搜档网
当前位置:搜档网 › 余弦定理的六种证法

余弦定理的六种证法

余弦定理的六种证法
余弦定理的六种证法

余弦定理的六种证法

法一(平面几何):在△ABC 中,已知,,AC

b BC a C ==∠及,求

c 。

过A 作sin sin AD BC D AD AC C BC C ⊥=于,是=,

cos cos ,CD AC b c ==

在Rt ABD ?中,2222222(sin )(cos )2cos AB AD BD b c a b c a b ab c =+=+-=+-,

法二(平面向量):

222()()22||||AB AB AC BC AC BC AC AC BC BC AC AC BC ?=+?+=??+=+? 2

22

cos(180)2cos B BC b ab B a -+=-+

,即:2222cos c a b ab c =+-

法三(解析几何):把顶点C 置于原点,CA 落在x 轴的正半轴上,由于△ABC 的AC=b ,

CB=a ,AB=c ,则A ,B ,C 点的坐标分别为A(b ,0),B(acosC ,asinC),C(0,0).

|AB|2=(acosC -b)2+(asinC -0)2 =a 2cos2C -2abcosC+b 2+a 2sin2C =a 2+b 2-2abcosC , 即c 2=a 2+b 2-2abcosC .

法四(利用正弦定理):

先证明如下等式:C B A C B A cos sin sin 2sin sin

sin 2

2

2

=-+ ⑴

证明:C B A 2

2

2

sin sin

sin

-+

C

()()()()()[]

C

B A B A B A

C C B A B A C

B A c o o s C

B

A

c o s s i n s i n 2c o s c o s c o s c o s c o s c o s 2

2c o s 12c o s 22

122c o s 12

2c o s 122c o s 12

=+--=+-+-=++

+-

=--

-+

-=

故⑴式成立,再由正弦定理变形,得

)2(s i n 2s i n 2s i n 2??

?

??===C R c B

R b A R a

结合⑴、)2(有

()

.

c o s 2c o s s i n s i n 24s i n s i n s i n 42

2

2

2

2

2

2

2

C ab C B A R C B A R

c b a =?=-+=-+

即 C ab b a c cos 22

22-+=.

同理可证 A bc c b a cos 22

2

2

-+=;B ca a c b cos 22

2

2

-+=.

法五(用相交弦定理证明余弦定理):

如图,在三角形ABC 中,∠A=α,AB=a ,BC=b ,AC=c 。现在以B

为圆心,以长边AB 为半径做圆,这里要用长边的道理在于,这样能保证C 点在圆内。BC 的延长线交圆B 于点D 和E 这样以来,DC=a-b ,CE=a+b ,AC=c 。因为AG=2acosα,所以CG=2acosα-c 。根据相交弦定理有: DC×CE=AC×CG ,带入以后就是

(a-b)(a+b)=c(2acosα-c)

化简以后就得b 2=a 2+c 2+2accosα。也就是我们的余弦定理。

法六(面积解释):

如图9,以△ABC 的三边为边长向外作三个正方形,,

交AB 于K 。据说欧几里德就是利用此图形证明勾股定理的。易证(最好是将

看作是

旋转而成),进而可得;同理,所以直角三角形斜边上的正方

形面积等于两直角边上两正方形面积之和。

此处还有一个副产品:等价于,无需用到相似,轻松可得射影定理。

图9 图10

假若不是直角三角形呢?如图10,△ABC的三高的延长线将三个正方形分为6个矩形,而且两两相等,,,,则

,轻松可得余弦定理。

例1:证明余弦定理。

勾股定理只是对于直角三角形成立,很有必要将之推广到一般三角形的情形,这样在使用的时候才方便。在第一章中已经介绍了面积法证明余弦定理了,下面再介绍三种面积证法。

证明勾股定理主要用到平移,而证明余弦定理则可能需要用旋转。

余弦定理证明1:如图1,将△ABC绕点B旋转一个较小角度得到△DBE,则;由面积关系得,即

,化简得。

图1 图2

如果认为证法1较麻烦,也还有简单的证法。

余弦定理证明2:只要注意到,,立马可得。

余弦定理证明3:如图3,在△ABC中,设三边长度为a,b,c,在AB边上取点E,使得;

在AB边上取点D,使得;易得△AEC∽△CDB∽△ACB,;由

化简得。

图3

余弦定理证明过程(完整版)

余弦定理证明过程 余弦定理证明过程 =a,∠da=π-∠ba=π-,根据三角函数的定义知d点坐标是,asin)即d点坐标是,∴ad=而ad=b∴=∴asin=sina………… ①-aos=osa-b…… ②由 ①得asina=sin,同理可证asina=bsinb,∴asina=bsinb=sin.由 ②得aos=b-osa,平方得: a2os2=b2-2bosa+2os2a,即a2-a2sin2=b2-2bosa+2-2sin2a.而由 ①可得a2sin2=2sin2a∴a2=b2+2-2bosa.同理可证b2=a2+2- 2aosb,2=a2+b2-2abos.到此正弦定理和余弦定理证明完毕。3△ab的三边分别为a,b,,边b,a,ab上的中线分别为ma.mb,m,应用余弦定理证明: mb= m=ma=√^2-a*osb) =√ 由b^2=a^2+^2-2a*osb 得,4a*osb=2a^2+2^2-2b^ 2,代入上述ma表达式: ma=√ =√ 同理可得: mb=

m= 4 ma=√^2-a*osb) =√ 由b^2=a^2+^2-2a*osb 得,4a*osb=2a^2+2^2-2b^ 2,代入上述ma表达式: ma=√ =√ 证毕。 第五篇: 余弦定理的多种证明 余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活. 对于任意三角形三边为a,b, 三角为a,b, 满足性质 a^2=b^2+^2-2*b**osa b^2=a^2+^2-2*a**osb ^2=a^2+b^2-2*a*b*os os=2ab osb=2a osa=2b 证明:

勾股定理16种证明方法

勾股定理的证明 【证法1】(课本的证明) a 、 b ,斜边长为 c ,再做三 个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 21 4214222?+=?++,整理得222c b a =+. 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积 等于ab 21.把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、 C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵Rt ΔHAE ≌Rt ΔEBF, ∴∠AHE = ∠BEF . ∵∠AEH + ∠AHE = 90o, ∴∠AEH + ∠BEF = 90o. ∴∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2. ∵Rt ΔGDH ≌Rt ΔHAE, ∴∠HGD = ∠EHA . ∵∠HGD + ∠GHD = 90o, ∴∠EHA + ∠GHD = 90o. 又∵∠GHE = 90o, ∴∠DHA = 90o+ 90o= 180o. ∴ABCD 是一个边长为a + b 的正方形,它的面积等于()2 b a +. ∴ ()2 22 14c ab b a +?=+. ∴2 2 2 c b a =+.

以a 、b 为直角边(b>a ), 以c 为斜 边作四个全等的直角三角形,则每个直角 三角形的面积等于ab 21. 把这四个直角三 角形拼成如图所示形状. ∵Rt ΔDAH ≌ Rt ΔABE, ∴∠HDA = ∠EAB . ∵∠HAD + ∠HAD = 90o, ∴∠EAB + ∠HAD = 90o, ∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2. ∵EF = FG =GH =HE = b ―a , ∠HEF = 90o. ∴EFGH 是一个边长为b ―a 的正方形,它的面积等于()2 a b -. ∴()22 214c a b ab =-+?. ∴2 2 2 c b a =+. 【证法4】(1876年美国总统Garfiel d 证明) 以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面 积等于ab 21. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上. ∵Rt ΔEAD ≌Rt ΔCBE, ∴∠ADE = ∠BEC . ∵∠AED + ∠ADE = 90o, ∴∠AED + ∠BEC = 90o. ∴∠DEC = 180o―90o= 90o. ∴ΔDEC 是一个等腰直角三角形, 它的面积等于221c . 又∵∠DAE = 90o, ∠EBC = 90o, ∴ AD ∥BC . ∴ABCD 是一个直角梯形,它的面积等于()2 21 b a +. ∴()2 2212122 1 c ab b a +?=+. ∴2 22c b a =+.

余弦定理的八种证明方法

余弦定理的八种证明方法 2011年高考数学卷(陕西卷)考出了“说明并证明余弦定理”这个考题,使平时不注重翻阅课本的同学大部分吃了亏,虽然这是书本上的知识,且课本上只给出了一种证明方法,但仍让同学们很难想到会考这个证明题,因此我们利用这次研究性学习活动,以论文的方式来介绍一下多种余弦定理的证明方法,来增强我们对课本知识的理解。 用多种方法证明余弦定理,扩展思维,了解更多的过程。 余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形便可适当移于其它知识。 一余弦定理的内容 对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足性质 a2 = b2 + c2- 2·b·c·cosA b2 = a2 + c2 - 2·a·c·cosB c2 = a2 + b2 - 2·a·b·cosC 二证明方法 方法一:平面几何法 ∵如图,有a+b=c ∴c·c=(a+b)·(a+b) ∴c2=a·a+2a·b+b·b ∴c2=a2+b2+2|a||b|cos(π-θ) 又∵Cos(π-θ)=-Cosθ∴c2=a2+b2-2|a||b|cosθ 再拆开,得c^2=a2+b2-2*a*b*cosC

方法二:勾股法 在任意△ABC中 做AD⊥BC. ∠C所对的边为c,∠B所对的边为b,∠A所对的边为a 则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c 根据勾股定理可得: AC2=AD2+DC2 b2=(sinB*c)2+(a-cosB*c)2 b2=(sinB*c)2+a2-2ac*cosB+(cosB)2*c2 b2=(sinB2+cosB2)*c2-2ac*cosB+a2 b2=c2+a2-2ac*cosB 方法三:解析法 在三角形ABC建立直角坐标系,使A点为原点,B点落在x轴正半轴上,设三角形三边abc 则有三点坐标为A(0,0)B(c,0)C(bcosA,bsinA) ∵BC=a 则由距离公式得a=(c-bcosA)2-(bsinA)2 化简得a=c2+b2-2bccosA ∴a2=c2+b2-2bccosA 方法四:面积法 S△ACQ=(1/2)bc(cos∠BAC), S△PBC=(1/2)ac(cos∠CBA),

勾股定理种经典证明方法

勾股定理的证明 【证法1】 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 21 4214222?+=?++, 整理得 222c b a =+. 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形 的面积等于ab 21. 把这四个直角三角形拼成如图所示形状,使 A 、E 、 B 三点在一条 直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为 正方形. 它的面积等于c 2. ∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA .

∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180o. ∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2 b a +. ∴ ()2 2214c ab b a +?=+. ∴ 2 2 2 c b a =+. 【证法3】(赵爽证明) 以a 、b 为直角边(b>a ), 以c 为斜 边作四个全等的直角三角形,则每个直角 三角形的面积等于ab 21. 把这四个直角三 角形拼成如图所示形状. ∵ Rt ΔDAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB . ∵ ∠HAD + ∠HAD = 90o, ∴ ∠EAB + ∠HAD = 90o, ∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2. ∵ EF = FG =GH =HE = b ―a , ∠HEF = 90o. ∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2 a b -. ∴ ()2 2 214c a b ab =-+?. ∴ 2 22c b a =+. 【证法4】(1876年美国总统Garfield 证明) 以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形 的面积等于ab 21. 把这两个直角三角形拼成如图所示形状,使 A 、E 、 B 三点在一条 直线上. ∵ Rt ΔEAD ≌ Rt ΔCBE, ∴ ∠ADE = ∠BEC . ∵ ∠AED + ∠ADE = 90o, ∴ ∠AED + ∠BEC = 90o.

两角和与差的余弦公式证明

两角和与差的余弦公式的五种推导方法之对比 沈阳市教育研究院王恩宾 两角和与差的余弦公式是三角函数恒等变换的基础,其他三角函数公式都是在此公式 基础上变形得到的,因此两角和与差的余弦公式的推导作为本章要推导的第一个公式,往 往得到了广大教师的关注. 对于不同版本的教材采用的方法往往不同,认真体会各种不同 的两角和与差的余弦公式的推导方法,对于提高学生的分析问题、提出问题、研究问题、 解决问题的能力有很大的作用.下面将两角和与差的余弦公式的五种常见推导方法归纳如下:方法一:应用三角函数线推导差角公式的方法 设角α的终边与单位圆的交点为P1,∠POP1=β,则∠POx=α-β. 过点P作PM⊥x轴,垂足为M,那么OM即为α-β角的余弦线,这里要用表示α,β 的正弦、余弦的线段来表示OM. 过点P作PA⊥OP1,垂足为A,过点A作AB⊥x轴,垂足为B,再过点P作PC⊥AB,垂 足为C,那么cosβ=OA,sinβ=AP,并且∠PAC=∠P1Ox=α,于是OM=OB+BM=OB +CP=OA cosα+AP sinα=cosβcosα+sinβsinα. 综上所述,. 说明:应用三角函数线推导差角公式这一方法简单明了,构思巧妙,容易理解. 但这种推 导方法对于如何能够得到解题思路,存在一定的困难. 此种证明方法的另一个问题是公式是在均为锐角的情况下进行的证明,因此还要考虑的角度从锐角向任意角的推 广问题. 方法二:应用三角形全等、两点间的距离公式推导差角公式的方法

设P1(x1,y1),P2(x2,y2),则有|P1P2 |= . 在直角坐标系内做单位圆,并做出任意角α,α+β和,它们的终边分别交单位圆于P2、P3和P4点,单位圆与x轴交于P1,则P1(1,0)、P2(cosα,sinα)、P3(cos(α+β),sin(α+β))、. ∵,且, ∴,∴, ∴ , ∴, ∴,. 说明:该推导方法巧妙的将三角形全等和两点间的距离结合在一起,利用单位圆上与角有关的四个点, 建立起等式关系,通过将等式的化简、变形就可以得到符合要求 的和角与差角的三角公式. 在此种推导方法中,推导思路的产生是一个难点,另外对于三点在一条直线和三点在一条直线上时这一特殊情况,还需要加以解释、说明.

正弦定理、余弦定理知识点总结及最全证明

正弦定理、余弦定理知识点总结及证明方法 ——王彦文青铜峡一中1.掌握正弦定理、余弦定理,并能解决一 些简单的三角形度量问题. 2.能够运用正弦定理、余弦定理等知识和 方法解决一些与测量和几何计算有关的实际问 题. 主要考查有关定理的应用、三角恒等变换 的能力、运算能力及转化的数学思想.解三角 形常常作为解题工具用于立体几何中的计算或 证明,或与三角函数联系在一起求距离、高度 以及角度等问题,且多以应用题的形式出现. 1.正弦定理 (1)正弦定理:在一个三角形中,各边和它 所对角的正弦的比相等, 即.其中R是三角形外接圆的 半径. (2)正弦定理的其他形式: ①a=2R sin A,b=,c =; ②sin A=a 2R,sin B=, sin C=; ③a∶b∶c=______________________. 2.余弦定理 (1)余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即 a2=,b2=, c2=. 若令C=90°,则c2=,即为勾股定理. (2)余弦定理的变形:cos A =,cos B=,cos C=. 若C为锐角,则cos C>0,即a2+b2______c2;若C为钝角,则cos C<0,即a2+b2______c2.故由a2+b2与c2值的大小比较,可以判断C为锐角、钝角或直角. (3)正、余弦定理的一个重要作用是实现边角____________,余弦定理亦可以写成sin2A=sin2B+sin2C-2sin B sin C cos A,类似地,sin2B=____________;sin2C=__________________.注意式中隐含条件A+B+C=π. 3.解斜三角形的类型 (1)已知三角形的任意两个角与一边,用____________定理.只有一解. (2)已知三角形的任意两边与其中一边的对角,用____________定理,可能有___________________.如在△ABC中,已知a, 时,只有一解. (4)已知两边及夹角,用____________定理,必有一解.

勾股定理的不同证法

勾股定理的不同证法 证法1:设三角形较短的两边长度分别为a和b,较长的边为c, 如果a的二次方与b的二次方的和等于c的二次方,最长边对 应的角为直角,则已证明勾股定理:a2+b2=c2 证法2:以三角形三边延伸做三个正方形,边长分别为a,b, c,如果正方形(a边长)加正方形(b边长)面积和等于正方 形(c边长),则a2+b2=c2,已证明勾股定理。 证法3:以a,b为直角边,以c为斜边做两个全等的三角形, 则每个直角三角三角形的面积等于?ab,把这两个直角三 角形如图所示,使A,E,B三点在一条直线上。 ∵Rt△EAD≌RT△CBE, ∴∠ADE=∠BEC, ∵∠AED+∠ADE=90° ∴∠AED+∠BEC=90° ∴∠DEC=180°—90°=90° ∴△DEC是一个等腰直角三角形 它的面积等于?c2 又因为∠DAE=90°,∠EBC=90°, ∴AD∥BC ∴ABCD是一个直角梯形,它的面积等于?(a+b)2 ∴?(a+b)2=2·?ab+?c2 ∴a2+b2=c2 证法4:做8个全等的直角三角形设它们的两条直 角边长为a,b,斜边长为c,在做三个边长为a,b, c的正方形,把它们像左图那样拼成两个正方形,从 左图可以看到,这两个正方形的边长都是a+b,所 以面积相等,即: a2+b2+4·?ab等于c2+4·?ab,整理便得a2+b2=c2 证法5:以a,b为直角边(b>a),以c为斜边做四 个全等的直角三角形,则每个直角三角形的面积等于?ab,把这 四个直角三角形拼成如图所示形状。 ∵RtDAH≌Rt△ABE, ∴∠HDA=∠EAB ∵∠HAD+∠HAD=90° ∴∠EAB+∠HAD=90° ∴ABCD是一个边长为c的正方形,它的面积等于c2 ∵EF=FG=GH=HE=b—a ∠HEF=90° ∴EFGH是一个边长为b—a的正方形,它的面积等于(b—a)2 4·?ab+(b—a)2等于c2 ∴a2+b2=c2 证法6:从这张图可以得到一个矩形和三个三角形,推导公式如下:

最好的勾股定理五种证明方法

勾股定理五种证明方法 1证法】【abba aacaabc c ab bccbbb ca b 个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为做8c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即 ,整理得.

证法2证明)(】【 以a、b 为直角边,以c为斜边做四个全等的直角三角形,则每个直角三角1ab 2形的面积等于. 把这四个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上,B、F、C三点在一条直线上,C、G、D三点在一条直线上. ∵RtΔHAE ≌RtΔEBF, CGDab∴∠AHE = ∠BEF. , o∠AHE = 90∵∠AEH + abc. o∠BEF = 90∴∠AEH + c. = 90o HEF = 180o―90o∴∠H c的四边形EFGH是一个边长为F它的面积等于

c2. 正方形.b HAE, RtΔ≌∵RtΔGDH .HGD = ∠EHA∴A, o∠GHD = 90∵∠HGD + . GHD = 90∠o∴∠EHA + , GHE = 90o又∵∠. o= 180o+ 90o∴∠DHA = 90. 是一个边长为a + b的正方形,它的面积等于∴ABCD .∴∴. 证法3证明)(】【做四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过C作AC的延长线交DF于点P. ∵D、E、F在一条直线上, 且RtΔGEF ≌RtΔEBD, ∴∠EGF = ∠BED,

垂心余弦定理证明

垂心余弦定理证明 垂心余弦定理证明如右图,在ABC中,三内角A、B、C所对的边分别是a、b、c . 以A为原点,AC所在的直线为x轴建立直角坐标系,于是C点坐标是(b,0),由三角函数的定义得B 点坐标是(ccosA,csinA) . ∴CB = (ccosA-b,csinA). 现将CB平移到起点为原点A,则AD = CB . 而|AD| = |CB| = a ,∠DAC = π-∠BCA = π-C , 根据三角函数的定义知D点坐标是(acos(π-C),asin(π-C)) 即D点坐标是(-acosC,asinC), ∴ AD = (-acosC,asinC) 而AD = CB ∴ (-acosC,asinC) = (ccosA-b,csinA) ∴ asinC = csinA …………① -acosC = ccosA-b ……② 由①得asinA = csinC ,同理可证asinA = bsinB , ∴ asinA = bsinB = csinC . 由②得acosC = b-ccosA ,平方得: a2cos2C = b2-2bccosA + c2cos2A , 即a2-a2sin2C = b2-2bccosA + c2-c2sin2A . 而由①可得a2sin2C = c2sin2A ∴ a2 = b2 + c2-2bccosA . 同理可证b2 = a2 + c2-2accosB , c2 = a2 + b2-2abcosC . 到此正弦定理和余弦定理证明完毕。 2 正、余弦定理是解三角形强有力的工具,关于这两个定理有好几种不同的证明方法.人教A 版教材《数学》(必修5)是用向量的数量积给出证明的,如是在证明正弦定理时用到作辅助单位向量并对向量的等式作同一向量的数量积,这种构思方法过于独特,不易被初学者接受.本文试图通过运用多种方法证明正、余弦定理从而进一步理解正、余弦定理,进一步体会向量的巧妙应用和数学中“数”与“形”的完美结合. 定理:在△ABC中,AB=c,AC=b,BC=a,则 (1)(正弦定理) = = ; (2)(余弦定理) c2=a2+b2-2abcos C, b2=a2+c2-2accos B, a2=b2+c2-2bccos A. 一、正弦定理的证明 证法一:如图1,设AD、BE、CF分别是△ABC的三条高。则有 AD=bsin∠BCA, BE=csin∠CAB, CF=asin∠ABC。 所以S△ABC=abcsin∠BCA =bcsin∠CAB =casin∠ABC. 证法二:如图1,设AD、BE、CF分别是△ABC的3条高。则有 AD=bsin∠BCA=csin∠ABC,

勾股定理五种证明方法

勾股定理五种证明方法 【证法1】 做 8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 214214222?+=?++, 整理得 222c b a =+. 【 证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角 形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点 在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c2. ∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA . ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180o. ∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +. ∴ ()2 2214c ab b a +?=+. ∴ 222c b a =+. 【证法3】(梅文鼎证明) 做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为

勾股定理五种证明方法

勾股定理五种证明方法 【证法1】 ? ? ? ? ? ? ? ? ? ? 做8 个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 214214222?+=?++, 整理得 222c b a =+. 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角 形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点 在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o . ∴ ∠HEF = 180o ―90o= 90o . ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c2. ∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA . ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o . 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180o . ∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +. ∴ ()2 2214c ab b a +?=+. ∴ 222c b a =+. 【证法3】(梅文鼎证明) 做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为

勾股定理证法11种

证法1 一种借助面积完成的演绎证明(愚草提供),双击右侧图片可以清楚阅读: 另附:《对勾股定理及其逆定理教育价值的深层挖掘》[3]一文。 证法1 作四个全等的直角三角形,设它们的两条直角边长分别为a、b ;,斜边长为c. ;把它们拼成如图那样的一个多边形,使D、E、F在一条直线上。过点C作AC的延长线交DF于点P. ∵ D、E、F在一条直线上,;且RtΔGEF ;≌ RtΔEBD, ∴;∠EGF = ;∠BED, ∵;∠EGF + ;∠GEF = 90°, ∴;∠BED + ;∠GEF = 90°, ∴;∠BEG =180°―90°= 90° 又∵ AB = BE = EG = GA = c, ∴ ABEG是一个边长为c的正方形。 ∴;∠ABC + ;∠CBE = 90° ∵ RtΔABC ;≌ RtΔEBD, ∴;∠ABC = ;∠EBD. ∴;∠EBD + ;∠CBE = 90° 即;∠CBD= 90° 又∵;∠BDE = 90°,∠BCP = 90°, BC = BD = a. ∴ BDPC是一个边长为a的正方形。 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则 A+B=C 证法2

作两个全等的直角三角形,设它们的直角边长分别为a、b(b>a);,斜边长为c. ;再做一个边长为c的正方形。把它们拼成如图所示的多边形,使E、A、C三点在一条直线上. 过点Q作QP∥BC,交AC于点P. 过点B作BM⊥PQ,垂足为M;再过点 F作FN⊥PQ,垂足为N. ∵;∠BCA = 90°,QP∥BC, ∴;∠MPC = 90°, ∵ BM⊥PQ, ∴;∠BMP = 90°, ∴ BCPM是一个矩形,即∠MBC = 90°。 ∵;∠QBM + ;∠MBA = ;∠QBA = 90°, ∠ABC + ;∠MBA = ;∠MBC = 90°, ∴;∠QBM = ;∠ABC, 又∵;∠BMP = 90°,∠BCA = 90°,BQ = BA = c, ∴ RtΔBMQ ;≌ RtΔBCA. 同理可证RtΔQNF ;≌ RtΔAEF.即A2+B2=C2 证法3 作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a);,斜边长为c. ;再作一个边长为c的正方形。把它们拼成如图所示的多边形. 分别以CF,AE为边长做正方形FCJI和AEIG, ∵EF=DF-DE=b-a,EI=b, ∴FI=a, ∴G,I,J在同一直线上, ∵CJ=CF=a,CB=CD=c, ∠CJB = ;∠CFD = 90°, ∴RtΔCJB ;≌ RtΔCFD ;, 同理,RtΔABG ;≌ RtΔADE, ∴RtΔCJB ;≌ RtΔCFD ;≌ RtΔABG ;≌ RtΔADE ∴∠ABG = ;∠BCJ, ∵∠BCJ +∠CBJ= 90°, ∴∠ABG +∠CBJ= 90°, ∵∠ABC= 90°, ∴G,B,I,J在同一直线上, A2+B2=C2。 证法4 作三个边长分别为a、b、c的三角形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结 BF、CD. ;过C作CL⊥DE, 交AB于点M,交DE于点L. ∵ AF = AC,AB = AD, ∠FAB = ;∠GAD, ∴;ΔFAB ;≌;ΔGAD, ∵;ΔFAB的面积等于, ΔGAD的面积等于矩形ADLM

余弦定理证明过程

余弦定理证明过程(精选多篇) 余弦定理证明过程ma=√ -ac*cosb) =√ 由b =a +c -2ac*cosb 得,4ac*cosb=2a +2c -2b ,代入上述ma表达式: ma=√ =√ 证毕。 2 在任意△abc中,作ad⊥bc. ∠c对边为c,∠b对边为b,∠a对边为a--> bd=cosb*c,ad=sinb*c,dc=bc-bd=a-cosb*c

勾股定理可知: ac2=ad2+dc2 b2=2+2 b2=sin2b*c2+a2+cos2b*c2-2ac*cosb b2=*c2-2ac*cosb+a2 b2=c2+a2-2ac*cosb 所以,cosb=/2ac 2 如右图,在abc中,三内角a、b、c 所对的边分别是a、b、c.以a为原点,ac 所在的直线为x轴建立直角坐标系,于是c点坐标是,由三角函数的定义得b 点坐标是.∴cb=.现将cb平移到起点为原点a,则ad=cb.而|ad|=|cb|=a,∠dac=π-∠bca=π-c,根据三角函数的定义知d点坐标是,asin)即d点坐标是,∴ad=而ad=cb∴=∴asinc=csina…………①-acosc=ccosa-b……②由①得asina=csinc,同理可证asina=bsinb,∴asina=bsinb=csinc.由②得acosc=b-ccosa,平方得:a2cos2c=b2-2bccosa+c2cos2a,即a2-a2sin2c=b2-2bccosa+c2-c2sin2a.而

由①可得a2sin2c=c2sin2a∴a2=b2+c2-2bccosa.同理可证b2=a2+c2-2accosb,c2=a2+b2-2abcosc.到此正弦定理和余弦定理证明完毕。3△abc 的三边分别为a,b,c,边bc,ca,ab上的中线分别为,mc,应用余弦定理证明: mb= mc=ma=√ -ac*cosb) =√ 由b =a +c -2ac*cosb 得,4ac*cosb=2a +2c -2b ,代入上述ma表达式: ma=√ =√ 同理可得: mb= mc= 4 ma=√ -ac*cosb) =√ 由b =a +c -2ac*cosb 得,4ac*cosb=2a +2c -2b ,代入

勾股定理五种证明方法

勾股定理五种证明方法 This manuscript was revised on November 28, 2020

勾股定理五种证明方法 【证法1】 做 c ,再. .即 b a 22+【证法以 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵Rt ΔHAE ≌Rt ΔEBF, ∴∠AHE=∠BEF . ∵∠AEH+∠AHE=90o, ∴∠AEH+∠BEF=90o . ∴∠HEF=180o ―90o=90o . ∴四边形EFGH 是一个边长为c 的 正方形.它的面积等于c2. ∵Rt ΔGDH ≌Rt ΔHAE, ∴∠HGD=∠EHA . ∵∠HGD+∠GHD=90o, ∴∠EHA+∠GHD=90o . 又∵∠GHE=90o, ∴∠DHA=90o+90o=180o . ∴ABCD 是一个边长为a+b 的正方形,它的面积等于()2b a +. ∴()2 2214c ab b a +?=+.∴222c b a =+. 【证法3】(梅文鼎证明) 做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c .把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上.过C 作AC 的延长线交DF 于点P . ∵D 、E 、F 在一条直线上,且Rt ΔGEF ≌Rt ΔEBD, ∴∠EGF=∠BED , ∵∠EGF+∠GEF=90°, ∴∠BED+∠GEF=90°, ∴∠BEG=180o ―90o=90o . 又∵AB=BE=EG=GA=c , ∴ABEG 是一个边长为c 的正方形. ∴∠ABC+∠CBE=90o . ∵Rt ΔABC ≌Rt ΔEBD,

用复数证明余弦定理

用复数证明余弦定理法一:证明:建立如下图所示的直角坐标系,则A=(0,0)、B=(c,0),又由任意角三角函数的定义可得:C=(bcos A,bsin A),以AB、BC为邻边作平行四边形ABCC′,则∠BAC′=π-∠B, ∴C′(acos(π-B),asin(π-B))=C′(-acos B,asin B). 根据向量的运算: =(-acos B,asin B), = - =(bcos A-c,bsin A), (1)由 = :得 asin B=bsin A,即 = . 同理可得: = . ∴ = = . (2)由 =(b-cos A-c)2+(bsin A)2=b2+c2-2bccos A, 又| |=a, ∴a2=b2+c2-2bccos A. 同理: c2=a2+b2-2abcos C; b2=a2+c2-2accos B. 法二:如图5, ,设轴、轴方向上的单位向量分别为、,将上式的两边分别与、作数量积,可知 , 即 将(1)式改写为 化简得b2-a2-c2=-2accos B. 即b2=a2+c2-2accos B.(4) 这里(1)为射影定理,(2)为正弦定理,(4)为余弦定理. 2 在△ABC中,AB=c、BC=a、CA=b 则c^2=a^2+b^2-2ab*cosC a^2=b^2+c^2-2bc*cosA b^2=a^2+c^2-2ac*cosB 下面在锐角△中证明第一个等式,在钝角△中证明以此类推。 过A作AD⊥BC于D,则BD+CD=a 由勾股定理得: c^2=(AD)^2+(BD)^2,(AD)^2=b^2-(CD)^2 所以c^2=(AD)^2-(CD)^2+b^2 =(a-CD)^2-(CD)^2+b^2 =a^2-2a*CD +(CD)^2-(CD)^2+b^2 =a^2+b^2-2a*CD 因为cosC=CD/b 所以CD=b*cosC 所以c^2=a^2+b^2-2ab*cosC 题目中^2表示平方。 2

勾股定理16种证明方法

v1.0 可编辑可修改 【证法1】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 21 4214222?+=?++, 整理得 222c b a =+. 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积 等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、 C 三点在一条直线上,C 、G 、 D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2.

v1.0 可编辑可修改 ∴∠HGD = ∠EHA. ∵∠HGD + ∠GHD = 90o, ∴∠EHA + ∠GHD = 90o. 又∵∠GHE = 90o, ∴∠DHA = 90o+ 90o= 180o. ∴ ABCD是一个边长为a + b的正方形,它的面积等于()2b a+. ∴()2 2 2 1 4c ab b a+ ? = + . ∴2 2 2c b a= +. 【证法3】(赵爽证明) 以a、b 为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角 三角形的面积等于 ab 2 1 . 把这四个直角三 角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE, ∴∠HDA = ∠EAB. ∵∠HAD + ∠HAD = 90o, ∴∠EAB + ∠HAD = 90o, ∴ ABCD是一个边长为c的正方形,它的面积等于c2. ∵ EF = FG =GH =HE = b―a , ∠HEF = 90o. ∴ EFGH是一个边长为b―a的正方形,它的面积等于()2a b-. ∴ ()2 2 2 1 4c a b ab= - + ? .

余弦定理的六种证法

余弦定理的六种证法 法一(平面几何):在△ABC 中,已知,,AC b BC a C ==∠及,求 c 。 过A 作sin sin AD BC D AD AC C BC C ⊥=于,是=, cos cos ,CD AC b c == 在Rt ABD ?中,2222222(sin )(cos )2cos AB AD BD b c a b c a b ab c =+=+-=+-, 法二(平面向量): 222()()22||||AB AB AC BC AC BC AC AC BC BC AC AC BC ?=+?+=??+=+? 2 22 cos(180)2cos B BC b ab B a -+=-+ ,即:2222cos c a b ab c =+- 法三(解析几何):把顶点C 置于原点,CA 落在x 轴的正半轴上,由于△ABC 的AC=b , CB=a ,AB=c ,则A ,B ,C 点的坐标分别为A(b ,0),B(acosC ,asinC),C(0,0). |AB|2=(acosC -b)2+(asinC -0)2 =a 2cos2C -2abcosC+b 2+a 2sin2C =a 2+b 2-2abcosC , 即c 2=a 2+b 2-2abcosC . 法四(利用正弦定理): 先证明如下等式:C B A C B A cos sin sin 2sin sin sin 2 2 2 =-+ ⑴ 证明:C B A 2 2 2 sin sin sin -+ C

()()()()()[] C B A B A B A C C B A B A C B A c o o s C B A c o s s i n s i n 2c o s c o s c o s c o s c o s c o s 2 2c o s 12c o s 22 122c o s 12 2c o s 122c o s 12 =+--=+-+-=++ +- =-- -+ -= 故⑴式成立,再由正弦定理变形,得 )2(s i n 2s i n 2s i n 2?? ? ??===C R c B R b A R a 结合⑴、)2(有 () . c o s 2c o s s i n s i n 24s i n s i n s i n 42 2 2 2 2 2 2 2 C ab C B A R C B A R c b a =?=-+=-+ 即 C ab b a c cos 22 22-+=. 同理可证 A bc c b a cos 22 2 2 -+=;B ca a c b cos 22 2 2 -+=. 法五(用相交弦定理证明余弦定理): 如图,在三角形ABC 中,∠A=α,AB=a ,BC=b ,AC=c 。现在以B 为圆心,以长边AB 为半径做圆,这里要用长边的道理在于,这样能保证C 点在圆内。BC 的延长线交圆B 于点D 和E 这样以来,DC=a-b ,CE=a+b ,AC=c 。因为AG=2acosα,所以CG=2acosα-c 。根据相交弦定理有: DC×CE=AC×CG ,带入以后就是 (a-b)(a+b)=c(2acosα-c) 化简以后就得b 2=a 2+c 2+2accosα。也就是我们的余弦定理。 法六(面积解释): 如图9,以△ABC 的三边为边长向外作三个正方形,, 交AB 于K 。据说欧几里德就是利用此图形证明勾股定理的。易证(最好是将 看作是 旋转而成),进而可得;同理,所以直角三角形斜边上的正方 形面积等于两直角边上两正方形面积之和。

勾股定理十六种证明方法

勾股定理的十六种证明方法 【证法1】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 21 4214222?+=?++, 整理得 222c b a =+. 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积 等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上, B 、F 、 C 三点在一条直线上,C 、G 、 D 三点在一条直线上. ∵ Rt ΔHA E ≌ Rt ΔEBF, ∴ ∠AHE = ∠BE F . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2. ∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA . ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180o. ∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2 b a +. ∴ 2 2 2 c b a =+. 【证法3】(赵爽证明) 以a 、b 为直角边(b>a ), 以c 为斜 边作四个全等的直角三角形,则每个直角

余弦定理的多种证明

余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活. 对于任意三角形三边为a,b,c 三角为A,B,C 满足性质 a^2=b^2+c^2-2*b*c*CosA b^2=a^2+c^2-2*a*c*CosB c^2=a^2+b^2-2*a*b*CosC CosC=(a^2+b^2-c^2)/2ab CosB=(a^2+c^2-b^2)/2ac CosA=(c^2+b^2-a^2)/2bc 证明: 如图: ∵a=b-c ∴a^2=(b-c)^2 (证明中前面所写的a,b,c皆为向量,^2为平方)拆开即 a^2=b^2+c^2-2bc 再拆开,得a^2=b^2+c^2-2*b*c*CosA 同理可证其他,而下面的CosA=(c^2+b^2-a^2)/2bc就是将CosA移到右边表示一下。 --------------------------------------------------------------------------------------------------------------- 平面几何证法: 在任意△ABC中 做AD⊥BC. ∠C所对的边为c,∠B所对的边为b,∠A所对的边为a 则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c 根据勾股定理可得: AC^2=AD^2+DC^2 b^2=(sinB*c)^2+(a-cosB*c)^2 b^2=sin^2B*c^2+a^2+cos^2B*c^2-2ac*cosB b^2=(sin^2B+cos^2B)*c^2-2ac*cosB+a^2 b^2=c^2+a^2-2ac*cosB cosB=(c^2+a^2-b^2)/2ac 从余弦定理和余弦函数的性质可以看出, 如果一个三角形两边的平方和等于第三 边的平方,那么第三边所对的角一定是直

相关主题