搜档网
当前位置:搜档网 › 教你用matlab演奏卡农

教你用matlab演奏卡农

教你用matlab演奏卡农
教你用matlab演奏卡农

% Cripple Pachebel's Canon on Matlab

% Have fun

fs = 44100; % sample rate

dt = 1/fs;

T16 = 0.125;

t16 = [0:dt:T16];

[temp k] = size(t16);

t4 = linspace(0,4*T16,4*k);

t8 = linspace(0,2*T16,2*k);

[temp i] = size(t4);

[temp j] = size(t8);

% Modification functions

mod4 = sin(pi*t4/t4(end));

mod8 = sin(pi*t8/t8(end));

mod16 = sin(pi*t16/t16(end));

f0 = 2*146.8; % reference frequency ScaleTable = [2/3 3/4 5/6 15/16 ...

1 9/8 5/4 4/3 3/

2 5/

3 9/5 15/8 ...

2 9/4 5/2 8/

3 3 10/3 15/

4 4 ...

1/2 9/16 5/8];

% 1/4 notes

do0f = mod4.*cos(2*pi*ScaleTable(21)*f0*t4); re0f = mod4.*cos(2*pi*ScaleTable(22)*f0*t4); mi0f = mod4.*cos(2*pi*ScaleTable(23)*f0*t4); fa0f = mod4.*cos(2*pi*ScaleTable(1)*f0*t4); so0f = mod4.*cos(2*pi*ScaleTable(2)*f0*t4); la0f = mod4.*cos(2*pi*ScaleTable(3)*f0*t4); ti0f = mod4.*cos(2*pi*ScaleTable(4)*f0*t4); do1f = mod4.*cos(2*pi*ScaleTable(5)*f0*t4); re1f = mod4.*cos(2*pi*ScaleTable(6)*f0*t4); mi1f = mod4.*cos(2*pi*ScaleTable(7)*f0*t4); fa1f = mod4.*cos(2*pi*ScaleTable(8)*f0*t4); so1f = mod4.*cos(2*pi*ScaleTable(9)*f0*t4); la1f = mod4.*cos(2*pi*ScaleTable(10)*f0*t4); tb1f = mod4.*cos(2*pi*ScaleTable(11)*f0*t4); ti1f = mod4.*cos(2*pi*ScaleTable(12)*f0*t4); do2f = mod4.*cos(2*pi*ScaleTable(13)*f0*t4); re2f = mod4.*cos(2*pi*ScaleTable(14)*f0*t4); mi2f = mod4.*cos(2*pi*ScaleTable(15)*f0*t4); fa2f = mod4.*cos(2*pi*ScaleTable(16)*f0*t4); so2f = mod4.*cos(2*pi*ScaleTable(17)*f0*t4); la2f = mod4.*cos(2*pi*ScaleTable(18)*f0*t4); ti2f = mod4.*cos(2*pi*ScaleTable(19)*f0*t4);

blkf = zeros(1,i);

% 1/8 notes

fa0e = mod8.*cos(2*pi*ScaleTable(1)*f0*t8);

so0e = mod8.*cos(2*pi*ScaleTable(2)*f0*t8);

la0e = mod8.*cos(2*pi*ScaleTable(3)*f0*t8);

ti0e = mod8.*cos(2*pi*ScaleTable(4)*f0*t8);

do1e = mod8.*cos(2*pi*ScaleTable(5)*f0*t8);

re1e = mod8.*cos(2*pi*ScaleTable(6)*f0*t8);

mi1e = mod8.*cos(2*pi*ScaleTable(7)*f0*t8);

fa1e = mod8.*cos(2*pi*ScaleTable(8)*f0*t8);

so1e = mod8.*cos(2*pi*ScaleTable(9)*f0*t8);

la1e = mod8.*cos(2*pi*ScaleTable(10)*f0*t8);

tb1e = mod8.*cos(2*pi*ScaleTable(11)*f0*t8);

ti1e = mod8.*cos(2*pi*ScaleTable(12)*f0*t8);

do2e = mod8.*cos(2*pi*ScaleTable(13)*f0*t8); re2e = mod8.*cos(2*pi*ScaleTable(14)*f0*t8); mi2e = mod8.*cos(2*pi*ScaleTable(15)*f0*t8); fa2e = mod8.*cos(2*pi*ScaleTable(16)*f0*t8); so2e = mod8.*cos(2*pi*ScaleTable(17)*f0*t8);

la2e = mod8.*cos(2*pi*ScaleTable(18)*f0*t8);

ti2e = mod8.*cos(2*pi*ScaleTable(19)*f0*t8);

do3e = mod8.*cos(2*pi*ScaleTable(20)*f0*t8); blke = zeros(1,j);

% 1/16 notes

fa0s = mod16.*cos(2*pi*ScaleTable(1)*f0*t16); so0s = mod16.*cos(2*pi*ScaleTable(2)*f0*t16); la0s = mod16.*cos(2*pi*ScaleTable(3)*f0*t16); ti0s = mod16.*cos(2*pi*ScaleTable(4)*f0*t16); do1s = mod16.*cos(2*pi*ScaleTable(5)*f0*t16); re1s = mod16.*cos(2*pi*ScaleTable(6)*f0*t16); mi1s = mod16.*cos(2*pi*ScaleTable(7)*f0*t16); fa1s = mod16.*cos(2*pi*ScaleTable(8)*f0*t16); so1s = mod16.*cos(2*pi*ScaleTable(9)*f0*t16); la1s = mod16.*cos(2*pi*ScaleTable(10)*f0*t16); tb1s = mod16.*cos(2*pi*ScaleTable(11)*f0*t16); ti1s = mod16.*cos(2*pi*ScaleTable(12)*f0*t16); do2s = mod16.*cos(2*pi*ScaleTable(13)*f0*t16); re2s = mod16.*cos(2*pi*ScaleTable(14)*f0*t16); mi2s = mod16.*cos(2*pi*ScaleTable(15)*f0*t16); fa2s = mod16.*cos(2*pi*ScaleTable(16)*f0*t16); so2s = mod16.*cos(2*pi*ScaleTable(17)*f0*t16); la2s = mod16.*cos(2*pi*ScaleTable(18)*f0*t16); ti2s = mod16.*cos(2*pi*ScaleTable(19)*f0*t16);

blks = zeros(1,k);

% Blank Block

blkblock = [blkf blkf blkf blkf blkf blkf blkf blkf...

blkf blkf blkf blkf blkf blkf blkf blkf];

% Base Melody

cello = [do1f do1f so0f so0f la0f la0f mi0f mi0f...

fa0f fa0f do0f do0f fa0f fa0f so0f so0f];

% So-FUCKING-Long Melody

violin = [mi2f mi2f re2f re2f do2f do2f ti1f ti1f...

la1f la1f so1f so1f la1f la1f ti1f ti1f ...%

do2f do2f ti1f ti1f la1f la1f so1f so1f...

fa1f fa1f mi1f mi1f fa1f fa1f re1f re1f ...%

do1f mi1f so1f fa1f mi1f do1f mi1f re1f...

do1f la0f do1f so1f fa1f la1f so1f fa1f...%

mi1f do1f re1f ti1f do2f mi2f so2f so1f...

la1f fa1f so1f mi1f do1f do2f blkf blke ti1e ...%

do2e ti1e do2e do1e ti0e so1e re1e mi1e...

do1e do2e ti1e la1e ti1e mi2e so2e la2e...

fa2e mi2e re2e fa2e mi2e re2e do2e ti1e...

la1e so1e fa1e mi1e re1e fa1e mi1e re1e... %%

do1e re1e mi1e fa1e so1e re1e so1e fa1e...

mi1e la1e so1e fa1e so1e fa1e mi1e re1e...

do1e la0e la1e ti1e do2e ti1e la1e so1e...

fa1e mi1e re1e la1e so1e la1e so1e fa1e...%

mi1f mi2e blke re2f re2f blkf do1f mi2f mi2f...

la2f la2f so2f so2f la2f la2f ti2f ti2f...%

do3e blke do2e blke ti1f ti1f blkf la1f do2f do2f...

do2f do2f do2f do2f do2f fa2f re2f so2f...%

so2e mi2s fa2s so2e mi2s fa2s so2s so1s la1s ti1s ...

do2s re2s mi2s fa2s mi2e do2s re2s...

mi2e mi1s fa1s so1s la1s so1s fa1s so1s mi1s fa1s so1s...

fa1e la1s so1s fa1e mi1s re1s mi1s re1s do1s re1s mi1s fa1s so1s la1s...

fa2e la1s so1s la1e ti1s do2s so1s la1s ti1s do2s re2s mi2s fa2s so2s...%

mi2e do2s re2s mi2e re2s do2s re2s ti1s do2s re2s mi2s re2s do2s ti1s...

do2e la1s ti1s do2e do1s re1s mi1s fa1s mi1s re1s mi1s do2s ti1s do2s...

la1e do2s ti1s la1e so1s fa1s so1s fa1s mi1s fa1s so1s la1s ti1s do2s...

la2e do2s ti1s do2e ti1s la1s ti1s do2s re2s do2s ti1s do1s la1s ti1s...%%

do2e blke blkf ti1e blke blkf la1e blke blkf do2e blke blkf...

do1e blke blkf do1e blke blkf do1e blke blkf do1e blke blkf...%

blkf so1e blke blkf so1e blke blkf mi1e blke blkf so1e blke...

blkf fa1e blke blkf mi1e blke blkf fa1e blke blkf re2e blke...%

mi2e mi1e fa1e mi1e re1e re2e mi2e re2e do2e mi1e do1e do2e ti1e so0e fa0e so0e... la0e la1e so1e la1e so1e so0e fa0e so0e do1e la1e so1e la1e ti1e ti0e la0e ti0e...%

do1e do2e re2e do2e ti1e ti0e do1e ti0e la0e la1e so1e la1e ti1e ti0e mi1e re1e...

do1e do2e re2e fa2e mi2e mi1e so1e mi2e do2e fa2e mi2e fa2e re2e so1e fa1e so1e...%

mi1e so1e so1e so1e so1e so1e so1e so1e mi1e mi1e mi1e mi1e mi1e mi1e so1e so1e...

fa1e fa1e fa1e do2e do2e do2e do2e do2e do2e do2e la1e la1e so1e so1e re2e ti1e...%%

so1e mi2e mi2e mi2e re2e re2e re2e re2e do2e do2e do2e do2e so2e so2e so2e so2e...

la2e la2e la2e la2e so2e so2e so2e so2e la2e la2e la2e la2e ti2e ti1e ti1e ti1e...%

do2e do1s re1s mi1e do1e ti0e ti1s do2s re2e ti1e la1e la0s ti0s do1e la0e ti0e so1s fa1s mi1e re1e...

do1e mi1s re1s do1e fa1e mi1e do1s re1s mi1e so1e fa1e la1s so1s fa1e mi1e re1e so1s fa1s mi1e re1e...%

mi1e do2s ti1s do2e mi1e so1e so1s la1s ti1e so1e mi1e do2s re2s mi2e do2e mi2e mi2s re2s do2e ti1e...

la1e la1s so1s la1e ti1e do2e mi2s re2s do2e mi2e fa2e do2s ti1s la1e la1e so1e re1e so1e so1e...% so1f so1f so1f so1f do1f do1f do1f so1f...

fa1f fa1f so1f so1f fa1f do1f do1f do1e ti0e...%

do1f do2f ti1f ti1f la1f la1f so1f so1f...

do1f do1e re1e mi1f mi1f do2f do2f ti1f ti1f...%%

do2f];

% cello

c1 = [cello cello cello cello cello...

cello cello cello cello cello...

cello cello cello cello cello...

cello cello cello cello cello...

cello cello cello blkf];

% violin1

v1 = [blkblock violin blkblock blkblock];

% violin2

v2 = [blkblock blkblock violin blkblock];

% violin3

v3 = [blkblock blkblock blkblock violin];

% Get dirty

s = c1+v1+v2+v3;

s = s/max(s);

sound(s,fs);

一个简单的Matlab_GUI编程实例

Matlab GUI编程教程(适用于初学者) 1.首先我们新建一个GUI文件:如下图所示; 选择Blank GUI(Default) 2.进入GUI开发环境以后添加两个编辑文本框,6个静态文本框,和一个按钮,布置如下

图所示; 布置好各控件以后,我们就可以来为这些控件编写程序来实现两数相加的功能了。3.我们先为数据1文本框添加代码; 点击上图所示红色方框,选择edit1_Callback,光标便立刻移到下面这段代码的位置。 1. 2. 3.function edit1_Callback(hObject, eventdata, handles) 4.% hObject handle to edit1 (see GCBO) 5.% eventdata reserved - to be defined in a future version of MATLAB

6.% handles structure with handles and user data (see GUIDATA) 7.% Hints: get(hObject,'String') returns contents of edit1 as text 8.% str2double(get(hObject,'String')) returns contents of edit1 as a double 复制代码 然后在上面这段代码的下面插入如下代码: 1. 2.%以字符串的形式来存储数据文本框1的内容. 如果字符串不是数字,则现实空白内容input = str2num(get(hObject,'String')); %检查输入是否为空. 如果为空,则默认显示为0if (isempty(input)) set(hObject,'String','0')endguidata(hObject, handles); 复制代码 这段代码使得输入被严格限制,我们不能试图输入一个非数字。 4.为edit2_Callback添加同样一段代码 5 现在我们为计算按钮添加代码来实现把数据1和数据2相加的目的。 用3中同样的方法在m文件中找到pushbutton1_Callback代码段 如下; 1.function pushbutton1_Callback(hObject, eventdata, handles) 2.% hObject handle to pushbutton1 (see GCBO) 3.% eventdata reserved - to be defined in a future version of MATLAB 4.% handles structure with handles and user data (see GUIDATA) 复制代码

实验二 Matlab程序设计基本方法1

实验二Matlab程序设计基本方法 覃照乘自092 电气工程学院 一、实验目的: 1、熟悉MATLAB 程序编辑与设计环境 2、掌握各种编程语句语法规则及程序设计方法 3、函数文件的编写和设计 4、了解和熟悉跨空间变量传递和赋值 二、实验基本知识: ◆for循环结构 语法:for i=初值:增量:终值 语句1 …… 语句n end 说明:1.i=初值:终值,则增量为1。 2.初值、增量、终值可正可负,可以是整数,也可以是小数,只须符合数学逻辑。 ◆while 循环结构 语法:while 逻辑表达式 循环体语句 end 说明:1、whiIe结构依据逻辑表达式的值判断是否执行循环体语勾。若表达式的值为真,执行循环体语句一次、在反复执行时,每次都要进行判断。若表达 式的值为假,则程序执行end之后的语句。 2、为了避免因逻辑上的失误,而陷入死循环,建议在循环体语句的适当位 置加break语句、以便程序能正常执行。(执行循环体的次数不确定; 每一次执行循环体后,一定会改变while后面所跟关系式的值。) 3、while循环也可以嵌套、其结构如下:

while逻辑表达式1 循环体语句1 while逻辑表达式2 循环体语句2 end 循环体语句3 end ◆if-else-end分支结构 if 表达式1 语句1 else if 表达式2(可选) 语句2 else(可选) 语句3 end end 说明:1.if结构是一个条件分支语句,若满足表达式的条件,则往下执行;若不满足,则跳出if结构。 2.else if表达式2与else为可选项,这两条语句可依据具体情况取舍。 3.注意:每一个if都对应一个end,即有几个if,记就应有几个end。 ◆switch-case结构 语法:switch表达式 case常量表达式1 语句组1 case常量表达式2 语句组2 …… otherwise 语句组n end

三相异步电动机Matlab仿真

中国石油大学胜利学院综合课程设计总结报告 题目:三相异步电机直接启动特性实验模型 学生姓名:潘伟鹏 系别:机械与电气工程系 专业年级: 2012级电气工程专业专升本2班 指导教师:王铭

2013年 6 月 27日

一、设计任务与要求 普通异步电动机直接起动电流达到额定电流的6--7倍,起动转矩能达到额定转矩的1.25倍以上。过高的温度、过快的加热速度、过大的温度梯度和电磁力,产生了极大的破坏力,缩短了定子线圈和转子铜条的使用寿命。但在电网条件和工艺条件允许的情况下,异步电动机也可以直接启动。本次课程设计通过MATLAB软件建模模拟三相异步电动机直接启动时的各个元器件上的电量变化。 参考: 电力系统matlab仿真类书籍 电机类教材 二、方案设计与论证 三相异步电动机直接起动就是利用开关或接触器将电动机的定子绕组直接接到具有额定电压的电网上。 由《电机学》知三相异步电动机的电磁转矩M与直流电动机的电磁转矩有相似的表达形式。它们都与电机结构(表现为转矩常数)和每级下磁通有关,只不过在三相异步电动机中不再是通过电枢的全部电流,而是点数电流的有功分量。三相异步电机电磁转矩的表达式为: (1-1)式中——转矩常数 ——每级下磁通 ——转子功率因数 式(1-1)表明,转子通入电流后,与气隙磁场相互作用产生电磁力,因此,反映了电机中电流、磁场和作用力之间符合左手定则的物理关系,故称为机械特性的物理表达式。该表达式在分析电磁转矩与磁通、电流之间的关系时非常方便。 从三相异步电动机的转子等值电路可知, (1-2) (1-3)将式(1-2)、(1-3)代入(1-1)得:

数字信号处理Matlab实现实例(推荐给学生)

数字信号处理Matlab 实现实例 第1章离散时间信号与系统 例1-1 用MATLAB计算序列{-2 0 1 –1 3}和序列{1 2 0 -1}的离散卷积。 解 MATLAB程序如下: a=[-2 0 1 -1 3]; b=[1 2 0 -1]; c=conv(a,b); M=length(c)-1; n=0:1:M; stem(n,c); xlabel('n'); ylabel('幅度'); 图1.1给出了卷积结果的图形,求得的结果存放在数组c中为:{-2 -4 1 3 1 5 1 -3}。 例1-2 用MATLAB计算差分方程 当输入序列为时的输出结果。 解 MATLAB程序如下: N=41; a=[0.8 -0.44 0.36 0.22]; b=[1 0.7 -0.45 -0.6]; x=[1 zeros(1,N-1)];

k=0:1:N-1; y=filter(a,b,x); stem(k,y) xlabel('n');ylabel('幅度') 图 1.2 给出了该差分方程的前41个样点的输出,即该系统的单位脉冲响应。 例1-3 用MATLAB 计算例1-2差分方程 所对应的系统函数的DTFT 。 解 例1-2差分方程所对应的系统函数为: 123 123 0.80.440.360.02()10.70.450.6z z z H z z z z -------++= +-- 其DTFT 为 23230.80.440.360.02()10.70.450.6j j j j j j j e e e H e e e e ωωωω ωωω--------++= +-- 用MATLAB 计算的程序如下: k=256; num=[0.8 -0.44 0.36 0.02]; den=[1 0.7 -0.45 -0.6]; w=0:pi/k:pi; h=freqz(num,den,w); subplot(2,2,1); plot(w/pi,real(h));grid title('实部') xlabel('\omega/\pi');ylabel('幅度')

实验3MATLAB程序设计

1,编写M 函数实现求一个数是否为素数,再编写一主程序(脚本文件),要求通过键盘输入一个整数,然后调用判断素数函数,从而确定它是否素数。 x=input('请输入一个整数x:'); if myprime(x) disp('您输入的整数x是一个素数。') else disp('您输入的数x不是一个素数。') end function y=myprime(x) y=1; for i=2:fix(sqrt(x)) if mod(x,i)==0 y=0; end end 2,编写M 函数统计一数值中零的个数,然后编写脚本文件,实现统计从1—2007 中零的总个数。 function num=number0(a) %统计十进制数值中0的个数 sa=num2str(a);%将数值装化为字符串 num=length(find(sa=='0'));% ));%求取字符串中'0’的个数 y=0;

for a=1:2006 num=number0(a); y=num+y; end disp(y) 504 3,编写程序计算x∈[-3,3],字长0.01:并画出曲线x = -3:0.01:3; y=zeros(size(x)); for i = 1:length(x) if -3<= x(i)& x(i)<=-1 y(i)=(-x(i).^2-4*x(i)-3)/ 2; elseif -1<= x(i) & x(i)<=1 y(i)=-x(i).^2+1; elseif 1<=x(:,i)<=3 y(i)=(-x(i).^2+4*x(i)-3)/2; end end plot(x,y) -3-2-10123

matlab源代码实例

1.硬币模拟试验 源代码: clear; clc; head_count=0; p1_hist= [0]; p2_hist= [0]; n = 1000; p1 = 0.3; p2=0.03; head = figure(1); rand('seed',sum(100*clock)); fori = 1:n tmp = rand(1); if(tmp<= p1) head_count = head_count + 1; end p1_hist (i) = head_count /i; end figure(head); subplot(2,1,1); plot(p1_hist); grid on; hold on; xlabel('重复试验次数'); ylabel('正面向上的比率'); title('p=0.3试验次数N与正面向上比率的函数图'); head_count=0; fori = 1:n tmp = rand(1); if(tmp<= p2) head_count = head_count + 1; end p2_hist (i) = head_count /i; end figure(head); subplot(2,1,2); plot(p2_hist); grid on; hold on; xlabel('重复试验次数'); ylabel('正面向上的比率'); title('p=0.03试验次数N与正面向上比率的函数图'); 实验结果:

2.不同次数的随机试验均值方差比较 源代码: clear ; clc; close; rand('seed',sum(100*clock)); Titles = ['n=5时' 'n=20时' 'n=25时' 'n=50时' 'n=100时']; Titlestr = cellstr(Titles); X_n_bar=[0]; %the samples of the X_n_bar X_n=[0]; %the samples of X_n N=[5,10,25,50,100]; j=1; num_X_n = 100; num_X_n_bar = 100; h_X_n_bar = figure(1);

刘卫国版MATLAB程序设计与应用课后实验六八九

实验六 高层绘图操作 %第一题: 程序代码如下: x=linspace(0,2*pi,101); y=(0.5+3*sin(x)./(1+x.^2)).*cos(x); plot(x,y) 01234567 -1 -0.5 0.5 1 1.5 %第二题: %(1) 程序代码如下: x=linspace(-2*pi,2*pi,100); y1=x.^2; y2=cos(2*x); y3=y1.*y2; plot(x,y1,'b-',x,y2,'r:',x,y3,'y--'); text(4,16,'\leftarrow y1=x^2'); text(6*pi/4,-1,'\downarrow y2=cos(2*x)'); text(-1.5*pi,-2.25*pi*pi,'\uparrow y3=y1*y2');

-8 -6 -4 -2 2 4 6 8 -30-20 -10 10 20 30 40 %(2) 程序代码如下: x=linspace(-2*pi,2*pi,100); y1=x.^2; y2=cos(2*x); y3=y1.*y2; subplot(1,3,1);%分区 plot(x,y1); title('y1=x^2');%设置标题 subplot(1,3,2); plot(x,y2); title('y2=cos(2*x)'); subplot(1,3,3); plot(x,y3); title('y3=x^2*cos(2*x)');

-10 10 0510 15202530 35 40y1=x 2 -10 10 -1-0.8 -0.6 -0.4-0.200.20.4 0.6 0.8 1y2=cos(2*x) -10 10 -30-20 -10 10 20 30 40 y3=x 2*cos(2*x) %(3) 程序代码如下: x=linspace(-2*pi,2*pi,20); y1=x.^2; subplot(2,2,1);%分区 bar(x,y1); title('y1=x^2的条形图');%设置标题 subplot(2,2,2); stairs(x,y1); title('y1=x^2的阶梯图'); subplot(2,2,3); stem(x,y1); title('y1=x^2的杆图'); subplot(2,2,4); fill(x,y1,'r');%如果少了'r'则会出错 title('y1=x^2的填充图'); %其他的函数照样做。

MATLAB程序设计实验报告

MATLAB 程序设计实验报告 一、实验目的 1. 通过实验熟悉MATLAB 仿真软件的使用方法; 2. 掌握用MATLAB 对连续信号时域分析、频域分析和s 域分析的方法,利用绘图命令绘制出典型信号的波形,了解这些信号的基本特征; 3. 掌握用MATLAB 对离散信号时域分析、频域分析和z 域分析的方法,利用绘图命令绘制出典型信号的波形,了解这些信号的基本特征; 4. 通过绘制信号运算结果的波形,了解这些信号运算对信号所起的作用。 二、实验设备 1. 计算机 : 2. MATLAB R2007a 仿真软件 三、实验原理 对系统的时域分析 信号的时域运算包括信号的相加、相乘,信号的时域变换包括信号的平移、反折、倒相及信号的尺度变换。 (1)信号的相加和相乘:已知信号)(1t f 和)(2t f ,信号相加和相乘记为 )()(1t f t f =)(2t f +;)()(1 t f t f =)(2t f *。 (2)信号的微分和积分:对于连续时间信号,其微分运算是用diff 函数来完成的,其语句格式为:diff(function,’variable’,n),其中function 表示需要进行求导运算的信号,或者被赋值的符号表达式;variable 为求导运算的独立变量;n 为求导的阶数,默认值为求一阶导数。连续信号的积分运算用int 函数来完成,语句格式为:diff(function,’variable’,a,b),其中function 表示需要进行被积信号,或者被赋值的符号表达式;variable 为求导运算的独立变量;a,b 为积分上、下限,a 和b 省略时为求不定积分。 (3)信号的平移、翻转和尺度变换 信号的平移包含信号的左移与右移,信号的翻转包含信号的倒相与折叠,平移和翻转信号不会改变信号)(t f 的面积和能量。信号的尺度变换是对信号)(t f 在时间轴上的变化,可使信号压缩或扩展。)(at f 将原波形压缩a 倍,)/(a t f 将原波形扩大a 倍。 ¥ 对系统频率特性的分析

matlab 上机作业1,中国石油大学

第一次上机实习 1.编写一个程序ex1_1.m,对输入的方阵计算其伴随矩阵。 a)要求第一行帮助行注明这个函数的用途,能在matlab命令窗口可以用help或lookfor 查到该帮助; b)对输入的变量进行检测,如果输入的不是方阵或者矩阵元素不是数,则报错,退出程 序。 function A=ex1_1(X) % 建立函数A=ex1_1(X),求矩阵X的伴随矩阵 [a,b]=size(X); if a~=b||~isnumeric(X) || ~ismatrix(X) error('输入的不是方阵或者矩阵元素不是数!'); end for i=1:a for j=1:b A(i,j)=(-1)^(i+j)*X(i,j)*det(X([1:i-1,i+1:end],[1:j-1,j+1:end])); end end A=A'; 2.已知表达式y=6*x^5+4*x^3+2*x^2-7x+10,x的范围是[0,100],使用三阶拟合和五阶的方法得出多项式的表达式,并编程在图中绘制出原曲线、三阶拟合和五段拟合的曲线。 clc clear all x=linspace(0,100,2000); p1=[6 0 4 2 -7 0]; y=polyval(p1,x); p3=polyfit(x,y,3); p5=polyfit(x,y,5); y1=polyval(p3,x); y2=polyval(p5,x); plot(x,y,'r-o') hold on grid on plot(x,y1,'b-.',x,y2,'y--*'); grid on 三条曲线

放大图(原曲线与五阶拟合完全重合): 3.读如图像5.tif(450*450),做fourier变换, a)将变换之后所得到的矩阵只保留前10行10列,后10行10列的数据,其他位置都 设置为0,然后再作反fourier变换,观察结果; 原图:

Matlab程序设计实验报告

实验七Matlab 程序设计 实验目的: 1、掌握建立和执行M 文件的方法; 2、掌握实现选择结构的方法; 3、掌握实现循环结构的方法。 实验内容: 1. 编写用 5 次多项式拟合函数y=sin(x), x [0, 2 ]的脚本M 文件,要求绘图观察拟合的效果。 function shiyan1 x=0:0.5:2*pi y=sin(x) p=polyfit(x,y,5) x1=0:0.2:2*pi y1=polyval(p,x1) plot(x,y, 'b' ,x1,y1, '*r' x =

Columns 1 through 9 0 0.5000 1.0000 1.5000 2.0000 2.5000 3.0000 3.5000 4.0000 Columns 10 through 13 4.5000 5.0000 5.5000 6.0000 y = Columns 1 through 9 0 0.4794 0.8415 0.9975 0.9093 0.5985 0.1411 -0.3508 -0.7568 Columns 10 through 13 -0.9775 -0.9589 -0.7055 -0.2794 p = -0.0056 0.0881 -0.3967 0.2671 0.8902 0.0029 x1 = Columns 1 through 10 0 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000 1.4000 1.6000 1.8000 Columns 11 through 20

2. 2.2000 2.4000 2.6000 2.8000 3.0000 3.2000 3.4000 3.6000 1.8001 Columns 21 through 30 4.0 4.2000 4.4000 4.6000 4.8000 5.0000 5.2000 5.4000 5.6000 5.8000 Columns 31 through 32 6.0 6.2000 y1 = Columns 1 through 10 0.29 0.1886 0.3786 0.5585 0.7172 0.8461 0.9391 0.9926 1.0048 0.9761 Columns 11 through 20 0.9083 0.8048 0.6701 0.5098 0.3301 0.1381 -0.0590 -0.2538 -0.4389 -0.6073 Columns 21 through 30 -0.7524 -0.8685 -0.9505 -0.9949 -0.9991 -0.9626 -0.8863 -0.7732 -0.6288 -0.4606 Columns 31 through 32

基于MATLAB的微机保护算法仿真

本科毕业设计(论文) 题目:基于MATLAB的微机保护算法仿真 学生姓名: 学号:05843420 专业班级:电气工程及其自动化1班 指导教师:

基于MATLAB的微机保护算法仿真 摘要 基于MATLAB软件,运用Simulink工具完成一种继电保护微机保护数据采集和处理系统。主要基于两点法、突变量算法、对称分量选相法等传统的微机保护算法,搭建MATLAB的仿真模型,根据采集的输入电气量的采样数据进行分析、运算和判断,以实现相应的继电保护功能。本文对MATLAB软件如何应用于微机保护做了详细说明,并运用MATLAB的动态仿真工具对电力系统中的故障以及微机保护的算法进行了仿真分析,说明了MATLAB在微机继电保护中应用的可行性。同时本文对工程中常用微机保护算法进行了原理层面的分析,并运用模型对各种算法的性能进行了仿真和研究,有很重要的现实意义。 关键词:MATLAB;微机保护;算法;采样数据

Microcomputer protection algorithm based on MATLAB simulation Abstract Based on MATLAB software, using Simulink tools perform one computer protection relay data acquisition and processing systems. Mainly based on two-point method, the amount of mutation algorithms, symmetric phase selector and other traditional computer protection algorithms to build MATLAB simulation model, based on the amount of collected samples of the input electrical data analysis, calculation and judgment, in order to achieve the corresponding relay protection. In this paper, MATLAB software how to apply a detailed description of computer protection, and the use of MATLAB dynamic simulation tool for power system failures and computer protection algorithms for the simulation analysis, illustrates the application of MATLAB in the feasibility of relay protection . This paper also commonly used in engineering computer protection algorithms theory level of analysis, and the use of models for the performance of various algorithms and simulation studies, there is a very important practical significance. Keywords:MATLAB;Microcomputer Protection;Algorithm; Sampling Data

matlab程序设计与应用(第二版)第三章部分课后答案

第三章1. (1)A=eye(3) (2)A=100+100*rand(5,6) (3)A=1+sqrt(0.2)*randn(10,50) (4)B=ones(size(A)) (5)A+30*eye(size(A)) (6)B=diag(diag(A)) 2. B=rot90(A) C=rot90(A,-1) 3. B=inv(A) ;A的逆矩阵 C=det(A) ;A的行列式的值 D=A*B E=B*A D=E 因此A与A-1是互逆的。 4. A=[4 2 -1;3 -1 2;12 3 0]; b=[2;10;8]; x=inv(A)*b x = -6.0000 26.6667 27.3333 5. (1) diag(A) ;主对角线元素 ans = 1 1 5 9 triu(A) ;上三角阵

ans = 1 -1 2 3 0 1 -4 2 0 0 5 2 0 0 0 9 tril(A) ;下三角阵 ans = 1 0 0 0 5 1 0 0 3 0 5 0 11 15 0 9 rank(A) ;秩 ans = 4 norm(A) ;范数 ans = 21.3005 cond(A) ;条件数 ans = 11.1739 trace(A) ;迹 ans = 16 (2)略 6. A=[1 1 0.5;1 1 0.25;0.5 0.25 2] A = 1.0000 1.0000 0.5000 1.0000 1.0000 0.2500 0.5000 0.2500 2.0000

[V,D]=eig(A) V = 0.7212 0.4443 0.5315 -0.6863 0.5621 0.4615 -0.0937 -0.6976 0.7103 D = -0.0166 0 0 0 1.4801 0 0 0 2.5365

D实验五 M文件和MATLAB程序设计

实验五M文件和MATLAB程序设计 一、实验目的 matlab作为一种高级计算机语言,不仅可以命令行方式完成操作,也具有数据结构、控制流、输入输出等能力,本次实验通过熟悉和掌握m文件的建立与使用方法,以及函数与控制程序流程语句的使用,使学生具备一定的编程和程序调试能力。 1.掌握M文件的使用方法。 2.掌握if语句和switch语句的使用 3. 掌握循环语句的使用 4. 通过练习理解MATLAB编程方法。 二、实验原理 1.m文件 用matlab语言编写的程序,称为m文件。M文件根据调用方式的不同分为两类,命令文件(Script file)和函数文件(Function file)。区别? 2.程序控制结构 1)顺序结构 2)选择结构 (1)if语句a) 单分支if语句b) 双分支if语句c) 多分支if语句 (2)switch 语句 (3)try语句 3)循环结构 (1)for 语句 (2)while语句 (3)break语句、continue语句、return使用,区别? 3.函数文件 function 输出形参表=函数名(输入形参表) 注释说明部分 函数体语句 注意事项? 三、实验要求 1.首先上机练习PPT中各种流程控制语句的有关实例。 2.然后上机练习下面的实验习题。 四、实验习题

1.数论中一个有趣的题目:任意一个正整数,若为偶数,则用2除之,若为奇数,则与3相乘再加上1。重复此过程,最终得到的结果为1。如: 2→1 3→10→5→16→8→4→2→1 6→3→10→5→16→8→4→2→1 运行下面的程序,按程序提示输入n=1,2,3,5,7,8,9等数来验证这一结论。 %classic "3n+1" problem from number theory. while 1 n=input('Enter n,negative quits:'); if n<=0 break end a=n; while n>1 if rem(n,2)==0 n=n/2; else n=3*n+1; end a=[a,n]; end a end Enter n,negative quits: 2. 编程求满足∑=>m i i 11000020的最小m 值。 a=0; i=1; while (a<100000) a=a+pow2(i); i=i+1; end m=i-1 3. 编写一个函数,计算下面函数的值,给出x 的值,调用该函数后,返回y 的值。 function [y]=myfun1(x)

中国石油大学(北京)自动控制原理胡寿松 课件PPT

实验四 控制系统的根轨迹分析 一. 实验目的: 1. 学习利用MATLAB 语言绘制控制系统根轨迹的方法。 2. 学习利用根轨迹分析系统的稳定性及动态特性。 二. 实验内容: 1. 应用MATLAB 语句画出控制系统的根轨迹。 2. 求出系统稳定时,增益K 的范围。 3. 实验前利用图解法画出系统的根轨迹,算出系统稳定的增益范围,与实测值相比较。 4. 应用SIMULINK 仿真工具,建立闭环系统的实验方块图进行仿真。观察不同增益下系统的阶跃响应,观察闭环极点全部为实数时响应曲线的形状;有共轭复数时响应曲线的形状。(实验方法参考实验二) 5. 分析系统开环零点和极点对系统稳定性的影响。 三. 实验原理: 根轨迹分析法是由系统的开环传递函数的零极点分布情况画出系统闭环根轨迹,从而确定增益K 的稳定范围等参数。假定某闭环系统的开环传递函数为 )164)(1() 1()()(2++-+=s s s s s K s H s G 利用MATLAB 的下列语句即可画出该系统的根轨迹。 b=[1 1]; %确定开环传递函数的分子系数向量 a1=[l 0]; %确定开环传递函数的分母第一项的系数 a2=[l -1]; %确定开环传递函数的分母第二项的系数 a3=[l 4 16]; %确定开环传递函数的分母第三项的系数 a=conv(al ,a2); %开环传递函数分母第一项和第二项乘积的系数 a=conv(a ,a3); %分母第一项、第二项和第三项乘积的系数 rlocus(b,a) %绘制根轨迹,如图(4-l )所示。 p=1.5i ; % p 为离根轨迹较近的虚轴上的一个点。 [k ,poles]=rlocfind(b ,a ,p) %求出根轨迹上离p 点很近的一个根及所对应

matlab程序设计实例

MATLAB 程序设计方法及若干程序实例 樊双喜 (河南大学数学与 信息科学学院开封475004) 摘要本文通过对 MATLAB 程序设计中的若干典型问题做简要的分析和总结,并在此基础上着重讨论了有关算法设计、程序的调试与测试、算法与程序的优化以及循环控制等方面的问题.还通过对一些程序实例做具体解析,来方便读者进行编程训练并掌握一些有关MATLAB 程序设计方面的基本概念、基本方法以及某些问题的处理技巧等.此外,在文章的最后还给出了几个常用数学方法的算法程序, 供读者参考使用.希望能对初学者进行 MATLAB 编程训练提供一些可供参考的材料,并起到一定的指导和激励作用,进而为MATLAB 编程入门打下好的基础. 关键字算法设计;程序调试与测试;程序优化;循环控制 1 算法与程序 1.1 算法与程序的关系算法被称为程序的灵魂,因此在介绍程序之前应先了 解什么是算法.所谓算 法就是对特定问题求解步骤的一种描述.对于一个较复杂的计算或是数据处理的问题,通常是先设计出在理论上可行的算法,即程序的操作步骤,然后再按照算法逐步翻译成相应的程序语言,即计算机可识别的语言. 所谓程序设计,就是使用在计算机上可执行的程序代码来有效的描述用于解决特定问题算法的过程.简单来说,程序就是指令的集合.结构化程序设计由于采用了模块分化与功能分解,自顶向下,即分而治之的方法,因而可将一个较复杂的问题分解为若干子问题,逐步求精.算法是操作的过程,而程序结构和程序流程则是算法的具体体现. 1.2MATLAB 语言的特点 MATLAB 语言简洁紧凑,使用方便灵活,库函数极其丰富,其语法规则与科技人员的思维和书写习惯相近,便于操作.MATLAB 程序书写形式自由,利用其丰富

ADI(交替方向隐格式)求解二维抛物方程(含matlab程序)

ADI 法求解二维抛物方程 学校:中国石油大学(华东) 学院:理学院 姓名:张道德 时间:2013.4.27 1、ADI 法介绍 作为模型,考虑二维热传导方程的边值问题: (3.6.1),0,,0(,,0)(,) (0,,)(,,)(,0,)(,,)0t xx yy u u u x y l t u x y x y u y t u l y t u x t u x l t ?=+<<>?? =??====? 取空间步长1 h M =,时间步长0t >,作两族平行于坐标轴的网线: ,,,0,1,, j k x x jh y y kh j k M ===== 将区域0,x y l ≤≤分割成2M 个小矩形。第 一个ADI 算法(交替方向隐格式)是Peaceman 和Rachford (1955)提出的。 方法: 由第n 层到第n+1层计算分为两步: (1) 第一步: 1 2,12 n j k xx yy u + 从n->n+ ,求u 对向后差分,u 向前差分,构造出差分格 式为: 1 (3.6.1)11 11 2 22 2 ,,1,,1, ,1,,1 2 2 1 222,,2 -22=2 1() n n n n n n n n j k j k j k j k j k j k j k j k n n x j k y j k h h h τδδ+ + + + +-+-+-+-+= +u u u u u u u u (+ ) u u (2) 第二步:1 2,12 n j k xx yy u + 从n+ ->n+1,求u 对向前差分,u 向后差分,构造出差分格 式为: 2 (3.6.1)1 1 1 1 111 222,,1,,1, ,1,,1 2 2 1 221 2,,2 -22=2 1() n n n n n n n n j k j k j k j k j k j k j k j k n n x j k y j k h h h τδδ+ + + +++++-+-++-+-+= +u u u u u u u u (+ ) u u 其中1211,1,,1,0,1,2,,()2 2 n j k M n n n τ+ =-=+ =+ 上表表示在t=t 取值 。 假定第n 层的,n j k u 已求得,则由1(3.6.1)求出1 2,n j k u + ,这只需按行 (1,,1)j M =- 解一些具有三对角系数矩阵的方程组;再由2 (3.6.1)求出

多目标优化实例和matlab程序

NSGA-II 算法实例 目前的多目标优化算法有很多,Kalyanmoy Deb 的带精英策略的快速非支配排序遗传算法(NSGA-II)无疑是其中应用最为广泛也是最为成功的一种。本文用的算法是MATLAB 自带的函数gamultiobj ,该函数是基于NSGA-II 改进的一种多目标优化算法。 一、数值例子 多目标优化问题 42422 11211122124224212212112 12min (,)10min (,)55..55 f x x x x x x x x x f x x x x x x x x x s t x =-++-=-++-≤≤??-≤≤?二、Matlab 文件 1.适应值函数m 文件: function y=f(x) y(1)=x(1)^4-10*x(1)^2+x(1)*x(2)+x(2)^4-x(1)^2*x(2)^2; y(2)=x(2)^4-x(1)^2*x(2)^2+x(1)^4+x(1)*x(2);2.调用gamultiobj 函数,及参数设置: clear clc fitnessfcn=@f; %适应度函数句柄nvars=2; %变量个数lb=[-5,-5]; %下限ub=[5,5]; %上限A=[];b=[];%线性不等式约束 Aeq=[];beq=[];%线性等式约束 options=gaoptimset('paretoFraction',0.3,'populationsize',100,'generations',200,'stallGenLimit',200,'TolFun',1e-100,'PlotFcns',@gaplotpareto); %最优个体系数paretoFraction 为0.3;种群大小populationsize 为100,最大进化代数generations 为200, %停止代数stallGenLimit 为200,适应度函数偏差TolFun 设为1e-100,函数gaplotpareto :绘制Pareto 前端 [x,fval]=gamultiobj(fitnessfcn,nvars,A,b,Aeq,beq,lb,ub,options)

实验二 MATLAB程序设计

实验二 MATLAB 程序设计 一、 实验目的 1.掌握利用if 语句实现选择结构的方法。 2.掌握利用switch 语句实现多分支选择结构的方法。 3.掌握利用for 语句实现循环结构的方法。 4.掌握利用while 语句实现循环结构的方法。 5.掌握MATLAB 函数的编写及调试方法。 二、 实验的设备及条件 计算机一台(带有以上的软件环境)。 M 文件的编写: 启动MATLAB 后,点击File|New|M-File ,启动MATLAB 的程序编辑及调试器(Editor/Debugger ),编辑以下程序,点击File|Save 保存程序,注意文件名最好用英文字符。点击Debug|Run 运行程序,在命令窗口查看运行结果,程序如有错误则改正 三、 实验内容 1.编写求解方程02=++c bx ax 的根的函数(这个方程不一定为一元二次方程,因c b a 、、的不同取值而定),这里应根据c b a 、、的不同取值分别处理,有输入参数提示,当0~,0,0===c b a 时应提示“为恒不等式!”。并输入几组典型值加以检验。 (提示:提示输入使用input 函数) 2.输入一个百分制成绩,要求输出成绩等级A+、A 、B 、C 、D 、E 。其中100分为A+,90分~99分为A ,80分~89分为B ,70分~79分为C ,60分~69分为D ,60分以下为E 。 要求:(1)用switch 语句实现。 (2)输入百分制成绩后要判断该成绩的合理性,对不合理的成绩应输出出错信息。 (提示:注意单元矩阵的用法) 3.数论中一个有趣的题目:任意一个正整数,若为偶数,则用2除之,若为奇数,则与3相乘再加上1。重复此过程,最终得到的结果为1。如: 21 21 421 运行下面的程序,按程序提示输入n=1,2,3,5,7等数来验证这一结论。 请为关键的Matlab 语句填写上相关注释,说明其含义或功能。 4. y 的值。 5. (Root Mean Square)的计算公式为:

偏微分中心差分格式实验报告(含matlab程序)

二阶常微分方程的中心差分求解 学校:中国石油大学(华东)理学院 姓名:张道德 一、 实验目的 1、 构造二阶常微分边值问题: 22,(),(), d u Lu qu f a x b dx u a u b αβ?=-+=<

11122 222222333222122112 100121012010012 00N N N u f q h h u f q h h h u f q h h h q u f h h ---???? ??+-???? ??? ???? ???????-+-? ?????? ???????????=-+? ?????? ???????????-???? ????????-+????? ?? ????? 可以看出系数矩阵为三对角矩阵,而对于系数矩阵为三对角矩阵的方程组可以用“追赶法”求解,则可以得出二阶常微分方程问题的数值解。 四、 举例求解 我们选取的二阶常微分方程边值问题为: 2 22242,01 (0)1,(1), x d u Lu x u e x dx u u e ?=-+=-<

相关主题