搜档网
当前位置:搜档网 › 基于纹理特征和彩色特征的车牌定位算法

基于纹理特征和彩色特征的车牌定位算法

基于纹理特征和彩色特征的车牌定位算法
基于纹理特征和彩色特征的车牌定位算法

图像颜色特征提取基本知识

一、颜色特征 1 颜色空间 1.1 RGB 颜色空间 是一种根据人眼对不同波长的红、绿、蓝光做出锥状体细胞的敏感度描述的基础彩色模式,R、 G、B 分别为图像红、绿、蓝的亮度值,大小限定在 0~1 或者在 0~255。 1.2 HIS 颜色空间 是指颜色的色调、亮度和饱和度,H表示色调,描述颜色的属性,如黄、红、绿,用角度 0~360度来表示;S 是饱和度,即纯色程度的量度,反映彩色的浓淡,如深红、浅红,大小限定在 0~1;I 是亮度,反映可见光对人眼刺激的程度,它表征彩色各波长的总能量,大小限定在 0~1。1.3 HSV 颜色模型 HSV 颜色模型依据人类对于色泽、明暗和色调的直观感觉来定义颜色, 其中H (Hue)代表色度, S (Saturat i on)代表色饱和度,V (V alue)代表亮度, 该颜色系统比RGB 系统更接近于人们的经验和对彩色的感知, 因而被广泛应用于计算机视觉领域。 已知RGB 颜色模型, 令M A X = max {R , G, B },M IN =m in{R , G,B }, 分别为RGB 颜色模型中R、 G、 B 三分量的最大和最小值, RGB 颜色模型到HSV 颜色模型的转换公式为: S =(M A X - M IN)/M A X H = 60*(G- B)/(M A X - M IN) R = M A X 120+ 60*(B – R)/(M A X - M IN) G= M A X 240+ 60*(R – G)/(M A X - M IN) B = M A X V = M A X 2 颜色特征提取算法 2.1 一般直方图法

车牌图像定位与识别

专业综合实验报告----数字图像处理 专业:电子信息工程 班级: : 学号: 指导教师:

2014年7月18日 车牌图像定位与识别 一、设计目的 利用matlab实现车牌识别系统,熟悉matlab应用软件的基础知识,利用其解决数字信号处理的实际应用问题,从而加深对理论知识的掌握,巩固理论课上知识的同时,加强实践能力的提高,理论联系实践,提高自身的动手能力。同时不断的调试程序也提高了自己独立编程水平,并在实践中不断完善理论基础,有助于自身综合能力的提高。 二、设计内容和要求 车牌识别系统应包含图像获取、图像处理、图像分割、字符识别、数据库管理等几个部分,能够完成复杂背景下汽车牌照的定位分割以及牌照字符的自动识别。这里,只要求对给定的彩色车牌图像变换成灰度图像,用阈值化技术进行字符与背景的分离,再提取牌照图像。 三、设计步骤 1.打开计算机,启动MATLAB程序; 2.调入给定的车牌图像,并按要求进行图像处理; 3.记录和整理设计报告 四、设计所需设备及软件 计算机一台;移动式存储器;MATLAB软件。 五、设计过程 车辆牌照识别整个系统主要是由车牌定位和字符分割识别两部分组成,其中车牌定位又可以分为图像预处理及边缘提取模块和牌照的定位及分割模块;字符识别可以分为字符分割和单个字符识别两个模块。 (一)对图像进行图像转换、图像增强和边缘检测等

1.载入车牌图像: 原图 2.将彩图转换为灰度图并绘制直方图: 灰度图 灰度直方图 3.用roberts 算子进行边缘检测: 图像中车辆牌照是具有比较显著特征的一块图象区域,这此特征表现在:近似水平的矩形区域;其中字符串都是按水平方向排列的;在整体图象中的位置较为固定。正是由于牌照图象的这些特点,再经过适当的图象变换,它在整幅中可以明显地呈现出其边缘。边缘提取是较经典的算法,此处边缘的提取采用的是

关于车牌定位的一些算法

近年来,智能交通系统(ITS)越来越受到人们的重视在车牌识别中,车牌自动识别系统作为核心部分之一应用已经越来越普及。车牌识别系统主要分车牌定位、字符切分和字符识别三部分,而车牌定位又是系统中最重要的步骤,定位的成功与否以及定位的准确程度将会直接决定后期能否进行车牌识别以及识别的准确度。 文中利用MATLAB进行分析与仿真。MATLAB是一种简单,高效、功能强大的高级语言,在科学与工程计算领域有着广泛的应用前途。在数字图像处理领域,可应用MATLAB数字图像处理技术进行系统分析与设计。 本文要讨论的是对彩色车牌图像进行包括灰度化、二值化、图像增强、边缘检测的预处理,之后进行区域提取来实现对车牌的初定位。借助MATLAB编程语言在仿真过程中分析现有算法并加以改进。 1 车牌定位中的基本理论与算法 1.1图像灰度化 彩色图像包含着大量的颜色信息,不但在存储上开销很大,而且在处理上也会降低系统的执行速度,因此在对图像进行识别等处理中经常将彩色图像转变为灰度图像,以加快处理速度。经过灰度变换后,像素的动态范围增加,图像的对比度扩展,使图像变得更加清晰、细腻、容易识别。 在车牌识别中要利用灰度分布的特征进行进一步的分割、识别,因此对车牌图像进行灰度化成为车牌定位的必要步骤之一。 1.2图像二值化 二值图像是指整幅图像画面内仅黑、白二值的图像。在实际的车牌处理系统中,进行图像二值变换的关键是要确定合适的阀值,使得字符与背景能够分割开来,二值变换的结果图像必须要具备良好的保形性,不丢掉有用的形状信息,不会产生额外的空缺等等。车牌识别系统要求处理的速度高、成本低、信息量大,采用二值图像进行处理,能大大地提高处理效率。如果图像中某中像素的灰度值小于该阈值,则将该像素的灰度值设置为0或255,否则灰度值设置为255或0。

基于模式识别的车牌定位算法研究-开题报告

安徽建筑工业学院电子与信息工程学院本科毕业设计(论文)开题报告 课题名称:基于模式识别的图像处理算法研究 ——基于模式识别的车牌定位算法研究专业:电子信息工程 班级:08电子①班 学生姓名:陈宇栋 学号:08205010127 指导教师: 填表日期:2012年3月5日 安徽建筑工业学院电子与信息工程学院 二○一一年十二月制表

说明 1.抓好毕业设计(论文)的开题报告是保证毕业设计 (论文)质量的一个重要环节。为了加强对毕业设计(论文)的过程管理,规范毕业设计(论文)的开题报告,特印发此表。 2.毕业生一般应在毕业设计前期准备过程中,通过文 献调研,主动跟指导教师讨论,完成毕业设计(论文)的开题报告。 3.此表经过指导教师和有关人员签字后,一份由指导 教师保存,一份交院教学办公室。 4.毕业生在毕业设计(论文)答辩时,必须提交这份 毕业设计(论文)开题报告。 填写选题依据和设计方案,力求简练,若表中栏目不够填写,可另加附页。

一、简表 学生简况 姓名陈宇栋性别男出生年月1988-08入学时间2008-09学号08205010127专业电子信息工程班级08电子①班 课题名称基于模式识别的图像处理算法研究 子课题基于模式识别的车牌定位算法研究 课题来源纵向课题 类型计算机软件设计 研究(设计)内容 随着计算机和人工智能技术的发展,模式识别在图像处理中的应用日益广泛,智能交通工具在世界范围内引起重视,而车牌识别系统是智能交通工具的重要组成部分,该系统可以记录十字路口违章车辆,实现高速公路、收费路口、停车场等地的收费。车牌识别系统包括从图像的采集到预处理,再到车牌区域的定位和字符的分割,最后对分割出的字符进行识别的一系列过程。本次毕业设计主要对汽车牌照识别系统进行处理研究,借助于Visual C++编程环境运行在相应的硬件平台上,利用数字图像模式识别技术实现对汽车牌照的自动识别。按照模式识别系统组成,完成汽车牌照自动识别技术包括车牌预处理、车牌特征提取和车牌识别等功能,完成相应的算法研究。 对采集的车牌图像进行预处理包括图像灰度化、二值化、灰度拉伸及边缘提取等过程,并且过滤图像噪声使图像区域特征明显,根据区域特征确定车牌区域。车牌字符分割可以采用车牌区域纵向灰度投影的方式进行字符区域识别和分割实现。最后进行车牌分割字符图像归一化,将分割好的字符图像通过系数变换得到高度、宽度均相等的图像,以方便特征提取,提高识别的准确率,实现车牌的识别。

图像特征提取总结

图像常见特征提取方法简介 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一、颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的特征提取与匹配方法 (1)颜色直方图 其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间:RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2)颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡的颜色空间(如HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3)颜色矩 这种方法的数学基础在于:图像中任何的颜色分布均可以用它的矩来表示。此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(mean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。 (4)颜色聚合向量 其核心思想是:将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。(5)颜色相关图 二纹理特征 (一)特点:纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。在模式匹配中,这种区域性的特征具有较大的优越性,不会由于局部的偏差而无法匹配成功。作为一种统计特征,纹理特征常具有旋转不变性,并且对于噪声有较强的抵抗能力。但是,纹理特征也有其缺点,一个很明显的缺点是当图像的分辨率变化的时候,所计算出来的纹理可能会有较大偏差。另外,由于有可能受到光照、反射情况的影响,从2-D图像中反映出来的纹理不一定是3-D物体表面真实

数字图像处理-常用车牌定位方法的介绍和分析

车牌识别LPR(License Plate Recogniti ON)技术作为交通管理自动化的重要手段和车辆检测系统的一个重要环节,能经过图像抓拍、车牌定位、图像处理、字符分割、字符识别等一系列算法运算,识别出视野范围内的车辆牌照号码;它运用数字图像处理、模式识别、人工智能技术对采集到的汽车图像进行处理,能够实时准确地自动识别出车牌的数字、字母及汉字字符,并以计算机可直接运行的数据形式给出识别结果,使得车辆的电脑化监控和管理成为现实。 车牌识别技术的任务是处理、分析摄取的视频流中复杂背景的车辆图像,定位、分割牌照字符,最后自动识别牌照上的字符。为了保证汽车车牌识别系统能在各种复杂环境下发挥其应有的作用,识别系统必须满足以下要求: (1)鲁棒性:在任何情况下均能可靠正常地工作,且有较高的正确识别率。 (2)实时性:不论在汽车静止还是高速运行情况下,图像的采集识别系统必须在一定时间内识别出车牌全部字符,达到实时识别。 车牌识别技术的关键在于车牌定位、字符分割和字符识别三部分,其中车牌定位的准确与否直接决定后面的字符分割和识别效果,是影响整个LPR系统识 别率的主要因素,是车牌识别技术中最为关键的一步。目前车牌定位的方法多种多样, 归纳起来主要有基于纹理特征分析的方法、 基于边缘检测的方法、 基于数学形态学定位、基于小波分析定位以及基于彩色图像定位等,这些方法各有所长。

1、车牌目标区域特点 车牌定位方法的出发点是利用车牌区域的特征来判断牌照,将车牌区域从整幅车辆图像中分割出来。车牌自身具有许多的固有特征,这些特征对于不同的国家是不同的。从人的视觉角度出发,我国车牌具有以下可用于定位的特征: (1)车牌底色一般与车身颜色、字符颜色有较大差异; (2)车牌有一个连续或由于磨损而不连续的边框; (3)车牌内字符有多个,基本呈水平排列,在牌照的矩形区域内存在丰富的边缘,呈现规则的纹理特征; (4)车牌内字符之间的间隔较均匀,字符和牌照底色在灰度值上存在较大的跳变,字符本身和牌照底内部都有比较均匀的灰度; (5)不同图像中牌照的具体大小、位置不确定,但其长宽比在一定的变化范围内,存在1个最大值和1个最小值。 以上几种特征都是概念性的,各项特征单独看来都非车牌图像所独有,但将它们结合起来可以唯一地确定车牌。在这些特征中,颜色、形状、位置特征最为直观,易于提取。纹理特征比较抽象,必须经过一定的处理或者转换为其他特征才能得到相应的可供使用的特征指标。通常文字内容特征至少需要经过字符分割或识别后才可能成为可利用的特征,一般只是用来判断车牌识别正确与否。

OpenCV下车牌定位算法实现

OpenCV下车牌定位算法实现代码(一) 车牌定位算法在车牌识别技术中占有很重要地位,一个车牌识别系统的识别率往往取决于车牌定位的成功率及准确度。 车牌定位有很多种算法,从最简单的来,车牌在图像中一般被认为是长方形,由于图像摄取角度不同也可能是四边形。我们可以使用OpenCV中的实例:C:\Program Files\OpenCV\samples\c.squares.c 这是一个搜索图片中矩形的一个算法。我们只要稍微修改一下就可以实现定位车牌。 在这个实例中使用了canny算法进行边缘检测,然后二值化,接着用cvFindContours搜索轮廓,最后从找到的轮廓中根据角点的个数,角的度数和轮廓大小确定,矩形位置。以下是效果图: 这个算法可以找到一些车牌位置,但在复杂噪声背景下,或者车牌图像灰度与背景相差不大就很难定位车牌。所以我们需要寻找更好的定位算法。下面是squares的代码: #ifdef _CH_ #pragma package #endif #ifndef _EiC #include "cv.h" #include "highgui.h" #include #include

#include #endif int thresh = 50; IplImage* img = 0; IplImage* img0 = 0; CvMemStorage* storage = 0; CvPoint pt[4]; const char* wndname = "Square Detection Demo"; // helper function: // finds a cosine of angle between vectors // from pt0->pt1 and from pt0->pt2 double angle( CvPoint* pt1, CvPoint* pt2, CvPoint* pt0 ) { double dx1 = pt1->x - pt0->x; double dy1 = pt1->y - pt0->y; double dx2 = pt2->x - pt0->x; double dy2 = pt2->y - pt0->y; return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10); } // returns sequence of squares detected on the image. // the sequence is stored in the specified memory storage CvSeq* findSquares4( IplImage* img, CvMemStorage* storage ) { CvSeq* contours; int i, c, l, N = 11; CvSize sz = cvSize( img->width & -2, img->height & -2 ); IplImage* timg = cvCloneImage( img ); // make a copy of input image IplImage* gray = cvCreateImage( sz, 8, 1 ); IplImage* pyr = cvCreateImage( cvSize(sz.width/2, sz.height/2), 8, 3 ); IplImage* tgray; CvSeq* result; double s, t; // create empty sequence that will contain points - // 4 points per square (the square's vertices) CvSeq* squares = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvPoint), storage ); // select the maximum ROI in the image // with the width and height divisible by 2 cvSetImageROI( timg, cvRect( 0, 0, sz.width, sz.height )); // down-scale and upscale the image to filter out the noise

图像纹理检测与特征提取技术研究综述

龙源期刊网 https://www.sodocs.net/doc/2c18785939.html, 图像纹理检测与特征提取技术研究综述 作者:李秀怡 来源:《中国管理信息化》2017年第23期 [摘要] 图像纹理作为图像数据的重要信息,是符合人类视觉特征的重要信息之一。纹理 检测与特征提取是纹理分类与分割的基础前提,可以应用到医疗、工业、农业、天文等多个领域,也是近几十年来一个经久不衰的热点研究。随着图像处理领域各种技术的发展,纹理特征分析提取方法也得到不断创新。文章在对相关文献进行调研的基础上,叙述了纹理特征提取方法的发展历程及研究现状,并重点对近十年纹理特征提取方法进行了论述,最后指出了该领域的发展趋势及问题。 [关键词] 图像纹理;特征提取;小波;支持向量机 doi : 10 . 3969 / j . issn . 1673 - 0194 . 2017. 23. 088 [中图分类号] TP311 [文献标识码] A [文章编号] 1673 - 0194(2017)23- 0175- 04 1 引言 随着大数据时代的到来,相对于一般数据,图像信息作为一种更直观更形象的数据表现形式,其应用已经深入到医学、工业、航空、农业等各行业领域中。而纹理作为图像的重要特征之一,可以充分反映图像的整体特征,因此也成为了诸多图像后处理技术所必备的研究条件。但是,纹理的复杂多样性使得研究者们对其分析和准确识别是非常困难。而解决这个困难的方法之一是对图像提取纹理,然后对提取的纹理进行分析研究。这也是模式识别、图像检索、和计算机视觉等研究的基础。在纹理研究的每个阶段内,随着国内外学者研究对图像纹理提取模型及算法的不断创新,以及纹理提取的广泛的应用价值,促使着大家对这一领域进行更深入的研究。 2 纹理的基本定义及特性 目前,人们对纹理的精确定义还没有完全统一,当前几个类别的定义基本上按不同的应用类型形成相对的定义。一般认为,纹理是图像色彩或者灰度在空间上的重复或变化形成纹理。通常,人们将组成纹理的基本单元称为纹理基元或纹元(texture element)。 尽管关于纹理的定义尚未统一,但人们对纹理信息所具有的如下特性达成共识: (1)纹理基元是纹理存在的基本元素,并一定是按照某种规律排列组合形成纹理;(2)纹理信息具有局部显著性,通常可以表现为纹理基元序列在一定的局部空间重复出现;(3)纹理有周期性、方向性、密度、强度和粗糙程度等基本特征,而与人类视觉特征相一致的周期

车牌定位算法研究及实现

车辆自动识别技术(一)——车牌定位算法研究及实现 (2010-07-19 22:45:15) 分类:控制仿真类 标签: 杂谈 摘要 随着我国交通事业的迅速发展,城市汽车容量的急速攀升,建立现代化的智能交通系统已经成为解决此类中诸多问题的焦点所在。汽车牌照识别系统是交通管理领域和数字图像处理领域里的热点问题,车辆是构成整个智能交通系统的最基本元素,而车辆牌照是我们标定车辆的唯一ID,所以说,车牌定位是实现车牌字符分割和字符识别的前提和关键。 本文介绍了三种基于MATLAB的汽车牌照图像定位方法。这些算法充分利用了车牌纹理、颜色、宽高比等特征,经过灰度化、运动区域定位、边缘提取、水平投影、自适应数学形态学处理、垂直投影、颜色判定、区域生长等一系列步骤,最终实现车牌定位。特别是边缘处理算子的改进、自适应数学形态学的引入以及小波分析的应用,对算法性能有着巨大影响,是本算法的关键所在。 实验结果表明,所述的三种方法是有效的,能够定位所采集的车牌,虽然不能定位全部采集到的图片,但方法三相对前两种方法的准确率有很大的提高,达到了预期的目的。 关键词:车牌定位;纹理分析;边缘检测;数学形态学;小波分析 目录 摘要 Abstract 第1章绪论 1 1.1 课题研究背景及意义 1 1.2 课题研究目的 2 1.3 国内及国外研究现状 2 1.3.1 国内研究现状 2

1.3.2 国外研究现状 4 1.4 本文的工作及基本结构 4 第2章图像处理技术基础 5 2.1 图像预处理 5 2.1.1 图像灰度化 5 2.1.2 图像二值化 6 2.1.3 图像小波变换 6 2.1.4 图像形态学处理 7 2.2 图像区域裁剪 9 第3章基于MATLAB的车牌定位算法实现 10 3.1 MATLAB及其图像处理工具 10 3.2 我国车牌特点及识别难点 10 3.2.1 我国车辆牌照特点 10 3.2.2 我国车辆牌照定位难点 11 3.3 图像的采集 11 3.4 基于不同车牌特征的程序实现过程及结果图 13 3.4.1 基于车牌颜色特征的方法 13 3.4.2 基于数学形态学和边缘特征的方法 16 3.4.3 基于小波分析的方法 20 3.5 三种方法的结果比较 23 第4章结束语 26 参考文献 27 致谢 28 附录 29 第1章绪论 1.1 课题研究背景及意义

车牌定位方法

摘要: 车牌定位是车牌自动识别技术中的一个关键问题,许多学者研究发展多种车牌定位算法。简要介绍和比较了目前比较常见的几种车牌定位方法进行了。 车牌识别LPR(License Plate RecognitiON)技术作为交通管理自动化的重要手段和车辆检测系统的一个重要环节,能经过图像抓拍、车牌定位、图像处理、字符分割、字符识别等一系列算法运算,识别出视野范围内的车辆牌照号码;它运用数字图像处理、模式识别、人工智能技术对采集到的汽车图像进行处理,能够实时准确地自动识别出车牌的数字、字母及汉字字符,并以计算机可直接运行的数据形式给出识别结果,使得车辆的电脑化监控和管理成为现实。 车牌识别技术的任务是处理、分析摄取的视频流中复杂背景的车辆图像,定位、分割牌照字符,最后自动识别牌照上的字符。为了保证汽车车牌识别系统能在各种复杂环境下发挥其应有的作用,识别系统必须满足以下要求: (1)鲁棒性:在任何情况下均能可靠正常地工作,且有较高的正确识别率。 (2)实时性:不论在汽车静止还是高速运行情况下,图像的采集识别系统必须在一定时间内识别出车牌全部字符,达到实时识别。 车牌识别技术的关键在于车牌定位、字符分割和字符识别三部分,其中车牌定位的准确与否直接决定后面的字符分割和识别效果,是影响整个LPR系统识别率的主要因素,是车牌识别技术中最为关键的一步。目前车牌定位的方法多种多样, 归纳起来主要有基于纹理特征分析的方法、基于边缘检测的方法、基于数学形态学定位、基于小波分析定位以及基于彩色图像定位等,这些方法各有所长。 1、车牌目标区域特点 车牌定位方法的出发点是利用车牌区域的特征来判断牌照,将车牌区域从整幅车辆图像中分割出来。车牌自身具有许多的固有特征,这些特征对于不同的国家是不同的。从人的视觉角度出发,我国车牌具有以下可用于定位的特征: (1)车牌底色一般与车身颜色、字符颜色有较大差异; (2)车牌有一个连续或由于磨损而不连续的边框; (3)车牌内字符有多个,基本呈水平排列,在牌照的矩形区域内存在丰富的边缘,呈现规则的纹理特征; (4)车牌内字符之间的间隔较均匀,字符和牌照底色在灰度值上存在较大的跳变,字符本身和牌照底内部都有比较均匀的灰度; (5)不同图像中牌照的具体大小、位置不确定,但其长宽比在一定的变化范围内,存在1个最大值和1个最小值。 以上几种特征都是概念性的,各项特征单独看来都非车牌图像所独有,但将它们结合起来可以唯一地确定车牌。在这些特征中,颜色、形状、位置特征最为

(完整版)图像特征特点及常用的特征提取与匹配方法

图像特征特点及常用的特征提取与匹配方法 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的特征提取与匹配方法 (1) 颜色直方图 其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间:RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2) 颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡 的颜色空间(如HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3) 颜色矩

图像特征特点及其常用的特征提取与匹配方法

图像特征特点及其常用的特征提取与匹配方法 [ 2006-9-22 15:53:00 | By: 天若有情 ] 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的特征提取与匹配方法 (1)颜色直方图 其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间:RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2)颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡的颜色空间(如HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3)颜色矩 这种方法的数学基础在于:图像中任何的颜色分布均可以用它的矩来表示。此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(m ean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。(4)颜色聚合向量 其核心思想是:将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。 (5)颜色相关图 二纹理特征 (一)特点:纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。在模式匹配中,这种区域性的特征具有较大的优越性,不会由于局

车牌识别技术浅析及定位算法

车牌识别技术浅析及算法代码 摘要:车牌定位、字符分割、字符识别是车牌识别的三个重要组成部分,是车 牌识别技术研究的重点,从这三个方面对车牌识别技术的发展和现状及车牌识别技术的应用进行了简要介绍。车牌定位是车牌识别技术的第一个关键技术,定位的准确与否直接影响着车牌识别的准确率。本文对目前存在的车牌定位算法进行简单探讨。 关键词:车牌识别技术;车牌定位;算法比较;字符分割;字符识别。 随着2l世纪经济全球化和信息时代的到来,计算机技术、通信技术和计算机网络技术迅猛发展,自动化的信息处理能力和水平不断提高,并在人们社会活动和生活的各个领域得到广泛应用,高速度、高效率的生活节奏,使汽车普及成为必然趋势。伴随着世界各国汽车数量的增加,城市交通状况日益受到人们的重视。如何有效地进行交通管理,越来越成为各国政府的相关部门所关注的焦点。针对这一问题,人们运行先进的信息处理技术、导航定位技术、无线通信技术、自动控制技术、图像处理和识别技术及计算机网络技术等科学技术,相继研发了各种交通道路监视管理系统、车辆控制系统及公共交通系统。这些系统将车辆和道路综合起来进行考虑,运行各种先进的技术解决道路交通的问题,统称为智能交通系统(Intelligent Tr ansportationSystem,简称ITS)。ITS是20世纪90年代兴起的新一代交通运输系统。它可以加强道路、车辆、驾驶员和管理人员的联系,实现道路交通管理自动化和车辆行驶的智能化,增强交通安全,减少交通堵塞,提高运输效率,减少环境污染,节约能源,提高经济活力。智能交通系统以车辆的自动检测作为信息的来源,因而对汽车牌照等相关信息的自动采集和处理的一门新的交通信息获取技术——车牌识别(License Plate Recognition,LPR技术逐渐发展起来,成为信息处理技术的一项重要研究课题。 1 车牌识别技术简介 车牌识别技术的研究最早出现在20世纪80年代,这个阶段的研究没有形成完整的系统体系,而是就某一具体的问题进行研究,通常采用简单的图像处理方法来解决。识别过程是使用工业电视摄像机(Industrial TV Camera)~]下汽车的正前方图像,然后交给计算机进行简单处理,并且最终仍需要人工干预进入2O世纪90年代后,随着计算机视觉Computer Vision Technology)的发展和计算机性能的提高,世界各国投入了大量的人力、物力进行汽车牌照识别系统的研究,时隔10多年,仍然没有一个成熟系统的识别率达到100%。20世纪90年代后期以后,随着全世界汽车数量的急剧增加,车牌识别技术的应用范围也越来越广,车牌识别技术己成为了一个热门的研究课题,人们对其进行了广泛的研究。车牌识别技术的任务是处理、分析摄取的视频。其中关键在于以下三部分:车牌定位、字符分割和字符识别。下面就从这三个方面对车牌识别技术的发展和现状进行简单介绍: (1)车牌定位方法 车牌图像往往是在复杂的环境中拍摄得到的,车牌由于与复杂的车身背景融为一体,由于车牌在使用中磨损与灰尘及拍摄仪器的影响以及由于拍摄角度的不

Gabor纹理特征

利用Gabor滤波器组提取图像纹理特征 本部分将包含以下四个方面:纹理特征提取方法综述、Gabor滤波器简介、Gabor滤波器组实现纹理特征提取的步骤与实现、存在的问题与改进策略。 1、纹理特征提取方法综述[1] 纹理没有准确的定义,但对纹理认识的共识是:①纹理不同于灰度和颜色等图像特征,它通过像素及其周围空间邻域的灰度分布来表现,即局部纹理信息;②局部纹理信息不同程度的重复性,即全局纹理信息。 按照纹理特征提取方法所基于的基础理论和研究思路的不同,并借鉴非常流行的Tuceryan和Jain的分类方法,将纹理特征提取方法分为四大家族:统计家族、模型家族、信号处理家族和结构家族。 统计家族的方法是基于像元及其邻域的灰度属性,研究纹理区域中的统计特性,或像元及其邻域内的灰度的一阶、二阶或高阶统计特性;在模型家族中,假设纹理是以某种参数控制的分布模型方式形成的,从纹理图像的实现来估计计算模型参数,以参数为特征或采用某种分类策略进行图像分割,因此模型参数的估计是该家族方法的核心问题;信号处理的方法是建立在时、频分析与多尺度分析基础之上,对纹理图像中某个区域内实行某种变换后,再提取保持相对平稳的特征值,以此特征值作为特征表示区域内的一致性以及区域间的相异性;结构家族的方法基于“纹理基元”分析纹理特征,着力找出纹理基元,认为纹理由许多纹理基元构成,不同类型的纹理基元、不同的方向及数目等,决定了纹理的表现形式。信号处理家族的方法从变换域提取纹理特征,其他3个家族直接从图像域提取纹理特征。各个家族的方法既有区别,又有联系。 利用Gabor滤波器组提取图像纹理特征,如图所示,可以归结为信号处理家族中小波方法的一个分支。

车牌定位

本人的毕设收集资料 a.一些算法 1.基于纹理特征的车牌定位法 车辆图像随拍摄环境的变化而不同,然而车辆牌照具有不因外部条件变化而改变的特征。车牌内有多个基本成水平排列的字符,字符和牌照底在灰度值上存在跳变,因而车牌这个矩形区域(包括边缘)有丰富的边缘存在,呈现出规则的纹理特征。在传统的基于灰度分割技术上,这些特征为车牌定位研究提供了切实可行的依据。基于纹理分析的方法利用车牌区域内字符纹理丰富的特征定位车牌,它对于光照偏弱、偏强、不均匀性、牌照倾斜和变形等情况不敏感。但该方法应用于背景复杂的图像时,容易把一些纹理分布较丰富的非车牌区域定位进来,产生包含车牌在内的车牌候选区域,这是纹理分析方法的缺陷。 2.基于神经网络的定位算法 利用神经网络来定位车牌是一类较为常见的方法。本算法的基本步骤和各模块的功能如下:(1)神经网络训练模块:收集一定数量的车牌图像样本,归一化后输入至BP神经网络进行训练,达到预定的正确率后,训练结束。本模块将获得一个对车牌敏感的BP神经网络。 (2)图像预处理模块:提取车牌前,对图像进行预处理;抑制噪声,提高图片质量。 (3)车牌定位模块:利用训练好的神经网络在图像中搜索车牌区域,定位车牌。 本方法的特点是从车牌区域特征来判别牌照,因此在搜索时会重点考虑以下表面特征(如边缘、对比度、纹理等)而忽视图像区域的内容。有用信号的特征有时会误导搜索,如果因为定位模块忽视了非牌照区域包含的车牌特征信号点,将这些区域送入后续步骤将会影响车牌字符识别。 3基于特征统计的车牌定位 基于特征统计的车牌定位利用车牌区域的结构特征和字符纹理特征。车牌区域字符笔划变化含有丰富的边缘信息。对整幅汽车图像进行边缘检测,车牌区域相对于其它非车牌区域含有更多的细节信息。对边缘图像进行行或列扫描,该行或列灰度值跳变的次数明显不同非车牌区域的行或列,即基于特征统计的车牌定位方法。此方法分为两个部分:粗定位和精确定位。1.粗定位: 粗定位是从车牌边缘检测后的图像中找出含有车牌的区域,并把它提取出来,考虑到车牌区域中存在大量笔画边缘点集,当线段扫描到车牌区域时,£会大于某个阈值,这样就能初步找到横穿车牌区域的线段,然后以此线段为起点,上下平移扫描,利用车牌区域横向积分投影的连续性特征,定出车牌的上下边。在定位出上下边的同时,利用车牌白点数目占据主导的特点,用一定宽度的矩形,从左往右扫描。粗定位具体做法是用一个比估计车牌小的矩形遍历整个边缘二值图,则落在该矩形内白色的点最多的位置就是车牌区域的大致位置。2.精确定位: 车牌颜色主要分为:蓝底白字、黄底黑字、黑底白字,白底黑字四种。相同号码不同颜色组合的车牌不是同一个车牌,所以颜色信息在车牌定位的过程中相当重要。本文在精确定位时结合车牌的长宽信息、颜色信息,根据车牌颜色(蓝、白、黄、黑4种)像素占候选车牌区域所有像素的比例来确定哪个是车牌部分,由此得到准确的车牌区域。 具体思想如下:对粗定位中提取的区域进行研究,如果此区域蓝、黑、黄色中哪种颜色较多,则认为蓝底色牌照、黑底色牌照、黄底色牌照,剩余的车牌为白底色军车和武警车牌照等。每个颜色的RGB有一定的范围比例,如蓝色的RGB各值中蓝色分量最大,并且蓝色红色分量的比值大于门限Tb;黑色的RGB各值相差不大,它们与其它颜色的RGB值相比是很小的值,且小于门限Tbl;黄色的RGB各分量依次减小,而且蓝色分量远小于其它两色。设图像中像素的红

图像纹理特征提取方法

安徽大学 本科毕业论文(设计、创作) 题目:图像纹理特征提取方法研究 学生姓名:朱邵成学号:Z01114175 院(系):电气工程与自动化学院专业:自动化 入学时间:2011年9月 导师姓名:寻丽娜职称/学位:讲师/博士 导师所在单位:安徽大学电气工程与自动化学院 完成时间:2015年5月

图像纹理特征提取方法研究 摘要 近年来,随着信息多媒体时代的到来,以及网络在世界范围内的日益流行、云计算的风行,人们在日常生活工作接触的信息量越来越大。图像作为信息的一种载体,具有直观、信息量大、便于不同国家间交流的特点,是网络多媒体的重要组成部分。基于文本的图像检索是基于内容图像检索的基础,用人工方式解释图像信息,其工作量我们难以想象,可行性也值得商榷。因此CBIR方法有效解决了这一个难题。基于内容的图像检索(CBIR)包括四个阶段,分别是:获取图像、提取特征、分类图像、检索图像。图像检索主要是一个核心问题:选取何种算法提取哪一种图像特征,快速有效的进行图像的区分与检测。纹理特征的提取是 CBIR 的关键问题之一,本论文也是基于图像纹理特征的提取为基础。首先,本文使用基于纹理基元的共生矩阵分析方法,用来提取纹理特征向量。此方法中,采用局部二进制模式(Local Binary Pattern,LBP)来进行图像的基本纹理基元的提取,并用灰度共生矩阵(Gray Level Co.occurrence Matrix,GLCM)中共生矩阵的分析方法来对纹理基元图像进行分析。其次文中深入研究了基于灰度共生矩阵( GLCM) 的纹理特征提取方法,给出了基于 Matlab 的简便实现代码,分析了共生矩阵各个构造参数对构造共生矩阵的影响。分析结果对优化灰度共生矩阵的构造、实现基于灰度共生矩阵( GLCM) 的特定图像的纹理特征提取等都具有重要参考意义。 关键词:纹理特征;灰度共生矩阵;基于内容的图像检索;Matlab

有效的车牌定位方法

车牌定位的一个有效方法 Danian Zheng *, Yannan Zhao, Jiaxin Wang 国家重点实验室智能技术与系统、计算机科学与技术系、 清华大学、北京100084、中国 摘要 车牌定位是机动车牌照自动识别运输系统的一个重要阶段。本文提供了一个实时和强劲车牌定位方法。车牌区域包含丰富的边缘和纹理信息。我们先用图像增强和Sobel算子提取出图象的垂直边缘, 然后用一个有效算法除去图像的大部分背景和噪声边缘, 最后在剩余边缘图像中利用一个矩形窗口搜索车牌区域并从原始图像中将车牌切割出来。实验结果表明,我们的方法有很强的鲁棒性和很高的效率。 _ 2005 Elsevier B.V. All rights reserved。 关键词:图像增强; 边缘检测; 长曲线和随机噪声的去除; 车牌定位和分割 1.引言 车牌识别成为当今许多自动交通管理系统如公路交通管理, 公路自动缴费和桥梁或停车场出入管制的关键技术。车牌定位是这项技术中非常必要和重要的一个阶段,它已引起了相当大的关注。 研究人员已经找到许多不同的方法定位车牌。 Rodolfo 和Stefano(2000)制定了一种基于矢量量化(VQ)的方法。矢量图像是基于一种特定的编码机制的四叉树,它可以提供给系统关于图像区域所包含内容的一些线索,这些信息有助于定位的实现。Park et al. (1999)使用神经网络定位车牌。神经网络可作为过滤分析图像的小窗口,判断每个窗口是否包含车牌,其输入为HIS值。一个后处理器将这些过滤图像合并起来并在图像中定位跳跃的车牌区域。除去神经网络,其他过滤方法也被研究过。例如,有些作者用线敏感过滤器提取车牌区域。可以确定车牌区域由很高密度的薄暗线或曲线。因此,车牌的定位是一个在图像中寻找包含由一个累积函数计算能得到的最大线过滤值的矩形区域的操作(Luis et al. 1999)。车牌字符可以直接通过对输入图像的扫描和寻找到图像中彼此不相连的部分来识别。如果发现有一些字符存在于一条直线上,那么他们所组成的部分 * Corresponding author。 Tel。: +86 10 62775613; fax: +86 10 62795871。 E-mail address: zdn02@mails。tsinghua。edu。cn (D。 Zheng)。 0167-8655/$ - see front matter _ 2005 Elsevier B。V。 All rights reserved。 doi:10。1016/j。patrec。2005。04。014

相关主题