搜档网
当前位置:搜档网 › 高速线阵CMOS图像传感器DLIS-2K应用文档

高速线阵CMOS图像传感器DLIS-2K应用文档

高速线阵CMOS图像传感器DLIS-2K应用文档
高速线阵CMOS图像传感器DLIS-2K应用文档

panavison china : 86-158********

Application Note: APP0002 Rev D

DLIS 2K/4K- Mod e Programming Guid e

The DLIS 2K/4K is a multi-mode sensor featuring a user programmable timing engine. The sensor contains 4 rows of pixels. Each row contains 16 dark pixels and 2080/4096 optical pixels. Several topics for DLIS operation are discussed in this note as well as useful programming data for use with the DLIS demonstration kit. The main purpose of this document is to describe how the imager is put into and operated in different modes of operation. The different modes of operation are as follows:

1.Normal/ Correlated Double-Sampling (CDS)

2.Ambient light subtraction

3.High Dynamic Range (HDR)

4.Correlated Multi-Sampling (CMS)

5.Non-Destructive Read

6.Binning of different rows

7.High resolution readout

8.Auto Dynamic Threshold (ADT)

In addition to sections on each of the different modes, a section is also included on advanced options. Many of these options can be utilized in some or all of the operating modes, but separated out for clarity. A section on how to write a setup file for the Unified Demo board, is also included at the end of this document.

The DLIS demonstration kit provides all the listed setup timing files to accomplish different readout modes listed above. Please refer to the Unified GUI User Manual (latest rev.) to setup the demonstration kit. The modes listed above are not the only modes of operation, combinations and permutations are possible by experienced operator. Contact the company for engineering assistance if needed.

Digital Linear Image Sensor (DLIS) Timing Overview

The CMOS imager is an array of individual pixels that are accessed in a sequential order for display. The readout occurs after the selected row and associated timing for the desired readout mode has occurred. The

different readout modes are listed above. No matter what mode is selected, the information is none the less read out in a predetermined sequential order. It is this predetermined sequence that this application note will explain and explore the options available to the camera designer. The order of timing will be referenced to the DLIS sensors. The DLIS sensors are based on a Distributed Analog to Digital per pixel (D/AD TM) architecture patented by Panavision Imaging. The predetermined sequence, follows three top level functions. The three top level functions are: row selection, sampling, digitizing the pixel data from the selected row, and reading the stored data out to the camera. In short we will refer to these operations as: row selection, sampling, digitizing and readout.

Before a detailed timing sequence discussion can ensue for the different modes of operation, a good conceptual explanation of row selection, sampling and readout must be understood first. Also, the necessary jargon is defined to aid the subsequent detailed discussions that follow.

Fig. # 1 Top level imager timing sequence.

Row sampling/digitizing consists of two operations, background (reference level) capture and video capture. Row selection for background capture occurs by programming one of four Row_Reset registers to reset the sense node. When the sense node is reset this becomes the reference level (a.k.a. background level) that is digitized. The sense node is the node that is digitized by the Distributed Analog to Digital (D/AD TM)per pixel. The sense node is common for the four photodiodes. Row selection for video capture occurs by programming one of four Shutter registers to transfer the pixel charge to the sense node for reading. After the pixel charge has been transferred and digitized by the D/AD TM the sense node needs to be reset to accept the next transfer. The difference between the reference level and the video, is the Correlated Double Sampled (CDS) information that is output to the user.

Since the video is digitized and has the reference level subtracted from the video there are a couple of items that need to be understood by the user. Subtraction of the reference level from the video level is done to remove all or most of the Fixed Pattern Noise (FPN) that exists at black. Black is used here as the signal generated by the imager without any light exposure. If at black the video and reference level are identical the output is zero counts. Add in some noise then it is possible that one can generate a negative value for video. Since the DLIS sensor doesn?t have the ability to show a negative value it will output the rollover of data. Unfortunately, the data will appear as if it is bright white on the output instead of black. To eliminate this problem, and keep the digital block as simple as possible to keep costs down, we added in a programmable offset to the video data and the default value is 128 counts to account for the extreme cases of wide temperature ranges and noisy environments the imager may be used in. The user can reprogram if needed to maximize the dynamic range of the system. When the imager is approaching saturation the video information becomes non-linear in its response and the offset information is lost and stronger FPN is noticed on the output. To minimize FPN, the exposure can be reduced or utilize one of the modes like, Ambient

light subtraction, High dynamic range (HDR), or Correlated Multi-Sampling (CMS). Another aspect of reading digital data, is the10 bit external data bus and 11 bit internal latches in that the user with some of the modes, like HDR and CMS, could have data in the eleventh bit and not be reading out the data. If there is data in the eleventh bit that is not readout the data effectively has 1023 counts subtracted from those pixels and the data that should appear bright will now be dark. Proper set up of the D/AD for resolution and the number of reads will eliminate any potential issues. Also, the user should they decide that data in the eleventh bit is proper the user has the option to read out the upper ten bits. The reason for the 11 bit latches is to have good 10 bits of information after CDS the signal internally should be 11 bits. The DLIS sensors are very flexible and allow the user to program the bit depth of the DAC from 8 to 12 bits per sample.

P ROGRAMMABLE S IGNAL D EFINITIONS

In the following section, the individual programmable timing edges required to implement each mode are grouped into functional blocks, and then further described of their function and impacts on the operation of the sensor. Correlated Double Sampling (CDS) is the default mode, and will be the basis for all other modes in describing individual timing edges. Subsequent modes will be described in differences from the default mode.

Pixel

SHUTTER [0:3]- When active high, connects pixel to sense node which transfers charge accumulated in pixel to the column amplifier or resets the pixel in conjunction with the additional following signal combinations:

ROW_RESET [0:3]- When active high, resets column amplifier sense node. Also resets pixel when SHUTTER is invoked. Row Reset in conjunction with the following signal combinations sets the sense node and or pixel to the following conditions:

?ROW_RESET- Resets sense node to column amplifier bias.

?ROW_RESET + ZERO_RESET + AMP_ACTIV ATE - Resets sense node to zero.

?ROW_RESET + FORCE_RESET +AMP_ACTIV ATE- Resets sense node to BLKRESET0 Bias.

?SHUTTER + ROW_RESET- Reset pixel & sense node to column amplifier bias.

?SHUTTER + ROW_RESET + ZERO_RESET + AMP_ACTIV ATE- Reset pixel & sense node to zero.

?SHUTTER + ROW_RESET + FORCE_RESET + AMP_ACTIV ATE- Reset pixel & sense node to BLKRESET0 Bias.

Note:FORCE_RESET and ZERO_RESET not to be active at same time, and only in conjunction with AMP_ACTIV ATE.

Column Amplifier/Comparator

?AMP_ACTIV ATE-When low, disconnects column amplifier from pixel by shutting off current loop between pixel and column amplifier. See Row Reset combinations shown

above.

?FORCE_RESET- When high, resets pixel and/or sense node to BLKRESET0 Bias. See Row Reset combinations shown above.

?ZERO_RESET-When high,resets pixel and/or sense node to zero. See Row Reset combinations shown above.

Distributed A/D (D/AD?)

?COUNTER_CLK- Drives counter to per column distributed A/D binary converter latches.

?DATA_V ALID- Active high during readout of pixel values.

?EXTRA_CLK- Used in conjunction with TOGGLE to toggle between MINUS_CNT and PLUS_CNT.

?MINUS_CNT- When initiated (high pulse), latches negative count value.

?PLUS_CNT- When initiated (high pulse), latches positive count value.

?PRELOAD- When high, sets a predetermined digital black threshold value.

?READOUT- When high, reads out values stored in column latches.

?RESET_LATCH- When active low, resets column latches to zero.

?TOGGLE-When active high, and overlapping EXTRA CLK (high) allows toggling between MINUS_CNT or PLUS_CNT.

?WRITE- When active high, enables count values to column latches.

Ramp DAC

?BIN_CNT_CLK- Drives DAC binary counter that creates Video/Background Ramp.

?BIN_CNT_RST- Resets DAC binary counter.

?PULL_UP_DAC- Auxiliary signal to insure hard pull up on DAC output.

1.) Normal/ Correlated Double-Sampling (CDS)-Default Mode

C ONCEPT

The default programming upon power up is normal CDS destructive readout. This mode is the standard or only mode of operation for most imagers. Correlated Double Sampling is performed by reading the background and then the video and taking the difference. The background information is read by resetting and sampling the sense node. The video is sampled after transferring the pixel value onto the sense node. The difference between the two is output to the 10 bit port.

In DLIS Distributed Analog to Digital (D/AD TM ) the bit depth of the DAC is adjustable from 8 to 12 bits and by default is set to 10-bits digital format by setting the appropriate registers as shown in figure #2.

Figure #2- DAC bit depth registers

The user should become familiar with all the registers by referring to the imager specification. The CDS function is also realized in the digital domain, meaning that the background and video are digitized separately and digitally differenced for the output.

C ONCEPTUAL WAVEFORMS

(Readout not shown for clarity of acquisition timing. Readout typically adds 80-90% to singl e frame time)

Standard CDS Sample Timing

Sample Background

Sample Video

Exposure time

Start for next frame

RAMP

ROW RESET

SHUTTER

Photo-Diode Reset

D ETAILED OPERATION

The CDS mode begins by resetting the sense node to the background level and digitizing it by the distributed A/D (D/AD?)per column Resetting the pixel sense node to the background level is accomplished by programming a logic high to “ROW_RESET” signal for the desired row [0:3].

The described ROW_RESET or SHUTTER functions may also be invoked via the external Reset[0:1] pins and/or Shutter[0:1] pins, except for Row 3, which is programmed internally. Both Reset & Shutter External pins are combined with internally programmed ROW_RESET [0:2] & SHUTTER [0:2] as a logical “OR” function. External pins as decoded as shown in figure #3

Figure #3: Two bit decoder for row reset & selection

Before initiating a capture of the background value, line overhead timing must be initialized, the DAC & latches must be reset, and plus count mode initiated for preload. Line overhead timing is initialized by the user by providing an active high pulse to the external start pin. A start pulse is required for each line. The user may invoke the external start pulse asynchronously. The Start pin is re-synchronized internally to create a synchronized start pulse. This method reduces the requirements on the start pulse input. For example, a microprocessor could assert start simply from an output pin from the processor DLIS imager. The external start pin is asynchronous, as internal logic performs all proper synching, debounce and meta-stability handling. The “START” pulse requires a minimum pulse width of 4 clock cycles to debounce and resynchronize the signal, and properly initialize the overhead timing. DAC is set to maximum value by the PULL_UP_DAC signal at the same time the “BIN_CNT_RST” signal is issued. Latches are reset with “RESET_LAT CH”.

A preload value is typically initiated before background capture. The preload count is set to a default of 128 counts. The preload value is accomplished by issuing “PRELOAD”(active high) + “COUNTER_CLK”+ “PLUS_CNT”. Count mode direction is set by: “TOGGLE” (active high) overlapping “EXTRA_CLK” (active high)and then setting “PLUS_CNT”to a logic high coincidentally with “COUNTER_CLK.” This sets count direction and clocks in preload count values. For more info on Preload, go to Advanced Options, page33.

The change count mode is initiated by clocking “TOGGLE” (active high)overlapping “EXTRA_CLK” (active high). “MINUS_CNT” is set logic high concurrently with “BIN_CNT_CLK” + “COUNTER_CLK” which resets count direction, generates DAC ramp, and clocks in latch values. Once the sense node is charged up to background level, the “ROW_RESET [0:3]” signal goes low, immediately, the background ramp generated by “BIN_CNT_CLK” plus “COUNTER_CLK“ (counts that drive latches) starts counting from 1023-count and the comparator

compares background value with ramp and triggers the counter to store background value. “WRITE” is set active high from start of background capture to end of video capture.

Before initiating a capture of the video value, the count mode must be switched, and plus count mode initiated. It is important to allow hold time of approximately 1 microsecond before issuing the next ramp to allow for settling of the DAC output. The change count mode is initiated by clocking “TOGGLE” (active high)overlap ping “EXTRA_CLK” (active high). “PLUS_CNT” is set logic high concurrently with “BIN_CNT_CLK” + “COUNTER_CLK” which resets count direction, generates DAC ramp, and clocks in latch values.

Programming note: “MINUS_CNT”, “PLUS_CNT”, “TOGGLE” not be held hig h at the same time in any combination or overlapping.

Once background value is sampled and background ramp is complete, user can transfer photo-diode value from current integration period. Integration period is set by a simultaneous “ROW_RESET[0:3]” and“SHUTTER[0:3]” (both active high) which resets the pixel and sense node, Programming a logic low to “SHUTTER” begins the integration period for the video value. User programs a logic low to “ROW_RESET” after resetting the sense node. Integration period fo r video value is completed by the following “SHUTTER[0:3]” pulse (falling edge) which sets end of integration time. During this “SHUTTER” pulse, the integrated photo-diode value is transferred onto the sense node while active high. After “SHUTTER[0:3]” sig nal is set low, video ramp generated by “BIN_CNT_CLK” plus “COUNTER_CLK“ (counts that drive latches) starts counting from 1023-count. The comparator compares video value with video ramp and triggers the latches to store the DAC count of the video value. Final correlated double sampled photo-diode value is derived from subtracting background value from video value. Resulting value is then read out to outputs by toggling “WRITE” to logic low and initiating “READOUT.” Readout clock rates can be altered by changing the following internal register as shown in figure #4.

Programming note “ROW_RESET[0:3]” to overlap “SHUTTER[0:3]” by a minimum of 20ns/100ns (see page 34) to allow for settling of the sense node. Overlap also applies to external control of Row Reset and Shutter

Figure #4 Readout Clock Register

APP0002 Rev D.doc Page 8 7/10/2009

D ETAILED WAVEFORMS

Default CDS Sample Timing- Setup file: fle_dlis4k_9Bit_1x.txt

R EQUIRED R EGISTER/GUI SETTINGS-T IMING R EGISTER M AP

APP0002 Rev D.doc Page 9 7/10/2009

Set Up File for Unified Demo Board/DLIS-4K: 9 Bit, Correlated Double Sampling (CDS) Mode

(Settings Modified from default are bolded)

__________________________________________________________________________________________________

#FORMAT IS

#< NAME, TIMER-REGISTER-ADDRESS, INITIAL VALUE, EDGE#1, EDGE#2, EDGE#3, EDGE#4, EDGE#5, EDGE#6, EDGE#7, EDGE#8>

# RESEVRED NAMES ARE BIAS,SWING,STEP,PERIOD,EOF

# THE MUST BE THE VERY FIRST LINE OF THIS FILE!!

# THE MUST BE THE VERY LAST LINE OF THIS FILE!!

2.) Ambient light subtraction (Double Sampling)

C ONCEPT

DLIS 4k provides flexible control when sampling video. Ambient light subtraction is an example of the DLIS flexibility. In applications where there is a controlled flash or lighting in the presence of a ambient light level that adds a significant offset to the desired signal, modified timing allows for ambient light subtraction. The oversampling function can be realized by adjusting SHUTTER and RESET signal to integrate background light for subtraction. The following conceptual timing diagram illustrates the modified timing.

C ONCEPTUAL WAVEFORMS

(Readout not shown for clarity of acquisition timing. Readout typically adds 80-90% to singl e frame time)

Double Sample Timing

D ETAILED OPERATION

In double sampling mode, the sensor can sample different ambient light levels to get desired offset. In a practical application the user may want to integrate as long for the ambient light subtraction as the actual integration with controlled light. The user can access this mode by programming the serial-interface. A ambient light subtraction setup file is provided for reference only.

As in the default mode setup, the user must first initiate the start sequence (see CDS default mode section). A preload value is typically initiated before background captures. (see CDS default mode)

The double sampled mode begins with the pixel/sense node charged to background level by programming a logic high to “ROW_RESET ” & “SHUTTER ” signals for desired row [0:3]. Programming a logic low to “SHUTTER ” begins the integration period for the ambient background. User programs a logic low to “ROW_RESET ” after ( ≥100 ns hold time) resetting the sense node.

RAMP

RESET

SHUTTER

Photo-Diode Reset

Integration period for ambient light value is completed by the following “SHUTTER[0:3]” pulse (falling edge) which sets end of integration time. During this “SHUTTER”pulse, the integrated ambient light photo-diode value is transferred onto the sense node while active high. After “SHUTTER[0:3]” signal goes low, video ramp generated by “BIN_CNT_CLK” plus “COUNTER_CLK“ (counts that drive latches) starts counting from 1023-count. The comparator compares ambient light value with video ramp and triggers the latches to store the DAC count of the ambient light value. Once video ramp has been completed, “ROW_RESET[0:3]”is pulsed logic high to charge sense node to background level

Before initiating a capture of the video value, the count mode must be switched- (see CDS default mode section).

Once ambient light value has been transferred to the sense node, the integration period for video value begins after programming a logic low to “SHUTTER[0:3]”. Integration period for video value is completed by the following “SHUTTER[0:3]” pulse (falling edge) which sets end of integration time. During this “SHUTTER” pulse, the integrated photo-diode value is transferred onto the sense node while active high. After “SHUTTER[0:3]” signal goes low video ramp generated by “BIN_CNT_CLK” plus “COUNTER_CLK“ (counts that drive latches) starts counting from 1023-count. The comparator compares video value with video ramp and triggers the latches to store the DAC count of the video value. Resulting double sampled value is subtracted during readout to outputs by toggling “WRITE” to logic low and initiating “READOUT”.

User will have selectable feedback to trigger flash source based upon the Sync signal selected to be outputted by the TM pin.

D ETAILED WAVEFORMS

Setup file: fle_dlis4k_9Bit_1x_Amb.txt

APP0002 Rev D.doc Page 13 7/10/2009

R EQUIRED M ODIFICATIONS FROM DEFAUL T GUI SETTINGS

Set Up File For Unified Demo Board/DLIS-4K: 9 Bit, Ambient light subtraction Mode

(Settings Modified from default are bolded)

__________________________________________________________________________________________________

#FORMAT IS

#< NAME, TIMER-REGISTER-ADDRESS, INITIAL VALUE, EDGE#1, EDGE#2, EDGE#3, EDGE#4, EDGE#5, EDGE#6, EDGE#7, EDGE#8>

# RESEVRED NAMES ARE BIAS,SWING,STEP,PERIOD,EOF

# THE MUST BE THE VERY FIRST LINE OF THIS FILE!!

# THE MUST BE THE VERY LAST LINE OF THIS FILE!!

3.) High dynamic range (HDR)

C ONCEPT

In this mode the sensor can sample and combine pixel data with short and long exposure times to extend dynamic range. High Dynamic Range (HDR) is accomplished by adding two rows with different exposure times in storage together and reading the average to extend dynamic rage of the image.

C ONCEPTUAL WAVEFORMS

(Readout not shown for clarity of acquisition timing. Readout typically adds 80-90% to singl e frame time)

High Dynamic Range (HDR) Timing

D ETAILED OPERATION

In the high dynamic range mode, the sensor is programmed to combine two different exposures and readout either combined values or average values. Options depend on ramp bit depth settings as well as Imager array upper/lower bit settings. See figure #4.

HDR-Sequential Row Method

As in the default mode setup, the user must first initiate the start sequence (see CDS default mode section).

The high dynamic range mode begins with the reading and storing the short integration row. The sense node charged to background level by programming a logic high to “ROW_RESET ” signal for desired row [0:3]. Rows 0&1 are used for this example. Once the sense node is charged up to background level, the “ROW_RESET0” signal goes low, immediately, the background ramp generated by “BIN_CNT_CLK ” plus “COUNTER_CLK ” (counts that drive latches) starts counting from 1023-count and the comparator compares background value with ramp and triggers the counter to store background values of the short integration row.

Exposure time start - next frame

RAMP

ROW RESET0

SHUTTER0

Photo-Diode Reset

ROW RESET1

SHUTTER1

Sample Background1

Sample Video1

Sample Background0

Sample Video0

Photo-Diode Reset

Exposure time end

Exposure time

Before initiating a capture of the short integration row video values, the count mode must be switched- (see CDS default mode section).

It is important to allow hold time of approximately 1 microsecond between successive background/video ramps, and background to video transition, to allow for settling of the DAC output. See “Detailed Waveforms”

Once short integration row background value is sampled and background ramp is complete, user can transfer photo-diode value from current integration period. Integration period- (see CDS default mode section). O nce “SHUTTER0” has been pulsed logic high which transfers photo-diode value to sense node, “S HUTTER0” signal is set low, video ramp generated by “BIN_CNT_CLK” plus “COUNTER_CLK“ (counts that drive latches) starts counting from 1023-count. The comparator compares video value with video ramp and triggers the latches to store the DAC count of the short integration row video values.

To capture long integration row video values. The previous cycle is repeate d for “Row_Reset1” and “Shutter1” signals without issuing “Reset_Latch”

Resulting value is then read out to outputs by toggling “WRITE” to logic low and initiating “READOUT.”

User can read HDR data in two ways. To read combined HDR values, user reads all bits +1 depending on DACCON & OPMODE register settings. See figure #4.

To read average HDR values, user reads output shifted by 1 bit, controlled by DACCON & OPMODE register settings. See figure #4.

Figure #4- HDR DAC bit depth settings

HDR-Variable Exposure Binning Method

As in the default mode setup, the user must first initiate the start sequence (see CDS default mode section).

The high dynamic range mode using a binning method begins with the reading and storing the background of the short integration row and the long integration row by binning both rows together. The sense node charged to background level by programming a logic high to “ROW_RESET” signal for desired rows [0:3]. Rows 0&1 are used for this example. Once the sense node is charged up to background level, the “ROW_RESET0” + “ROW_RESET1” signal goes low, immediately, the background ramp generated by “BIN_CNT_CLK” plus “COUNTER_CLK” (counts that drive latches) starts counting from 1023-count and the comparator compares background value with ramp and triggers the counter to store background values of the short integration row.

Before initiating a capture of the binned long & short integration row video values, the count mode must be switched- (see CDS default mode section).

It is important to allow hold time of approximately 1 microsecond between successive background/video ramps, and background to video transition, to allow for settling of the DAC output. See “Detailed Waveforms”

Once short & long integration row background values are sampled and background ramp is complete, user can transfer photo-diode value from current integration period.

Integration period for the long integration time begins typically during readout of the prior frame to take advantage of the proportionately longer readout period. The short integration time begins typically at the beginning of the frame before background is read. For both integration periods, resetting the sense node and pixel together starts the integration period. (see CDS default mode section).

O nce “SHUTTER0” + “SHUTTER1” has been pulsed logic high which transfers photo-diode value to sense node, “SHUTTER0” + “SHUTTER1” signal is set low, video ramp generated by “BIN_CNT_CLK” plus “COUNTER_CLK“ (counts that drive latches) starts counting from 1023-count. The comparator compares the binned video value with video ramp and triggers the latches to store the DAC count of the binned short & long integration video values.

Final high dynamic range photo-diode value is derived from subtracting background value from video value. Resulting value is then readout to outputs by toggling “WRITE” to logic low and initiating “READOUT.” User has the option to read the averaged CMS values by bit shifting and reading the upper bits, or read the lower bits for more sensitivity.

In this mode, the user needs to ensure that the combined charge of the binned long- and short-exposed pixels does not exceed the saturation level. This limits the ratio between the long- and short- exposure times (depending on light), thusly limiting the extension in dynamic range to a lower limit as compared to the HDR mode described in the previous section.

D ETAILED WAVEFORMS

HDR.0 – Variable Exposure Binning with 2x CMS Sample Timing- Setup file: fle-dlis2k_9Bit_HDR_CNT.txt

APP0002 Rev D.doc Page 18 7/10/2009

R EQUIRED M ODIFICATIONS FROM DEFAUL T GUI SETTINGS

Set Up File For Unified Demo Board/DLIS-4K: 9 Bit, High Dynamic Range (HDR) Mode

(Settings Modified from default are bolded)

__________________________________________________________________________________________________

#FORMAT IS

#< NAME, TIMER-REGISTER-ADDRESS, INITIAL VALUE, EDGE#1, EDGE#2, EDGE#3, EDGE#4, EDGE#5, EDGE#6, EDGE#7, EDGE#8>

# RESEVRED NAMES ARE BIAS,SWING,STEP,PERIOD,EOF

# THE MUST BE THE VERY FIRST LINE OF THIS FILE!!

# THE MUST BE THE VERY LAST LINE OF THIS FILE!!

4.) Correlated Multi-Sampling (CMS)

C ONCEPT

Correlated Multi-Sampling- Background and Video are over-sampled and then differentially averaged to combine the known benefits of both Over-Sampling and Correlated Double-Sampling. In correlated multi-sampling mode the sensor can combine multiple background and video samples in one readout (CMS). In this mode the output is an average of the valid signal, and the temporal noise is reduced. The corresponded timing diagram for 2x oversampling is shown below. The timing for 4x sampling is similar as shown with exception of 4 background and video samples instead of 2.

The sample data listed below in figure #5 show achievable results of correlated multi-sampling. MCLK -15MHz, 10 bit readout

Figure #5 Correlated Multi-Sampling Data

1x(no) Correlated Multi-Sampling

Setup file: fle_dlis2k_9Bit_1x_DR.txt, 9 Bit Ramp, MCLK: 24 MHz, Row: 0 (32 um Pixel)

2x Correlated Multi-Sampling

Setup file: fle_dlis2k_9Bit_2x_DR.txt, 9 Bit Ramp, MCLK: 24 MHz, Row: 0 (32 um Pixel)

4x Correlated Multi-Sampling

Setup file: fle_dlis2k_9Bit_4x_DR.txt, 9 Bit Ramp, MCLK: 24 MHz, Row: 0 (32 um Pixel)

我国监控摄像机市场现状调查报告

以安全防范为目的的监控摄像机在历经二十多年的市场进展后,现在也广泛应用在电子政务工作中,从以预防为目的的安防监控到工作治理的必备手段,这些小产品制造了大市场,有了大作为,在平安都市建设中起到了极其重要的作用。生产监控摄像机的中小企业差不多成为安防产业经济进展的主力军,其中在全国有能力生产各种摄像机的中小企业已达600多家,其中外资(包括港澳台)企业50多家,年生产各类监控摄像机1500多万台,产值120多亿元,制造的财宝已占到全国安防GDP的8%左右。 一、监控摄像机市场整体规模 专业监控摄像机相关于一般消费者来讲依旧比较陌生,因为它并非民用摄像机从市场购回就能够使用,它只是监控系统前端采集信息的一部分,还需要通过中间视频音频压缩传输直至后端

存储。这是一个相对比较复杂的高科技系统,系统的复杂性还不是一般消费者所能够了解。随着监控摄像机市场的广泛应用,产品价格也由过去数万元到现在几百元一台的摄像机无奇不有,中外摄像机厂商在中国市场跑马圈地,竞争异常激烈。摄像机产品越来越趋于细分化、多样化、个性化,模拟摄像机、网络摄像机、高速球、一体化摄像机品种不断丰富,高清、宽动态、日夜型摄像机进展迅速。 为了抢占市场,厂商不惜以超低价格策略献宠市场,以寻求进展。以至于在目前专业监控摄像机市场上,高端品牌产品价格可达3-5万元,低端市场几百元一台的摄像机也到处可寻。然而,在如此巨额差异的非理性竞争背后到底又是一种如何样的生存 状态呢?低价竞争是否将对手排挤在外,依旧堵死了自己的后路?行业环境遭受了严峻破坏后,监控摄像机又该何去何从?本能够在平安都市和电子政务市场中共享一场盛宴的摄像机厂商们,却在不理性的价格战斗中两败俱伤。面对遍体鳞伤的摄像机市场,却又有如此多的厂商乐此不疲的做着“滑铁卢”的游戏。这到底是一个如何样的行业? 1、摄像机产业进展特点

中国CMOS图像传感器行业研究-行业发展概况

中国CMOS图像传感器行业研究-行业发展概况 (一)行业发展概况 1、集成电路行业 2010年以来,以智能手机、平板电脑为代表的新兴消费电子市场的兴起,以及汽车电子、工业控制、仪器仪表、智能照明、智能家居等物联网市场的快速发展,带动整个半导体行业规模迅速增长。2017年,全球半导体行业整体销售额达到4,122亿美元,同比增长21.63%,增速创七年来新高。 数据来源:全球半导体贸易协会(WSTS)

根据全球半导体贸易协会(WSTS)预测,2018年全球半导体市场规模将达到4,512亿美元,同比增长9.5%。 数据来源:全球半导体贸易协会(WSTS)

2、CMOS图像传感器行业 (1)图像传感器行业概况 图像传感器为物联网感知层众多传感器中最重要的一种核心传感器。图像传感器主要采用感光单元阵列和辅助控制电路获取对象景物的亮度和色彩信号,并通过复杂的信号处理和图像处理技术输出数字化的图像信息。图像传感器中的感光单元一般采用感光二极管(Photodiode)实现光电信号的转换。感光二极管在接受光线照射之后能够产生电流信号,电流的强度与光照的强度成正比例关系。每个感光单元对应图像传感器中的一个像元,像元也被称为像素单元(Pixel)。 图像传感器主要分为CCD图像传感器和CMOS图像传感器两大类。CCD和CMOS 都是利用感光二极管进行光电转换,将图像转换为数字信号,但二者在感光二极管的周边信号处理电路和感光单元产生的电信号的处理方式不同。 CCD和CMOS的感光元件在接受光照之后直接输出的电信号都是模拟信号。在CCD传感器中,每一个感光元件都不对此作进一步的处理,而是将它直接输出到下一个感光元件的存储单元,结合该元件生成的模拟信号后再输出给第三个感光元件,依次类推,直到结合最后一个感光元件的信号才能形成统一的输出。由于感光元件生成的电信号非常微弱,无法直接进行模数转换工作,因此这些输出数据必须做统一的放大处理。由于CCD本身无法将模拟信号直接转换为数字信号,因此还需要一个专门的模数转换芯片进行处理,最终以数字图像矩阵的形式输出给专门的图像处

CCD与CMOS图像传感器的成像原理

工业相机,选择TEO CCD与CMOS图像传感器的成像原理你还在为不知道工业相机图像传感器的成像而苦恼吗?美国TEO为您做了以下解析,希望对工业相机爱好的朋友们有所帮助。 在接受光照之后,感光元件(感光二极管PD:photodiode)产生对应的电流,电流大小与光强对应,因此感光元件直接输出的电信号是模拟的。在CCD 传感器中,每一个感光元件都不对此作进一步的处理,而是将它直接输出到下一个感光元件的存储单元,结合该元件生成的模拟信号后再输出给第三个感光元件,依次类推,直到结合最后一个感光元件的信号才能形成统一的输出。 由于感光元件生成的电信号实在太微弱了,无法直接进行模数转换工作,因此这些输出数据必须做统一的放大处理—这项任务是由CCD传感器中的放大器专门负责,经放大器处理之后,每个像点的电信号强度都获得同样幅度的增大;但由于CCD本身无法将模拟信号直接转换为数字信号,因此还需要一个专门的模数转换芯片进行处理,最终以二进制数字图像矩阵的形式输出给专门的DSP 处理芯片。 而对于CMOS传感器,上述工作流程就完全不适用了。CMOS传感器中每一个感光元件都直接整合了放大器和模数转换逻辑,当感光二极管接受光照、产生模拟的电信号之后,电信号首先被该感光元件中的放大器放大,然后直接转换成对应的数字信号。 换句话说,在CMOS传感器中,每一个感光元件都可产生最终的数字输出,

工业相机,选择TEO 所得数字信号合并之后被直接送交DSP芯片处理—问题恰恰是发生在这里,CMOS感光元件中的放大器属于模拟器件,无法保证每个像点的放大率都保持严格一致,致使放大后的图像数据无法代表拍摄物体的原貌—体现在最终的输出结果上,就是图像中出现大量的噪声,品质明显低于CCD传感器。

2018年CMOS传感器行业分析报告

2018年CMOS传感器行业分析报告 2018年11月

目录 一、百亿美金CMOS传感器市场,增势强劲 (5) 1、变“光”为“数”,图像传感器精密而关键 (5) 2、CMOS传感器优势突出,已占图像传感器市场9成份额 (7) (1)CMOS传感器实际上是一个高度集成的图像系统 (7) (2)CMOS图像传感器近年来增长迅速,已接近全面替代CCD 传感器 (7) (3)MOS传感器凭借优异的性价比,将继续保持绝对的优势地位,并继续挤压CCD 的市场空间 (8) 3、终端应用爆发,CMOS传感器5年CAGR 10%以上 (9) (1)CMOS传感器今年销售额有望达到137亿美金,同时其出货量将继续保持10%以上年均增速 (9) (2)手机是CMOS传感器的最大应用市场,汽车、安防等新应用领域高速成长 (9) ①安防监控领域 (10) ②汽车电子领域 (10) ③医疗/科研领域 (11) ④工业系统领域 (11) 4、场景升级提出新需求,CMOS传感器加速演进 (12) 二、索尼/三星/豪威三巨头领跑,国内厂商主攻中低端市场 (14) 1、索尼:技术领先,稳坐头把交椅 (17) 2、三星:背靠集团资源,在消费领域异军突起 (20) 3、国内CMOS厂商:主要面向中低端市场,积极发展自主技术 (22) (1)思比科(Superpix) (22) (2)格科微(GalaxyCore) (24) (3)其他国产CMOS厂商 (25) 三、豪威有望登陆 A 股,开启发展新纪元 (26)

1、老牌CMOS传感器龙头,豪威拥有全球领先技术 (26) 2、经营业绩向上突破,毛利率稳中有升 (31) (1)豪威近三年营业收入持续上行 (31) (2)豪威营业收入主要来自手机、安防和汽车行业 (32) (3)CMOS传感器是豪威主要收入来源 (32) 3、联姻韦尔股份,豪威将打开发展的新篇章 (33) 四、重点上市公司简况 (38) 1、韦尔股份:拟收购豪威,有望成为A股顶级芯片设计商 (38) (1)国内领先的半导体设计和分销企业 (38) (2)拥有大量下游优质客户,从国产手机崛起中充分受益 (39) ①设计业务 (40) ②分销业务 (42) 2、富瀚微:引领“CIS+ISP”方案,图像处理芯片重磅玩家 (43) (1)“CIS+ISP”方案的引领者,加速了CMOS传感器在安防领域的普及 (43) (2)ISP芯片实力强劲,IPC芯片接力成长 (44) (3)公司2018前三季度营收同比减少,毛利率略有下降 (45) (4)ISP芯片占收入仍大头,IPC芯片提升迅速,但拖累整体毛利率 (45) (5)公司与安防龙头企业海康威视有着紧密的业务联系,同时不断开拓下游优质客 户 (46)

CMOS图像传感器的基本原理及设计考虑.

CMOS图像传感器的基本原理及设计考虑 摘要:介绍CMOS图像传感器的基本原理、潜在优点、设计方法以及设计考虑。 关键词:互补型金属-氧化物-半导体图像传感器;无源像素传感器;有源像素传感器 1引言 20世纪70年代,CCD图像传感器和CMOS图像传感器同时起步。CCD图像传感器由于灵敏度高、噪声低,逐步成为图像传感器的主流。但由于工艺上的原因,敏感元件和信号处理电路不能集成在同一芯片上,造成由CCD图像传感器组装的摄像机体积大、功耗大。CMOS图像传感器以其体积小、功耗低在图像传感器市场上独树一帜。但最初市场上的CMOS图像传感器,一直没有摆脱光照灵敏度低和图像分辨率低的缺点,图像质量还无法与CCD图像传感器相比。 如果把CMOS图像传感器的光照灵敏度再提高5倍~10倍,把噪声进一步降低,CMOS 图像传感器的图像质量就可以达到或略微超过CCD图像传感器的水平,同时能保持体积小、重量轻、功耗低、集成度高、价位低等优点,如此,CMOS图像传感器取代CCD图像传感器就会成为事实。 由于CMOS图像传感器的应用,新一代图像系统的开发研制得到了极大的发展,并且随着经济规模的形成,其生产成本也得到降低。现在,CMOS图像传感器的画面质量也能与CCD图像传感器相媲美,这主要归功于图像传感器芯片设计的改进,以及亚微米和深亚微米级设计增加了像素内部的新功能。 实际上,更确切地说,CMOS图像传感器应当是一个图像系统。一个典型的CMOS图像传感器通常包含:一个图像传感器核心(是将离散信号电平多路传输到一个单一的输出,这与CCD图像传感器很相似),所有的时序逻辑、单一时钟及芯片内的可编程功能,比如增益调节、积分时间、窗口和模数转换器。事实上,当一位设计者购买了CMOS图像传感器后,他得到的是一个包括图像阵列逻辑寄存器、存储器、定时脉冲发生器和转换器在内的全部系统。与传统的CCD图像系统相比,把整个图像系统集成在一块芯片上不仅降低了功耗,而且具有重量较轻,占用空间减少以及总体价格更低的优点。 2基本原理 从某一方面来说,CMOS图像传感器在每个像素位置内都有一个放大器,这就使其

中国cmos图像传感器芯片市场调查研究报告

竭诚为您提供优质文档/双击可除 中国cmos图像传感器芯片市场调查研 究报告 篇一:20xx年cmos图像传感器生产与消费市场调查及 主要生产厂商及其市场份额调研 20xx年cmos图像传感器生产与消费市场调查及主要生 产厂商及其市 场份额调研 报告目录来源:中国市场情报中心(cmic) 20xx年11月 报告简介 本报告研究全球与中国市场cmos图像传感器的发展现 状及未来发展趋势,分别从生产和消费的角度分析cmos图 像传感器的主要生产地区、主要消费地区以及主要的生产商。重点分析全球与中国市场的主要厂商产品特点、产品规格、不同规格产品的价格、产量、产值及全球和中国市场主要生产商的市场份额。 主要生产商包括: 索尼

三星 omniVision 安森美 aptina 日本东芝 韩国hynix海力士 格科微 思比科 比亚迪 台湾奇景光电 针对cmos图像传感器的特性,本报告可以将cmos图像传感器分为下面几类,主要分析这几类产品的价格、销量、市场份额及增长趋势。主要包括: 类型1 类型2 类型3 针对cmos图像传感器的主要应用领域,本报告提供主要领域的详细分析、每种领域的主要客户(买家)及每个领域的购买cmos图像传感器的规模、市场份额及增长率。主要应用领域包括: 应用1 应用2

应用3 本报告同时分析国外地区的生产与消费情况,主要地区包括北美、欧洲、日本、东南亚和印度等市场。对比国内与全球市场的现状及未来发展趋势。 主要章节内容: 第一章,分析cmos图像传感器行业特点、分类及应用,重点分析中国与全球市场发展现状对比、发展趋势对比,同时分析中国与全球市场的供需现在及未来趋势。 第二章,分析全球市场及中国生产cmos图像传感器主要生产商的竞争态势,包括20xx年和20xx年的产量、产值、市场份额及各厂商产品价格。同时分析行业集中度、竞争程度,以及国外先进企业与中国本土企业的swot分析。 第三章,从生产的角度,分析全球主要地区cmos图像传感器产量、产值、增长率、市场份额及未来发展趋势,主要包括美国、欧洲、日本、中国、东南亚及印度地区。 第四章,从消费的角度,分析全球主要地区cmos图像传感器的消费量、市场份额及增长率,分析全球主要市场的消费潜力。 第五章,分析全球cmos图像传感器主要厂商,包括这些厂商的基本概况、生产基地分布、销售区域、竞争对手、市场地位,重点分析这些厂商的cmos图像传感器产能、产量、产值、价格、毛利率及市场占有率。

CMOS图像传感器的研究进展_李继军.

. net 光学制造 1内蒙古工业大学理学院, 内蒙古呼和浩特 0100512北京师范大学遥感与 GIS 研究中心遥感科学国家重点实验室, 北京 10087! " 5 Li Jijun 1 Du Yungang 1Zhang Lihua 1, 2 Liu Quanlong 1Chen Jianrui 1 1School of Science, Inner Mongolia University of Technology , Hohhot, Inner Mongolia 010051, China, 2State Key Laboratory of Remote Sensing Science, Research Center of Remote Sensing &GIS, Beijing Normal University ,Beijing 100875, China #$$$$$$$$$$$% &’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ( 摘要 20世纪 90年代以来, 随着超大规模集成 (VLSI 技术的发展, CMOS 图像传感器显示出强劲的发展势头。简要介绍了 CMOS 图像传感器的结构及工作原理, 详细比较了 CMOS 图像传感器与 CCD 的性能特点, 讨论了 CMOS 图像传感器的关键技术问题,并给出了相应的解决途径,综述了 CMOS 图像传感器的国内外研 究现状, 最后对 CMOS 图像传感器的发展趋势进行了展望。 关键词光电子学; 传感器; CMOS 图像传感器; CCD ; 关键技术问题 Abstract

Since the 1990s, with the development of very large scale integration (VLSI,CMOS image sensors have been developed rapidly. The structure and working principle of CMOS image sensors are introduced. The performances between CMOS image sensor and CCD are compared in detail. The key technical problems of CMOS image sensors are discussed, and the related solving ways are given. The development situation of CMOS image sensors at home and abroad is reviewed, and the development trends of CMOS image sensors are prospected. Key words optoelectronics; sensor; CMOS image sensor; CCD; key technical problem 中图分类号 O436 doi :10.3788/LOP20094604.0045 1引言 CMOS 图像传感器的研究始于 20世纪 60年代末, 受当时工艺技术的限制, 发展和应用有限。直到 20世纪 90年代初,随着大规模集成电路设计技术和信号处理技术的提高, CMOS 图像传感器才日益受到重视 [1~3], 成为固体图像传感器的研发热点。近几年来, 随着集成电路设计技术和工艺水平的长足进步 , CMOS 图像传感器的一些性能指标已接近甚至超过CCD 图像传感器 [4~6]。 本文简要介绍了 CMOS 图像传感器的结构及工作原理,详细比较了 CMOS 图像传感器与 CCD 的性 能特点,讨论了 CMOS 图像传感器的关键技术问题, 并给出了相应的解决途径, 综述了 CMOS 图像传感器的国内外研究现状, 最后对 CMOS 图像传感器的发展趋势进行了展望。 2结构及工作原理 CMOS 图像传感器的总体结构如图 1所示

中国CMOS图像传感器行业研究-壁垒、发展环境、特征、经营模式、上下游行业

中国CMOS图像传感器行业研究 -壁垒、发展环境、特征、经营模式、上下游行业 (二)行业壁垒 集成电路设计行业属于知识密集型行业,对产业化运作有着很高的要求,在技术、产业整合、客户、人才、资金及规模等方面存在较高的进入壁垒,具体如下:1、技术壁垒 集成电路设计属于技术密集型行业,以CMOS图像传感器为例,设计技术涵盖了数字/模拟集成电路、集成电路CAD、集成电路测试方法学、微电子封装技术、微机电系统、集成电路与片上系统设计等诸多领域。集成电路设计行业产品高度的复杂性和专业性决定了进入本行业具有很高的技术壁垒,行业内企业核心技术积累都需要专业技术研究团队和产品开发团队长时间探索和不断积累才能获得。同时,由于集成电路技术及产品的更新速度很快,要求企业具备较强的持续创新能力,不断满足多变的市场需求。因此,行业内的后来者往往需要经历一段较长的技术摸索和积累时期,才能和业内已经占据技术优势的企业相抗衡。对新进入者而言,短期内无法突破核心技术壁垒。

(1)设计工程壁垒 随着电子产品对CMOS图像传感器分辨率、抗逆光性能、低光环境下辨识度等要求的不断提高,以及背照BSI、堆叠BSI、混合堆叠BSI等新技术的不断应用,芯片设计公司需要具备全方面的技术储备及快速设计能力,这对设计公司的技术积累和行业经验提出了较高要求。对后进者而言,这种积累和经验构成进入本行业的壁垒。(2)可靠性壁垒 芯片是电子产品的―心脏‖,对电子产品的稳定性和可靠性起到至关重要的作用。一旦出现芯片寿命过短、稳定性出现问题,电子产品将出现系统无法启动、使用寿命有限等故障,对客户带来较大损失。芯片设计公司需要经过多年的技术和市场的经验积累,才能储备大量的修正数据,确保产品可靠性。对新进入厂商而言,客户对其产品的可靠性需要做长时间的验证,产品和技术的可靠性构成其进入的壁垒。 2、产业整合壁垒 为确保产品质量、稳定的产能供应和成本控制,芯片设计企业需要与其主要的晶圆厂、封装及测试厂商建立紧密的合作关系。采用Fabless 模式的集成电路设计公司需经过较长时间的发展,采购量达到一定的规模后才能与主要晶圆厂、封测厂深入合作,建立起工艺设计与工艺制造的整合能力,进而拥有自主研发的制造工艺,最终确立在产业链上的关键竞争优势。对后进者而言,市场先入者已建立的、稳定运营的产业生态链构成其进入壁垒。

CMOS图像传感器的工作原理及研究

CMOS图像传感器的工作原理及研究 摘要:介绍了CMOS图像传感器的工作原理,比较了CCD图像传感器与CMOS图像传感器的优缺点,指出了CMOS图像传感器的技术问题和解决途径,综述了CMOS图像传感器的现状和发展趋势。 1 引言 自从上世纪60年代末期,美国贝尔实验室提出固态成像器件概念后,固体图像传感器便得到了迅速发展,成为传感技术中的一个重要分支,它是PC机多媒体不可缺少的外设,也是监控中的核心器件。互补金属氧化物半导体(CMOS)图像传感器与电荷耦合器件(CCD)图像传感器的研究几乎是同时起步,但由于受当时工艺水平的限制,CMOS图像传感器图像质量差、分辨率低、噪声降不下来和光照灵敏度不够,因而没有得到重视和发展。而CCD 器件因为有光照灵敏度高、噪音低、像素少等优点一直主宰着图像传感器市场。由于集成电路设计技术和工艺水平的提高,CMOS图像传感器过去存在的缺点,现在都可以找到办法克服,而且它固有的优点更是CCD器件所无法比拟的,因而它再次成为研究的热点。 70年代初CMOS传感器在NASA的Jet Pro pul sion Laboratory(JPL)制造成功,80年代末,英国爱丁堡大学成功试制出了世界第一块单片CMOS型图像传感器件,1995年像元数为(128×128)的高性能CMOS有源像素图像传感器由喷气推进实验室首先研制成功[1],1997年英国爱丁堡VLSI Ver sion公司首次实现了CMOS图像传感器的商品化,就在这一年,实用CMOS技术的特征尺寸已达到0.35mm,东芝研制成功了光敏二极管型APS,其像元尺寸为5.6mm×5.6mm,具有彩色滤色膜和微透镜阵列,2000年日本东芝公司和美国斯坦福大学采用0.35mm技术开发的CMOS-APS已成为开发超微型CMOS摄像机的主流产品。 2 技术原理 CCD型和CMOS型固态图像传感器在光检测方面都利用了硅的光电效应原理,不同点在于像素光生电荷的读出方式。CMOS图像传感器芯片的结构 [2]如图1所示。典型的CMOS像素阵列[3],是一个二维可编址传感器阵列。传感器的每一列与一个位线相连,行允许线允许所选择的行内每一个敏感单元输出信号送入它所对应的位线上(图2),位线末端是多路选择器,按照各列独立的列编址进行选择。根据像素的不同结构[4],CMOS图像传感器可以分为无源像素被动式传感器(PPS)和有源像素主动式传感器(APS)。根据光生电荷的不同产生方式APS又分为光敏二极管型、光栅型和对数响应型,现在又提出了DPS(digital pixel sensor)概念。

CMOS图像传感器的基本原理及设计

CMOS图像传感器的基本原理及设计考虑 1、引言 20世纪70年代,CCD图像传感器和CMOS图像传感器同时起步。CCD图像传感器由于灵敏度高、噪声低,逐步成为图像传感器的主流。但由于工艺上的原因,敏感元件和信号处理电路不能集成在同一芯片上,造成由CCD图像传感器组装的摄像机体积大、功耗大。CMOS图像传感器以其体积小、功耗低在图像传感器市场上独树一帜。但最初市场上的CMOS图像传感器,一直没有摆脱光照灵敏度低和图像分辨率低的缺点,图像质量还无法与CCD图像传感器相比。 如果把CMOS图像传感器的光照灵敏度再提高5倍~10倍,把噪声进一步降低,CMOS图像传感器的图像质量就可以达到或略微超过C CD图像传感器的水平,同时能保持体积小、重量轻、功耗低、集成度高、价位低等优点,如此,CMOS图像传感器取代CCD图像传感器就会成为事实。 由于CMOS图像传感器的应用,新一代图像系统的开发研制得到了极大的发展,并且随着经济规模的形成,其生产成本也得到降低。现在,CMOS图像传感器的画面质量也能与CCD图像传感器相媲美,这

主要归功于图像传感器芯片设计的改进,以及亚微米和深亚微米级设计增加了像素内部的新功能。 实际上,更确切地说,CMOS图像传感器应当是一个图像系统。一个典型的CMOS图像传感器通常包含:一个图像传感器核心(是将离散信号电平多路传输到一个单一的输出,这与CCD图像传感器很相似),所有的时序逻辑、单一时钟及芯片内的可编程功能,比如增益调节、积分时间、窗口和模数转换器。事实上,当一位设计者购买了CM OS图像传感器后,他得到的是一个包括图像阵列逻辑寄存器、存储器、定时脉冲发生器和转换器在内的全部系统。与传统的CCD图像系统相比,把整个图像系统集成在一块芯片上不仅降低了功耗,而且具有重量较轻,占用空间减少以及总体价格更低的优点。 2、基本原理 从某一方面来说,CMOS图像传感器在每个像素位置内都有一个放大器,这就使其能在很低的带宽情况下把离散的电荷信号包转换成电压输出,而且也仅需要在帧速率下进行重置。CMOS图像传感器的优点之一就是它具有低的带宽,并增加了信噪比。由于制造工艺的限制,早先的CMOS图像传感器无法将放大器放在像素位置以内。这种被称为PPS的技术,噪声性能很不理想,而且还引来对CMOS图像传感器的种种干扰。

2018年摄像头行业深度分析报告

2018年摄像头行业深度分析报告

投资要点 ?创新驱动摄像头市场规模不断扩大 摄像头是重要的成像设备。智能移动终端是摄像头最重要的应用领域,与汽车智能化、安防监控等应用一起带动市场规模持续扩大。双/多摄、3D 感测等创新是市场重要的推动力。 ?模组:市场规模持续增长,中国厂商实力强劲 模组封装环节主要在中国大陆、台湾及日韩地区。近年来有往大陆转移的趋势。国内外生产摄像头模组的企业众多,但行业具备高端模组生产能力的厂家数量有限。终端市场集中度提高,摄像头模组需求亦逐渐集中,竞争愈发激烈,加上高端产能投资庞大,大者恒大趋势逐渐形成。中国厂商实力强劲,代表企业有欧菲科技、舜宇光学、丘钛科技、信利国际等。 ?镜头:中国厂商追赶世界领先水平 镜头市场规模在手机、汽车、安防等应用带动下不断增长,数码相机市场则不断萎缩。镜头企业主要集中在东亚地区,大立光一枝独秀。以舜宇光学为代表的中国企业已经进入高端领域。手机镜头往轻薄短小、廉价的方向升级。未来混合镜头有望快速发展。 ?图像传感器:摄像模组的核心部分 图像传感器是摄像模组的核心部分。预计2016~2022年CIS市场规模年复合增长率10.5%,在智能移动终端出货量放缓的情况下,增长动力主要来自于双摄和3D感测相机。索尼的市场份额领先并持续引领技术潮流。中国企业通过收购豪威科技进入第一梯队,此外格科微等也有一席之地。 ?音圈马达:初步打破外企垄断,市场份额有望增加 2016年全球手机音圈马达消费量达到14.9亿颗,预计2016~2020年年复合增长率17.1%。从2013年开始,许多国内企业进入该市场。比路电子、新思考等企业已经具备供应闭环式马达、OIS马达以及高像素马达生产能力,抢回部分国内市场,初步打破了日韩企业的垄断。未来国内企业市场份额有望进一步提升。 ?滤光片:产品升级和新应用带来新需求 摄像头常使用红外截至滤光片减少色偏。双摄、高像素渗透带来对更高价值量的蓝玻璃滤光片的需求增长。3D感测的兴起催生了对窄带滤光片的需求。以欧菲科技、水晶光电为代表的中国厂商市场份额处于领先位置。

我国CMOS图像传感器行业研究

我国CMOS图像传感器行业研究 (一)行业发展概况 1、集成电路行业 2010年以来,以智能手机、平板电脑为代表的新兴消费电子市场的兴起,以及汽车电子、工业控制、仪器仪表、智能照明、智能家居等物联网市场的快速发展,带动整个半导体行业规模迅速增长。2017年,全球半导体行业整体销售额达到4,122亿美元,同比增长21.63%,增速创七年来新高。 数据来源:全球半导体贸易协会(WSTS)

根据全球半导体贸易协会(WSTS)预测,2018年全球半导体市场规模将达到4,512亿美元,同比增长9.5%。 数据来源:全球半导体贸易协会(WSTS)

2、CMOS图像传感器行业 (1)图像传感器行业概况 图像传感器为物联网感知层众多传感器中最重要的一种核心传感器。图像传感器主要采用感光单元阵列和辅助控制电路获取对象景物的亮度和色彩信号,并通过复杂的信号处理和图像处理技术输出数字化的图像信息。图像传感器中的感光单元一般采用感光二极管(Photodiode)实现光电信号的转换。感光二极管在接受光线照射之后能够产生电流信号,电流的强度与光照的强度成正比例关系。每个感光单元对应图像传感器中的一个像元,像元也被称为像素单元(Pixel)。 图像传感器主要分为CCD图像传感器和CMOS图像传感器两大类。CCD和CMOS 都是利用感光二极管进行光电转换,将图像转换为数字信号,但二者在感光二极管的周边信号处理电路和感光单元产生的电信号的处理方式不同。 CCD和CMOS的感光元件在接受光照之后直接输出的电信号都是模拟信号。在CCD传感器中,每一个感光元件都不对此作进一步的处理,而是将它直接输出到下一个感光元件的存储单元,结合该元件生成的模拟信号后再输出给第三个感光元件,依次类推,直到结合最后一个感光元件的信号才能形成统一的输出。由于感光元件生成的电信号非常微弱,无法直接进行模数转换工作,因此这些输出数据必须做统一的放大处理。由于CCD本身无法将模拟信号直接转换为数字信号,因此还需要一

CMOS图像传感器的性能

CMOS图像传感器的性能 2.2.1光电转换的原理和性能 当光子入射到半导体材料中,光子被吸收而激发产生电子–空穴对,称为光生载流子,如图2.3(a)所示。量子效率(Quantum Efficiency,QE)被定义为产生光生载流子的光子数占总入射光子数的百分比;或者被定义为η,即每个入射光子激发出来的光生载流子数。 式中,N e为被激发出来的电子数;N v为入射的光子数。不同的半导体材料对入射光的响应随其波长而变化,对于硅材料而言波长覆盖整个可见光范围,截止在 约1.12μm的近红外波长,如图2.3(b)所示。 (a)(b) 图2.3硅半导体材料的光照响应 光电信号的噪声水平决定了能检测到的最小光功率,即光电转换的灵敏度。硅光电传感器的噪声构成包括: ●来源于信号和背景的散粒噪声(shot noise);

●闪烁噪声(flicker noise),即1/f噪声; ●来源于电荷载流子热扰动的热噪声(thermal noise)。 噪声特性用噪声等效功率NEP(Noise Equivalent Power)表达,信号功 率和噪声等效功率的比值,被称为信噪比(Signal Noise Ratio,SNR),是描述传感器性能的重要参数之一。 当入射光子照射在半导体材料的PN结上,如图2.4(a)所示,如果在PN 结上施加电压使光生载流子形成电流,产生如图2.4(b)所示的I-V特性曲线。曲线上V>0的正向偏置一段被称为太阳能电池模式;PN结反向偏置V<0的平直一段曲线,被称为光电二极管模式;I-V特性的反向击穿段被称为雪崩模式。通常在图像传感器中,光电转换元件工作在光电二极管模式,如图2.3(c)所 示。图2.3中PN结的反向电流I leak为 I leak=I ph+I diff (a)(b) 图2.4PN结光电二极管示意图

摄像头模组行业调查报告

摄像头模组行业调查报告 摄像头模组行业,一直以来存在的问题就是一二线阵营差距逐渐拉大,马太效应越发明显。以下是整理的摄像头模组行业调查报告,欢迎阅读。 20xx年,小型摄像头模组(Compact Camera Module, CCM)产业规模达到200亿美元,预计2020年将达到510亿美元。手机和汽车产业的快速增长,点燃了CCM厂商的**,也促进了营收的增长。 未来五年,CCM市场规模增长将超过一倍 由于手机和汽车应用驱动,预计2014-2020年CCM行业的复合年增长率为16.8%,2020年市场规模将达到510亿美元。 我们已经见证了摄像头模组生态系统的日益复杂性,以及其对全球微电子产业的意义。小型摄像头模组主要应用于各种移动设备,发展速度惊人,融合了多种产业,如半导体产业(CMOS图像传感器和封装技术)、光学产业(光学透镜)、MEMS产业(自动对焦和光学图像稳定)。 光学镜头和传感器的市场发展轨迹不同,现在传感器市场正在以14%的复合年增长率成长,并出现数十亿美元的公司。CCM和自动对焦的制造市场仍然非常分散,复合年增长率约为20%,预计未来五年将经历整合。 但是,手机市场正在走向成熟,竞争很激烈,具有较高

风险,因此小型摄像头的差异化非常关键。更加轻薄的智能手机正迫使CCM厂商进入一轮重大的技术竞争,与此同时,大规模投资也是必须的,以满足上量需求。CCM产业受益于手机中高分辨率摄像头的应用,尤其是前置摄像头市场增长了一倍。当前市场营收主要受后置和前置摄像头的分辨率提升影响,但是新的应用,如汽车,也正在发挥重要作用。 汽车将很快成为摄像头模组的第二大应用 汽车已经对CCM生态系统产生显著影响。汽车摄像头已经从附属功能转变为必须的标准设备,并且欧盟和美国的法规也在鼓励这种转变。2014年,汽车摄像头模组的营收达到12亿美元,未来五年的复合年增长率为36%,预计2020年将达到79亿美元。这种快速增长使得CCM产业的第二梯队厂商受益匪浅,但是市场领导厂商的反应值得关注。由于摄像头模组应用从成像转至传感,汽车高级驾驶辅助系统(ADAS)应用是未来整个摄像头模组行业发展的最佳“晴雨表”。本报告详细分析了汽车摄像头模组市场和技术问题。 CCM产业正在快速适应不断变化的市场需求 目前CCM产业的主要竞争对手为亚洲企业,尤其是韩国和日本企业,但是我们也看到中国企业的崛起和台湾企业的重组。持续的价格战在该市场上蔓延,大部分企业都在中国或越南有业务。CCM产业有明显的市场分割,有些企业主要为电脑或低端手机提供500万像素以下的前置摄像头,另外

CMOS图像传感器的工作原理

CMOS图像传感器的工作原理 1引言 图像传感器是将光信号转换为电信号的装置,在数字电视、可视通信市场中有着广泛的应用。60年代末期,美国贝尔实脸室发现电荷通过半导体势阱发生转移的现象,提出了固态成像这一新概念和一维CCD(Charge-Coupled Device 电荷耦合器件)模型器件。到90年代初,CCD技术已比较成热,得到非常广泛的应用。但是随着CCD应用范围的扩大,其缺点逐渐暴露出来。首先,CCD技术芯片技术工艺复杂,不能与标准工艺兼容。其次,CCD技术芯片需要的电压功耗大,因此CCD技术芯片价格昂贵且使用不便。目前,最引人注目,最有发展潜力的是采用标准的CMOS(Complementary Metal Oxide Semiconductor 互补金属氧化物场效应管)技术来生产图像传感器,即CMOS图像传感器。CMOS图像传感器芯片采用了CMOS工艺,可将图像采集单元和信号处理单元集成到同一块芯片上。由于具有上述特点,它适合大规模批量生产,适用于要求小尺寸、低价格、摄像质量无过高要求的应用,如保安用小型、微型相机、手机、计算机网络视频会议系统、无线手持式视频会议系统、条形码扫描器、传真机、玩具、生物显微计数、某些车用摄像系统等大量商用领域。20世纪80年代,英国爱丁堡大学成功地制造出了世界上第一块单片CMOS图像传感器件。目前,CMOS图像传感器正在得到广泛的应用,具有很强地市场竞争力和广阔地发展前景。 2 CMOS图像传感器基本工作原理

右图为CMOS图像传感器的功能框图。 首先,外界光照射像素阵列,发生光电效应,在像素单元内产生相应的电荷。行选择逻辑单元根据需要,选通相应的行像素单元。行像素单元内的图像信号通过各自所在列的信号总线传输到对应的模拟信号处理单元以及A/D转换器,转换成数字图像信号输出。其中的行选择逻辑单元可以对像素阵列逐行扫描也可隔行扫描。行选择逻辑单元与列选择逻辑单元配合使用可以实现图像的窗口提取功能。模拟信号处理单元的主要功能是对信号进行放大处理,并且提高信噪比。另外,为了获得质量合格的实用摄像头,芯片中必须包含各种控制电路,如曝光时间控制、自动增益控制等。为了使芯片中各部分电路按规定的节拍动作,必须使用多个时序控制信号。为了便于摄像头的应用,还要求该芯片能输出一些时序信号,如同步信号、行起始信号、场起始信号等。 3象素阵列工作原理 图像传感器一个直观的性能指标就是对图像的复现的能力。而象素阵列就是直接关系到这一指标的关键的功能模块。按照像素阵列单元结构的不同,可以将

图像传感器的市场分析即将到来黄金时代

图像传感器的市场分析即将到来黄金时代 物联网时代到来的大背景下,CMOS图像传感器是一个极具活力与成长性的半导体细分市场。尤其在汽车、安防、工控等领域,具备较大提升空间,能够接力手机领域,成为后续增长主要动力。预计2018年全球CMOS传感器销售额将达到137亿美元,同比增长10%;2017-2022年出货量CAGR达11.7%。至2022年,CMOS传感器的全球销售额将达到190亿美金。 ▌百亿美金CMOS传感器市场,增势强劲 变“光”为“数”,图像传感器精密而关键 图像传感器是当今应用最普遍、重要性最高的传感器之一。其主要采用感光单元阵列和辅助控制电路获取对象景物的亮度和色彩信号,并通过复杂的信号处理和图像处理技术输出数字化的图像信息。 图像传感器中的感光单元一般采用感光二极管(photodiode)实现光电信号的转换。感光二极管在接受光线照射之后能够产生电流信号,电流的强度与光照的强度成正比例关系。 终端应用爆发,CMOS传感器5年CAGR10%以上 CMOS传感器今年销售额有望达到137亿美金,同时其出货量将继续保持10%以上年均增速。 得益于车载应用、机器视觉、人脸识别与安防监控的快速发展,以及多摄像头手机广泛普及,CMOS图像传感器市场规模不断扩大。 根据ICInsights统计,2017年全球CMOS图像传感器销售额为125亿美元,同比增长19%;预计2018年将达到137亿美元,同比增长10%。预计2017-2022年出货量CAGR达11.7%,销售额的CAGR为8.8%。 至2022年,CMOS传感器的全球销售额将达到190亿美金。 手机是CMOS传感器的最大应用市场,汽车、安防等新应用领域高速成长。

CMOS图像传感器产业现状

《CMOS图像传感器产业现状-2015版》 受到移动设备和汽车应用的驱动,2014-2020年CMOS图像传感器(CIS)产业将以10.6%的年复合成长率(CAGR)成长,预计2020年将达到162亿美元的市场规模。尽管智能手机应用仍然占据大部分市场份额,但是许多不同应用也逐渐成为CIS增长的动力,例如汽车、医疗和监控。 Status of the CMOS Image Sensor Industry report 2020年CMOS图像传感器市场规模将达到160亿美元 受到移动设备和汽车应用的驱动,2014-2020年CMOS图像传感器(CIS)产业将以10.6%的年复合成长率(CAGR)成长,预计2020年将达到162亿美元的市场规模。 尽管智能手机应用仍然占据大部分市场份额,但是许多不同应用也逐渐成为CIS增长的动力,例如汽车、医疗和监控也都浮现出巨大的市场机遇,相关厂商正在推动技术发展。我们2015年版CMOS图像传感器产业现状报告涵盖了所有这些CIS应用。 另一方面,一些CIS市场已经遭受急剧下降。功能手机和数码相机中的摄像头正在被智能手机摄像头取代,这些传统厂商正在处于痛苦的转型期,并导致行业进行整合。我们可以看到2014年发生很多并购事件,预计2015年还将发生。 CIS产业中新兴的市场趋势是令人兴奋的。在手机中,前置摄像头是非常普遍的,因为所有高端手机和智能手机都有两个摄像头。事实上,中国制造商正推动更高分辨率的前置摄像头的发展。这将显著影响微型相机模块的平均销售价格(ASP),从而导致低端厂商放弃亚百万像素(sub mega pixel)产品,开发500万像素以上的CIS产品。当然,这对CIS手机厂商的资本支出和技术组合路线图产生重大影响。这种趋势对于后置摄像头更加重要,其中紧凑性和性能都达到极致。手机已经成为CIS高性能/高出货量领域,而索尼便是其中的“领头羊”。 今年汽车市场表现不俗,特斯拉(Tesla)、日产(Nissan)与福特(Ford)等汽车制造商开始在汽车中部署更多摄影机功能,如倒车录影等。大多数CIS厂商“享受”30%-50%市场增长。但是,这仅仅是个开始,大多数CIS厂商都在看这个市场,预计在2020年,全球车用CMOS图像传感器市场将达到8亿美元。汽车市场将对CIS生态系统产生深远的影响。由于CMOS图像传感器逐渐从人们用的显示器中转移到机器传感应用,处理器和软件供应商将在传感器设计与营销方面成为主要的合作伙伴。

数码相机行业分析报告

数码相机行业分析报告 一.产业基本概况 (一)数码相机定义 数码相机,是数码照相机的简称,又名:数字式相机。是一种利用电子传感器把光学影像转换成电子数据的照相机。按用途分为:单反相机,卡片相机,长焦相机和家用相机等。数码相机是集微电子、光电子、传感器、新型显示、存储技术等新技术于一身的新型数字化产品,具有对图像信息的数字化采集、存储、处理、传输等多方面优越性。 (二)产业近况 近几年,数码相机产业平稳发展,特别是单反数码相机市场发展快速。2010年,佳能和尼康的出货规模都较2009年成长30%以上。2010年我国规模以上高技术制造业增加值占全部规模以上工业的比重为%。其中数码相机占全球的80%。高技术制造业为我国未来向高技术产业强国迈进奠定了坚实的基础。图表1、2均显示了我国家电用品保持着良好的增长,说明市场对家电的需求还没有饱和。 图表 1 2011年9月份居民消费价格主要数据 图表 2 2011年9月份社会消费品零售总额主要数据 资料来源:国家统计局网 二.主要公司分析

根据太平洋电脑网资料显示,2010年的数码相机市场占有率中(图表3),品牌竞争高度集中,索尼、佳能、三星、尼康等品牌消费者预期购买率合计达到60%。 而2011年第三季度 品牌关注度 (图表4), 中国消费数 码相机市场 中佳能以%的关注比例成为最受消费者关注的品牌,这一比例同上季度没有变化。索尼仍然为亚军,关注比例较上季度小幅上升了%。本季度中国消费数码相机市场的品牌格局相当稳定,品牌关注排名同上季度保持一致。 4 图表 3 2010年数码相机市场占有率 图表 4

从以上数据不难看出,目前抢占市场的主要还是日本机。以下是三大品牌数码相机的优劣势对比。 资料来源:笔者整理 三.过去主要影响因素分析 (一)社会文化因素 目前,社会文化因素是影响购买的一个重要因素。以往,购买数码相机的人群主要集中在四五十岁的男性,但该人群已向25-35岁具有稳定收入的年轻消费者转移。同时还发现,即使在网络非常发达的互联网时代,消费者并非在网上看好,直接在网上完成购买行为,%的消费者更愿意去终端的国美、苏宁等3C连锁卖场,实地购买、试用。相对于普通消费者选择在网上和国美、苏宁等终端卖场购买,专业人士更倾向于专业照相器材城去购买产品。 而数码相机外观设计也影响着购买行为。一个有力的例子就是宾得相机以外观为自己赢得了一片天空。 宾得单反相机以专业领域的高高在上的形象面世,直到近几年才逐步进入大众消费市场。黑色沉稳的外观设计和坚固可靠的机身成为单反相机给人的一贯印象。 而宾得自K-m开始,推出了红白黑三种色彩的机身。到了K-x,彩色机身成为了宾得的常规卖点,也使得众多对单反相机一贯印象为“傻大黑粗”的年轻摄影爱好者对其改观,很多追求个性的用户成为宾得的拥趸。到了最新的入门产品宾得K-r,更是除了提供120种以上配色的机身之外,还推出了

相关主题