搜档网
当前位置:搜档网 › TiO2 Single-Crystalline-1

TiO2 Single-Crystalline-1

TiO2 Single-Crystalline-1
TiO2 Single-Crystalline-1

电子束蒸发使用步骤

电子束蒸发使用步骤 一、前期准备工作 1、放基片材料(找准对应坩埚位置)。 2、将样品台和坩埚的两个挡板都挡上。 3、关门前,检查密封圈是否正常。 4、将放气和进Ar气口都拧紧。 二、抽真空 1、开供电电源开冷却水(约5min之后)开真空计开机械泵开粗抽阀(先开小一点,将门压紧后,再全打开)。 2、真空计压强小于10Pa时,关粗抽阀(屏幕上尾数显示为0,尾数代表10的几次方)。 3、开电磁阀开分子泵开关,点击运行(约6min之后,分子泵进入正常工作状态,转数逐渐增大,可达27000r/min)。 4、开高真空闸板阀,开到最大(真空正常为6.67×10-4 Pa,最小为6.67×10 -5 Pa)。 5、开步进电机开关,控制转数为10 r/min(通过观察,设置好转数,然后关挡板)。 三、开始镀膜 1、开E型枪电源,选择手动模式,按回车键确认(电压控制在6KV)。 2、确认屏幕上5个灯全绿。 3、点击屏幕上灯丝,调灯丝电流0.5A。 4、开气瓶,数值调为0.3左右开坩埚挡板(屏幕和遥控均可用),关基底挡板。 5、开高压,观察坩埚内是否有光斑。 6、调整X、Y位移,使光斑位于坩埚中央。调整X、Y幅度,使光斑较大且在坩埚内均匀 7、缓慢增大束流(手动遥控最下方中间的“蒸发调节旋钮”),直到观察坩埚内材料表面出现波纹状时停止,此时为坩埚内材料的束流最大值。(经验值:钛-束流值77左右)。 8、开膜厚仪,(提前设置好厚度,根据经验找出膜厚的误差范围)。 9、开基底挡板,开始计时。 10、关基底挡板,计时结束,镀膜完成。 四、镀膜完成,关闭设备 1、缓慢关束流,听到“滴”声关高压关挡板关灯丝关总电源。 2、降温30min左右。

半导体纳米材料的光学性能及研究进展

?综合评述? 半导体纳米材料的光学性能及研究进展Ξ 关柏鸥 张桂兰 汤国庆 (南开大学现代光学研究所,天津300071) 韩关云 (天津大学电子工程系,300072) 摘要 本文综述了近年来半导体纳米材料光学性能方面的研究进展情况,着重介绍了半导体纳米材料的光吸收、光致发光和三阶非线性光学特性。 关键词 半导体纳米材料;光学性能 The Optica l Properties and Progress of Nanosize Sem iconductor M a ter i a ls Guan B ai ou Zhang Gu ilan T ang Guoqing H an Guanyun (Institute of M odern Op tics,N ankaiU niversity,T ianjin300071) Abstract T he study of nano size sem iconducto r particles has advanced a new step in the understanding of m atter.T h is paper summ arizes the p rogress of recent study on op tical p roperties of nano size sem icon2 ducto r m aterials,especially emphasizes on the op tical2abso rp ti on,pho to lum inescence,nonlinear op tical p roperties of nano size sem iconducto r m aterials. Key words nano size sem iconducto r m aterials;op tical p roperties 1 引言 随着大规模集成的微电子和光电子技术的发展,功能元器件越来越微细,人们有必要考察物质的维度下降会带来什么新的现象,这些新的现象能提供哪些新的应用。八十年代起,低维材料已成为倍受人们重视的研究领域。 低维材料一般分为以下三种:(1)二维材料,包括薄膜、量子阱和超晶格等,在某一维度上的尺寸为纳米量级;(2)一维材料,或称量子线,线的粗细为纳米量级;(3)零维材料,或称量子点,是尺寸为纳米量级的超细微粒,又称纳米微粒。随着维数的减小,半导体材料的电子能态发生变化,其光、电、声、磁等方面性能与常规体材料相比有着显著不同。低维材料开辟了材料科学研究的新领域。本文仅就半导体纳米微粒和由纳米微粒构成的纳米固体的光学性能及其研究进展情况做概括介绍。2 半导体纳米微粒中电子的能量状态 当半导体材料从体块减小到一定临界尺寸以后,其载流子(电子、空穴)的运动将受限,导致动能的增加,原来连续的能带结构变成准分立的类分子能级,并且由于动能的增加使得能隙增大,光吸收带边向短波方向移动(即吸收蓝移),尺寸越小,移动越大。 关于半导体纳米微粒中电子能态的理论工作最早是由AL.L.Efro s和A.L.Efro s开展的[1]。他们采用有效质量近似方法(E M A),根据微粒尺寸R与体材料激子玻尔半径a B之比分为弱受限(Rμa B,a B=a e+ a h,a e,a h分别为电子和空穴的玻尔半径)、中等受限(a h

TiO2半导体纳米材料

材料学《第二课堂》课程论文题目:TiO2半导体纳米材料姓名: 学号:

目录 1. 课程设计的目的 (1) 2. 课程设计题目描述和要求 (1) 3. 课程设计报告内容 (1) 3.1 TiO2半导体纳米材料的特性 (1) 3.2 TiO2半导体纳米材料的制备方法 (3) 3.3 TiO2半导体纳米材料的表征手段 (3) 3.4 TiO2半导体纳米材料的发展现状与趋势 (4) 4. 结论 (5)

1.课程设计的目的 本课程论文的主要目的是论述TiO2半导体纳米材料,通过简要概述TiO2半导体纳米材料的特性、制备方法、表征手段及发展现状与趋势等相关方面的内容。通过这次课设,了解TiO2半导体纳米材料,巩固课堂上所学的有关纳米材料的有关知识,提高自己应用所学知识和技能解决实际问题的能力。 2.课程设计的题目描述及要求 课程设计的题目:TiO2半导体纳米材料 TiO2半导体纳米材料由于它具有不同于体材料的光学非线性和发光性质,在未来光开关、光存储、光快速转换和超高速处理等方面具有巨大的应用前景。本文就TiO2半导体纳米材料的主要制备方法与表征手段做一全面总结。 3.课程设计报告内容 3.1 TiO2半导体纳米材料的特性 1、光学特性 TiO2半导体纳米粒子(1~ 100 nm ) [2]由于存在着显著的量子尺寸效应, 因此它们的光物理和光化学性质迅速成为目前最活跃的研究领域之一, 其中TiO2半导体纳米粒子所具有的超快速的光学非线性响应及(室温) 光致发光等特性倍受世人瞩目。通常当半导体粒子尺寸与其激子玻尔半径相近时, 随着粒子尺寸的减小, 半导体粒子的有效带隙增加, 其相应的吸收光谱和荧光光谱发生蓝移, 从而在能带中形成一系列分立的能级[1]。 2、光电催化特性 1)TiO2半导体纳米粒子优异的光电催化活性 近年来, 对纳米TiO2半导体粒子研究表明: 纳米粒子的光催化活性均明显优于相应的体相材料。我们认为这主要由以下原因所致: ①TiO2半导体纳米粒子所具有的量子尺寸效应使其导带和价带能级变成分立的能级, 能隙变宽, 导带电位变得更负, 而价带电位变得更正。[1]这意味着TiO2半导体纳米粒子获得了更强的还原及氧化能力, 从而催化活性随尺寸量子化程度的提高而提高[5]。 ②对于TiO2半导体纳米粒子而言, 其粒径通常小于空间电荷层的厚度, 在离开粒子中心L距离处的势垒高度可以表述为[1]: 公式(1) 这里LD是半导体的Debye 长度, 在此情况下, 空间电荷层的任何影响都可忽略, 光生载流子可通过简单的扩散从粒子内部迁移到粒子表面而与电子给体或受体发生还原或氧化反应。计算表明: 在粒径为1Lm 的T iO 2 粒子中, 电子从体内扩散到表面的时间约为100n s, 而在粒径为10 nm 的微粒中只有10 p s。因此粒

钙钛矿型催化剂催化氧化NO讲解

钙钛矿型催化剂La1-x Ce x CoO3对一氧化氮的氧化催化研究 摘要 本文介绍了在钙钛矿氧化物中的NO的氧化性能的研究La1-x Ce x CoO3 (x = 0, 0.05, 0.1, 0.2, 0.3, 0.4)通过柠檬酸盐法合成钙钛矿型氧化物并以XRD, BETand XPS为特征。当使用铈替代催化剂时催化活性显著增强,并取得了当x=0.2时活性最大,但X越大活性会降低。分析表明,表面上吸附的氧对NO氧化成NO2起着重要的作用。在室温下,NO和O2共吸附层之下的表面化合物,通过红外光谱和TPD实验进行了研究。有三个品种形成在表明上分别是:桥接硝酸盐,次硝酸和单齿硝酸盐。热稳定性的顺序为:单齿硝酸盐> 次硝酸>桥接硝酸盐。其中,仅单齿硝酸盐在300摄氏度以上会分解,解除吸附变为NO2进入气相。当Ce的加入,单齿硝酸盐解脱吸附的温度变低,另外两个品种的吸附减少。这可能与表面上的钴的氧化状态有关。通过对表征结果和催化活性的数据的结合分析显示,大量吸附的氧,表面上少量的非活性化合物和较低的NO2接触吸附温度会有利于NO的氧化。 #2007爱思唯尔B.V.保留所有权利。 1 介绍 对NO x催化消除的广泛研究已进行了多年。然而,除去柴油发动机和过量氧气贫燃条件下的汽油发动机中的NO x仍然是一个挑战。在研制的几个NO X氧化环境转化的过程中NO2总是比NO更加受宠,例如NO x的储存和还原技术(NSR)[1],为去除氮氧化物和烟尘的连续再生陷阱技术(CRT)[2],选择性催化还原氮氧化物(SCR),尤其是某些N-所含物种如氨或尿素。[3-5]我们还发现,形成二氧化氮是在NO的SCR的碳氢化合物机制的重要一步[6.7]。一些研究人员也开发了几种更复杂的系统,例如'VHRO系统'(V= 对NO到NO2的氧化催化剂,H =水解催化剂,R = SCR催化剂,O =对NH3的氧化催化剂)[5]和IAR法(在氧化和还原剂的还原催化剂之间加入)[8]。在这些系统中,它们都在NO的氧化添加还原剂之前设置一个预催化剂,使还原剂的效率得到显著改善。总之,在一氧化氮氧化为二氧化碳的过程中放置催化剂是使人非常感兴趣的。 铂基催化剂是现在最常用于NO氧化的催化剂。Despre′s Joe¨l等,观察到铂/二氧化硅(2.5重量%)可在300摄氏度时转换约80%的NO为NO2[9]。并且当铂

钢板分类及用途

钢板分类及用途 钢板、钢带、镀涂钢板、不锈钢板与硅钢片 钢板是钢材四大品种(板、管、型、丝)之一。 钢板按厚度分为薄板和厚板两大规格。 薄钢板是用热轧或冷轧方法生产的厚度在0.2-4mm之间的钢板。薄钢板宽度在500-1800mm之间。根据不 同的用途,薄钢板采用不同材质钢坯轧制而成。通常采用材质有普碳钢、优碳钢、合金结构钢、碳素工具钢、不锈钢、弹簧钢和电工用硅钢等。它们主要用于汽车工业、航空工业、搪瓷工业、电气工业、机械工 业等部门。薄钢板除轧制后直接交货之外,还有经过酸洗的、镀锌和镀锡等。 厚钢板是厚度在4mm以上的钢板的统称,在实际工作中,常将厚度小于20mm的钢板称为中板,厚度> 20mm至60mm的钢板称为厚板,厚度> 60mm的钢板则需在专门的特厚板轧机上轧制,故称特厚板。厚钢 板的宽度从1800mm-4000mm。厚板按用途又分造船钢板、桥梁钢板、锅炉钢板、高压容器钢板、花纹钢板、汽车钢板、装甲钢板和复合钢板等。 钢板的一个分支是钢带,钢带实际上是很长的薄板,宽度比较小,常成卷供应,也称为带钢。钢带常在多 机架连续式轧机上生产,切成定尺长度后就是钢带。 一、中、厚板 (一)普通中、厚钢板 1、普碳钢沸腾钢板(GB3274-88) 普碳钢沸腾钢板顾名思义是由普通碳素结构钢的沸腾钢热轧制成的钢板。沸腾钢是一种脱氧不完全的钢 材。 沸腾钢含碳量低,且由于不用硅铁脱氧,故钢中含硅量常<0.07%。沸腾钢的外层是在沸腾状态下结晶的,所以表层纯净、致密,表面质量好,加工性能良好。沸腾钢没有大的集中缩孔,用脱氧剂少,钢材成本低。沸腾钢心部杂质多,偏析较严重,力学性能不均匀,钢中气体含量较多,韧性低、冷脆和时效敏感性较大,焊接性能较差,故不适用于制造承受冲击截荷,在低温下工作的焊接结构件和其他重要结构件。 (1)主要用途 沸腾钢板大量用制造各种冲压件、建筑及工程结构和一些不太重要的机器结构和零件。 (2)材质的牌号、化学成分和力学性能 符合GB700-79(88)(普通碳素结构钢技术条件)中沸腾钢的规定。 (3)钢板规格尺寸 热轧厚钢板厚度为4.5-300mm。 (4)生产单位 普碳沸腾钢板由鞍钢、武钢、马钢、太钢、重庆钢厂、邯郸钢铁总厂、新余钢厂、柳州钢厂、安阳钢钢公司、营口中板厂和天津钢厂等生产。 2、普碳钢镇静钢板(GB3274-88) 普碳镇静钢钢板是由普通碳素结构钢镇静钢坯热轧制成的钢板。镇静钢是脱氧完全的钢,钢液在注锭前用 锰铁、硅铁和铝等进行充分脱氧,钢液在钢锭模中较平静,不产生沸腾状态,故得名为镇静钢。 镇静钢的优点是化学成分均匀,所以各部分的机械性能也均匀,焊接性能和塑性良好、抗腐蚀性较强。但 表面质量较差,有集中缩孔,成本也较高。 (1)主要用途 普通镇静钢板主要用于生产在低温下承受冲击的构件、焊接结构及其他要求较高强度的结构件。 (2)材质的牌号、化学成分和力学性能 符合GB700-79(88)(普通碳素结构钢技术条件)中镇静钢的规定。参阅型钢等部分。 (3)钢板规格尺寸 热轧厚板厚度4.5-300mm。 (4)生产单位 普碳镇静钢板由鞍钢、武钢、舞阳钢铁公司、马钢、太钢、重庆钢厂、邯郸钢铁总厂、新余钢厂、柳州钢厂、安阳钢铁公司、天津钢厂、营口中板厂、上钢一、三厂、韶关钢铁厂和济南钢铁厂等生产。 3、低合金结构钢钢板(GB3274-88) 低合金结构钢板是由低合金结构钢热轧制成。低合金钢板都是镇静钢和半镇静钢钢板。其优点是强度较高、性能较越、能节省大量钢材、减轻结构重量等。 (1)主要用途 低合金结构钢板越来越广泛用于机械制造和金属结构件等。 (2)材质的牌号、化学成分 参见型钢类有关部分。 (3)钢板规格尺寸 热轧钢板厚度为4.5-300mm。 (4)生产单位 鞍钢、武钢、舞阳钢铁公司、马钢、重庆钢厂、新余钢厂、柳州钢厂、昆明钢铁公司、天津钢厂、韶关特 钢厂、安阳钢铁公司、上钢一、三厂和太钢等。

电子束蒸发台操作流程

TF500 操作流程 1 操作安全 警告 请遵守如下给出的安全说明并注意适当的防范措施。否则,可能导致人员伤亡 和设备损坏。 在您操作任何部件之前请阅读所有相关的说明。 TF500的表面或部件可能很热或很冷。请不要触碰热的或冷的表面,比 如泵体,材料,夹具,真空腔体和连有石英加热并有其他排气工艺的部 件。 请保持所有配件柜处于闭锁状态。请不要把钥匙留在锁上。 在腔体打开的时候,电子枪挡板是可以转动的。操作员需注意,因为挡

板不留意的转动可能导致人员伤害并导致设备损坏。 2 TF500启动 2.1 启动TF500 1. 启动冷却水源。 2.启动压缩气体源。 3.启动充气气体源。 4.请确保在19寸控制柜面板上的所有部件的控制都处于“关”的位置。 5.打开TF500的电源空气开关,确保EMO松开。按下前面板“I/O”按钮启 动设备,然后按“Reset”按钮给各个部件加电自检。 6.打开电脑,进入Win7的密码为admin,SCADA软件将在win7中自动打 开,点“Start”开始运行SCADA软件, SCADA软件将初始化并加载各部件 (注意!不要关闭设备自动打开的其他界面),在主软件界面登陆相应的 权限,进入组态的CONTROL SCREEN,按按钮。抽真空系统 随后将会启动。

7.当系统状态为“TURBO PUMP READY”,这就表示腔体已经准备好了,可 以对腔体抽真空开始做工艺了。 2.2 装载TF500腔体 警告 在大气环境下(比如已经充气),基片工作台可能还是旋转的。当您的手在腔体里或者其他在旋转基片上存有会伤害您自己的风险时,请注意不要旋转 工作台。 请参考PC操作的补充材料“PC控制”文件。 当腔体处于真空状态,如果可以请先按按钮再按 按钮对腔体进行充气。充气阀打开并对腔体充气,并在腔体充气时间结束后自动关闭充气阀门,如果门已经打开,充气时间还未结束,请再 次按下键关闭充气气源。

半导体纳米材料的制备方法

摘要:讨论了当前国内外主要的几种半导体纳米材料的制备工艺技术,包括物理法和化学法两大类下的几种,机械球磨法、磁控溅射法、静电纺丝法、溶胶凝胶法、微乳液法、模板法等,并分析了以上几种纳米材料制备技术的优缺点关键词:半导体纳米粒子性质;半导体纳米材料;溶胶一凝胶法;机械球磨法;磁控溅射法;静电纺丝法;微乳液法;模板法;金属有机物化学气相淀积引言 半导体材料(semiconductormaterial)是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)。相对于导体材料而言,半导体中的电子动能较低,有较长的德布罗意波长,对空间限域比较敏感。半导体材料空间中某一方向的尺寸限制与电子的德布罗意波长可比拟时,电子的运动被量子化地限制在离散的本征态,从而失去一个空间自由度或者说减少了一维,通常适用体材料的电子的粒子行为在此材料中不再适用。这种自然界不存在,通过能带工程人工制造的新型功能材料叫做半导体纳米材料。现已知道,半导体纳米粒子结构上的特点(原子畴尺寸小于100nm,大比例原子处于晶界环境,各畴之间存在相互作用等)是导致半导体纳米材料具有特殊性质的根本原因。半导体纳米材料独特的质使其将在未来的各种功能器件中发挥重要作用,半导体纳米材料的制备是目前研究的热点之一。本文讨论了半导体纳米材料的性质,综述了几种化学法制备半导体纳米材料的原理和特点。

2.半导体纳米粒子的基本性质 2.1表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径变小,比表面积将会显著增大,说明表面原子所占的百分数将会显著地增加。对直径大于0.1微米的颗粒表面效应可忽略不计,当尺寸小于0.1微米时,其表面原子百分数激剧增长,甚至1克超微颗粒表面积的总和可高达100平方米,这时的表面效应将不容忽略。 随着纳米材料粒径的减小,表面原子数迅速增加。例如当粒径为10nm 时,表面原子数为完整晶粒原子总数的20%;而粒径为1nm时,其表面原子百分数增大到99%;此时组成该纳米晶粒的所有约30个原子几乎全部分布在表面。由于表面原子周围缺少相邻的原子:有许多悬空键,具有不饱和性,易与其他原子相结合而稳定下来,故表现出很高的化学活性。随着粒径的减小,纳米材料的表面积、表面能及表面结合能都迅速增大。 超微颗粒的表面与大块物体的表面是十分不同的,若用高倍率电子显微镜对金超微颗粒(直径为2*10-3微米)进行电视摄像,实时观察发现这些颗粒没有固定的形态,随着时间的变化会自动形成各种形状(如立方八面体,十面体,二十面体多李晶等),它既不同于一般固体,又不同于液体,是一种准固体。在电子显微镜的电子束照射下,表面原子仿佛进入了“沸腾”状态,尺寸大于10纳米后才看不到这种颗粒结构的不稳定性,这时微颗粒具有稳定的结构状态。 因此想要获得发光效率高的纳米材料,采用适当的方法合成表面完好的半导体材料很重要。 2.2量子尺寸效应 量子尺寸效应--是指当粒子尺寸下降到某一数值时,费米能级附近的电子能级由准连续变为离散能级或者能隙变宽的现象。当能级的变化程度大于热能、光能、电磁能的变化时,导致了纳米微粒磁、光、声、热、电及超导特性与常规材料有显著的不同。当半导体材料从体相减小到某一临界尺寸(如与电子的德布罗意波长、电子的非弹性散射平均自由程和体相激子的玻尔半径相等)以后,其中的电子、空穴和激子等载流子的运动将受到强量子封

钢材的分类和性能

一、钢材相较于其他工程材料的优缺点 优点: 1、强度高、塑性、耐热性、韧性好。 2、材质均匀,工作可靠性高。 3、钢结构制作简便,施工周期短,具有良好的装配性。 4、钢具有可焊性。 5、钢材具有不渗漏性,便于做成密闭结构。 6、钢材更接近于匀质和各向同性体。 缺点: 1、钢材耐腐蚀性差。 2、钢材耐热但不耐火。 3、保温效果差。 4、易产生扭曲。 5、特有的冷桥问题(北方是"冷桥"现象多发的地区,因为冬天北方天气比较寒冷,室内外温度差异较大,冷空气进入房屋后与热空气结合而形成水雾吸附于墙体,便会出现房屋潮湿、霉变的现象)。 二、钢材的分类及特性 1、按化学成分分类:碳素钢、合金钢 碳素钢:①低碳钢(C≤0.25%);②中碳钢(0.25≤C≤0.60%);③高碳钢(C≥0.60%)。合金钢:①低合金钢(合金元素总含量<5%);②中合金钢(5%≤合金元素总含量≤10%); ③高合金钢(合金元素总含量>10%)。 2、按用途分类:工程用钢、渗碳钢、碳素工具钢、特殊性能钢 工程用钢:普通碳素结构钢、.低合金结构钢、钢筋钢;渗碳钢:渗氮钢、表面淬火用钢、易切结构钢、冷塑性成形用钢; 碳素工具钢:合金工具钢、高速工具钢; 特殊性能钢:不锈耐酸钢、耐热钢、电热合金钢、耐磨钢、低温用钢、电工用钢。 3、按冶炼方法分类:按炉种分、按脱氧程度和浇注制度分 按炉种分:①平炉钢(酸性平炉钢、碱性平炉钢)②转炉钢(酸性转炉钢、碱性转炉钢)③电炉钢(电弧炉钢、电渣炉钢、感应炉钢、电子束炉钢) 按脱氧程度和浇注制度分:沸腾钢、半镇静钢、镇静钢、特殊镇静钢 4、按断面不同分类:线材、型材、板材、管材 线材:普线、高线、螺纹钢…… 型材:工字钢、槽钢、角钢、方钢、重轨、高工钢、H 型钢 板材:中厚板、容器板、中板、碳结板、锅炉板、低合金板 管材:焊管、不锈钢管、热镀锌管、冷镀锌管、无缝管、螺旋管 5、按品质分类:普通钢、优质钢、高级优质钢 普通钢(P≤0.045%,S≤0.050%) 优质钢(P、S 均≤0.035%) 高级优质钢(P≤0.035%,S≤0.030%)

纳米二氧化钛

纳米二氧化钛光催化性能的测试 一、实验导读 1.半导体光催化剂 半导体介于导体和绝缘体之间,在未激发的具有能带结构的半导体电子结构中,大多数电子处于价带内,而导带内则因能级较高处于电子缺乏状态。导带和价带的过渡区称为带隙或禁带,其能量之差被称为能隙或禁带宽度,用E g表示,E g的大小代表了价带电子跃迁至导带的难易程度。纳米TiO2等半导体的主要特征——宽禁带的存在,其优异独特的电、磁、光学等性质的表现也是由于它的存在而导致的。 宽禁带半导体其价带上的电子一旦受到一个具有高于其禁带宽度能量hv 的光照射后,能使其分子轨道中的电子(e-)离开价带(VB)跃迁到导带(CB)上,并在价带上产生相应的光生空穴(h+),同时在导带上形成光生电子(e-)。在电场的作用下,两者发生分离,纳米半导体粒子因其尺寸很小,光激发产生的电子和空穴很快到达纳米粒子表面,导致原本不带电的粒子表面的二个不同部分出现了极性相反的二个微区——光生电子和光生空穴。价带空穴是良好的氧化剂,导带电子是良好的还原剂,在半导体光催化反应中,与吸附在催化剂表面的污染物分子发生氧化还原反应。 跃迁到导带上的电子和价带上的空穴可能重新复合,并产生热能或以辐射方式散发掉。但是当半导体光催化剂存在表面缺陷、合适的俘获剂、或者电场作用等因素时,电子和空穴的合并就得到了拟制。同时纳米半导体粒子所具有的量子尺寸效应使其导带和价带能级变为分立的能级,能隙变宽,使其电子-空穴对具有更正的价带电位和更负的导带电位,因而具有更高的氧化能力和还原能力。而且粒子越小,电子和空穴达到粒子表面的速度越快,电荷分离效果越好,电子与空穴复合几率反而越小,从而提高了纳米半导

电子束蒸发系统操作步骤

电子束蒸发系统操作步骤 抽真空→热蒸发/电子枪操作→ 关闭热蒸发/电子枪系统→关闭真空系统 抽真空 1.关闭进气阀,开冷却水,打开总电源(仪器柜后面与前面) 2.将抽气管子放窗外,打开冷却水报警(鸣叫表示分子泵冷却水未开) 3.开机械泵,电磁阀1,开角阀(先慢后快) 4.开真空计,当真空度高于10帕时,关闭角阀 5.电磁阀2,开插板阀(双手操作),开分子泵 6.当运行分子泵后,真空示数正常下降,关闭真空计 电子枪系统操作 1.(当真空计读数低于6.7×10-3Pa),开内5开关 2.按扫描键(柜门灯亮,开电子枪冷却水,枪水流灯亮,X电流0.8A,Y 电流0A) 3.枪灯丝电源(0.4A,电压60V,预热3至5分钟) 4.束流控制调为手动,打开高压8Kv 5.检查束流是否最小,按手控仪上高压键,稳定2分钟 6.慢慢增加束流(顺时针旋增大,不同金属蒸发束流参数不同,需保存) 7.调节光斑位置(X顺时针向下,Y顺时针向右) 8.打开膜厚仪冷却水,打开膜厚仪,打开样品台挡板

关闭电子枪系统过程 1.束流慢慢调到最小,关闭手控仪上高压,关闭8KV开关 2.枪灯丝电流关闭,关闭扫描键,关闭内5开关 关闭真空系统过程(电子束做完应等待半小时或更长时间才关闭真空) 1.停止分子泵,关闭插板阀,分子泵转速为0,电磁阀中间 2.分子泵停止半小时后,停止机械泵,关闭真空计,关闭总电源(柜门前后),关冷却水 膜厚仪操作(先打开膜厚仪冷却水) Setting: 进入参数设置→移动光标到参数类型(setting只按一次,若多按请继续按setting直到回到“层次”);↑,↓:更改参数(层次,材料,方式),厚度,密度,声阻抗按数字直接输入;begin:按两次测膜厚;operating:停止镀膜;delete:镀膜结束;再按operating回到基本显示状态 热蒸发操作 压缩机操作 1.电源(红色把)竖直→关闭;水平→打开 2.气路(0.25MPa)平直→打开;垂直→关闭 旋钮:控制气压大小

纳米材料论文:纳米材料的应用分析

纳米材料论文: 纳米材料的应用分析 摘要: 充满生机的二十一世纪,以知识经济为主旋律和推动力正引发一场新的工业革命,节省资源、合理利用能源、净化生存环境是这场工业革命的核心,纳米技术在生产方式和工作方式的变革中正发挥重要作用,它对化工行业产生的影响是无法估量的。主要介绍纳米材料在化工领域中的几种应用。 关键词: 纳米材料;化工领域;应用 纳米材料(又称超细微粒、超细粉末)是处在原子簇和宏观物体交界过渡区域的一种典型系统,其结构既不同于体块材料,也不同于单个的原子。其特殊的结构层次使它具有表面效应、体积效应、量子尺寸效应等,拥有一系列新颖的物理和化学特性,在众多领域特别是在光、电、磁、催化等方面具有非常重大的应用价值。 1 纳米材料的特殊性质 力学性质。高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳 迷材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。 磁学性质。当代计算机硬盘系统的磁记录密度超过cm2,在这情况下,感应法读出磁头和普通坡莫合金磁电阻磁头的磁致电阻效应为3%,已不能满足需要,而纳米多层膜系统的巨磁电阻效应高达50%,可以用于信息存储的磁电阻读出磁头,具有相当高的灵敏度和低噪音。 电学性质。由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。 热学性质。纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。 2 纳米材料在工程上的应用 纳米材料的小尺寸效应使得通常在高温下才能烧结的材料如Si C,BC等在纳米尺度下在较低的温度下即可烧结,另一方面,纳米材料作为烧结过程中的活性添加剂使用也可降低 烧结温度,缩短烧结时间。由于纳米粒子的尺寸效应和表面效应,使得纳米复相材料的熔点和相转变温度下降,在较低的温度下即可得到烧结性能良好的复相材料。由纳米颗粒构成的纳米陶瓷在低温下出现良好的延展性。纳米Ti O2陶瓷在室温下具有良好的韧性,在180°C下经受弯曲而不产生裂纹。纳米复合陶瓷具有良好的室温和高温力学性能,在切削刀具、轴承、汽车发动机部件等方面具有广泛的应用,在许多超高温、强腐蚀等许多苛刻的环境下起着其它材料无法取代的作用。随着陶瓷多层结构在微电子器件的包封、电容器、传感器等方面的应用,利用纳米材料的优异性能来制作高性能电子陶瓷材料也成为一大热点。有人预计纳米陶瓷很可能发展成为跨世纪新材料,使陶瓷材料的研究出现一个新的飞跃。纳米颗粒添加到玻璃中,可以明显改善玻璃的脆性。无机纳米颗粒具有很好的流动性,可以用来制备在某些特殊场合下使用的固体润滑剂。 3 纳米材料在在催化方面的应用 催化剂在许多化学化工领域中起着举足轻重的作用,它可以控制反应时间、提高反应效率和反应速度。大多数传统的催化剂不仅催化效率低,而且其制备是凭经验进行,不仅造成生产原料的巨大浪费,使经济效益难以提高,而且对环境也造成污染。纳米粒子表面活性中心多,

纳米半导体材料在微电子技术中的应用探究

纳米半导体材料在微电子技术中的应用探究 摘要 本文先简短介绍了纳米材料的几种量子效应,而后根据半导体发展国际技术路线图(ITRS)所提出的特征尺度减小给微电子技术带来的问题,重点介绍了碳纳米管和石墨烯两种有望突破物理极限束缚的新型纳米半导体材料。作为科普性的探究论文,本文没有深究物理、化学机理,而是将重点放在两者在后摩尔时代的微电子技术应用上,指出了两者在集成电路、纳电子器件甚至太赫兹技术、量子信息学中的可能应用。 关键词:碳纳米管石墨烯纳米材料微电子技术 Abstract This paper briefly introduces the quantum mechanism of nano-semiconductor-materials, and then introduces particularly Carbon Nanotube and Graphene as two possible solutions to the physical limitations to the microelectronics, proposed by the International Technology Roadmap for Semiconductors. As a paper aimed at introduction, we focus on the applications of the two materials rather than their theoretical principles and points out their possible prospects in integrated circuits, nano-microelectronic devices, Terahertz technology, and quantum information. Key words: Carbon Nanotube Graphene Nano-materials microelectronics

钙钛矿型催化材料的制备

引言 (1) 1.钙钛矿型催化剂的结构 (1) 2.钙钛矿型催化材料的制备方法 (2) 2.1固相反应法 (2) 2.2共沉淀法 (2) 2.3非晶态配合物法 (2) 2.4溶胶-凝胶法 (2) 2.5机械混合法 (4) 2.6水热合成法 (4) 2.7燃烧合成法 (5) 结论 (7) 参考文献 (8) 致谢 (9)

钙钛矿型氧化物具有独特的物理性质(如铁磁性、铁电性、超导性、热导性、吸附性等)。更重要的是,由于钙钛矿型氧化物在元素组配和晶体结构方面具有灵活的可“化学剪裁”的设计特点使得此类材料在催化氧化、环境催化、催化加氢、加氢裂解、光催化、固体燃料电池及化学传感器等方面得到了广泛的研究和应用。钙钛矿型氧化物是一类完全氧化型催化材料,加之其化学结构的高温稳定性,使它们在煤、天然气和燃料催化燃烧等方面的应用日益受到重视,成为催化化学领域的研究热点,同时钙钛矿型催化材料的制备成为钙钛氧化物新的研究方向。 1.钙钛矿型催化剂的结构 钙钛矿最初是指以CaTiO3形式存在的无机矿物,后来就成为具有化学式ABO且与CaTiO3有相同晶体结构类型化合物的代称。结构与天然钙钛矿ABO3类似的稀土复合氧化物是目前研究较多的具有多种特殊物理化学性能的新型固体材料之一。 理想的钙钛矿型复合氧化物ABO3为立方结构,如图1所示。在这中,A位为半径较大的稀土金属离子,周围有12个氧阴离子配位,形成积,处于这些八面体所构成的空穴中心;B位为半径较小的过渡金属离子阴离子为6配位,B位过渡金属离子被八面体分布的氧所包围,;O位于立条棱的中心,见图1。钙钛矿稳定性主要来自于刚性的BO6八面体堆积伦(Madelung)能。在ABO3计量化合物中,为满足电中性要求,A n+、B m+是:n+m=6,但没有A的价态比B的高的化合物。这种配位型式和立方最密每个堆积球周的配位情况是相同的。因此要求B是优先选用八面体配位子。占据大十二面体间隙的A离子大小必须合适。这是由于十二面体和八境中,A和B的稳定性需要限制了A和B化合的可能性,并且在氧化物骨架中大的正离子,由于它要和氧负离子作立方最密堆积,所以A的大小应和氧的大小相当,B离子是小的离子,处于八面体配位之中。

钙钛矿催化剂的改性与性能研究

!!塑丝丝塑丝!!!!生蔓!!塑!!!!查钙钛矿催化剂的改性与性能研究。 朱志杰,,唐有根1,宋永江2,罗继2 (1.中南大学化学化工学院电源及其材料研究所,湖南长沙4l0083 2.丰日电气集团股份有限公司,湖南长沙410331) 摘要:在溶胶凝胶法的基础上.通过添加不同量的活性炭到凝胶当中的方法,制备了纳来级的钙钛矿催化荆,采用了xRD、TEM对催化剂进行了表征,用此催化荆制作了赋功能氧电极,用Tafel曲线进行了分析。对氧电极克放电性能进行了测试,并与未添加活性炭进行改性的催化荆进行了对比.结果表明,添加了活性炭的催化荆其粒径都较小,且各项电化学性能都好于未添加活性炭的催化剂,其中按物质的量比金属离子z活性碳为2t3制备的催化荆B晶体粒径最小?极化电流密度最大。克放电性能最佳。 关键词:双功能氧电极:钙钛矿;电催化;极化曲线 中图分类号:TM911.11文献标识码:A文章编号:1001—973112007)11-1834—03 1引言 随着能源问题日益加剧,全球变暖趋势更加突出,解决能源同题和环境问题显得尤其迫切了.因此t替代传统化石能源的各项研究在国内外正加紧展开t各种环保电源尤其是燃料电池近年来成了研究的热点.但燃料电池氧电极催化荆制约了燃料电池的发展,Hyun.JongKim等03研究了直接甲醇燃料电池的催化剂PtRu/c_A“Tio:。结果发现PtRu/C_Au/Tio:比单纯的PtRu/c的催化效果要好。v.Ba91io等…研究了在低温Pt_Fe催化剂对直接甲酵燃料电池氧还原性能的研究,结果发现Pt_Fe比Pt—c在低温下单体电池比能量有所提高。 目前。直接甲醇燃料电池大都采用贵金属催化剂作为电催化剂,由于贵金属价格昂贵.使得研究成本大幅提高.因此寻找替代贵金属催化剂的研究也日益成为科研专家的关注焦点.O.Haas等嘲用x射线吸收和X射线衍射研究了钙钛矿催化剂,结果表明x射线吸收和x射线衍射能有效的跟踪钙钛矿催化剂在电池反应中的电子结构的改变。韩红涛等D1采用苹果酸作为前驱体,而A.Kahoula【‘3等采用柠檬酸作为前驱体制备了钙钛矿类催化剂La-一:Ca:CoO;对氧反应的影响,结果都发现Lal一;c虬CoO,当z兰O.4时,即Lao。c虬.coo|具备最佳的催化效果.唐志远等口1对钙钛矿型双功能氧电极催化剂的研究进展作了综述, 目前的研究太都集中在元素的掺杂和络合剂的选择上‘s~w,由于凝胶的均匀性,掺杂元素不会出现单一元素的富集而影响催化剂的效果.在凝胶中加^活性炭让其在煅烧过程中缓慢氧化充当造孔剂的报道还很少,因此本文对此作了研究. 2实验 2.1钙钛矿的制备 采用无定型前驱体,苹果酸为络合剂,按化学计量比称取La(N03)3?6H20,Ca(No,)2?4H20,co(N03):?6H。O(本文所用药品未特别说明的全部为分析纯),按金属离子?苹果酸为2?3称取苹果酸,在250ml烧杯中用去离子水配成溶液,用分析纯25%~28%氨水调节pH值至3~4,在70℃恒温水浴箱中旋转蒸发n““.待溶液形成咖啡色透明胶体时,分别按物质的量比(活性炭?金属离子)为1tl、3t2、2?1加人活性炭.进一步蒸发至稠状凝胶后移人到研钵中以110℃在恒温干燥箱中干燥,经研磨成细粉后移人到坩埚中,在马福炉中以600℃恒温煅烧2h,升温速度为8℃/min.再次研磨成细粉即为备用的催化剂,分别记为A、B、C. 2.2空气电极的制备 空气电极分为3层:扩散层、导电骨架、催化层,其中扩散层的制作参照文献[12],按无水Na2So‘?Pn、E?乙炔黑质量比为1?1t1称量上述药品,其中Pn砸为60%原液,乙炔黑为工业级,无水乙醇分散后在60~70℃热辊压机上辊压成1mm薄片,待薄片成纤维状即停止辊压.后在去离子水中浸泡24h备用(中间更换去离子水4~6次).催化层按质量比,碳材料,催化剂?PH吧为13t1?6称量,按照扩散层相同的制作方法制成催化层,后把扩散层、导电骨架、催化层叠好放在油压机上以15MPa的压力冷压1T11in,即为空气电极. 2.3锌电极的制备 用掺有缓蚀剂的锌粉,5%的聚乙烯醇,饱和znO的7moI/LKOH溶液.按一定比例配成锌膏,涂抹在导电骨架镍网上,在真空干燥箱中干燥2h备用. 2.4XRD分析 采用日本理学生产的X射线衍射仪对产物进行 ?基金琉目:国家高技术研究发展计划(863计划)资助项目(z001AA501433) 收到初稿日期:2007?0}20收到修改稿日期:2007-07-lO通讯作者:唐有根作者简介:朱志杰(1976一)。江西南昌人。在读硕士.从事先进电池和新能源材料研究.  万方数据 万方数据

锐钛矿TiO2转变为金红石TiO2机制和性能

锐钛矿TiO2转变为金红石TiO2机制和性能 摘要:TiO2 是多相光催化研究中使用较多的一种材料。其在自然界存有3种不同的晶型:锐钛矿、金红石、板钛矿相。锐钛矿相转变为金红石相的过程是扩散相变。金红石是热力学稳定相, 锐钛矿是亚稳相, 并且从锐钛矿相到金红石相的相变是亚稳相到稳定相的不可逆相变。而煅烧时间与煅烧温度会影响其晶型的转变。在众多影响光催化性能的因素中,晶型是较为重要的一个因素。 关键字:锐钛矿、金红石、TiO2、相变、光催化 光催化降解是一门新型的并正在迅速发展的科学技术。研究表明,在适当的条件下,许多有机物污染物经光催化降解,可生成无毒无味的CO2、H2O及一些简单的无机物。目前,在光催化降解领域所采用的光催化剂多为N型半导体材料, 如TiO2、ZnO、Fe2O3、SnO2、WO3和CdS 等, 其中TiO2以其无毒、价廉、稳定和特殊的光、电性能等优点倍受人们青睐,成为最受重视的一种光催化剂[1]。 1.二氧化钛的结构 近年来, TiO2纳米材料制备、表征及改性一直是光催化研究领域的重点。同一种半导体可能具有不同的晶型,晶型的不同实际上就是组成物质的原子不同的空间构型有序的排布。二氧化钛是白色粉末状多晶型化合物, 自然界有锐钛矿型, 金红石型和板钛型三种晶 型结构, 但板钛型二氧化钛极不稳定且无实用价值[2]。所以目前的研究一般都主要为金红石相及锐钛矿相。TiO2晶体基本结构是钛氧八面体( TiO6)。钛氧八面体连接形式不同而构成锐钛矿相、金红石相和板钛矿相。锐钛矿型和金红石型均属于四方晶系,二者均可用相互连接的Ti06八面体表示,但八面体的畸变程度和连接方式各不不同。板钛矿型属正交晶系,一般难以制备,目前研究很少。如图1所示,金红石型(a)的八面体不规则,微显斜方晶;锐钛矿(b)呈明显的斜方晶畸变,对称性低于前者。从图2[3]中可以看出锐钛矿TiO2的Ti-Ti键长比金红石大,而Ti-O键比金红石小。 TiO2晶体基本结构——钛氧八面体有两种连接方式。如图3所示,分别为共边连接与共顶角连接。从图4[4]中可以看到锐钛矿中每个八面体与周围8个八面体相联(四个共边,四个共顶角)。金红石中的每个八面体与周围10个八面体相联(其中两个共边,八个共顶角)。 图1 金红石、锐钛矿和板钛矿的TiO6八面体结构

钢材种类及分类

钢材知识 钢的分类按品质分类 (1) 普通钢(P≤0.045%,S≤0.050%)P代表磷元素,S代表硫元素 P和S都是钢中的有害元素,一个导致热脆性,一个导致冷脆性 (2) 优质钢(P、S均≤0.035%) (3) 高级优质钢(P≤0.035%,S≤0.030%) 按化学成份分类 (1) 碳素钢: a.低碳钢(C≤0.25%);又称软钢,强度低、硬度低而软,常用於制造链 条,铆钉,螺栓,轴等。它包括大部分普通碳素结构钢和一部分优质碳 素结构钢,大多不经热处理用于工程结构件,有的经渗碳和其他热处理用于 要求耐磨的机械零件。 b.中碳钢(0.25≤C≤0.60%);有镇静钢、半镇静钢、沸腾钢等多种产品。 热加工及切削性能良好,焊接性能较差。塑性和韧性低于低碳钢。可不经热 处理,直接使用热轧材、冷拉材,亦可经热处理后使用。淬火、回火后的中 碳钢具有良好的综合力学性能。能够达到的最高硬度约为HRC55(HB538),σb 为600~1100MPa。所以在中等强度水平的各种用途中,中碳钢得到最广泛的 应用,除作为建筑材料外,还大量用于制造各种机械零件。 c.高碳钢(C≥0.60%)。常称工具钢,可以淬硬和回火。锤, 撬棍等由 含碳量0.75%的钢制造; 切削工具如钻头, 丝攻, 铰刀等由含碳量0.90% 至 1.00% 的钢制造。 (2)合金钢: a.低合金钢(合金元素总含量≤5%) b.中合金钢(合金元素总含量>5~10%) c.高合金钢(合金元素总含量>10%)。 按成形方法分类: (1)锻钢;(2) 铸钢;(3) 热轧钢;(4) 冷拉钢。 按金相组织分类 (1) 退火状态的 a.亚共析钢(铁素体+珠光体) b.共析钢(珠光体) c.过共析钢(珠光体+渗碳体) d.莱氏体钢(珠光体+渗碳体)。 (2) 正火状态的: a.珠光体钢; b.贝氏体钢; c.马氏体钢; d.奥氏体钢。

相关主题