搜档网
当前位置:搜档网 › 彻底解决二叉树的遍历问题

彻底解决二叉树的遍历问题

彻底解决二叉树的遍历问题
彻底解决二叉树的遍历问题

彻底解决二叉树遍历的画法

对于二叉树的基本概念,一般学生都知道,但对于二叉树的遍历,在实际运用中可以发现很多问题,这里提供一次性彻底解决这个问题的方法。

二叉树的遍历

二叉树的遍历是指不重复地访问二叉树中的所有结点。

由于二叉树是一种非线性结构,因此,对二叉树的遍历要比遍历线性表复杂得多。在遍历二叉树的过程中,当访问到某个结点时,再往下访问可能有两个分支,那么先访问哪一个分支呢?

对于二叉树来说,需要访问根结点、左子树上的所有结点、右子树上的所有结点,在这三者中,究竟先访问哪一个?也就是说,遍历二叉树的方法实际上是要确定访问各结点的顺序,以便不重不漏地访问到二叉树中的所有结点。

在遍历二叉树的过程中,一般先遍历左子树,然后再遍历右子树。在先左后右的原则下,根据访问根结点的次序,二叉树的遍历可以分为三种:前序遍历、中序遍历、后序遍历。这三种说法实际是指对根结点的访问顺序决定的,下面分别介绍这三种遍历的方法。

1.前序遍历(DLR)

所谓前序遍历是指在访问根结点、遍历左子树与遍历右子树这三者中,首先访问根结点,然后遍历左子树,最后遍历右子树;并且,在遍历左、右子树时,仍然先访问根结点,然后遍历左子树,最后遍历右子树。因此,前序遍历二叉树的过程是一个递归的过程。

下面是二叉树前序遍历的简单描述:

若二叉树为空,则结束返回。

否则:(1)访问根结点;

(2)前序遍历左子树;

(3)前序遍历右子树。

在此特别要注意的是,在遍历左右子树时仍然采用前序遍历的方法。如图所示:

二叉树进行前序遍历,则遍历的结果为F,C,A,D,B,E,G,H,P(称为该二叉树的前序序列)。

2.中序遍历(LDR)

所谓中序遍历是指在访问根结点、遍历左子树与遍历右子树这三者中,首先遍历左子树,然后访问根结点,最后遍历右子树;并且,在遍历左、右子树时,仍然先遍历左子树,然后访问根结点,最后遍历右子树。因此,中序遍历二叉树的过程也是一个递归的过程。

下面是二叉树中序遍历的简单描述:

若二叉树为空,则结束返回。

否则:(1)中序遍历左子树;

(2)访问根结点;

(3)中序遍历左子树。

在此也要特别注意的是,在遍历左右子树时仍然采用中序遍历的方法。如图所示:

二叉树进行中序遍历,则遍历结果为A,C,B,D,F,E,H,G,P(称为该二叉树的中序序列)。

3.后序遍历(LRD) .

所谓后序遍历是指在访问根结点、遍历左子树与遍历右子树这三者中,首先遍历左子树,然后遍历右子树,最后访问根结点,并且,在遍历左、右子树时,仍然先遍历左子树,然后遍历右子树,最后访问根结点。因此,后序遍历二叉树的过程也是一个递归的过程。

下面是二叉树后序遍历的简单描述:

若二叉树为空,则结束返回。否则:(1)后序遍历左子树;

(2)后序遍历右子树;

(3)访问根结点。

在此也要特别注意的是,在遍历左右子树时仍然采用后序遍历的方法。如图所示:

二叉树进行后序遍历,则遍历结果为A,B,D,C,H,P,G,E,F。

创建一个二叉树并输出三种遍历结果

实验报告 课程名称数据结构 实验项目实验三--创建一个二叉树并输出三种遍历结果 系别■计算机学院 _________________ 专业_______________ 班级/学号_____________ 学生姓名___________ 实验日期— 成绩______________________________ 指导 教师

实验题目:实验三创建一个二叉树并输出三种遍历结果 实验目的 1)掌握二叉树存储结构; 2)掌握并实现二叉树遍历的递归算法和非递归算法; 3)理解树及森林对二叉树的转换; 4)理解二叉树的应用一哈夫曼编码及WPL计算。 实验内容 1)以广义表或遍历序列形式创建一个二叉树,存储结构自选; 2)输出先序、中序、后序遍历序列; 3)二选一应用题:1)树和森林向二叉树转换;2)哈夫曼编码的应用问题。 题目可替换上述前两项实验内容) 设计与编码 1)程序结构基本设计框架 (提示:请根据所选定题目,描述程序的基本框架,可以用流程图、界面描述图、 框图等来表示) 2)本实验用到的理论知识遍历二叉树,递归和非递归的方法 (应用型

(提示:总结本实验用到的理论知识,实现理论与实践相结合。总结尽量简明扼要,并与本次实验密切相关,要求结合自己的题目并阐述自己的理解和想法) 3) 具体算法设计 1) 首先,定义二叉树的存储结构为二叉链表存储,每个元素的数 据类型Elemtype,定义一棵二叉树,只需定义其根指针。 2) 然后以递归的先序遍历方法创建二叉树,函数为CreateTree(),在输 入字符时要注意,当节点的左孩子或者右孩子为空的时候,应当输入一 个特殊的字符(本算法为“ #”),表示左孩子或者右孩子为空。 3) 下一步,创建利用递归方法先序遍历二叉树的函数,函数为 PreOrderTreeQ,创建非递归方法中序遍历二叉树的函数,函数为 InOrderTree(),中序遍历过程是:从二叉树的根节点开始,沿左子树 向下搜索,在搜索过程将所遇到的节点进栈;左子树遍历完毕后,从 栈顶退出栈中的节点并访问;然后再用上述过程遍历右子树,依次类 推,指导整棵二叉树全部访问完毕。创建递归方法后序遍历二叉树的 函数,函数为LaOrderTree()。 (提示:该部分主要是利用C、C++ 等完成数据结构定义、设计算法实现各种操作,可以用列表分步形式的自然语言描述,也可以利用流程图等描述) 4) 编码 #include #include #include typedef char DataType; #define MaxSize 100 typedef struct Node { DataType data; struct Node *lchild; struct Node *rchild; } *BiTree,BitNode;

数据结构二叉树实验报告

实验三二叉树的遍历 一、实验目的 1、熟悉二叉树的结点类型和二叉树的基本操作。 2、掌握二叉树的前序、中序和后序遍历的算法。 3、加深对二叉树的理解,逐步培养解决实际问题的编程能力。 二、实验环境 运行C或VC++的微机。 三、实验内容 1、依次输入元素值,以链表方式建立二叉树,并输出结点的值。 2、分别以前序、中序和后序遍历二叉树的方式输出结点内容。 四、设计思路 1. 对于这道题,我的设计思路是先做好各个分部函数,然后在主函数中进行顺序排列,以此完成实验要求 2.二叉树采用动态数组 3.二叉树运用9个函数,主要有主函数、构建空二叉树函数、建立二叉树函数、访问节点函数、销毁二叉树函数、先序函数、中序函数、后序函数、范例函数,关键在于访问节点 五、程序代码 #include #include #include #define OK 1 #define ERROR 0 typedef struct TNode//结构体定义 {

int data; //数据域 struct TNode *lchild,*rchild; // 指针域包括左右孩子指针 }TNode,*Tree; void CreateT(Tree *T)//创建二叉树按,依次输入二叉树中结点的值 { int a; scanf("%d",&a); if(a==00) // 结点的值为空 *T=NULL; else // 结点的值不为空 { *T=(Tree)malloc(sizeof(TNode)); if(!T) { printf("分配空间失败!!TAT"); exit(ERROR); } (*T)->data=a; CreateT(&((*T)->lchild)); // 递归调用函数,构造左子树 CreateT(&((*T)->rchild)); // 递归调用函数,构造右子树 } } void InitT(Tree *T)//构建空二叉树 { T=NULL; } void DestroyT(Tree *T)//销毁二叉树 { if(*T) // 二叉树非空 { DestroyT(&((*T)->lchild)); // 递归调用函数,销毁左子树 DestroyT(&((*T)->rchild)); // 递归调用函数,销毁右子树 free(T); T=NULL; } } void visit(int e)//访问结点 { printf("%d ",e); }

数据结构C语言实现二叉树三种遍历

实验课题一:将下图中得二叉树用二叉链表表示: 1用三种遍历算法遍历该二叉树,给出对应得输出结果; 2写一个函数对二叉树搜索,若给出一个结点,根据其就是否属于该树,输出true或者f alse。 3写函数完成习题4、31(C++版)或4、28(C版教科书)。 #include "stdio、h" #include”malloc、h" typedefstruct BiTNode { char data; structBiTNode *lchild,*rchild; }BiTNode,*BiTree; BiTree Create(BiTreeT) { char ch; ch=getchar(); if(ch=='#’) T=NULL; else { T=(BiTNode *)malloc(sizeof(BiTNode)); T-〉data=ch; T->lchild=Create(T—〉lchild); T—〉rchild=Create(T-〉rchild); } return T; } int node(BiTree T) { int sum1=0,a,b; ?if(T) { if(T!=NULL) ??sum1++;

?a=node(T->lchild); sum1+=a; b=node(T—>rchild); sum1+=b; ?} return sum1; } int mnode(BiTree T) { ?int sum2=0,e,f; if(T) { ?if((T->lchild!=NULL)&&(T-〉rchild!=NULL))?sum2++; ?e=mnode(T-〉lchild); sum2+=e; f=mnode(T-〉rchild); sum2+=f; ?} return sum2; } void Preorder(BiTree T) { if(T) { printf("%c”,T->data); Preorder(T—>lchild); Preorder(T-〉rchild); } } int Sumleaf(BiTree T) { int sum=0,m,n; if(T) { if((!T-〉lchild)&&(!T-〉rchild)) sum++; m=Sumleaf(T->lchild); sum+=m; n=Sumleaf(T—>rchild); sum+=n; } return sum; }

二叉树的层次遍历算法

二叉树层次遍历算法实现 问题描述 对任意输入的表示某二叉树的字符序列,完成二叉树的层次遍历算法,并输出其遍历结果。 注:所需Queue ADT的实现见附录。 输入描述 从键盘上输入一串字符串,该字符串为二叉树的先序遍历结果,其中如果遍历到空树时用字符”#”代替。 输出描述 从显示器上输出二叉树的按层次遍历结果。 输入与输出示例 输入: +A##/*B##C##D## 输出: +A/*DBC 输入: ABD##GJ###CFH##I### 输出: ABCDGFJHI 附录(仅供参考): #include #include #define TRUE 1 #define FALSE 0 #define MAX_QUEUE_SIZE 100

//注:需要定义ElementType类型,如果是二叉树, // 则应定义为指向二叉树中结点的指针类型 //格式如: // typedef Tree ElementType; // 队列存储结构采用循环队列 struct QueueRecord; typedef struct QueueRecord *Queue; int IsEmpty(Queue Q); int IsFull(Queue Q); Queue CreateQueue(int MaxElements); void DisposeQueue(Queue Q); void MakeEmpty(Queue Q); int Enqueue(ElementType X, Queue Q); ElementType Front(Queue Q); int Dequeue(Queue Q, ElementType &X); #define MinQueueSize ( 5 ) struct QueueRecord { int Capacity; int Front; int Rear; ElementType *Array; }; int IsEmpty(Queue Q) { return ((Q->Rear + 1)% Q->Capacity == Q->Front); } int IsFull(Queue Q) { return ((Q->Rear + 2) % Q->Capacity == Q->Front); } Queue CreateQueue(int MaxElements) { Queue Q; if (MaxElements < MinQueueSize) return NULL; Q = (Queue)malloc(sizeof(struct QueueRecord));

二叉树实验报告

实验题目:实验九——二叉树实验 算法设计(3) 问题分析: 1、题目要求:编写算法交换二叉树中所有结点的左右子树 2、设计思路:首先定义一个二叉树的数据类型,使用先序遍历建立该二叉树,遍历二叉树,设计左右子树交换的函数,再次遍历交换之后的二叉树,与先前二叉树进行比较。遍历算法与交换算法使用递归设计更加简洁。 3、测试数据: A、输入:1 2 4 0 0 5 0 0 3 0 0 交换前中序遍历:4 2 5 1 3 交换后中序遍历:3 1 5 2 4 交换前:交换后: B、输入:3 7 11 0 0 18 17 0 0 19 0 0 6 13 0 0 16 0 0 交换前中序遍历:11 7 17 18 19 3 13 6 16 交换后中序遍历:16 6 13 3 19 18 17 7 11 概要设计: 1、为了实现上述功能:①构造一个空的二叉树;②应用先序遍历输入,建立二叉树;③中序遍历二叉树;④调用左右子树交换函数;⑤中序遍历交换过后的二叉树。 2、本程序包括4个函数: ①主函数main() ②先序遍历二叉树建立函数creat_bt() ③中序遍历二叉树函数inorder() ④左右子树交换函数 exchange()

各函数间关系如下: 详细设计: 1、结点类型 typedef struct binode //定义二叉树 { int data; //数据域 struct binode *lchild,*rchild; //左孩子、右孩子 }binode,*bitree; 2、各函数操作 ① 先序遍历建二叉树函数 bitree creat_bt() { 输入结点数据; 判断是否为0{ 若是,为空; 不是,递归;} 返回二叉树; } ② 左右子树交换函数 void exchange(bitree t) { 判断结点是否为空{ 否,交换左右子树; 递归;} } ③ 中序遍历函数 void inorder(bitree bt) { 判断是否为空{ 递归左子树; 输出; 递归右子树;} } main () creat_bt () inorder () exchange ()

二叉树的建立和遍历的实验报告doc

二叉树的建立和遍历的实验报告 篇一:二叉树的建立及遍历实验报告 实验三:二叉树的建立及遍历 【实验目的】 (1)掌握利用先序序列建立二叉树的二叉链表的过程。 (2)掌握二叉树的先序、中序和后序遍历算法。 【实验内容】 1. 编写程序,实现二叉树的建立,并实现先序、中序和后序遍历。 如:输入先序序列abc###de###,则建立如下图所示的二叉树。 并显示其先序序列为:abcde 中序序列为:cbaed 后序序列为:cbeda 【实验步骤】 1.打开VC++。 2.建立工程:点File->New,选Project标签,在列表中选Win32 Console Application,再在右边的框里为工程起好名字,选好路径,点OK->finish。至此工程建立完毕。 3.创建源文件或头文件:点File->New,选File标签,在列表里选C++ Source File。给文件起好名字,选好路径,点OK。至此一个源文件就被添加到了你刚创建的工程之中。

4.写好代码 5.编译->链接->调试 #include #include #define OK 1 #define OVERFLOW -2 typedef int Status; typedef char TElemType; typedef struct BiTNode { TElemType data; struct BiTNode *lchild, *rchild; }BiTNode,*BiTree; Status CreateBiTree(BiTree &T) { TElemType ch; scanf("%c",&ch); if (ch=='#') T= NULL; else { if (!(T = (BiTNode *)malloc(sizeof(BiTNode))))

二叉树的建立及几种简单的遍历方法

#include "stdio.h" #include "stdlib.h" #define STACK_INIT_SIZE 100 //栈存储空间初始分配量 #define STACKINCREMENT 10 //存储空间分配增量 //------二叉树的存储结构表示------// typedef struct BiTNode{ int data; struct BiTNode *lchild,*rchild; }BiTNode,*BiTree; //-----顺序栈的存储结构表示------// typedef struct{ BiTree *top; BiTree *base; int stacksize; }SqStack; //*************************************************** //构造一个空栈s SqStack *InitStack(); //创建一颗二叉树 BiTree CreatBiTree(); //判断栈空 int StackEmpty(SqStack *S); //插入元素e为新的栈顶元素 void Push(SqStack *S,BiTree p); //若栈不为空,则删除s栈顶的元素e,将e插入到链表L中void Pop(SqStack *S,BiTree *q); //非递归先序遍历二叉树 void PreOrderTraverse(BiTree L); //非递归中序遍历二叉树 void InOrderTraverse(BiTree L); //非递归后序遍历二叉树 void PostOrderTraverse(BiTree L); //递归后序遍历二叉树 void PostOrder(BiTree bt); //递归中序遍历二叉树 void InOrder(BiTree bt); //递归先序遍历二叉树 void PreOrder(BiTree bt); //***************************************************

二叉树遍历算法的实现

二叉树遍历算法的实现 题目:编制二叉树遍历算法的实现的程序 一.需求分析 1.本演示程序中,二叉树的数据元素定义为非负的整型(unsigned int)数据,输 入-1表示该处没有节点 2.本演示程序输入二叉树数据均是按先序顺序依次输入 3.演示程序以用户和计算机对话方式执行,即在计算机终端上显示“提示信息” 之后,由用户在键盘上输入演示程序中规定的运算命令;相应的输入数据和运 算结果显示在其后 4.本实验一共包括三个主要程序,分别是:1)二叉树前序,中序,后序遍历递归 算法实现2)二叉树前序中序遍历非递归算法实现3)二叉树层次遍历算法实现 5.本程序执行命令包括:1)构建二叉树2)二叉树前序递归遍历3)二叉树中序 递归遍历4)二叉树后序递归遍历5)二叉树前序非递归遍历6)二叉树中序非 递归遍历7)二叉树层次遍历 6.测试数据 (1)7 8 -1 9 10 -1 -1 -1 6 11 -1 -1 12 13 -1 -1 14 -1 -1 (2)1 -1 -1 (3)7 8 -1 -1 9 -1 -1 二.概要设计 1.为实现二叉树的遍历算法,我们首先给出如下抽象数据类型 1)二叉树的抽象数据类型 ADT BiTree{ 数据对象D:D是具有相同特性的数据元素的集合 数据关系R: 若D=Φ,则R=Φ,称BiTree是空二叉树; 若D≠Φ,则R={H},H是如下二元关系: (1)在D中存在唯一的成为根的数据元素root,它在关系H下无前驱; (2)若D-{H}≠Φ,则存在D-{root}={D1,D r},且D1∩D r=Φ (3)若D1≠Φ,则D1中存在唯一的元素x1,∈H,且存在D1上的 关系H1?H;若Dτ≠Φ,则D r中存在唯一的元素x r,∈ H,且存在D r上的关系H r?H;H={,,H1,H r}; (4)(D1,{H1})是符合本定义的二叉树,成为根的左子树,(D r,{H r})是 一颗符合本定义的二叉树,成为根的右字树。 基本操作P: InitBiTree(&T); 操作结果:构造空二叉树 DestroyBiTree(&T) 初始条件;二叉树存在 操作结果:销毁二叉树 CreateBiTree(&T,definition);

输入某棵二叉树的广义表形式,建立该二叉树并按层次遍历该二叉树队列形式

掌握二叉树的二叉链表存储结构;掌握二叉树的遍历规则;利用二叉树的二叉链表存储结构实现二叉树的建树操作;利用二叉树的二叉链表存储结构实现二叉树层次遍历操作 二叉树采用二叉链表结构表示。设计并实现如下算法:输入某棵二叉树的广义表形式,建立该二叉树,并按层次遍历该二叉树----队列形式 #include #include #include #define STACK_MAX_SIZE 30 #define QUEUE_MAX_SIZE 30 typedef struct BitNode{ char data; struct BitNode *lchild; struct BitNode *rchild; }BitNode,*BiTree;; typedef struct node { BitNode *data; }node,*queue; typedef struct Queue { node *base; int front; int rear; }Queue; void InitQueue(Queue *Q) { Q->base=(queue)malloc(QUEUE_MAX_SIZE*sizeof(node)); Q->front=Q->rear=0; }

int EmptyQueue(Queue *Q) { if(Q->front==Q->rear) return 1; else return 0; } void EnQueue(Queue *Q,BitNode *e) { Q->base[Q->rear].data=e; Q->rear++; } BiTree DeQueue(Queue *Q) { int m; m=Q->front; Q->front++; return (Q->base[m].data); } char a[50]; BiTree CreatBiTree(BiTree T) { BiTree p; BiTree s[STACK_MAX_SIZE]; int top = -1; int flag; int i = 0; T=NULL; while(a[i]!='#') { switch(a[i]) {case' ':break; case '(': top++;

二叉树的遍历算法实验报告

二叉树实验报告 09信管石旭琳 20091004418 一、实验目的: 1、理解二叉树的遍历算法及应用 2、理解哈夫曼树及其应用。 3、掌握哈夫曼编码思想。 二、实验内容: 1、建立二叉树二叉链表 2、实现二叉树递归遍历算法(中序、前序、后序) 3、求二叉树高度 4、求二叉树结点个数 5、求二叉树叶子个数 6、将序号为偶数的值赋给左子树 三、主要程序: #include #include typedef int ElemType; struct BiTNode { ElemType data; struct BiTNode *lch,*rch; }BiTNode,*BiTree; struct BiTNode *creat_bt1(); struct BiTNode *creat_bt2(); void preorder (struct BiTNode *t); void inorder (struct BiTNode *t); void postorder (struct BiTNode *t); void numbt (struct BiTNode *t); int n,n0,n1,n2; void main() { int k; printf("\n\n\n"); printf("\n\n 1.建立二叉树方法1(借助一维数组建立)"); printf("\n\n 2.建立二叉树方法2(先序递归遍历建立)"); printf("\n\n 3.先序递归遍历二叉树"); printf("\n\n 4.中序递归遍历二叉树"); printf("\n\n 5.后序递归遍历二叉树"); printf("\n\n 6.计算二叉树结点个数"); printf("\n\n 7.结束程序运行");

数据结构课程设计--按层次遍历二叉树

数据结构课程设计--按层次遍历二叉树学号: 题目按层次遍历二叉树学院计算机科学与技术专业计算机科学与技术 班级 姓名 指导教师 2013年6月20日 1 1问题描述及要求 (4) 1.1问题描述 (4) 1.2任务要求.................................. 4 2 开发平台及所使用软件.............................. 4 3 程序设计思路.. (5) 3.1二叉树存储结构设计 (5) 3.2题目算法设

计 (5) 3.2.1 建立二叉树 (5) 3.2.2 遍历二叉树 (5) 3.3.3 按要求格式输出已建立的二叉 树 (6) 3.3 测试程序................................ 6 4 调试 报告.................................... 6 5 经验和体会.................................. 6 6 源程序清单及运行结果 (7) 6.1 源程序清单 (7) 6.2 运行结果................................ 9 7 参考文献................................... 10 本科生课程设计成绩评定表 (11) 2 课程设计任务书 学生姓名:专业班级:计科ZY1102班指导教师:工作单位:计算机科学系题目: 按层次遍历二叉树 初始条件:

编写按层次顺序(同一层自左至右)遍历二叉树的算法。 (1)二叉树采用二叉链表作为存储结构。 ⑵按严蔚敏《数据结构习题集(C语言版)》p44面题6.69所指定的格式输出建立的二叉树。 (3)输出层次遍历结果。 (4)自行设计测试用例。 要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 课程设计报告按学校规定格式用A4纸打印(书写),并应包含如下内容:1.问题描述 简述题目要解决的问题是什么。 2. 设计 存储结构设计、主要算法设计(用类C/C++语言或用框图描述)、测试用例设计; 3. 调试报告 调试过程中遇到的问题是如何解决的; 对设计和编码的讨论和分析。 4. 经验和体会(包括对算法改进的设想) 5. 附源程序清单和运行结果。源程序要加注释。如果题目规定了测试数据,则运行结 果要包含这些测试数据和运行输出。 说明: 1. 设计报告、程序不得相互抄袭和拷贝; 若有雷同,则所有雷同者成绩均为0 分。 2. 凡拷贝往年任务书或课程设计充数者,成绩一律无效,以0 分记。时间安排: 1(第17周完成,验收时间由指导教师指定

二叉树的遍历实验报告

二叉树的遍历实验报告 一、需求分析 在二叉树的应用中,常常要求在树中查找具有某种特征的结点,或者对树中全部结点逐一进行某种处理,这就是二叉树的遍历问题。 对二叉树的数据结构进行定义,建立一棵二叉树,然后进行各种实验操作。 二叉树是一个非线性结构,遍历时要先明确遍历的规则,先访问根结点还时先访问子树,然后先访问左子树还是先访问有右子树,这些要事先定好,因为采用不同的遍历规则会产生不同的结果。本次实验要实现先序、中序、后序三种遍历。 基于二叉树的递归定义,以及遍历规则,本次实验也采用的是先序遍历的规则进行建树的以及用递归的方式进行二叉树的遍历。 二、系统总框图

三、各模块设计分析 (1)建立二叉树结构 建立二叉树时,要先明确是按哪一种遍历规则输入,该二叉树是按你所输入的遍历规则来建立的。本实验用的是先序遍历的规则进行建树。 二叉树用链表存储来实现,因此要先定义一个二叉树链表存储结构。因此要先定义一个结构体。此结构体的每个结点都是由数据域data 、左指针域Lchild 、右指针域Rchild 组成,两个指针域分别指向该结点的左、右孩子,若某结点没有左孩子或者右孩子时,对应的指针域就为空。最后,还需要一个链表的头指针指向根结点。 要注意的是,第一步的时候一定要先定义一个结束标志符号,例如空格键、#等。当它遇到该标志时,就指向为空。 建立左右子树时,仍然是调用create ()函数,依此递归进行下去,

直到遇到结束标志时停止操作。 (2)输入二叉树元素 输入二叉树时,是按上面所确定的遍历规则输入的。最后,用一个返回值来表示所需要的结果。 (3)先序遍历二叉树 当二叉树为非空时,执行以下三个操作:访问根结点、先序遍历左子树、先序遍历右子树。 (4)中序遍历二叉树 当二叉树为非空时,程序执行以下三个操作:访问根结点、先序遍历左子树、先序遍历右子树。 (5)后序遍历二叉树 当二叉树为非空时,程序执行以下三个操作:访问根结点、先序遍历左子树、先序遍历右子树。 (6)主程序 需列出各个函数,然后进行函数调用。 四、各函数定义及说明 因为此二叉树是用链式存储结构存储的,所以定义一个结构体用以存储。 typedef struct BiTNode { char data; struct BiTNode *Lchild; struct BiTNode *Rchild;

层次遍历二叉树

课程设计 题目按层次遍历二叉树 学院计算机科学与技术 专业计算机科学与技术 班级0801 姓名陈新 指导教师孙玉芬 2012 年 6 月20 日

课程设计任务书 学生姓名:专业班级: 指导教师:孙玉芬工作单位:计算机科学系 题目: 按层次遍历二叉树 初始条件: 编写按层次顺序(同一层自左至右)遍历二叉树的算法。 (1)二叉树采用二叉链表作为存储结构。 (2)按题集p44面题6.69所指定的格式输出建立的二叉树。 (3)输出层次遍历结果。 (4)测试用例自己设计。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 课程设计报告按学校规定格式用A4纸打印(书写),并应包含如下内容: 1、问题描述 简述题目要解决的问题是什么。 2、设计 存储结构设计、主要算法设计(用类C语言或用框图描述)、测试用例设计; 3、调试报告 调试过程中遇到的问题是如何解决的;对设计和编码的讨论和分析。 4、经验和体会(包括对算法改进的设想) 5、附源程序清单和运行结果。源程序要加注释。如果题目规定了测试数据,则运行结果要包含这些测试数据和运行输出, 6、设计报告、程序不得相互抄袭和拷贝;若有雷同,则所有雷同者成绩均为0分。 时间安排: 1、第19周完成。 2、6月21日8:00到计算中心检查程序、交课程设计报告、源程序。 指导教师签名: 系主任(或责任教师)签名:年月日

数据结构课程设计 ——按层次遍历二叉树 1问题描述及要求 1.1问题描述 编写按层次顺序(同一层自左至右)遍历二叉树的算法。 1.2任务要求 编写按层次顺序(同一层自左至右)遍历二叉树的算法。 (1)二叉树采用二叉链表作为存储结构。 (2)按题集p44面题6.69所指定的格式输出建立的二叉树。 (3)输出层次遍历结果。 (4)测试用例自己设计。 2开发平台及所使用软件 Windows 7.0 , Visual C++6.0 3程序设计思路 3.1二叉树存储结构设计 typedef char ElemType; //二叉树结点值的类型为字符型 typedef struct BiTNode{ //二叉树的二叉链表存储表示 ElemType date; struct BiTNode *lchild,*rchild; //左右孩子指针 } BiTNode,*BiTree; 3.2题目算法设计 3.2.1建立二叉树 void CreateBinTree(BinTree &T){ //按先序次序输入,构造二叉链表表示的二叉树T char ch; ch=getchar(); //输入函数。 if(ch==’’) T=NULL; //输入空格时为空 else{ if(!(T=(BiTNode *)malloc(sizeof(BiTNode)))) printf("%c" "结点建立失败!") ; T->data=ch; CreateBinTree(T->lchild); CreateBinTree(T->rchild);

二叉树的建立和遍历的实验报告

竭诚为您提供优质文档/双击可除二叉树的建立和遍历的实验报告 篇一:二叉树遍历实验报告 数据结构实验报告 报告题目:二叉树的基本操作学生班级: 学生姓名:学号: 一.实验目的 1、基本要求:深刻理解二叉树性质和各种存储结构的特点及适用范围;掌握用指针类型描述、访问和处理二叉树的运算;熟练掌握二叉树的遍历算法;。 2、较高要求:在遍历算法的基础上设计二叉树更复杂操作算法;认识哈夫曼树、哈夫曼编码的作用和意义;掌握树与森林的存储与便利。二.实验学时: 课内实验学时:3学时课外实验学时:6学时三.实验题目 1.以二叉链表为存储结构,实现二叉树的创建、遍历(实验类型:验证型)1)问题描述:在主程序中设计一个简单的菜单,分别调用相应的函数功能:1…建立树2…前序

遍历树3…中序遍历树4…后序遍历树5…求二叉树的高度6…求二叉树的叶子节点7…非递归中序遍历树0…结束2)实验要求:在程序中定义下述函数,并实现要求的函数功能:createbinTree(binTree structnode*lchild,*rchild; }binTnode;元素类型: intcreatebinTree(binTree voidpreorder(binTreevoidInorder(binTree voidpostorder(binTreevoidInordern(binTreeintleaf(bi nTree intpostTreeDepth(binTree 2、编写算法实现二叉树的非递归中序遍历和求二叉树高度。1)问题描述:实现二叉树的非递归中序遍历和求二叉树高度2)实验要求:以二叉链表作为存储结构 3)实现过程: 1、实现非递归中序遍历代码: voidcbiTree::Inordern(binTreeinttop=0;p=T;do{ while(p!=nuLL){ stack[top]=p;;top=top+1;p=p->lchild;}; if(top>0){ top=top-1;p=stack[top];

二叉树三种遍历算法代码_

二叉树三种遍历算法的源码 二叉树三种遍历算法的源码背诵版 本文给出二叉树先序、中序、后序三种遍历的非递归算法,此三个算法可视为标准算法,直接用于考研答题。 1.先序遍历非递归算法 #define maxsize 100 typedef struct { Bitree Elem[maxsize]; int top; }SqStack; void PreOrderUnrec(Bitree t) { SqStack s; StackInit(s); p=t; while (p!=null || !StackEmpty(s)) { while (p!=null) //遍历左子树 { visite(p->data); push(s,p); p=p->lchild; }//endwhile if (!StackEmpty(s)) //通过下一次循环中的内嵌while实现右子树遍历 { p=pop(s); p=p->rchild; }//endif }//endwhile }//PreOrderUnrec 2.中序遍历非递归算法 #define maxsize 100 typedef struct { Bitree Elem[maxsize];

int top; }SqStack; void InOrderUnrec(Bitree t) { SqStack s; StackInit(s); p=t; while (p!=null || !StackEmpty(s)) { while (p!=null) //遍历左子树 { push(s,p); p=p->lchild; }//endwhile if (!StackEmpty(s)) { p=pop(s); visite(p->data); //访问根结点 p=p->rchild; //通过下一次循环实现右子树遍历}//endif }//endwhile }//InOrderUnrec 3.后序遍历非递归算法 #define maxsize 100 typedef enum{L,R} tagtype; typedef struct { Bitree ptr; tagtype tag; }stacknode; typedef struct { stacknode Elem[maxsize]; int top; }SqStack; void PostOrderUnrec(Bitree t)

数据结构二叉树遍历实验报告

问题一:二叉树遍历 1.问题描述 设输入该二叉树的前序序列为: ABC##DE#G##F##HI##J#K##(#代表空子树) 请编程完成下列任务: ⑴请根据此输入来建立该二叉树,并输出该二叉树的前序、中序和后序序列; ⑵按层次遍历的方法来输出该二叉树按层次遍历的序列; ⑶求该二叉树的高度。 2.设计描述 (1)二叉树是一种树形结构,遍历就是要让树中的所有节点被且仅被访问一次,即按一定规律排列成一个线性队列。二叉(子)树是一种递归定义的结构,包含三个部分:根结点(N)、左子树(L)、右子树(R)。根据这三个部分的访问次序对二叉树的遍历进行分类,总共有6种遍历方案:NLR、LNR、LRN、NRL、RNL和LNR。研究二叉树的遍历就是研究这6种具体的遍历方案,显然根据简单的对称性,左子树和右子树的遍历可互换,即NLR与NRL、LNR与RNL、LRN 与RLN,分别相类似,因而只需研究NLR、LNR和LRN三种即可,分别称为“先序遍历”、“中序遍历”和“后序遍历”。采用递归方式就可以容易的实现二叉树的遍历,算法简单且直观。 (2)此外,二叉树的层次遍历即按照二叉树的层次结构进行遍历,按照从上到下,同一层从左到右的次序访问各节点。遍历算法可以利用队列来实现,开始时将整个树的根节点入队,然后每从队列中删除一个节点并输出该节点的值时,都将它的非空的左右子树入队,当队列结束时算法结束。

(3)计算二叉树高度也是利用递归来实现:若一颗二叉树为空,则它的深度为0,否则深度等于左右子树的最大深度加一。 3.源程序 1 2 3 4 5 6 7 8 9 10 11 12 13 14 #include #include #include #define ElemType char struct BTreeNode { ElemType data; struct BTreeNode* left; struct BTreeNode* right; }; void CreateBTree(struct BTreeNode** T) { char ch; scanf_s("\n%c", &ch); if (ch == '#') *T = NULL;

二叉树遍历课程设计心得【模版】

目录 一.选题背景 (1) 二.问题描述 (1) 三.概要设计 (2) 3.1.创建二叉树 (2) 3.2.二叉树的非递归前序遍历示意图 (2) 3.3.二叉树的非递归中序遍历示意图 (2) 3.4.二叉树的后序非递归遍历示意图 (3) 四.详细设计 (3) 4.1创建二叉树 (3) 4.2二叉树的非递归前序遍历算法 (3) 4.3二叉树的非递归中序遍历算法 (4) 4.4二叉树的非递归后序遍历算法 (5) 五.测试数据与分析 (6) 六.源代码 (6) 总结 (10) 参考文献: (11)

一.选题背景 二叉树的链式存储结构是用指针建立二叉树中结点之间的关系。二叉链存储结构的每个结点包含三个域,分别是数据域,左孩子指针域,右孩子指针域。因此每个结点为 由二叉树的定义知可把其遍历设计成递归算法。共有前序遍历、中序遍历、后序遍历。可先用这三种遍历输出二叉树的结点。 然而所有递归算法都可以借助堆栈转换成为非递归算法。以前序遍历为例,它要求首先要访问根节点,然后前序遍历左子树和前序遍历右子树。特点在于所有未被访问的节点中,最后访问结点的左子树的根结点将最先被访问,这与堆栈的特点相吻合。因此可借助堆栈实现二叉树的非递归遍历。将输出结果与递归结果比较来检验正确性。。 二.问题描述 对任意给定的二叉树(顶点数自定)建立它的二叉链表存贮结构,并利用栈的五种基本运算(置空栈、进栈、出栈、取栈顶元素、判栈空)实现二叉树的先序、中序、后序三种遍历,输出三种遍历的结果。画出搜索顺序示意图。

三.概要设计 3.1.创建二叉树 3.2.二叉树的非递归前序遍历示意图 图3.2二叉树前序遍历示意图3.3.二叉树的非递归中序遍历示意图 图3.3二叉树中序遍历示意图

队列实现二叉树遍历

#include #include #include #define OVERFLOW 2 #define OK 1 #define ERROR 0 typedef struct BiTNode //定义二叉树{ char data; struct BiTNode *lchild; struct BiTNode *rchild; }BiTNode,*BiTree ; typedef struct QNode//队列节点结构体 { BiTree data; struct QNode *next; }QNode,*QueuePtr; typedef struct //队列 { QueuePtr front; QueuePtr rear; /* 队头、队尾指针*/ }LinkQueue; char CreateBiTree(BiTree&T) //创建二叉树{ char ch; scanf("%c",&ch); if(ch=='#') T=NULL; else{ if(!(T=(BiTree)malloc(sizeof(BiTNode)))) exit(OVERFLOW); T->data=ch; CreateBiTree(T->lchild); CreateBiTree(T->rchild); } return OK; } void visit(BiTree T) { if(T->data!='#')

printf("%c",T->data); } void PreOrder(BiTree T)//先序遍历 { if(T) { visit(T); PreOrder(T->lchild); PreOrder(T->rchild); } } void InOrder(BiTree T)//中序遍历 { if(T) { InOrder(T->lchild); visit(T); InOrder(T->rchild); } } void PostOrder(BiTree T)//后序遍历 { if(T) { PostOrder(T->lchild); PostOrder(T->rchild); visit(T); } } void InitQueue(LinkQueue *Q){ (*Q).front=(*Q).rear=(QueuePtr)malloc(sizeof(QNode)); if((*Q).front) (*Q).front->next=NULL; } int QueueEmpty(LinkQueue Q){ if(Q.front==Q.rear)return 0; return 1; }

相关主题