搜档网
当前位置:搜档网 › Tensor 张量

Tensor 张量

Tensor 张量
Tensor 张量

场论基础

场论基础 附1 Hamilton 算子? 在直角坐标系中定义Hamilton 算子?为 x y z ???=++???i j k ? (附1.1) 这里,?既可以看成是一个微分算子,作用到一个标量函数或者是一个矢量函数上;也可以看成是一个向量,和其他的向量进行普通的点乘( )运算和叉乘(?)运算。 附1.1 梯度运算grad u u =? 对于一个标量场(,,)u x y z ,我们定义相关的梯度运算为 grad u u u u u x y z ???==++???i j k ? (附1.2) 那么标量函数(,,)u x y z 的梯度运算结果grad u 为一向量。下面我们来看梯度运算的数学意义。对于函数(,,)u x y z 的方向导数 u n ??,我们有 cos(,)cos(,)cos(,) ()()grad x y z u u x u y u z n x n y n z n u u u n x n y n z x y z u u u n n n u x y y ???????=++??????????=++ ??????=++++=???i j k i j k n (附1.3) 因此有 grad cos(,)u u u n ?=?n ? (附1.4) 从中可以看到,当单位向量n 的方向和梯度grad u 的方向一致时,u n ??取到极大值, 而极大值就为grad u 。这就是说,梯度grad u 为函数(,,)u x y z 变化最快的方向,也是等值函数(,,)u x y z C =的外法线方向,梯度的大小为函数方向导数的最大值。从上面的分析我们可以看到,梯度grad u 的定义和坐标系是无关。梯度grad u 在数值计算方法中有很重要意义。 附1.2 散度运算div =A A ? 对于一个向量场(,,)x y z A ,沿某一个曲面S 的通量定义为 d S S Φ= ??A n (附1.5) 更进一步,如果S 是个封闭曲面,其所包围的区域Ω,体积为V ,那么当

张量的基本概念(我觉得说的比较好-关键是通俗)

向量是在一个线性空间中定义的量,当这个线性空间的基变换时,向量的分量也跟着变换。而一个线性空间有一个伴随的对偶空间。 张量是一个同时定义在几个线性空间的量,这几个线性空间的基可同时变换,或者只是只变换几个,此时,张量的分量也跟着变换。我们一般见到的张量是同时定义在几个线性空间及其对偶空间里的量,在实际的符号表达中,就表现为同时有几个上指标和下指标,也即线性空间及其对偶空间。 张量其实是一种线性代数,即多重线性代数,从字面上理解,也正好是上面提到的“定义在多个线性空间的量”。 在流形中,一点的切空间正好同构于一个欧氏空间,也即,与一个欧氏空间的性质一样。而这个欧氏空间有一个伴随的对偶空间,所以可以定义张量。 要对流形上张量作微分运算,必须比较流形上相距很近两点的张量的差,这就引出了联络的概念,而联络的概念的引出,需要这两个不同的点的欧氏空间是同构的。进而发展了张量分析。 现代数学是建立在代数与拓扑基础上的,很多概念如果代数水平不行,是很难理解的。比如泛函分析、纤维从理论等。代数方面的知识,最好能掌握抽象代数的概念,进而掌握交换代数的知识。 其实,线性代数是很多现代数学概念的基础,而线性代数的核心就是空间的概念。而现在,我们国内工科学的线性代数只是讲一讲矩阵、矩阵运算、特征值、特征向量、二次形等等。线性代数的精髓概念根本涉及不到。这也就造成了很多同学理解现代数学中很多概念的困难。 现代数学的一个非常重要的方法论就是公理化的方法。这是希尔伯特在其《几何基础》中最先明确提出的,这本书当初得到了彭加莱的很高的评价。 公理化思想的威力我当初是在学习《实变函数论》这门课时深刻体会到的。武熙鸿老师的《黎曼几何初步》中,则是处处渗透着公理化的思想,读来颇有味道。 应该这样说,是低阶张量被我们找到了可以比拟的物理意义,但张量本身并不需要具有几何比拟 其实,张量是有很强的几何背景的,不管是低阶的,还是高阶的。这主要是因为现代张量的定义是建立在线性空间概念的基础上的。而线性空间正是从一、二、三维空间中抽现出来的。只要把握住“多个线性空间及其对偶空间”这个关键就行了。 而物理学家对于张量的定义是从坐标变换的角度定义的,这正是当初Ricci定义的方式。这种定义在现代数学中推广起来比较困难。所以把它定义成了多重线性映射。 我的朋友有的是搞弹性理论和流体的,但他们对张量的理解也很混乱,所以有时也向他们解释这个东西。但好像解释来解释去,他们还是不太明白。可能与他们是搞计算的有关,对这些纯理论的东东没有一个很系统的学习与理解,而且理解那么深也没用。不过,他们搞得计算的东东倒是一门很深的东东,我理解起来挺困难的。有时与他们神侃,很是佩服他们的计算机水平,不只对数值计算有极深的造诣,对一个程序如何编译成汇编代码,如何在CPU 中执行,操作系统如何对内存处理,那些程序又如何在内存中调度,反正听得多了,我也能

张量的基本概念(我觉得说的比较好,关键是通俗)

简单的说:张量概念是矢量概念和矩阵概念的推广,标量是零阶张量,矢量是一阶张量,矩阵(方阵)是二阶张量,而三阶张量则好比立体矩阵,更高阶的张量用图形无法表达。 向量是在一个线性空间中定义的量,当这个线性空间的基变换时,向量的分量也跟着变换。而一个线性空间有一个伴随的对偶空间。 张量是一个同时定义在几个线性空间的量,这几个线性空间的基可同时变换,或者只是只变换几个,此时,张量的分量也跟着变换。我们一般见到的张量是同时定义在几个线性空间及其对偶空间里的量,在实际的符号表达中,就表现为同时有几个上指标和下指标,也即线性空间及其对偶空间。 张量其实是一种线性代数,即多重线性代数,从字面上理解,也正好是上面提到的“定义在多个线性空间的量”。 在流形中,一点的切空间正好同构于一个欧氏空间,也即,与一个欧氏空间的性质一样。而这个欧氏空间有一个伴随的对偶空间,所以可以定义张量。 要对流形上张量作微分运算,必须比较流形上相距很近两点的张量的差,这就引出了联络的概念,而联络的概念的引出,需要这两个不同的点的欧氏空间是同构的。进而发展了张量分析。 现代数学是建立在代数与拓扑基础上的,很多概念如果代数水平不行,是很难理解的。比如泛函分析、纤维从理论等。代数方面的知识,最好能掌握抽象代数的概念,进而掌握交换代数的知识。 其实,线性代数是很多现代数学概念的基础,而线性代数的核心就是空间的概念。而现在,我们国内工科学的线性代数只是讲一讲矩阵、矩阵运算、特征值、特征向量、二次形等等。线性代数的精髓概念根本涉及不到。这也就造成了很多同学理解现代数学中很多概念的困难。 现代数学的一个非常重要的方法论就是公理化的方法。这是希尔伯特在其《几何基础》中最先明确提出的,这本书当初得到了彭加莱的很高的评价。 公理化思想的威力我当初是在学习《实变函数论》这门课时深刻体会到的。武熙鸿老师的《黎曼几何初步》中,则是处处渗透着公理化的思想,读来颇有味道。 应该这样说,是低阶张量被我们找到了可以比拟的物理意义,但张量本身并不需要具有几何比拟 其实,张量是有很强的几何背景的,不管是低阶的,还是高阶的。这主要是因为现代张量的定义是建立在线性空间概念的基础上的。而线性空间正是从一、二、三维空间中抽现出来的。只要把握住“多个线性空间及其对偶空间”这个关键就行了。 而物理学家对于张量的定义是从坐标变换的角度定义的,这正是当初Ricci定义的方式。这种定义在现代数学中推广起来比较困难。所以把它定义成了多重线性映射。 我的朋友有的是搞弹性理论和流体的,但他们对张量的理解也很混乱,所以有时也向他们解释这个东西。但好像解释来解释去,他们还是不太明白。可能与他们是搞计算的有关,对这些纯理论的东东没有一个很系统的学习与理解,而且理解那么深也没用。不过,他们搞得计算的东东倒是一门很深的东东,我理解起来挺困难的。有时与他们神侃,很是佩服他们的计

张量分析及公式

I.2 符号ij δ与rst e 符号ij δ称为“Kronecker delta ”,它的定义是: ???=0 1ij δ 时 当时当j i j i ≠= ()n ,,2,1j ,i = (I.14) 定义表明它对指标i 和j 是对称的,即 ji ij δδ= (I.15) ij δ的分量集合对应于单位矩阵。例如,在三维空间中: ???? ? ?????=??????????1000100013332 31232221131211δδδδδδ δδδ (I.16) 利用ij δ可以把线元长度平方的公式(I.6)改写成 j i ij dx dx ds δ=2 (I.17) 这里ij δ起了换标的作用,即:如果ij δ符号的两个指标中,有一个和同项中其他因子的指标相重,则可以把该因子的那个重指标替换成ij δ的另一个指标,而ij δ自动消失。这样: i i j j j i ij dx dx dx dx dx dx ds ===δ2 类似地有 ik jk ij a a =δ;jk ik ij a a =δ ki kj ij a a =δ;kj ki ij a a =δ (I.18) 以及 ik jk ij δδδ=;il kl jk ij δδδδ= (I.19) 所以,ij δ也称为换标符号。 符号rst e 的定义是: ?? ? ??-=011 rst e 个以上指标值相同时中有当为逆序排列时当为正序排列时当2t ,s ,r t ,s ,r t ,s ,r (I.20a) 或 )r t )(t s )(s r (2 1 e rst ---= ()3,2,1t ,s ,r = (I.20b) 其中,正序排列是指(l , 2 . 3 )及其轮流换位得到的(2 . 3 , l )和(3 , 1 , 2 ),逆序排列是指(3 , 2 , l )及其轮流换位得到的(2 , l , 3 )和(l , 3 , 2 )。 rst e 称为排列符号或置换符号。它共有27 个元素,其中只有3个元素为1,3个元素为-1 ,其余的元素都是0。 定义表明rst e 对任何两个指标都是反对称的,即: tsr rts srt rst e e e e -=-=-= (I.21) 当三个指标轮流换位时(相当于指标连续对换两次),rst e 的值不变: trs str rst e e e == (I.22) 下面举几个常用实例: 1. 三个互相正交的单位基矢量构成正交标准化基。它具有如下重要性质:

张量的基本概念我觉得说的比较好,关键是通俗

简单的说:张量概念是矢量概念和矩阵概念的推广,标量是零阶张量,矢量是一阶张量,矩阵(方阵)是二阶张量,而三阶张量则好比立体矩阵,更高阶的张量用图形无法表达。 向量是在一个线性空间中定义的量,当这个线性空间的基变换时,向量的分量也跟着变换。而一个线性空间有一个伴随的对偶空间。 张量是一个同时定义在几个线性空间的量,这几个线性空间的基可同时变换,或者只是只变 换几个,此时,张量的分量也跟着变换。我们一般见到的张量是同时定义在几个线性空间及其对偶空间里的量,在实际的符号表达中,就表现为同时有几个上指标和下指标,也即线性空间及其对偶空间。 张量其实是一种线性代数,即多重线性代数,从字面上理解,也正好是上面提到的“定义在多个线性空间的量”。 在流形中,一点的切空间正好同构于一个欧氏空间,也即,与一个欧氏空间的性质一样。而这个欧氏空间有一个伴随的对偶空间,所以可以定义张量。 要对流形上张量作微分运算,必须比较流形上相距很近两点的张量的差,这就引出了联络的 概念,而联络的概念的引出,需要这两个不同的点的欧氏空间是同构的。进而发展了张量分析。 现代数学是建立在代数与拓扑基础上的,很多概念如果代数水平不行,是很难理解的。比如泛函分析、纤维从理论等。代数方面的知识,最好能掌握抽象代数的概念,进而掌握交换代数的知识。 其实,线性代数是很多现代数学概念的基础,而线性代数的核心就是空间的概念。而现在,我们国内工科学的线性代数只是讲一讲矩阵、矩阵运算、特征值、特征向量、二次形等等.线性代数的精髓概念根本涉及不到。这也就造成了很多同学理解现代数学中很多概念的困难。 现代数学的一个非常重要的方法论就是公理化的方法。这是希尔伯特在其《几何基础》中最先明确提出的,这本书当初得到了彭加莱的很高的评价. 公理化思想的威力我当初是在学习《实变函数论》这门课时深刻体会到的。武熙鸿老师的《黎曼几何初步》中,则是处处渗透着公理化的思想,读来颇有味道。 应该这样说,是低阶张量被我们找到了可以比拟的物理意义,但张量本身并不需要具有几何 比拟 其实,张量是有很强的几何背景的,不管是低阶的,还是高阶的。这主要是因为现代张量的定义是建立在线性空间概念的基础上的。而线性空间正是从一、二、三维空间中抽现出来的。只要把握住“多个线性空间及其对偶空间”这个关键就行了. 而物理学家对于张量的定义是从坐标变换的角度定义的,这正是当初Ricci定义的方式。这种定义在现代数学中推广起来比较困难。所以把它定义成了多重线性映射. 我的朋友有的是搞弹性理论和流体的,但他们对张量的理解也很混乱,所以有时也向他们解释这个东西。但好像解释来解释去,他们还是不太明白。可能与他们是搞计算的有关,对这些纯理论的东东没有一个很系统的学习与理解,而且理解那么深也没用。不过,他们搞得计算的东东倒是一门很深的东东,我理解起来挺困难的。有时与他们神侃,很是佩服他们的计算

(完整版)张量分析中文翻译

张量 张量是用来描述矢量、标量和其他张量之间线性 关系的几何对象。这种关系最基本的例子就是点积、 叉积和线性映射。矢量和标量本身也是张量。张量可 以用多维数值阵列来表示。张量的阶(也称度或秩) 表示阵列的维度,也表示标记阵列元素的指标值。例 如,线性映射可以用二位阵列--矩阵来表示,因此该 阵列是一个二阶张量。矢量可以通过一维阵列表示, 所以其是一阶张量。标量是单一数值,它是0阶张量。 张量可以描述几何向量集合之间的对应关系。例 如,柯西应力张量T 以v 方向为起点,在垂直于v 终点方向产生应力张量T(v),因此,张量表示了这两个 向量之间的关系,如右图所示。 因为张量表示了矢量之间的关系,所以张量必 须避免坐标系出现特殊情况这一问题。取一组坐标 系的基向量或者是参考系,这种情况下的张量就可 以用一系列有序的多维阵列来表示。张量的坐标以 “协变”(变化规律)的形式独立,“协变”把一种 坐标下的阵列和另一种坐标下的阵列联系起来。这 种变化规律演化成为几何或物理中的张量概念,其 精确形式决定了张量的类型或者是值。 张量在物理学中十分重要,因为在弹性力学、流体力学、广义相对论等领域中,张量提供了一种简洁的数学模型来建立或是解决物理问题。张量的概念首先由列维-奇维塔和格莱格里奥-库尔巴斯特罗提出,他们延续了黎曼、布鲁诺、克里斯托费尔等人关于绝对微分学的部分工作。张量的概念使得黎曼曲率张量形式的流形微分几何出现了替换形式。 历史 现今张量分析的概念源于卡尔?弗里德里希?高斯在微分几何的工作,概念的 制定更受到19世纪中叶代数形式和不变量理论的发展[2]。“tensor ”这个单词在 1846年被威廉·罗恩·哈密顿[3]提及,这并不等同于今天我们所说的张量的意思。 [注1]当代的用法是在1898年沃尔德马尔·福格特提出的[4]。 “张量计算”这一概念由格雷戈里奥·里奇·库尔巴斯特罗在1890年《绝对微分几何》中发展而来,最初由里奇在1892年提出[5]。随着里奇和列维-奇维塔1900年的经典著作《Méthodes de calcul différentiel absolu et leurs applications 》(绝对微分学的方法及其应用)出版而为许多数学家所知[6]。 在20世纪,这个学科演变为了广为人知的张量分析,1915年左右,爱因斯坦的广义相对论理论中广泛应用了这一理论。广义相对论完全由张量语言表述。爱因斯坦曾向几何学家马塞尔·格罗斯曼学习过张量方法,并学得很艰苦。[7]1915 年到1917年之间,列维·奇维塔 在与爱因斯坦互相尊重互相学习的氛围下,对爱因斯坦的张量表述给与了一些指正。 “我很佩服你的计算方法的风采,它必将使你在数学大道上策马奔腾,然而我们却只能步履蹒跚。”阿尔伯特·爱因斯坦,意大利相对论数学家[8]。 柯西应力张量是一个二阶张量。该张量的元素在三维笛卡尔坐标系下组成如下矩 阵: 312()()()111213212223313233 T T T =e e e σσσσσσσσσσ??=???????????? 该矩阵的各列表示作用在 e 1,e 2,e 3方向正方体表面上的应力(单位面积上的力)。

张量分析中文翻译(最新整理)

柯西应力张量是一个二阶张量。该张量的元素在三维笛

,其中新的基矢量按照如下公式由旧的基矢量变换得到,

指数之间的变换规律如下: 11111111,,,,11,,,,=n n n m n n m n n m n m i i i j j j j i i i j j i i j j T R R R R T ++++???∧???--????????????()()这样的张量称为阶或类型为(n,m-n )型的张量[4].这样的讨论产生了张量的一般定义。 定义:(n,m-n )型的张量是多线性映射的分配,即: 对于基f=(e 1,...,e N ) 是如此,如果应用如下基变换 多维阵列变成“协变”规律形式 11111111,,,,11,,,,[f,]=[f ] n n n m n n m n n m n m i i i j j j j i i i j j i i j j T R R R R R T ++++??????--????????????()()多维阵列定义张量满足“协变”规律,这个可以追溯到里奇的早期工作。如今,这种定义在一些物理和工程书籍中仍然经常使用。 张量场 在许多实际应用当中,特别是微分几何和物理领域,通常把张量的元素考虑成为函数形式。事实上,这只是Ricci 早期的工作。在当今的数学术语里面,这样的对象称为张量场,但是它们通常仅仅指的的张量本身。 本文当中的“协变”规律的定义采用一种不同的形式,张量场的基底由基础空间的坐标所决定,而且,“协变”规律的定义通过坐标函数的偏导数来表示, ,定义如下坐标变换 多线性映射 有一种定义张量的方法是站在多维阵列的角度的,从被定义对象基独立性和几何对象的本质来看,这种定义方法并不明显。尽管这种方法也可以说明变化规律对基独立性的觉得作用,但有时还是首选张量更本质的定义。一种方法是张量定义成多线性映射。这种方法中(n,m )类型的张量被定义成一种映射。 copies copies :, n m T V V V V R **???????????→ 式中V 表示向量空间,V *表示该向量空间对应的共轭向量空间,其中的变元是线性的。 通过把多线性映射(n,m )型的张量T 应用到V 的基{e 1}和V *的基共轭基{ε1}中,即: 1111(,,,,)i in i in j jm j jm T T e e εε??????≡??????

第八章 矢量算法与场论初步张量算法与黎曼几何初步 SECTION4.

§4 张量算法 一、 张量概念 [张量的一般定义] 若一个量有n N 个分量,而每个分量在n 维空间R n 中的坐标变换 () n i i x x x x ''???=,,1 (i = 1 , ·, n ) 之下,按下面的规律变化: l m m m l l j l m j j i i i i i i j j j j j i i T x x x x x x x x T ??????''' ????????????????????=' 111 111 1 1 式中l m j j i i T ??????1 1是x i 的函数, 1 1l m j j i i T ??????是x i '的函数,则量l m j j i i T ??????11 (共有n N 个分量)称为l 阶逆变(或抗变)m 阶协变的N (=l +m )阶混合张量(或称为(l +m )型混合张量). 张量概念是矢量和矩阵概念的推广,标量是零阶张量,矢量是一阶张量,矩阵(方阵)是 二阶张量,而三阶张量(例如T jk i )好比“立体矩阵”(图8.18右).更高阶的张量不能用图形表达. 下面列出n =2时的张量示意图: [张量举例] 1ο 可乘张量 设由逆变分量和协变分量所给定的两个矢量a , b 是已知的,则由等式 i k i k k i i k k i ik k i ik b a T b a T b a T b a T ====? ,.,, 确定的都是二阶张量,称为可乘张量.

2ο 克罗内克尔符号 克罗内克尔符号δj i 是一阶逆变一阶协变的二阶混合张量,这是 因为从 i j j i i i x x x x δ=????'' 可得 i j j j i i j i i i i j x x x x x x x x δδ '''''' ????=????= [二阶对称张量与反对称张量] 若张量满足等式 k i i k ki ik ki ik T T T T T T ===,, 则分别称为二阶对称协变张量、二阶对称逆变张量和二阶对称混合张量.若张量满足等式 T T T T T T ik ki ik ki k i i k =-=-=-,, 则分别称为二阶反对称协变张量、二阶反对称逆变张量和二阶反对称混合张量. 张量的逆变(协变)指标的对称性质在坐标变换下是不变的. 在三维空间中,二阶反对称张量与矢量等价. 二、 张量代数 [指标的置换] 指标置换是张量代数的最简单运算,利用它可作出新的张量.例如,通过指标置换,可由张量T ki 得到新的张量T ik ,它的矩阵是张量T ki 的矩阵的转置矩阵. [加(减)法] 同类型的若干个张量的对应分量相加(或相减)就得到一个新的同类型张量的分量,这种运算称为张量的加法(或减法). 任何二阶张量可分解为对称张量与反对称张量两部分.例如 ()()ki ik ki ik ik T T T T T -++= 2 121 [张量的乘法] 把两个张量的分量按各种可能情形相乘起来,就会得到一个新张量的分量.这个张量的逆变与协变的阶数分别等于原来两个张量的逆变与协变的阶数之和.这种运算

1_3张量运算

张量运算 这一节将介绍如何由给定的张量来构造新的张量。 从定义容易验证如果T 是一个阶张量(分量为,当然,它是相对于 某个给定的坐标系而言的)而是一个标量(普通的数),那么,aT (其分量 由定义)也是一个n 阶张量;如果T 和是两个具有相同阶数(如n ) 的张量,那么T n ij k T "a ij k aT "S S +(分量由T ij k ij k S +""定义)也是一个n 阶张量。这两种 运算分别称为张量的数乘及张量的和,对于矢量,数乘意味着矢量的伸长或缩短, 而矢量和则满足通常的平行四边形法则。从这些性质我们马上可以推知位移、速 度、加速度都是矢量,那么力呢?它当然也是一个矢量,但是这一点并非数学的 结论,而是一个物理的假设(F ma =K K )!一个有趣的结论是任何一个2阶张量 都可以由一个对称张量与一个反对称张量相加得到: ()()22ij ji ij ji ij S A ij ij T T T T T T +?=+=+T j ik (1) 顺便提一句,这两种运算实际上说明这样一个事实:任意两个阶张量的任意线 性组合仍是一个n 阶张量,也就是说,所有阶张量的集合构成了一个线性空间。 n n 第三种运算称为张量的缩并,例如一个分量为的3阶张量T ,如果令 并对i 求和,那么就得到了一个其第个分量为ijk T i =k k i C T =的1阶张量(即 矢量)。这是因为 k iik il im kn lmn lm kn lmn kn lln kn n C T T T T C λλλδλλλ′′===== (2) 当然,你也可以对其他的指标进行缩并,那么就得到了别的不同的矢量,例如和。类似的,对于二阶张量,就是分量矩阵的迹,我们知道它在坐标变换 (相似变换)下是不变的,也就是说它是一个标量。因此,将一个n 阶张量的两 个指标缩并就得到了一个阶的张量。 iji T ijj T ii T 2n ?最后一个张量运算称为张量积,对于任意两个张量T 和(阶数分别设为S n

教材张量分析及场论

张量分析与场论 第一章 张量代数 任何物理现象的发展都是按照自身的规律进行的,这是客观的存在,而不以人们的意志为转移。但是,在研究、分析这些物理现象时,采用什么样的方法则是由人们的意志决定的。无数事实证明,研究方法的选取与当时人们对客观事物的认识水平有关,而研究方法的好坏则直接关系到求解问题的繁简程度。 由于物理量的分量与坐标的选择有关,所以由物理量的分量表示的方程,其形式就必然与坐标系的选取有关。在建立基本方程时,每选用一种坐标系都要作一些繁琐的推导。 张量分析能以简洁的表达式,清晰的推导过程,有效地描述复杂问题的本质,并突出现象的几何和物理特点。张量分析成功应用的根本在于由它表示的方程具有坐标变换下不变的性质,即由张量表示的方程,其形式不随坐标的选择而变化。 第一章中将着重介绍直角坐标系中的张量代数,第二章介绍正交曲线坐标系的张量分析及场论,作为进一步的学习的基础,在第三章还对一般曲线坐标系中的张量做了简单的介绍。 1.1点积、矢量分量及记号ij δ 我们在以前的学习中已熟悉了用箭头表示的矢量,如 位移u ρ,力F ρ等。这些量满足平行四边形运算的矢量加法 法则,即设u ρ,v ρ为矢量,则v u w ρρρ+=的运算如右图所 示。 在理论力学中我们还知道,如u ρ表示某一点的位移, F ρ表示作用在该点上的力, 则该力对物体质点所做的功为 其中F ρ、|u ρ|分别表示矢量F ρ、u ρ的大小,θ表示矢 量F ρ与矢量u ρ之间的夹角,这就定义了一种称为点积的运算。 点积的定义:设u ρ,v ρ为两个任意矢量,设|u ρ|,|v ρ|分别为其大小(也称为模)。θ为这两个矢量之间的夹角,则u ρ与v ρ的点积为 由点积定义可知,点积具有交换律,即u ρ?v ρ=v ρ?u ρ。可以用几何的方法证明点积也具有分配率,即如w ρ=u ρ+v ρ,则 或可写为 如果0v u =?ρρ则称u ρ垂直于v ρ,记为u ρ⊥v ρ。 由点积的定义可知,2u u u ρρρ=?。如|u ρ|=1则称u ρ为单位矢量。 以上对矢量的记法是一种几何记法,称为实体记法,也有的书上称其为不变性形式。这种记法的特点是非常直观。如在力学中,分析作用力时,就用有向线段来表示矢量。但是用几何记法只能进行简单的矢量运算,稍微复杂一点的矢量运算就无法进行了,因此必须借助于坐标用分析的方法来进行。 我们引入坐标系,用坐标的方法来描述一个矢量。在 空间选三个矢量组成坐标架,这三个矢量取名为 (1e ρ,2e ρ,3e ρ ),其大小为1,方向互相垂直,即有如下的性 质:

矢量算法与场论初步张量算法与黎曼几何初步SECTION

第八章矢量算法与场论初步·张量 算法与黎曼几何初步 本章包括两个部分. 第一部分是矢量代数、矢量分析及其在场论中的应用.主要内容有:矢量的概念、矢量的算法与矢量的坐标表示;以矢量作为工具介绍了场论中的一些基本内容.例如梯度、散度与旋度等基本概念及其计算公式和性质,以及它们在不同坐标系中的表达式;叙述了矢量的积分定理(高斯公式、斯托克斯公式和格林公式);引进了仿射坐标系,阐述了三维空间中的协变矢量和逆变矢量,同时把这些概念推广到n维空间中去. 第二部分是张量代数、张量分析及其在黎曼几何中的应用.介绍了张量的概念和一些张量算法,然后以张量作为工具来阐述仿射联络空间的基本内容.例如,仿射联络、矢量和张量的平行移动,及协变微分法与自平行曲线等;并在n维空间中引进度量的概念,来定义黎曼空间,从而由具有特殊条件的仿射联络引出了黎曼联络,于是有关仿射联络空间中的一些性质可以搬到黎曼空间中来.可是,因为黎曼空间是由度量定义的,所以与度量有关的一些性质在仿射联络空间中是没有的. §1矢量算法 一、矢量代数 [矢量概念]只有大小的量称为标量(也称为数量或纯量).例如温度、时间、质量、面积、能量等都是标量. 具有大小和方向的量称为矢量(也称为向量).例如力、速度、力矩、加速度、角速度、动量等都是矢量. 在几何中的有向线段就是一个直观的矢量.通常用空间中的有向线段AB来表示矢量.用长度表示大小,用端点的顺序AB表示方向.A称为始点,B称为终点,这个矢量记作,或用黑正体字母a表示.矢量的大小(或长度)的数值称为它的模或绝对值,用记号或|a|表示. 矢量按其效能可分成三种基本类型: 具有大小和方向而无特定位置的矢量称为自由矢量.例如力偶. 沿直线作用的矢量称为滑动矢量.例如作用于刚体的力. 作用于一点的矢量称为束缚矢量.例如电场强度. 在这里所讨论的矢量,除特别说明外,都指自由矢量,就是说,所有方向相同,长度相等的矢量,不管始点如何,都看作相同的矢量. 模等于1的矢量称为单位矢量. 模等于零的矢量称为零矢量,记作0,它是始点和终点重合的矢量.

第一章 场论和张量初步

第一章 场论和张量初步 1.1 场的定义及分类 设在空间中的某个区域内定义标量函数或矢量函数,则称定义在此空间区域内的函数为场。 均匀场:同一时刻内各点函数的值都相等。反之为不均匀场。 定常场:场内函数值不依赖于时间。。反之为不定常场。 1.2场的几何表示 标量场:等位线。 矢量场:矢量线的微分方程: (,,,)(,,,)(,,,) x y z dx dy dz a x y z t a x y z t a x y z t == 积分,将t 看成参数,即得矢量线的分析表达式。 1.3梯度——标量场不均匀性的量度 梯度:大小为n ? ??,方向为n ,的矢量称为标量函数?的梯度,以 grad n n ???= ? 表之。 在s 方向上的方向导数等于梯度矢量在s 方向上的投影。 梯度grad ?在直角坐标系中的表达式为 grad i j k x y z ???????= ++??? 总结起来,梯度的主要性质是: 1)梯度grad ?描写了场内任一点M 领域内函数?的变化状况,

它是标量场不均匀性的量度。 2)梯度grad ?的方向与等位面的法线重合,且指向?增长的方 向,大小是n 方向上的方向导数n ? ??; 3)梯度矢量grad ?在任一方向s 上的投影等于该方向的方向导数; 4)梯度grad ?的方向,即等位线的法线方向是函数?变化最快的方向。 定理1 梯度grad ?满足关系式 d dr grad ??=? 定理2 若a grad ?=,且?是矢径r 的单值函数,则沿任一封闭曲线L 的线积分 L a dr ?? 等于零,反之,若矢量a 沿任一封闭曲线L 的线积分 L a 0 dr ?=? 则矢量a 必为某一标量函数?的梯度。 例:计算仅与矢径大小r 有关的标量函数?(r )的梯度?grad 。 I )利用性质(2),标量函数=??(r )的等位面是以坐标原点为心 的球面,而球面的法线方向,即矢径r 的方向,故?grad 的方向就是矢径r 的方向其次的大小是 =r r ????’ () 于是

教材张量分析与场论

张量分析与场论 第一章 张量代数 任何物理现象的发展都是按照自身的规律进行的,这是客观的存在,而不以人们的意志为转移。但是,在研究、分析这些物理现象时,采用什么样的方法则是由人们的意志决定的。无数事实证明,研究方法的选取与当时人们对客观事物的认识水平有关,而研究方法的好坏则直接关系到求解问题的繁简程度。 由于物理量的分量与坐标的选择有关,所以由物理量的分量表示的方程,其形式就必然与坐标系的选取有关。在建立基本方程时,每选用一种坐标系都要作一些繁琐的推导。 张量分析能以简洁的表达式,清晰的推导过程,有效地描述复杂问题的本质,并突出现象的几何和物理特点。张量分析成功应用的根本在于由它表示的方程具有坐标变换下不变的性质,即由张量表示的方程,其形式不随坐标的选择而变化。 第一章中将着重介绍直角坐标系中的张量代数,第二章介绍正交曲线坐标系的张量分析及场论,作为进一步的学习的基础,在第三章还对一般曲线坐标系中的张量做了简单的介绍。 1.1点积、矢量分量及记号ij δ 我们在以前的学习中已熟悉了用箭头表示的矢量,如 位移u ,力F 等。这些量满足平行四边形运算的矢量加法 法则,即设u ,v 为矢量,则v u w +=的运算如右图所 示。 在理论力学中我们还知道,如u 表示某一点的位移, F 表示作用在该点上的力, 则该力对物体质点所做的功为 θcos ||||u F W = 其中F 、|u |分别表示矢量F 、u 的大小,θ表示矢量F 与矢量u 之间的夹角,这就 定义了一种称为点积的运算。 点积的定义:设u ,v 为两个任意矢量,设|u |,|v |分别为其大小(也称为模)。θ为 这两个矢量之间的夹角,则u 与v 的点积为 θcos ||||v u v u =? 由点积定义可知,点积具有交换律,即u ?v =v ?u 。可以用几何的方法证明点积也具 有分配率,即如w =u +v ,则 F v F u F w ?+?=? 或可写为 F v F u )v u ( ?+?=?+F 如果0v u =? 则称u 垂直于v ,记为u ⊥v 。 由点积的定义可知,2u u u =?。如|u |=1则称u 为单位矢量。 以上对矢量的记法是一种几何记法,称为实体记法,也有的书上称其为不变性形式。这种记法的特点是非常直观。如在力学中,分析作用力时,就用有向线段来表示矢量。但是用

相关主题