lung can-

cer. J Clin Oncol 2005;23:6829-37.

Tamura K, Okamoto I, Kashii T, et al.

21.

Multicentre prospective phase II trial of

gefitinib for advanced non-small cell

lung cancer with epidermal growth fac-

tor receptor mutations: results of the

West Japan Thoracic Oncology Group trial

(WJTOG0403). Br J Cancer 2008;98:907-

14.

Sequist LV, Martins RG, Spigel D, et

22.

al. First-line gefitinib in patients with ad-

vanced non-small-cell lung cancer harbor-

ing somatic EGFR mutations. J Clin Oncol

2008;26:2442-9. [Erratum, J Clin Oncol

2008;26:3472.]

Costa DB, Kobayashi S, Tenen DG,

23.

Huberman MS. Pooled analysis of the

prospective trials of gefitinib monothera-

py for EGFR-mutant non-small cell lung

cancers. Lung Cancer 2007;58:95-103.

Molina-Vila MA, Bertran-Alamillo J,

24.

Reguart N, et al. A sensitive method for

detecting EGFR mutations in non-small

cell lung cancer samples with few tumor

cells. J Thorac Oncol 2008;3:1224-35.

López-Abente G, Pollán M, Aragonés

25.

N, et al. Situación del cáncer en Espa?a:

incidencia. An Sist Sanit Navar 2004;27:

165-73.

Marchetti A, Martella C, Felicioni L,

26.

et al. EGFR mutations in non-small-cell

lung cancer: analysis of a large series of

cases and development of a rapid and sen-

sitive method for diagnostic screening

with potential implications on pharmaco-

logic treatment. J Clin Oncol 2005;23:857-

65.

Schiller JH, Harrington D, Belani CP,

27.

et al. Comparison of four chemotherapy

regimens for advanced non–small-cell

lung cancer. N Engl J Med 2002;346:

92-8.

Copyright ? 2009 Massachusetts Medical Society.

10.1056/nejm https://www.sodocs.net/doc/3b17159022.html,

10

抗肿瘤药物的作用机制

抗肿瘤药物的作用机制 1.细胞生物学机制 几乎所有的肿瘤细胞都具有一个共同的特点,即与细胞增殖有关的基因被开启或激活,而与细胞分化有关的基因被关闭或抑制,从而使肿瘤细胞表现为不受机体约束的无限增殖状态。从细胞生物学角度,诱导肿瘤细胞分化,抑制肿瘤细胞增殖或者导致肿瘤细胞死亡的药物均可发挥抗肿瘤作用。 2.生化作用机制 (1)影响核酸生物合成:①阻止叶酸辅酶形成;②阻止嘌呤类核苷酸形成;③阻止嘧啶类核苷酸形成;④阻止核苷酸聚合;(2)破坏DNA结构和功能;(3)抑制转录过程阻止RNA 合成;(4)影响蛋白质合成与功能:影响纺锤丝形成;干扰核蛋白体功能;干扰氨基酸供应;(5)影响体内激素平衡。 烷化剂烷化剂可以进一步分为: 氮芥类:均有活跃的双氯乙基集团,比较重要的有氮芥、苯丁酸氮芥、环磷酰胺(CTX)、异环磷酰胺(IFO)等。其中环磷酰胺为潜伏化药物需要活化才能起作用。目前临床广泛用于治疗淋巴瘤、白血病、多发性骨髓瘤,对乳腺癌、肺癌等也有一定的疗效。 该药除具有骨髓抑制、脱发、消化道反应,还可以引起充血性膀胱炎,病人出现血尿,临床在使用此药时应鼓励病人多饮水,达到水化利尿,减少充血性膀胱炎的发生。还可以配合应用尿路保护剂美斯纳。 亚硝脲类:最早的结构是N-甲基亚硝脲(MNU)。以后,合成了加入氯乙集团的系列化合物,其中临床有效的有ACNU、BCNU、CCNU、甲基CCNU等,链氮霉素均曾进入临床,但目前已不用。其中ACNU、BCNU、CCNU、能通过血脑屏障,临床用于脑瘤及颅内转移瘤的治疗。主要不良反应是消化道反应及迟发性的骨髓抑制,应注意对血象`的观测,及时发现给予处理。 乙烯亚胺类:在研究氮芥作用的过程中,发现氮芥是以乙烯亚胺形式发挥烷化作用的,因此,合成了2,4,6-三乙烯亚胺三嗪化合物(TEM),并证明在临床具有抗肿瘤效应,但目前在临床应用的只有塞替派。此药用于治疗卵巢癌、乳腺癌、膀胱癌,不良反应主要为骨髓抑制,注意对血象定期监测。 甲烷磺酸酯类:为根据交叉键联系之复合成的系列化合物,目前临床常用的只有白消安(马利兰)。临床上主要用于慢性粒细胞白血病,主要不良反应是消化道反应及骨髓抑制,个别病人可引起纤维化为严重的不良反应。遇到这种情况应立即停药,更换其它药物。 其他:具有烷化作用的有达卡巴嗪(DTIC)、甲基苄肼(PCZ)六甲嘧胺(HHN)等。环氧化合物,由于严重不良反应目前已被淘汰。 抗代谢药物抗代谢类药物作用于核酸合成过程中不同的环节,按其作用可分为以下几类药物: 胸苷酸合成酶抑制剂:氟尿嘧啶(5-FU)、呋喃氟尿嘧啶(FT-207)、二喃氟啶(双呋啶FD-1)、优氟泰(UFT)、氟铁龙(5-DFUR)。 抗肿瘤作用主要由于其代谢活化物氟尿嘧啶脱氧核苷酸干扰了脱氧尿嘧啶苷酸向脱氧胸腺嘧啶核苷酸转变,因而影响了DNA的合成,经过四十年的临床应用,成为临床上常用的抗肿瘤药物,成为治疗肺癌、乳腺癌、消化道癌症的基本药物。 不良反应比较迟缓,用药6-7天出现消化道粘膜损伤,例如:口腔溃疡、食欲不振、恶心、呕吐、腹泻等,一周以后引起骨髓抑制。而连续96小时以上粘腺炎则成为其主要毒性反应。临床上如长时间连续点滴此类药物应做好病人的口腔护理,教会病人自己学会口腔清洁的方法,预防严重的粘膜炎发生。

抗癫痫药物的作用机制包括

肾上腺皮质激素 一、糖皮质激素 1、作用机制:脂溶性糖皮质激素透过细胞膜,与胞浆中糖皮质激素受体GR结合,移位进入细胞核,与特异性DNA位点—糖皮质激素反应成分(GRE)或负性糖皮质激素反应成分(nGRE)结合,启动基因转录,增加或减少相关蛋白的表达水平,发挥生理或药理作用。 2、根据半衰期长短,糖皮质激素可分为: 短效型:氢化可的松、可的松; 中效型:泼尼松、泼尼松龙; 长效型:倍他米松、地塞米松。 3、药理作用: 1)对代谢的影响: - 糖代谢:升高血糖(促进糖异生,减少组织对葡糖糖的利用,减慢糖氧化); - 脂质代谢:升高胆固醇,脂肪向心性分布(大剂量长期应用); - 蛋白质代谢:促进分解,负氮平衡;抑制合成(大剂量); - 水和电解质:盐皮质激素样作用,保钠排钾;钙离子排出增加。 2)抗炎作用: 急性抗炎作用: - 增加炎症抑制蛋白或酶,抑制NOS,COX2,增加脂皮素、血管内皮素等抗炎介质的生成,减少前列腺素、白三烯、NO等炎症介质的生成; - 抑制细胞因子的合成:TNFα, IL-1, IL-2, IL-5, IL-6, IL-8; - 抑制黏附因子的合成; - 诱导炎症细胞凋亡。 慢性抗炎作用:抑制成纤维细胞增生和胶原蛋白沉积,抑制瘢痕形成防止粘连 3)免疫抑制和抗过敏作用:诱导T淋巴细胞核B淋巴细胞凋亡和DNA降解,抑制DNA 和蛋白质合成;抑制转录因子NF- B;抑制肥大细胞(抗过敏) 4)允许作用:本身对某些组织细胞无作用,但可给其他激素的发挥作用创造有利条件,如儿茶酚胺的缩血管作用和胰高血糖素升高血糖的作用。 5)抗休克:特别是中毒性休克、过敏性休克等:抑制炎症反应,提高机体对内毒素耐受力,改善微循环,稳定溶酶体膜,兴奋心脏。 6)其他作用:解热作用;刺激骨髓造血;增加中枢神经系统兴奋性;促进消化;骨质疏松;增强应激能力。 4、临床应用 1)自身免疫性疾病、器官移植排斥反应和过敏性反应; 2)严重急性感染或预防炎症后遗症; 3)抗休克治疗:及早、短时、大剂量使用; 4)血液病:儿童急性淋巴细胞性白血病、再障、血小板减少症、过敏性紫癜等; 5)替代疗法:原发性或继发性肾上腺皮质功能减退症; 6)局部应用:皮肤病、封闭、滴鼻; 7)恶性肿瘤:晚期或转移性乳腺癌、前列腺癌。 5、不良反应和注意事项: 1)医源性肾上腺皮质功能亢进; 2)诱发和加重感染; 3)高血压、动脉粥样硬化、脑卒中;

常见药物的药理作用特点与机制

第一重点:药物的药理作用(特点)与机制 1. 毛果芸香碱:M样作用,M受体激动药(用阿托品拮抗)。缩瞳、调节眼内压和调节痉挛。用于青光眼。 2. 新斯的明:胆碱脂酶抑制剂。用于重症肌无力,术后腹气胀及尿潴留,阵发性室上性心动过速,肌松药的解毒。禁用于支气管哮喘,机械性肠梗阻,尿路阻塞。M样作用可用阿托品拮抗。 3. 碘解磷定:胆碱脂酶复活药,有机磷酸酯类中毒的常用解救药。应临时配置,静脉注射。 4. 阿托品:M受体阻滞药。竞争性拮抗Ach或拟胆碱药对M胆碱受体的激动作用。用于解除平滑肌痉挛,抑制腺体分泌,虹膜睫状体炎,眼底检查,验光,抗感染中毒性休克,抗心律失常,解救有机磷酸酯类中毒。禁用于青光眼及前列腺肥大患者禁用。用镇静药和抗惊厥药对抗阿托品的中枢兴奋症状,同时用拟胆碱药毛果芸香碱或毒扁豆碱对抗“阿托品化”。同类药物莨菪碱。合成代用品:扩瞳药:后马托品。解痉药:丙胺太林。抑制胃酸药:哌纶西平。溃疡药:溴化甲基阿托品。 5. 东莨菪碱山莨菪碱作用特点:东莨菪碱中枢镇静及抑制腺体分泌作用强于阿托品。还有防晕止吐作用,可治疗帕金森氏病。山莨菪碱可改善微循环。主要用于各种感染中毒性休克,也用于治疗内脏平滑肌绞痛,急性胰腺炎。 6. 筒箭毒碱:肌松作用,全麻辅助药。呼吸肌麻痹用新斯的明解救。 7. 琥珀胆碱:速效短效肌松药,插管时作为全麻辅助药。禁用于胆碱酯酶缺乏症病人,与氟烷合用体温巨升的遗传病人,青光眼,高血钾患者(持续去极化,释放K过多)如偏瘫、烧伤病人,以免引起心脏意外。使用抗胆碱脂酶药患者禁用。 8. 去甲肾上腺素:α受体激动药。用于休克,上消化道出血。不良反应有局部组织坏死,急性肾功能衰竭,停药后的血压下降。禁用于高血压、动脉粥样硬化,器质性心脏病,无尿病人与孕妇。主要机理为收缩外周血管。 9. 去氧肾上腺素(苯肾上腺素):α1受体激动药,防治脊髓麻醉或全身麻醉的低血压。速效短效扩瞳药。 10. 可乐定:α2受体激动药。用于降血压。中枢性降压药。降压快而强,使用于中度高血压。尚可用于偏头痛以及开角型青光眼的治疗,也用于吗啡类镇痛药成瘾者的戒毒。(见后) 11. 肾上腺素:α、β受体激动药。用于心脏停搏,过敏性休克,支气管哮喘,减少局麻药的吸收,局部止血。不良反应:剂量过大可发生心律失常,脑溢血,心室颤动。禁用于器质性心脏病,高血压,冠状动脉粥样硬化,甲状腺机能亢进及糖尿病。主要机理为兴奋心脏,兴奋血管,舒张支气管平滑肌。 12. 多巴胺:α、β受体激动药。作用特点:主要激动多巴胺受体,也能激动α和β1受体,用于抗休克。可与利尿药合用治疗急性肾功能衰竭。(对肾脏的特色是直接激动肾脏的多巴胺受体,增加肾脏血流量,排钠利尿,注意补充血容量,纠正酸中毒)。可用于抗慢性心功能不全。 13. 间羟胺作用特点:激动α受体,作用弱而持久,用于各种休克早期。 14. 麻黄碱:α、β受体激动药,较肾上腺素弱而持久。特点是有中枢作用。可产生快速耐药性,停药一定时间后可恢复。用于防止低血压,治疗鼻塞,过敏,缓解支气管哮喘。大量长期应用可引起失眠、不安、头痛、心悸。

第二章 第二节 药物作用机制

第二节药物作用机制 一、非特异性药物作用机制 非特异性药物的作用与化学结构无关,而与药物理化性质有关。如:1.渗透压作用硫酸镁的导泻作用,甘露醇的脱水作用 2.脂溶作用全麻药对CNS的麻醉作用 3.影响pH 抗酸药治疗溃疡(弱碱性化合物,中和胃酸)4.络合作用络合剂解除金属、类金属的中毒 5.沉淀蛋白醇、酚、醛、酸可致细菌蛋白变性、沉淀而杀菌 二、特异性药物作用机制 特异性药物的作用与化学结构密切相关。如: 1.干扰或参与代谢过程 影响酶的活性新斯的明抑制胆碱酯酶;碘解磷定复活胆碱酯酶。2.影响生物膜的功能 抗心律失常药影响Na+、Ca2+或K+的转运而发挥作用。 多粘菌素损伤细菌的胞浆膜,使膜通透性增加而产生抗菌作用。3.影响体内活性物质 乙酰水杨酸抑制体内PG的合成而发挥解热、镇痛和抗炎作用。4.影响递质释放或激素分泌 麻黄碱既直接激动Ad受体,又促NE能神经末梢释放递质。 格列齐特可促进胰岛素分泌而使血糖降低。

5.影响受体功能 受体:(receptor) 是存在于细胞膜或细胞内的一种能选择性地与相应配体结合,传递信息并产生特定生理效应的大分子物质(主要为糖蛋白或脂蛋白,也可以是核酸或酶的一部分)。 受点(receptor-site) 受体上与配体立体特异性结合的部位。 配体:(ligand) 内源性配体:神经递质、激素、自体活性物质 外源性配体:药物 D + R ===== DR →??????→E 【受体类型】 根据分布部位 1.细胞膜受体 2.胞浆受体 3.胞核受体 根据受体蛋白结构、信息转导过程、效应性质、受体位置等特点 1.含离子通道的受体 2.G蛋白偶联受体 3.具有酪氨酸激酶活性的受体 4.调节基因表达的受体 【受体命名】 药物受体和受体亚型,目前兼用药理学和分子生物学的命名方法。【受体学说】 (一)占领学说 (二)备用受体学说 (三)速率学说 (四)变构学说 (五)能动受体学说

抗病毒药作用机制及应用范围

抗病毒药作用机制及应用范围 1、核苷类似物抗病毒药 利巴韦林 利巴韦林(病毒唑)是一种合成的核苷类似物,它可抑制多种RNA和DNA病毒。其作用机制尚未完全确定,并且对不同的病毒作用机制相异。利巴韦林-5'-单磷酸酯能阻断肌苷-5'-单磷酸酯向黄嘌呤核苷-5'-单磷酸酯的转化,并干扰鸟嘌呤核苷酸以及RNA和DNA的合成。利巴韦林-5'-单磷酸酯在某些病毒,也抑制病毒特异性信息RNA的加帽(capping)过程。 此药在儿科主要用于治疗住院婴幼儿呼吸道合胞病毒(RSV)肺炎和毛细支气管炎,用雾化吸入法给药。利巴韦林还被用于治疗青少年的副流感病毒和甲型及乙型流感病毒感染。口服利巴韦林治疗流感无效。但静脉或口服利巴韦林减低了拉沙热病人的病死率,特别是在发病6天以内用药时。另外,用静脉内利巴韦林治疗汉坦病毒引起的出血热肾病综合征和阿根廷出血热,有临床益处。而且已有人建议用口服利巴韦林方法预防刚果-克里米亚出血热。用干扰素与利巴韦林联合治疗慢性丙型肝炎病人,疗效显著优于单独用其中的任何一种药的疗效。上述这些病毒都是RNA病毒。香港和加拿大的研究者已将利巴韦林用于治疗SARS病人,并取得一定疗效,但加拿大研究者报告在一定比例病人引起溶血。 用大剂量口服利巴韦林治疗时,可出现对造血系统的毒性,包括溶血性贫血。利巴韦林有致突变性、致畸性和对胚胎的毒性,所以此药对妊娠妇女禁用;在用此药的病区,如医务人员中有妊娠者,有对胚胎发生毒性的危险。 阿糖腺苷 主要被用于治疗疱疹病毒属的病毒和乙肝病毒等DNA病毒的感染;它通过抑制病毒DNA聚合酶发挥抗病毒作用。其三磷酸酯水溶性差,需在大量液体中静滴,其单磷酸酯水溶性强,可作肌注。但其疗效有限、毒性作用相对大。 阿昔洛韦和伐昔洛韦阿昔洛韦(无环鸟苷)对若干疱疹病毒(均为DNA病毒),包括单纯疱疹病毒1和2型(HSV-1和-2)、水痘-带状疱疹病毒(ZV)和EB病毒的复制有强烈的选择性抑制作用,但对人类巨细胞病毒感染的疗效相对差。伐昔洛韦(valacyclovir)是阿昔洛韦的左旋缬氨酸酯,在口服后几乎完全转变为阿昔洛韦。阿昔洛韦的高度选择性与其作用机制相关,它首先被磷酸化为阿昔洛韦单磷酸酯。这种磷酸化在受HSV感染的细胞中,通过病毒基因编码的胸腺嘧啶核苷激酶的作用而高效率地进行。而在未受感染的细胞中阿昔洛韦几乎不发生磷酸化。因此,该药被集中在受HSV感染细胞内。阿昔洛韦单磷酸酯其后受细胞内激酶的作用而变为三磷酸酯,它对病毒DNA聚合酶有很强的抑制作用,但对宿主细胞的DNA聚合酶的作用相对小。阿昔洛韦三磷酸酯也可结合到病毒DNA中,使病毒DNA链过早终止。 更昔洛韦 更昔洛韦(ganciclovir)是阿昔洛韦的类似物,对HSV和VZV感染有效,但对CMV感染显著地比阿昔洛韦更有效。更昔洛韦进入体内后经磷酸化,成为其单磷酸酯、二磷酸酯,最终成为三磷酸酯才能发挥抗病毒作用。更昔洛韦三磷酸酯通过以下两种机制抑制CMVDNA的合成:1)竞争性抑制病毒DNA聚合酶;2)结合到CMVDNA中,最终使其延伸终止。该药被广泛用于其他CMV相关的综合征,包括肺炎、食管胃肠感染、肝炎和“消耗性”疾病。但尚未见用于RNA病毒感染治疗的报告。 泛昔洛韦和Penciclovir泛昔洛韦口服吸收良好,生物利用度为77%,通过去乙酰和氧化作用,被迅速转化为penciclovir。此药的抗病毒谱和作用机制与

第二章 第二节 药物作用机制

第二节药物作用机制 药物的作用机制或原理(mechanism of action;principle of action),指药物在何处起作用及如何起作用。研究药物的作用机制,对提高疗效、防止不良反应及开发新药等都有重要意义。 药物的作用机制可分为药物作用的受体机制和非受体机制。 图2-5 各种药物作用机制的分布示意图 一、药物作用的受体机制 受体:(receptor) 是存在于细胞膜或细胞内的一种能选择性地与相应配体结合,传递信息并产生特定生理效应的大分子物质(主要为糖蛋白或脂蛋白,也可以是核酸或酶的一部分)。 受点(receptor-site) 受体上与配体立体特异性结合的部位。 配体:(ligand) 内源性配体:神经递质、激素、自体活性物质 外源性配体:药物 D + R ===== DR →??????→E 【受体类型】 根据分布部位 1.细胞膜受体 2.胞浆受体

3.胞核受体 根据受体蛋白结构、信息转导过程、效应性质、受体位置等特点 1.含离子通道的受体 2.G蛋白偶联受体 3.具有酪氨酸激酶活性的受体 4.调节基因表达的受体 【受体命名】 药物受体和受体亚型,目前兼用药理学和分子生物学的命名方法。【受体学说】 (一)占领学说 (二)备用受体学说 (三)速率学说 (四)变构学说 (五)能动受体学说 【药物与受体结合作用的特点】 1)高度特异性(specificity) 2)高度敏感性(sensitivity) 这需要包括第二信使在内的信号转导系统的参与。 3)受体占领的饱和性(saturality) 4)可逆性(reversibility) 复合物解离出药物原形。 5)变异性(multiple-variation) 分布、效应、亚型 6)亲和力与内在活性 (1)亲和力(affinity,亲合力) 是指药物与受体结合的能力。 是效价强度的决定因素。 (2)内在活性(intrinsic activity;效应力,efficacy) 是药物本身内在固有的,激动受体产生效应的能力。 是药物最大效应或作用性质的决定因素。

抗菌药物作用机制教案

一、抗菌作用机制 抗菌药物的抗菌作用主要是干扰病原菌的生化代谢过程,从而影响其结构与功能,致使其失去生长繁殖的能力而产生抑制或杀灭病原菌的作用。见图20-1。 图20-1抗菌药物作用机制示意图 (1)抑制细菌细胞壁合成 青霉素类、头孢菌素类、万古霉素等抗生素通过抑制转肽酶的功能,干扰病原菌细胞壁基础成分黏肽的合成,造成新生细菌胞壁缺损。而受菌体的高渗透压影响,水分由外界不断渗入,致使细胞膨胀、变形,在自溶酶的影响下,细胞破裂溶解而死亡。 (2)影响胞浆膜的通透性 多黏菌素、两性霉素B等能选择性地与病原菌胞浆膜中的磷脂或固醇类物质结合,使胞浆膜通透性增加,导致菌体内蛋白质、核酸等重要物质外漏,造成细菌死亡。 (3)抑制细菌细胞蛋白质合成 氨基苷类、四环素类、大环内酯类等均对细菌的核蛋白体具有高度的选择性作用,从而抑制细菌的蛋白质合成,呈现抑菌或杀菌作用,但不影响哺乳动物的核蛋白体的功能和蛋白质的合成。 (4)抑制核酸合成 喹诺酮类、利福平等通过抑制菌体核酸合成,妨碍菌体细胞的正常分裂生长。 (5)抗叶酸代谢 磺胺类、甲氧苄啶(TMP)分别通过选择性抑制叶酸代谢过程中二氢叶酸合成酶和二氢叶酸还原酶,影响四氢叶酸合成,导致核酸合成障碍而抑制细菌的生长、繁殖。 二、耐药性 耐药性又称抗药性,多指病原菌与抗菌药多次接触后,病原菌对抗菌药的敏感性降低甚至消失的现象。一种病原菌仅对一种抗菌药产生耐药性者称为单药耐药;一种病原菌同时对

两种以上抗菌药产生耐药性者称为多重耐药(又称交叉耐药性)。耐药性给临床用药带来困难,对公众健康构成严重威胁。耐药性的产生大致有下列几种方式。 (1)细菌产生灭活酶 灭活酶可分为水解酶和合成酶两类。水解酶如β-内酰胺酶,能使青霉素类和头孢菌素类抗生素的β-内酰胺环水解裂开而失活。但β-内酰胺酶有青霉素型和头孢菌素型,青霉素型主要水解青霉素类抗生素,对头孢菌素类抗生素作用很微弱;头孢菌素型主要水解头孢菌素类抗生素,但对青霉素类抗生素也能水解。 合成酶又称钝化酶,多数对氨基苷类抗生素耐药的革兰阴性杆菌能产生此种酶。该酶将某些基团转移到氨基苷类抗生素分子上,使其抗菌活性丧失。 (2)细菌改变外膜屏障及主动外排机制 细菌通过降低膜通透性而阻止药物进入菌体,如绿脓杆菌对氨苄西林耐药;或者通过增强主动排出系统,把已进入菌体的药物泵出菌体外,如金葡菌对大环内酯类耐药。 (3)细菌改变药物作用靶位 革兰阳性菌对β-内酰胺类抗生素耐药,是菌体内作用靶位青霉素结合蛋白(penicillin bindingproteins,PBPs)与药物亲和力下降,PBPs数量减少,或出现新的低亲和力的PBPs 等,而使药物不能与靶部位结合。 (4)细菌改变代谢途经 细菌通过改变自身代谢途径而改变对营养物质的需要,如对磺胺耐药的细菌,不再利用对氨苯甲酸(PABA)及二氢蝶啶合成自身需要的叶酸,而是直接利用环境中的叶酸;也可能通过产生抗菌药的拮抗物(PABA)而呈现耐药。

西医化疗药物的药理作用机制

西医化疗药物的药理作用机制 (2008-05-06 21:55:21) 转载▼ 标签: 分类:健康 健康 第一节西医抗恶性肿瘤药的药理作用机制 一、抗肿瘤作用的细胞生物学机制 细胞周期(cell cycle)是指亲代细胞有丝分裂结束到下一代有丝分裂结束之间的间隔。有丝分裂后产生的子代细胞,经过长短不等的间隙期,也称DNA合成前期(G1期),进入DNA合成期(S期),完成DNA合成倍增后,再经短暂的休止期,也称DNA合成后期(G2期),细胞又再进入有丝分裂期(M期)。有时细胞周期明显延长,细胞长期处于静止的非增殖状态,称为G0期。G0期细胞与G1期细胞的区别在于前者对正常启动DNA合成的信号缺乏反应。但是,处于G0期的细胞并非死细胞,它们继续合成DNA和蛋白质,还可以完成某一特殊细胞类型的分化功能。这些细胞作为储备细胞,一旦有合适的条件,即可重新进入增殖的细胞群中并补充到组织中。 正常细胞和肿瘤细胞都经历细胞周期。然而,正常组织和肿瘤组织的区别之一,是处于不同细胞周期中的细胞数目不同。处于增殖期的肿瘤细胞在肿瘤全细胞群中的比率称生长比率(growth fraction, GF)。增长迅速的肿瘤GF值较大(接近1),对化疗药物敏感,如急性白血病等;增长缓慢的肿瘤GF值较小(约0.01~0.5),对化疗药物不敏感,如多数实体瘤。体内的肿瘤组织一般早期生长较快,但当肿瘤体积增大到一定程度后,由于缺血、营养不良和血管生成减慢等原因,使其生长变慢。这时通过手术或放射治疗可减轻肿瘤负荷,同时促使剩余的肿瘤细胞重新又进入活跃的增殖状态,也提高了肿瘤对化疗药物的敏感性。 根据各种抗恶性肿瘤药物对各期肿瘤细胞的杀灭作用不同,将抗恶性肿瘤药物分为两大类: 1. 周期特异性药物(cell cycle specific agents, CCSA)是指仅对增殖期某一期细胞有杀灭作用的药物。如抗代谢药(antimetabolites)、拓扑异构酶抑制药(topoisomerase inhabitors)等主要作用于S期细胞,属于S期特异性药物;长春碱类(vinca alkaloids)、紫杉碱类(taxanes)等主要作用于M期细胞,属于M期特异性药物;博来霉素(bleomycin)等主要作用于G2期细胞,属于G2期特异性药物。

汇总抗生素的作用机理.docx

专业课件 1 抗菌药物的作用机制主要是通过干扰病原体的生化代谢过程,影响其结构和功能,使其失去正常生长繁殖的能力而达到抑制或杀灭病原体的作用。 一、抑制细菌细胞壁的合成 细菌细胞壁位于细胞浆膜之外,是人体细胞所不具有的。它是维持细菌细胞外形完整的坚韧结构,它能适应多样的环境变化,并能与宿主相互作用。细胞壁的主要成分为肽聚糖(peptidoglycan ),又称粘肽,它构成网状巨大分子包围着整个细菌。革兰阳性菌细胞壁坚厚,肽聚糖含量大约50%~80%,菌体内含有多种氨基酸、核苷酸、蛋白质、维生素、糖、无机离子及其它代谢物,故菌体内渗透压高。革兰阴性菌细胞壁比较薄,肽聚糖仅占1%~10%,类脂质较多,占60%以上,且胞浆内没有大量的营养物质与代谢物,故菌体内渗透压低。革兰阴性菌细胞壁与阳性菌不同,在肽聚糖层外具有脂多糖,外膜及脂蛋白等特殊成分。外膜在肽聚糖层的外侧,由磷脂、脂多糖及一组特异蛋白组成,它是阴性菌对外界的保护屏障。革兰阴性菌的外膜能阻止penicillin 等抗生素、去污剂、胰蛋白酶与溶菌酶的进入,从而保护外膜内侧的肽聚糖。 青霉素类(penicillins )、头孢菌素类(cephalosporins )、磷霉素(fosfomycin )、环丝氨酸(cycloserine )、万古霉素(vancomycin )、杆菌肽(bacitracin )等通过抑制细胞壁的合成而发挥作用。Penicillins 与cephalosporins 的化学结构相似,它们都属于β-内酰胺类抗生素,其作用机制之一是与青霉素结合蛋白(penicillin binding proteins ,PBPs )结合,抑制转肽作用,阻碍了肽聚糖的交叉联结,导致细菌细胞壁缺损,丧失屏障作用,使细菌细胞肿胀、变形、破裂而死亡。 二、改变胞浆膜的通透性 多肽类抗生素如多粘菌素E (polymyxins),含有多个阳离子极性基团和一个脂肪酸直链肽,其阳离子能与胞浆膜中的磷脂结合,使膜功能受损;抗真菌药物制霉菌素(nystatin )和两性霉素B (amphotericin )能选择性地与真菌胞浆膜中的麦角固醇结合,形成孔道,使膜通透性改变,细菌内的蛋白质、氨基酸、核苷酸等外漏,造成细菌死亡。 三、抑制蛋白质的合成 细菌核糖体的沉降系数为70S ,可解离为50S 和30S 两个亚基,而人体细胞的核糖体的沉降系数为80S ,可解离为60S 和40S 两个亚基。人体细胞的核糖体与细菌核糖体的生理、生化功能不同,因此,抗菌药物能选择性影响细菌蛋白质的合成而不影响人体细胞的功能。 细菌蛋白质的合成包括起始、肽链延伸及合成终止三阶段,在胞浆内通过核糖体循环完成。抑制蛋白质合成的药物分别作用于细菌蛋白质合成的不同阶段: ①起始阶段:氨基苷类(aminoglycosides )抗生素阻止30S 亚基和70S 亚基合成始动复合物的形成;②肽链延伸阶段:四环素类(tetracyclines )抗生素能与核糖体30S 亚基结合,阻止氨基酰tRNA 在30S 亚基A 位的结合,阻碍了肽链的形成,产生抑菌作用;③终止阶段:氨基苷类(aminoglycosides )抗生素阻止终止因子与A 位结合,使合成的肽链不能从核糖体释放出来,致使核糖体循环受阻,合成不正常无功能的肽链,因而具有杀菌作用。 四、影响核酸代谢 喹诺酮类(quinolones )抑制DNA 回旋酶(gyrase),从而抑制细菌的DNA 复制和mRNA 的转录;利福平(rifampicin )特异性地抑制细菌DNA 依赖的RNA 多聚酶,阻碍mRNA 的合成;核酸类似物如抗病毒药物阿糖腺苷(vidarabine)、更昔洛韦(ganciclovir )等抑制病毒DNA 合成的酶,使病毒复制受阻,发挥抗病毒作用。 五、影响叶酸代谢 细菌不能利用环境中的叶酸(folic acid ),而必须利用对氨苯甲酸和二氢蝶啶在二氢叶酸合成酶的作用下合成二氢叶酸,再经二氢叶酸还原酶的作用形成四氢叶酸,磺胺类(sulfonamides )和甲氧苄啶(trimethoprim )可分别抑制folacin 合成过程中的二氢叶酸合成酶和二氢叶酸还原酶,影响细菌体内的叶酸代谢,由于folacin 缺乏,细菌体内氨基酸、核苷酸的合成受阻,导致细菌生长繁殖不能进行。抗结核药对氨基水杨酸(para-aminosalicylic )竞争二氢叶酸合成酶,抑制结核杆菌的生长繁殖。 Ж-2 β-内酰胺类抗生素 β-内酰胺类(β-lactams)抗生素是临床上最常用的抗菌药物。它们的化学结构中均含有β-内酰胺环,最为常用的是青霉素类(penicillins )和头孢菌素类(cephalosporins ),近年来还开发了一类非典型的β-内酰胺类抗生素,如碳青霉烯类(carbapenems )、头霉素类(cephamycin )、氧头孢烯类(oxacephems )及单环β-内酰胺类(monobactamic acid )。它们的共同作用机制是抑制细菌细胞壁的肽聚糖合成,共同特点是除了对革兰阳性菌、阴性菌有作用外,还对部分厌氧菌有抗菌作用,具有抗菌活性强、毒性低、适应证广及临床疗效好

抗生素种类及作用和机制汇总

: 抗生素种类近年来内酰胺环。青霉素类和头孢菌素类的分子结构 中含有β-一)β-内酰胺类:-β)、单内酰环类(monobactams),又有较大发展,如硫酶素类(thienamycins (β-lactamadeinhibitors)、甲氧青霉素类(methoxypeniciuins)等。内酰酶抑制剂(二)氨基糖甙类:包括链霉素、庆大霉素、卡那霉素、妥布霉素、丁胺卡那霉素、新霉素、核糖霉素、小诺霉素、阿斯霉素等。(三)四环素类:包括四环素、土霉素、金霉素及强力霉素等。(四)氯霉素类:包括氯霉素、甲砜霉素等。乙酰螺旋霉素、白霉素、临床常用的有红霉素、无味红霉素、(五)大环内脂类:麦迪霉素、交沙霉素等、阿奇霉素。 细菌的其它抗生素,如林可霉素、氯林可霉素、万古霉素、杆(六)作用于G+ 菌肽等。 菌的其它抗生素,如多粘菌素、磷霉素、卷霉素、环丝氨酸、(七)作用于G 利福平等。 (八)抗真菌抗生素:如灰黄霉素。 D、博莱霉素、阿霉素等。(九)抗肿瘤抗生素:如丝裂霉素、放线菌素(十)具有免疫抑制作用的抗生素如环孢霉素。: 内酰胺类抗生素β-内酰胺环的一大类抗生素,包括临床--lactams) 系指化学结构中具有ββ-内酰胺类抗生素(β内酰胺类等其他-最常用的青霉素与头孢菌素,以及新发展的头霉素类、硫霉素类、单环β内酰胺类抗生素。此类抗生素具有杀菌活性强、毒性低、适应症广及临床疗效好-非典型β特别是侧链的改变形成了许多不同抗菌谱和抗菌作用以及各种 临本类药化学结构,的优点。床药理学特性的抗生素。各种β-内酰胺类抗生素的作用机制: 各种β-内酰胺类抗生素的作用机制均相似,都能抑制胞壁粘肽合成酶,即青霉素结合蛋白(penicillin binding proteins,PBPs),从而阻碍细胞壁粘肽合成,使细菌胞壁缺损,菌体膨胀裂解。除此之外,对细菌的致死效应还应包括触发细菌的自溶酶活性,缺乏自溶酶的突变株则表现出耐药性。哺乳动物无细胞壁,不受β-内酰胺类药物的影响,因而本类药具有对细菌的选择性杀菌作用,对宿主毒性小。近十多年来已证实细菌胞浆膜上特殊蛋白PBPs是β-内酰胺类药的作用靶位,PBPs的功能及与抗生素结合情况归纳于图38-1。各种细菌细胞膜上的PBPs 数目、分子量、对β-内酰胺类抗生素的敏感性不同,但分类学上相近的细菌,其PBPs类型及生理功能则相似。例如大肠杆菌有7种PBPs,PBP1A,PBP1B与细

抗生素的种类和作用机理

一抗生素的定义: 抗生素(英语:antibiotic)在定义上是一较广的概念,包括抗细菌药、抗真菌药(anti-fungal medication)以及对付其他微小病原之药物;但临床实务中,抗生素常常是指抗细菌药 二抗生素的种类: 由细菌、霉菌或其它微生物在生活过程中所产生的具有抗病原体不同的抗生素药物或其它活性的一类物质。自1943年以来,青霉素应用于临床,现抗生素的种类已达几千种。在临床上常用的亦有几百种。其主要是从微生物的培养液中提取的或者用合成、半合成方法制造。其分类有以下几种: (一)β-内酰胺类:青霉素类和头孢菌素类的分子结构中含有β-内酰胺环。近年来又有较大发展,如硫酶素类(thienamycins)、单内酰环类(monobactams),β-内酰酶抑制剂 (β-lactamadeinhibitors)、甲氧青霉素类(methoxypeniciuins)等。 (二)氨基糖苷类:包括链霉素、庆大霉素、卡那霉素、妥布霉素、丁胺卡那霉素、新霉素、核糖霉素、小诺霉素、阿斯霉素等。 (三)四环素类:包括四环素、土霉素、金霉素及强力霉素等。 (四)氯霉素类:包括氯霉素、甲砜霉素等。 (五)大环内脂类:临床常用的有红霉素、白霉素、无味红霉素、乙酰螺旋霉素、麦迪霉素、交沙霉素等、阿奇霉素。 (六)糖肽类抗生素:万古霉素、去甲万古霉素、替考拉宁,后者在抗菌活性、药代特性及安全性方面均优于前两者。 (七)喹诺酮类:包括诺氟沙星、氧氟沙星、环丙沙星、培氟沙星、加替沙星等。 (八)硝基咪唑类:包括甲硝唑、替硝唑、奥硝唑等。 (九)作用于G-菌的其它抗生素,如多粘菌素、磷霉素、卷霉素、环丝氨酸、利福平等。 (十)作用于G+细菌的其它抗生素,如林可霉素、氯林可霉素、杆菌肽等. (十一)抗真菌抗生素:分为棘白菌素类、多烯类、嘧啶类、作用于真菌细胞膜上麦角甾醇的抗真菌药物、烯丙胺类、氮唑类。 (十二)抗肿瘤抗生素:如丝裂霉素、放线菌素D、博莱霉素、阿霉素等。

药物作用机制

药物作用机制 药物效应多种多样,是不同药物分子与机体不同靶细胞间相互作用的结果。药物作用的性质首先取决于药物的化学结构,包括基本骨架、活性基团、侧链长短及立体构形等因素。这些构效关系(structure-activity relationship)是药物化学研究的主要问题,但它有助于加强医生对药物作用的理解。药理效应是机体细胞原有功能水平的改变,从药理学角度来说,药物作用机制(mechanism of action)要从细胞功能方面去探索。 1.理化反应抗酸药中和胃酸以治疗溃疡病,甘露醇在肾小管内提升渗透压而利尿等是分别通过简单的化学反应及物理作用而产生的药理效应。 2.参与或干扰细胞代谢补充生命代谢物质以治疗相应缺乏症的药例很多,如铁盐补血、胰岛素治糖尿病等。有些药物化学结构与正常代谢物非常相似,掺入代谢过程却往往不能引起正常代谢的生理效果,实际上导致抑制或阻断代谢的后果,称为伪品掺入(counterfeit incorporation)也称抗代谢药(antimetabolite)。例如5-氟尿嘧啶结构与尿嘧啶相似,掺入癌细胞DNA及RNA中干扰蛋白合成而发挥抗癌作用。 3.影响生理物质转运很多无机离子、代谢物、神经递质、激素在体内主动转运需要载体参与。干扰这一环节可以产生明显药理效应。例如利尿药抑制肾小管Na+-K+、Na+-H+交换而发挥排钠利尿作用。 4.对酶的影响酶的品种很多,在体内分布极广,参与所有细胞生命活动,而且极易受各种因素的影响,是药物作用的一类主要对象。多数药物能抑制酶的活性,如新斯的明竞争性抑制胆碱酯酶,奥美拉唑不可逆性抑制胃粘膜H+-K+ATP 酶(抑制胃酸分泌)。尿激酶激活血浆溶纤酶原,苯巴比妥诱导肝微粒体酶,解磷定能使遭受有机磷酸酯抑制的胆碱酯酶复活,而有些药本身就是酶,如胃蛋白酶。 5.作用于细胞膜的离子通道细胞膜上无机离子通道控制Na+、Ca2+、K+、Cl-等离子跨膜转运,药物可以直接对其作用,而影响细胞功能。

化疗药物作用机制

1、化疗药物的分类 各类化疗药物以其在分子水平的作用机制可以分类四大类: (1)烷化剂:是最早问世的细胞毒药物,抗瘤谱广,在体内半衰期短,毒性较大,常用于大剂量短程疗法或间歇用药。进一步又可分为5类: ① 氮芥类:即氮芥(HN2)及其衍生物,包括环磷酰胺(CTX)、消瘤芥(AT-1258)、苯丙酸氮芥(MEL)、苯丁酸氮芥(CLB)、甲氧芳芥、抗瘤新芥、甲氮咪胺等。 ②乙烯亚胺类:常用的药物为塞替哌(TSPA)。 ③亚硝脲类:有卡莫司汀(BCNU)、尼莫司汀(ACNU)、司莫司汀(Me-CCNU)、洛莫司汀(CCNU)等。 ④甲基黄酸酯:即白消安(BUS)。 ⑤ 环氧化合物类:是一类能干扰细胞代谢过程的药物,其化学结构常与核酸代谢的必需物质叶酸、嘌呤、嘧啶等相似,通过特异性对抗干扰核酸代谢,产生抗肿瘤效应。 叶酸抗代谢物,如甲氨蝶呤(MTX)。 嘌呤抗代谢物,如巯嘌呤(6-MP)、硫鸟嘌呤(6-TC)。 嘧啶抗代谢物,如氟尿嘧啶(5-FU)、阿糖胞苷(Ara-C)、六甲嘧胺(HMM)、环胞苷(CCY) 等。 (2)核苷酸还原酶抑制剂及其抗代谢药:如羟基脲主要抑制核苷酸还株酶阻止胞苷酸转变为脱苷酸从而抑制DNA合成;其他药物还有氨基酸拮抗剂、维生素拮抗剂、DNA多聚酶抑制剂等。 (3)抗生素类抗肿瘤药:来源于微生物的抗肿瘤药,多数由放线菌产生,属细胞周期非特异性药物,基本上可分醌类、亚硝脲类、糖肽类、色肽类和糖苷类等。近年研究中的新抗肿瘤抗生素有放线菌素D、博莱霉素(BLM)、丝裂霉素(MMC)等。 (4)抗肿瘤植物药:是近年来临床上常用的一类药,主要为生物碱类,包括长春新碱(VCR)、秋水仙碱(COL)、三尖杉酯碱(HH)、紫素(TAX)等。 除以上4种抗肿瘤药外,还有一些抗肿瘤药物,其生化结构和作用机理有别于上述药物,这类药物有抗癌锑、门冬酰胺酶(ASP)、乙亚胺、甲基苄肼(PCB)、斑蝥素等。 2、化疗药物的作用机理 抗肿瘤药物种类繁多,其作用机理各不相同,根据药物的作用点不同可以将其作用机理归纳如下。 (1)干扰核酸的合成代谢:大多数化疗药物主要是通过阻碍核酸特别是DNA成分的形成和利用,而起到杀伤细胞的作用。这类药物的化学结构和核酸代谢的必需物质相似。 抑制脱氧胸苷酸合成酶:阻止胸腺嘧啶核苷酸的合成:氟尿嘧啶、脱氧氟尿苷等药物在体内的衍生物可抑制脱氧胸嘧啶核苷酸合成酶,阻止脱氧脲嘧啶核苷酸的甲基化,从而影响DNA合成。 抑制二氢叶酸还原酶:甲氨蝶呤与二氢叶酸还原酶结合,使二氢叶酸不能被还原成四氢叶酸,导致5,10-二甲基四氢叶酸缺乏,使脱氧脲苷酸不能接受来自5,10-二甲基四氢叶酸的碳单位形成脱氧胸苷酸,DNA合成受阻。 阻止嘌呤核苷酸合成:巯嘌呤进入体内转变成活性型硫代肌苷酸,抑制磷

抗生素的作用机理优选稿

抗生素的作用机理集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

抗生素的作用机理 姓名: 抗生素是由微生物(包括细菌、真菌、放线菌属)或高等动植物在生活过程中所产生的具有抗病原体或其它活性的一类次级代谢物。它既不参与细胞结构,也不是细胞内的贮存性养料,对产生菌本身无害,但对某些微生物有拮抗作用,是微生物在种间竞争中战胜其他微生物保存自己的一种防卫机制。现临床常用的抗生素有微生物培养液液中提取物以及用化学方法合成或半合成的化合物。 一、抗生素的分类及常见代表药物 (1)青霉素类:为最早用于临床的抗生素,疗效高,毒性低。主要作用是使易感细菌的细胞壁发育失常,致其死亡。人、哺乳动物的细胞无细胞壁,因此有效抗菌浓度的青霉素对人、哺乳动物机体细胞几呼无影响,因而对人体副作用较少。临床常用的青霉素类药有:青霉素G、氨苄青霉素、羟氨苄青霉素(阿莫西林、阿莫仙)、苯唑青霉素等。 (2)头孢菌素类:本类抗生素自60年代应用于临床以来,发展迅速,应用日益广泛。习惯上依据时间及对细菌的作用,分为一、二、三代。常用的有:头孢氨苄(先锋霉素Ⅳ)、头孢唑啉(先锋霉素Ⅴ)、头孢拉定(先锋霉素Ⅵ)、头孢呋辛(西力欣)、头孢曲松(罗氏芬)、头孢噻肟(凯福隆)、头孢哌酮(先锋必)等。 (3)氨基糖苷类:本类抗生素性质稳定,抗菌普广,在有氧情况下,对敏感细菌起杀灭作用。其治疗指数(治疗剂量/中毒剂量)较其它抗生

素为低,不良反应最常见的是耳毒性。常用的有:链霉素、庆大霉素、霉卡那素、丁胺卡那霉素等。 (4)大环内酯类:本类抗生素均含有一个12—16碳的大内酯环,为抑菌剂,仅适用于轻中度感染,但是为目前最安全的抗生素之一。红霉素为本类的代表,临床应用广泛,对青霉素过敏者常以本品治疗。近年来研制开发了许多新品种,临床效果显着,如阿奇霉素(泰力特、希舒美)、克拉霉素、罗它霉素、地红霉素等。常用的还有麦迪霉素、螺旋霉素、交沙霉素等。 (5)四环素类:包括四环素、土霉素、强力霉素等。本类抗生素可沉积于发育中的骨骼和牙齿中,反复使用可导致骨发育不良,牙齿黄染,牙釉质发育不良,自妊娠中期至3岁,危险性最大,并可持续至7岁甚至更久,故孕妇、哺乳期妇女及8岁以下小儿禁用。 (6)氯霉素类:本类抗生素特点是脂溶性高,易进入脑脊液和脑组织,并对很多病原体有效,但可诱发再生障碍性贫血,应用受到一定限制。包括氯霉素、琥珀氯霉素等。 (7)林可酰胺类:包括林可霉素、克林霉素等。 临床上还有一些广泛应用的合成抗菌药物,主要有磺胺类(磺胺嘧啶、复方新诺 明等)、喹诺酮类(氟哌酸、氧氟沙星、环丙沙星等)及其它合成抗菌药物(痢 特灵、甲硝唑、黄连素等)。 二、抗生素具有不同于化学药物的特点:

抗菌药物分类及简单作用机制 已整理

抗菌药物分类及简单作用机制 人工合成抗菌药物 1、喹诺酮类(作用机制:抑制细菌DNA回旋酶影响DNA合成。) 一代:萘啶酸。二代:吡哌酸。三代及其他:诺氟沙星、氧氟沙星、左氧氟沙星、环丙沙星、依诺沙星、洛美沙星、培氟沙星、芦氟沙星、司氟沙星、莫西沙星、氟罗沙星、格帕沙星、曲伐沙星、琳沙星、吉米沙星、加替沙星、妥舒杀星、帕珠沙星、司帕沙星 2、磺胺类(作用机制:抑制二氢叶酸合成) 磺胺甲噁唑(SMZ)、硫胺嘧啶、复方新诺明、柳氮磺吡啶、磺胺米隆、磺胺二甲嘧啶、磺胺异唑、磺胺苯吡唑、磺胺对甲氧嘧啶、磺胺多辛、磺胺脒、磺胺醋安、琥磺胺噻唑、甲氧苄啶 3、甲氧苄啶类(作用机制:抑制二氢叶酸还原酶阻碍四氢叶酸合成) 甲氧苄啶(TMP) 4、硝基呋喃类:呋喃妥因、呋喃唑酮 5、硝咪唑类:甲硝唑、替硝唑、奥硝唑 抗生素:由某些微生物产生的化学物质,能抑制微生物和其他细胞增殖的物质 抗生素分类: 一、β-内酰胺类 青霉素类:(作用机制:抑制细菌细胞壁粘肽合成,支原体除外,其无细胞壁。) 1、天然青霉素:青霉素G(苄青霉素)、 2、半合成青霉素:(1)耐酸青霉素:青霉素V(苯氧甲青霉素)、非萘西林(苯氧乙青霉素)(2)耐酶青霉素:苯唑西林、氯唑西林、双氯西林、氟氯西林(3)广谱青霉素:氨苄西林、阿莫西林、匹氨西林(4)抗铜绿假单胞菌广谱青酶素:羧苄西林、替卡西林、呋苄西林、阿洛西林、哌拉西林、阿帕西林(5)主要作用于革兰阴性菌的青霉素:美西林、匹美西林、替莫西林 头孢菌素类:(作用机制:与细胞膜上青霉素结合蛋白即PBPS结合,阻碍细胞壁合成。) 1、第一代头孢菌素:头孢氨苄、头孢唑林、头孢羟氨苄、头孢拉定、头孢噻分、头孢噻啶、头孢硫脒、头孢乙氰、头孢替唑钠、头孢匹林纳 2、第二代头孢菌素:头孢孟多、头孢呋辛、头孢克洛、头孢替安、头孢丙烯头孢雷特、头孢尼西 3、第三代头孢菌素:头孢噻亏、头孢曲松、头孢他啶、头孢哌酮、头孢硫啶、头孢咪唑、头孢地尼 4、第四代头孢菌素:头孢甲吡唑、头孢吡亏、头孢克定、头孢匹罗 其他β-内酰胺类: 1、头霉素类:头孢西丁 2、氧头孢烯类:拉氧头孢 3、单环β-内酰胺类(单环菌素类):单酰胺曲素,卡芦莫南

相关主题