搜档网
当前位置:搜档网 › 三角函数、导数、微分、积分

三角函数、导数、微分、积分

三角函数、导数、微分、积分
三角函数、导数、微分、积分

导数与三角函数交汇试题

导数与三角函数交汇试题 1.(2019?石家庄一模)已知函数, (1)求函数f(x)的极小值 (2)求证:当﹣1≤a≤1时,f(x)>g(x) 2.(2019春?常熟市期中)已知函数f(x)=e2x(sin x﹣3cos x). (1)求函数f(x)在点(0,f(0))处的切线方程; (2)求函数f(x)在区间上的最大值和最小值. 3.(2019?大连模拟)已知函数f(x)=ae x﹣sin x+1其中a∈R,e为自然对数的底数.(1)当a=1时,证明:对?x∈[0,+∞),f(x)≥2; (2)若函数f(x)在[0,π]上存在两个不同的零点,求实数a的取值范围.4.(2019?天津)设函数f(x)=e x cos x,g(x)为f(x)的导函数. (Ⅰ)求f(x)的单调区间; (Ⅱ)当x∈[,]时,证明f(x)+g(x)(﹣x)≥0; (Ⅲ)设x n为函数u(x)=f(x)﹣1在区间(2nπ+,2nπ+)内的零点,其中n∈N, 证明2nπ+﹣x n<. 5.(2019?新课标Ⅰ)已知函数f(x)=2sin x﹣x cos x﹣x,f′(x)为f(x)的导数.(1)证明:f′(x)在区间(0,π)存在唯一零点; (2)若x∈[0,π]时,f(x)≥ax,求a的取值范围. 6.(2019?新课标Ⅰ)已知函数f(x)=sin x﹣ln(1+x),f′(x)为f(x)的导数.证明: (1)f′(x)在区间(﹣1,)存在唯一极大值点; (2)f(x)有且仅有2个零点. 7.(2019?富阳区模拟)设函数f(x)=2x2+alnx,(a∈R) (Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线方程为y=2x+m,求实数a,m的值(Ⅱ)若f(2x﹣1)+2>2f(x)对任意x∈[2,+∞)恒成立,求实数a的取值范围; (Ⅲ)关于x的方程f(x)+2cos x=5能否有三个不同的实根?证明你的结论 8.(2019?北辰区模拟)已知函数f(x)=e x﹣ax,(a∈R),g(x)=.

导数和微分的概念

一元函数微分学 §1 导数和微分的概念 基本概念 1. 导数定义 00000)()(lim lim )()(lim 0x x x f x f x y x x f x x f x x x x --=??=?-?+→→?→? 0|)()(00x x dx dy x y x f =='='= 几种极限形式都要掌握 函数在某点可导即上述极限存在,极限存在?左右极限都存在且相等,左极限为左导,右极限为右导, )(lim 00x f x y x --→?'=??, )(lim 00x f x y x ++→?'=?? 导数定义是非常重要的概念,一定要灵活掌握。 2. 导函数)(x f ',dx dy . f (x )在(a , b )可导, f (x )在[a , b ]可导 3. 可导与连续的关系 可导一定连续,但连续不一定可导(如函数||x y =在x =0点处连续,但是不可导) 4. 导数的几何意义 切线方程:))((000x x x f y y -'=-; 法线方程:)() (1000x x x f y y -'- =- 0)(0≠'x f , 5. 微分的定义

微分的几何意义 6. 微分与导数的关系 )(x f 在x 处可微?)(x f 在x 处可导,且dx x f dy )('= 同时 dx x f dy x x )(|00'==。 §2 导数与微分的计算 基本概念 1. 基本初等函数的导数、微分公式(书159页,166页) 2. 导数(微分)四则运算公式 )()())()((x g x f x g x f '±'='±, )()()()())()((x g x f x g x f x g x f '+'=', 特别地 )())((x f k x kf '=', ) ()()()()())()((2x g x g x f x g x f x g x f '-'=' 特别地 ) ()())(1(2x f x f x f '-='。 后面两个公式不要记错。 3. 复合函数的求导法则 如何正确运用好复合函数求导法则(必须明确函数的复合过程),并且应到最后一层复合 4.高阶导数(计算同一阶导数)。

高考数学导数与三角函数压轴题综合归纳总结教师版

导数与三角函数压轴题归纳总结 近几年的高考数学试题中频频出现含导数与三角函数零点问题,内容主要包括函数零点个数的确定、根据函数零点个数求参数范围、隐零点问题及零点存在性赋值理论.其形式逐渐多样化、综合化. 一、零点存在定理 例1.【2019全国Ⅰ理20】函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明: (1)()f x '在区间(1,)2 π -存在唯一极大值点; (2)()f x 有且仅有2个零点. 【解析】(1)设()()g x f x '=,则()()() 2 11 cos ,sin 11g x x g x x x x '=- =-+++. 当1,2x π??∈- ?? ?时,()g'x 单调递减,而()00,02g g π?? ''>< ???, 可得()g'x 在1,2π?? - ?? ?有唯一零点,设为α. 则当()1,x α∈-时,()0g x '>;当,2x πα?? ∈ ??? 时,()0g'x <. 所以()g x 在()1,α-单调递增,在,2πα?? ???单调递减,故()g x 在1,2π?? - ???存在唯一极大 值点,即()f x '在1,2π?? - ?? ?存在唯一极大值点. (2)()f x 的定义域为(1,)-+∞. (i )由(1)知, ()f x '在()1,0-单调递增,而()00f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点. (ii )当0,2x π?? ∈ ???时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ?? ??? 单调递减,而

最新导数和微分的概念

导数和微分的概念

一元函数微分学 §1 导数和微分的概念 基本概念 1.导数定义 ?Skip Record If...? ?Skip Record If...? 几种极限形式都要掌握 函数在某点可导即上述极限存在,极限存在?Skip Record If...?左右极限都存在且相等,左极限为左导,右极限为右导, ?Skip Record If...?, ?Skip Record If...? 导数定义是非常重要的概念,一定要灵活掌握。 2.导函数?Skip Record If...?,?Skip Record If...?. f(x)在(a, b)可导, f(x)在[a, b]可导 3.可导与连续的关系 可导一定连续,但连续不一定可导(如函数?Skip Record If...?在x=0点处连续,但是不可导) 4.导数的几何意义 切线方程:?Skip Record If...?; 法线方程:?Skip Record If...? ?Skip Record If...?, 5.微分的定义 微分的几何意义 6.微分与导数的关系

?Skip Record If...?在x处可微?Skip Record If...??Skip Record If...?在x处可导,且?Skip Record If...? 同时 ?Skip Record If...?。 §2 导数与微分的计算 基本概念 1.基本初等函数的导数、微分公式(书159页,166页) 2.导数(微分)四则运算公式 ?Skip Record If...?, ?Skip Record If...?, 特别地 ?Skip Record If...?, ?Skip Record If...? 特别地 ?Skip Record If...?。 后面两个公式不要记错。 3.复合函数的求导法则 如何正确运用好复合函数求导法则(必须明确函数的复合过程),并且应到最后一层复合 4.高阶导数(计算同一阶导数)。 §3 中值定理 基本概念

三角函数、数列、导数试题及详解

三角函数、数列导数测试题及详解 一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有 一项是 符合题目要求的. 1.已知点A (-1,1),点B (2,y ),向量a=(l ,2),若//AB a ,则实数y 的值为 A .5 B .6 C .7 D .8 2.已知等比数列123456{},40,20,n a a a a a a a ++=++=中则前9项之和等于 A .50 B .70 C .80 D .90 3.2 (sin cos )1y x x =+-是 A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D .最小正周期为π的奇函数 4.在右图的表格中,如果每格填上一个数后,每一横行成等差数列, 每一纵列成等比数列,那么x+y+z 的值为 A .1 B .2 C .3 D .4 5.已知各项均不为零的数列{}n a ,定义向量 *1(,),(,1),n n n n c a a b n n n N +==+∈,下列命题中真命题是 A .若* ,//n n n N c b ?∈总有成立,则数列{}n a 是等差数列 B .若* ,//n n n N c b ?∈总有成立,则数列{}n a 是等比数列 C .若* ,n n n N c b ?∈⊥总有成立,则数列{}n a 是等差数列 D .若* ,n n n N c b ?∈⊥总有成立,则数列{}n a 是等比数列 6.若sin2x 、sinx 分别是sin θ与cos θ的等差中项和等比中项,则cos2x 的值为 A . 133 8 + B . 133 8 C . 133 8 ± D . 12 4 - 7.如图是函数sin()y x ω?=+的图象的一部分,A ,B 是图象上的一个最高点和一个最低 点,O 为坐标原点,则OA OB ?的值为 A .12π B . 2 119π+ C .2 119 π- D .2 113 π- 8.已知函数()cos ((0,2))f x x x π=∈有两个不同的零点x 1,x 2,且方程()f x m =有两个

含三角函数的导数问题

1.已知函数f (x )=-cos x +ln x ,则f ′(1)的值为( ) A .sin1-1 B .1-sin1 C .1+sin1 D .-1-sin1 答案 C 解析 ∵f (x )=-cos x +ln x ,∴f ′(x )=1 x +sin x ,∴f ′(1)=1+sin1. 2.曲线y =tan x 在x =-π 4处的切线方程为______ 答案 y =2x +π 2-1 解析 y ′=(sin x cos x )′=cos 2x +sin 2x cos 2x =1cos 2x ,所以在x =-π 4处的斜率为2,曲线 y = tan x 在x =-π4处的切线方程为y =2x +π 2-1. 3 .函数y =x -2sin x 在(0,2π)内的单调增区间为________. 答案 (π3,5π 3) : ∴函数y =x -2sin x 在(0,2π)内的 增区间为(π3,5π 3). 4. 函数()2sin f x x x =+的部分图象可能是 — A B C D 5.已知函数f (x )=x sin x ,x ∈R ,f (-4),f (4π3),f (-5π 4)的大小关系为______(用“<”连接). 答案 f (4π3)

三角函数_反三角函数_积分公式_求导公式

sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 2、倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3、半角公式 sin(2A )=2cos 1A - cos(2 A )=2cos 1A + tan( 2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin + 4、诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 5、万能公式 sina=2)2(tan 12tan 2a a + cosa=22)2(tan 1)2(tan 1a a +- tana=2 )2(tan 12tan 2a a - 6、其他非重点三角函数 csc(a) = a sin 1 sec(a) =a cos 1 7、(a +b )的三次方,(a -b )的三次方公式

导数与三角函数的结合

----导数与三角函数的结合 1.(导数与三角函数结合)已知函数3 2 1 ()43cos 32 f x x x θ=-+,其中x R θ∈,为参数,且02 π θ≤≤ .(1)当cos 0θ=时,判断函数()f x 是否有极值; (2)要使函数()f x 的极小值大于零,求参数θ的取值范围; (3)若对(2)中所求的取值范围内的任意参数θ,函数在区间(2a -1,a )内都是增函数,求实数a 的取值范围. 【分析】定义域D 上的可导函数()f x 在点0x 处取得极值的充要条件是0()0f x '=,且 ()f x '在0x 两侧异号. 【解析】(1)当cos 0θ=时,3 1()432 f x x =+,则,012)('2 ≥=x x f 函数()f x 在(-∞,+∞)内是增函数,故无极值. (2)2 ()126cos f x x x θ'=-,令()0f x '=,得12cos 02 x x θ == ,. 由02 π θ≤≤ 及(1),只考虑cos 0θ>的情况. 当x 变化时,()f x '的符号及()f x 的变化情况如下表: 因此,函数()f x 在2x =处取得极小值( )2f ,且3()cos 2432 =-+f θ. 要使cos ()2f θ>0,必有311cos 0432-+>θ,可得10cos 2θ<<,所以32 ππ θ<<. (3)由(2)知,函数()f x 在区间(-∞,0)与cos ()2 θ +∞,内都是增函数.由题设,函数()f x 在(2a -1,a )内都是增函数,则a 需满足不等式组 21211 021cos 2 a a a a a a θ-

函数导数三角函数

函数导数三角函数 函数、导数、三角函数回归基础与基本题型复习一、基础知识与基本方法 函数部分 221、二次函数?三种形式:一般式f(x)=ax+bx+c;顶点式f(x)=a(x- h)+k;零点式f(x)=a(x-x)(x-x);b=0偶函数;?区间最值:配方后一看开口方向,二讨论对称12 轴与区间的相对位置关系;?实根分布:先画图再研究?>0、轴与区间关系、区间 端点函数值符号; 2、值域(范围)常用分子常数法;分离;,分母整体换元;导数 3、周期:进退几 个单位,列举;画图;用周期定义逐个检验; 4、求定义域:使函数解析式有意义(如:分母?;偶次根式被开方数?;对数真数?,底数?;零指数幂的底数?);实际问题有意义; (定义域优先意识) 5、单调性:?定义法;?导数法?图像;奇偶性:?定义法?图像。函 数 2yxx,,,log(2)的单调递增区间是.(答:) (1,2)12 注意:(1)函数单调性与奇偶性的逆用(?比较大小;?解不等式;?求参数范围(注 意等号)); 依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题:(或fugxuhx()()()0,,, fa()0,,fa()0,,(或); ,,,,0)()aub,,fb()0,fb()0,,,2若存在?[1,3],使得 不等式,(-2)-2>0成立,则实数取值aaxaxx范围是 ( 22解:不等式即,设.研究“任意a?()220xxax,,,,faxxax()()22,,,, f(1)0,,2,,[1,3],恒有”.则,解得。则实数x的取值范围是 fa()0,x,,1,,,,f(3)0,3,,, 2,, ,,,,,,,1,,,,,3,, (2)复合函数由单调性判定:同增异减。

偏导数与全导数偏微分与全微分的关系

偏导数与全导数偏微分与全微分的关系 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

1。偏导数代数意义偏导数是对一个变量求导,另一个变量当做数对x求偏导的话y就看作一个数,描述的是x方向上的变化率对y求偏导的话x就看作一个数,描述的是y方向上的变化率 几何意义对x求偏导是曲面z=f(x,y)在x方向上的切线对y求偏导是曲面z=f(x,y)在x方向上的切线 这里在补充点。就是因为偏导数只能描述x方向或y方向上的变化情况,但是我们要了解各个方向上的情况,所以后面有方向导数的概念。 2。微分偏增量:x增加时f(x,y)增量或y增加时f(x,y) 偏微分:在d e t a x趋进于0时偏增量的线性主要部分d e t a z=f x(x,y)d e t a x+o(d e t a x) 右边等式第一项就是线性主要部分,就叫做在(x,y)点对x的偏微分这个等式也给出了求偏微分的方法,就是用求x的偏导数求偏微分

全增量:x,y都增加时f(x,y)的增量全微分:根号(detax方+detay方)趋于0时,全增量的线性主要部分同样也有求全微分公式,也建立了全微分和偏导数的关系d z=A d x+B d y其中A就是对x求偏导,B就是对y求偏导 希望楼主注意的是导数和微分是两个概念,他们之间的关系就是上面所说的公式。概念上先有导数,再有微分,然后有了导数和微分的关系公式,公式同时也指明了求微分的方法。 3.全导数全导数是在复合函数中的概念,和上面的概念不是一个系统,要分开。u=a(t),v=b(t) z=f[a(t),b(t)] dz/dt 就是全导数,这是复合函数求导中的一种情况,只有这时才有全导数的概念。 d z/d t=(偏z/偏u)(d u/d t)+(偏z/偏v)(d v/d t) 建议楼主在复合函数求导这里好好看看书,这里分为3种情况。1.中间变量一元就是上面的情况,才有全导数的概念。2.中间变量有多元,只能求偏导 3.中间变两有一元也有多元,还是求偏导。 对于你的题能求对x的偏导数,对y的偏导数,z的全微分,不能求全导数

角函数反三角函数积分公式求导公式

1、两角和公式 sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinB cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB tan(A+B)=tanAtanB -1tanB tanA +tan(A-B)=tanAtanB 1tanB tanA +- cot(A+B)=cotA cotB 1-cotAcotB +cot(A-B)=cotA cotB 1cotAcotB -+ 2、倍角公式 tan2A=A tan 12tanA 2-Sin2A=2SinA?CosA Cos2A=Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3、半角公式 sin(2A )=2cos 1A -cos(2 A )=2cos 1A + tan( 2A )=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+tan(2A )=A A sin cos 1-=A A cos 1sin + 4、诱导公式 sin(-a)=-sinacos(-a)=cosa sin(2π-a)=cosacos(2π-a)=sinasin(2π+a)=cosacos(2 π+a)=-sina sin(π-a)=sinacos(π-a)=-cosasin(π+a)=-sinacos(π+a)=-cosa tgA=tanA=a a cos sin 5、万能公式 sina=2)2(tan 12tan 2a a +cosa=22)2(tan 1)2(tan 1a a +-tana=2 )2 (tan 12tan 2a a - 6、其他非重点三角函数 csc(a)=a sin 1sec(a)=a cos 1 7、(a +b )的三次方,(a -b )的三次方公式 (a+b)^3=a^3+3a^2b+3ab^2+b^3 (a-b)^3=a^3-3a^2b+3ab^2-b^3 a^3+b^3=(a+b)(a^2-ab+b^2) a^3-b^3=(a-b)(a^2+ab+b^2) 8、反三角函数公式 arcsin(-x)=-arcsinx arccos(-x)=π-arccosx arctan(-x)=-arctanx arccot(-x)=π-arccotx

导数与微分习题及答案

第二章 导数与微分 (A) 1.设函数()x f y =,当自变量x 由0x 改变到x x ?+0时,相应函数的改变量 =?y ( ) A .()x x f ?+0 B .()x x f ?+0 C .()()00x f x x f -?+ D .()x x f ?0 2.设()x f 在0x 处可,则()() =?-?-→?x x f x x f x 000 lim ( ) A .()0x f '- B .()0x f -' C .()0x f ' D .()02x f ' 3.函数()x f 在点0x 连续,是()x f 在点0x 可导的 ( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 4.设函数()u f y =是可导的,且2x u =,则 =dx dy ( ) A .()2x f ' B .()2x f x ' C .()22x f x ' D .()22x f x 5.若函数()x f 在点a 连续,则()x f 在点a ( ) A .左导数存在; B .右导数存在; C .左右导数都存在 D .有定义 6.()2-=x x f 在点2=x 处的导数是( ) A .1 B .0 C .-1 D .不存在 7.曲线545223-+-=x x x y 在点()1,2-处切线斜率等于( ) A .8 B .12 C .-6 D .6 8.设()x f e y =且()x f 二阶可导,则=''y ( ) A . ()x f e B .()()x f e x f '' C .()()()[]x f x f e x f ''' D .()()[](){} x f x f e x f ''+'2 9.若()???≥+<=0,2sin 0 ,x x b x e x f ax 在0=x 处可导,则a ,b 的值应为( ) A .2=a ,1=b B . 1=a ,2=b C .2-=a ,1=b D .2=a ,1-=b

高中数学2020年月月考-三角函数与导数交汇压轴题

绝密★启用前 高中数学2020年06月月考 试卷副标题 考试范围:xxx ;考试时间:100分钟;命题人:xxx 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 第II 卷(非选择题) 请点击修改第II 卷的文字说明 一、解答题 1.(2019·安徽省高三月考(文))已知函数sin ()ln x f x x x =-. (1)证明:函数()f x 在()0,π上有唯一零点; (2)若()0,2x π∈时,不等式sin 2()ln 2x a f x x x x ++ ≤恒成立,求实数a 的取值范围. 【答案】(1)证明见解析;(2)?+∞??? . 【解析】 【分析】 (1)对函数求导得2 (cos 1)sin ()x x x f x x --'= ,由(0,)x π∈可得()0f x '<,从而得到函数的单调性,再根据区间端点的函数值,即可得答案; (2)等式sin 2()ln 2x a f x x x x ++ ≤,可化为不等式1 sin sin 22 x x a +≤,令1 ()sin sin 2,(0,2)2 g x x x x π=+∈利用导数求得()g x 的最大值,即可得答案. 【详解】 (1)证明:由sin ()ln x f x x x = -得 22 cos sin 1(cos 1)sin ()x x x x x x f x x x x ---'=-= 当(0,)x π∈时,cos 10x -<,sin 0x -<, 则()0f x '<,函数()f x 在()0,π上单调递减, 又3 ()ln 066 f ππ π = ->,()ln 0f ππ=-<

三角函数积分公式求导公式

一.三角函数 二.常用求导公式 三.常用积分公式 第一部分三角函数 同角三角函数的基本关系式 诱导公式

化asin α±bcos α为一个角的一个三角函数的形式(辅助角的三角函数的公式) 第二部分 求导公式 1.基本求导公式 ⑴0)(='C (C 为常数)⑵1)(-='n n nx x ;一般地,1)(-='αααx x 。 特别地:1)(='x ,x x 2)(2=',21 )1(x x -=',x x 21)(='。 ⑶x x e e =')(;一般地,)1,0( ln )(≠>='a a a a a x x 。 ⑷x x 1 )(ln =';一般地,)1,0( ln 1 )(log ≠>= 'a a a x x a 。 2.求导法则 ⑴ 四则运算法则 设f (x ),g (x )均在点x 可导,则有:(Ⅰ))()())()((x g x f x g x f '±'='±; (Ⅱ))()()()())()((x g x f x g x f x g x f '+'=',特别)())((x f C x Cf '='(C 为常数); (Ⅲ))0)(( ,) ()()()()())()(( 2≠'-'='x g x g x g x f x g x f x g x f ,特别21() ()()()g x g x g x ''=-。 3.微分 函数()y f x =在点x 处的微分:()dy y dx f x dx ''== 第三部分 积分公式

1.常用的不定积分公式 (1) ?????+==+=+=-≠++=+c x dx x x dx x c x xdx c x dx C x dx x 4 3 ,2,),1( 114 3 32 21αααα ; (2) C x dx x +=?||ln 1; C e dx e x x +=?; )1,0( ln ≠>+=?a a C a a dx a x x ; (3)??=dx x f k dx x kf )()((k 为常数) 2.定积分 ()()|()()b b a a f x dx F x F b F a ==-? ⑴???+=+b a b a b a dx x g k dx x f k dx x g k x f k )()()]()([2121 ⑵ 分部积分法 设u (x ),v (x )在[a ,b ]上具有连续导数)(),(x v x u '',则 ?? -=b a b a b a x du x v x v x u x dv x u )()()()()()(

导数与微分

导数和微分 问题 1.为什么用导数能研究函数的性态? 答:应用导数之所以研究函数的性态是因为函数 () f x 在点 0 x 导数 00 0 0 0 0 ()() '()lim lim x x x f x f x y f x x x x ?? - D == D - 本身蕴含了函数 () f x 在点 0 x 最本质的属性.为了说明这个事实,我们首先从比数 0 0 ()() f x f x y x x x - D = D - 说起,比数 y x D D 对研究函数 () f x 在点 0 x 的性态有什么意义呢? 我们知道,两个量a 与b 之比数 a k b = (或a kb = )是一个抽象的数,称为率。 在数学中有很多的率。例如,圆周率,离心率,斜率,曲率等。在社会科学中, “率”就更多了,例如,增长率,出生率,利率等。率这个抽象的数k 给出了两 个量a 与b 之间的倍数关系,即a 与b 的k 倍,它能刻划事物内在的规律和属性。 例如,椭圆 22 22 1 x y a b += 的离心率 22 (01) a b e e a - = £< 描绘了椭圆的扁圆的程度:e 愈大,椭圆愈扁;e 愈小,椭 圆愈近似于圆。 由此可见, 椭圆的离心率e 对认识椭圆的几何性态是十分必要的。 这就是几何性质定量化,是“以数表性”的实例。同样,导数这个“率”也能够 以数表性(函数的性态),而应用的范围更为广泛。 设函数 () y f x = 在点 0 x 可导,任取一点 x ,有自变量的改变量 0 , x x x D =- 相应函数 () y f x = 的改变量 0 ()(). y f x f x D =- 两者的比数为 0 0 ()() '. f x f x y k x x x - D == D - 用分析的语言说, ' k 是函数 () y f x = 在 0 x 附近的平均变化率。用几何的语言说, ' k 是曲线 () y f x = 过点 00 (,()) x f x 与 (,()) x f x 的割线斜率。 当 x 很靠近 0 x 时 (或 x D 很小时),平均变化率 ' k 能够近似地描绘函数 () y f x = 在点 0 x 附近的性态。例如,

导数与微分练习题答案

高等数学练习题 第二章 导数与微分 第一节 导数概念 一.填空题 1.若)(0x f '存在,则x x f x x f x ?-?-→?) ()(lim 000 = )(0x f '- 2. 若)(0x f '存在,h h x f h x f h ) ()(lim 000 --+→= )(20x f ' . 000 (3)() lim x f x x f x x ?→+?-?=03()f x '. 3.设20-=')(x f , 则=--→)()2(lim )000 x f x x f x x 4 1 4.已知物体的运动规律为2 t t s +=(米),则物体在2=t 秒时的瞬时速度为5(米/秒) 5.曲线x y cos =上点( 3 π ,21)处的切线方程为03 123=- -+π y x ,法线方程为 03 22332=-+ -π y x 6.用箭头?或?表示在一点处函数极限存在、连续、可导、可微之间的关系, ; 可微 ? 可导 <≠ ? | 连续 <≠ ? 极限存在。 二、选择题 1.设0)0(=f ,且)0(f '存在,则x x f x ) (lim 0→= [ B ] (A ))(x f ' ( B) )0(f ' (C) )0(f (D) 2 1 )0(f 2. 设)(x f 在x 处可导,a ,b 为常数,则x x b x f x a x f x ??--?+→?) ()(lim 0 = [ B ] (A ))(x f ' ( B) )()(x f b a '+ (C) )()(x f b a '- (D) 2 b a +)(x f ' 3. 函数在点 x 处连续是在该点 x 处可导的条件 [ B ] (A )充分但不是必要 (B )必要但不是充分 (C )充分必要 (D )即非充分也非必要 4.设曲线22 -+=x x y 在点M 处的切线斜率为3,则点M 的坐标为 [ B ]

函数导数与三角函数

函数,导数与三角函数 (时间:120分 满分:150分) 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.若1∈{a -3, 9a 2 -1,a 2+1,-1},则实数a 的值为( ) A .0或4 B .4 C.4 9 D .4或4 9 2.(2012年高考天津卷)设x ∈R ,则“x >1 2”是“2x 2+x -1>0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 3.已知等比数列{a n }的公比q 为正数,且a 5·a 7=4a 2 4,a 2=1,则a 1=( ) A.12 B.2 2 C. 2 D .2 4.(2012年福州质检)将函数f (x )=sin 2x (x ∈R)的图象向右平移π4个单位后, 所得到的图象对应的函数的一个单调递增区间是( ) A .(-π 4,0) B .(0,π 2) C .(π2,3π4 ) D .( 3π 4 ,π) 5.(2012年济南模拟)如果实数x 、y 满足条件???x -y +1≥0, y +1≥0,x +y +1≤0, 那么2x -y 的最 大值为( ) A .2 B .1 C .-2 D .-3 6.(2012年郑州模拟)给出30个数:1,2,4,7,11,…,要计算这30个数的和,现已给出了该问题的程序框图如图所示,那么框图中判断框①处和执行框②处应分别填入( )

A .i ≤30?和p =p +i -1 B .i ≤31?和p =p +i +1 C .i ≤31?和p =p +I D .i ≤30?和p =p +i 7.已知函数f (x )=sin x 在区间[a ,b ]上是增函数,且f (a )=-1,f (b )=1,则cos a +b 2 的值为( ) A .0 B. 2 2 C .1 D .-1 8.(2012年惠州模拟)已知复数a +b i =2+4i 1+i (a ,b ∈R),则函数f (x )=2sin (ax +π 6 )+b 的图象的对称中心可以是( ) A .(π6,0) B .(-π18,1) C .(-π 6,1) D .(π 9 ,1) 9.(2012年高考山东卷)设命题p :函数y =sin 2x 的最小正周期为π 2;命题q : 函数y =cos x 的图象关于直线x =π 2 对称.则下列判断正确的是( ) A .p 为真 B .綈q 为假 C .p ∧q 为假 D .p ∨q 为真 10.在等差数列{a n }中,首项a 1=120,公差d =-4,若S n ≤a n (n ≥2),则n 的最小值为( ) A .60 B .62 C .70 D .72 11.(2012年南昌联考)已知函数f (x )的图象如图所示,f ′(x )是f (x )的导函数,

常用三角函数导数极限

三角函数公式表

半角的正弦、余弦和正切公式 三角函数的降幂公式 1cos sin()221cos cos()2 2 1cos 1cos sin tan()21cos sin 1cos α αα αααααααα -=± +=± --=±== ++ 2 21cos 2sin 21cos 2cos 2 α ααα-= += 二倍角的正弦、余弦和正切公式 三倍角的正弦、余弦和正切公式 sin 22sin cos cos 2cos 2sin 22cos 2112sin 2ααα ααααα ==-=-=- 2tan tan 21tan 2α αα =- - sin 33sin 4sin 3cos34cos33cos .3tan tan 3tan 313tan 2αααααααα αα =-=--=- - 三角函数的和差化积公式 三角函数的积化和差公式 sin sin 2sin cos 22sin sin 2cos sin 22cos cos 2cos cos 22cos cos 2sin sin 22 αβ αβ αβαβαβ αβαβαβ αβαβαβ αβ+-+=?+--=?+-+=?+--=-? [][] [] [] 1 sin cos sin()sin()21 cos sin sin()sin()21 cos cos cos()cos()21 sin sin cos()cos()2αβαβαβαβαβαβαβαβαβαβαβαβ?= ++-?=+--?=++-?=-+-- 化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式) 22sin cos sin()a x b x a b x φ±=+± 其中φ角所在的象限由a 、b 的符号确定,φ角的值由tan b a φ=确定 六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。”

导数与微分知识点

第二章 导数与微分 一、导数 1.导数的定义: 由“变速直线运动的瞬时速度”、“平面曲线的切线斜率”引出 设函数()x f y =在点0x 的某领域内有定义,自变量x 在0x 处有增量x ?,相应地函数增量()()00x f x x f y -?+=?。如果极限 ()()x x f x x f x y x x ?-?+=??→?→?0000lim lim 存在,则称此极限值为函数()x f 在0x 处的导数(也称微商),记作()0x f ',或0 x x y =' , 0x x dx dy =,()0 x x dx x df =等,并称函数()x f y =在点0x 处可导。如果上面的极限不存在, 则称函数()x f y =在点0x 处不可导。 注:函数()x f 在0x 处的导数,就是导函数f ’(x)在点在0x 处的函数值,即()0x f '=f ’(x)|x=x0。 多数情况下用求导法则,有时用定义求导更方便。如题中函有f(x),而不是具体的方程时。 2、单侧导数 右导数:()()()()() x x f x x f x x x f x f x f x x x ?-?+=--='++ →?→+000000lim lim 0 左导数:()()()()()x x f x x f x x x f x f x f x x x ?-?+=--='-- →?→-000000lim lim 0 则有 ()x f 在点0x 处可导()x f ?在点0x 处左、右导数皆存在且相等。 3、导数的几何意义 如果函数()x f y =在点0x 处导数()0x f '存在,则在几何上()0x f '表示曲线 ()x f y =在点()()00,x f x 处的切线的斜率,即:()0x f '=K=tan a 。 切线方程:()()()000x x x f x f y -'=- 法线方程:()() ()()()01 0000≠'-'- =-x f x x x f x f y 注:切线与法线垂直,切线的斜率与法线的斜率乘积为负1,即:K 切 * K 法 = -1。 设物体作直线运动时路程S 与时间t 的函数关系为()t f S =,如果()0t f '存在,则

高三数学三角函数与函数导数专题训练(含解析)

三角函数与函数导数单元测试 一、选择题1、函数()()m n f x ax x =1- g 在区间〔0,1〕上的图像如图所示,则m ,n 的值可能是 (A )1,1m n == (B) 1,2m n == (C) 2,1m n == (D) 3,1m n == 2、已知函数()x f x e x =+,对于曲线()y f x =上横坐 标成等差数列的三个点A ,B ,C ,给出以下判断: ①△ABC 一定是钝角三角形 ②△ABC 可能是直角三角形 ③△ABC 可能是等腰三角形 ④△ABC 不可能是等腰三角形 其中,正确的判断是 A .①③ B .①④ C .②③ D .②④ 3、设)(),(),(x h x g x f 是R 上的任意实值函数.如下定义两个函数()()x g f 和()()x g f ?;对任意R x ∈,()()())(x g f x g f = ;()()())(x g x f x g f =?.则下列等式恒成立的是( ) A .()()()()()())(x h g h f x h g f ??=? B .()()()()()())(x h g h f x h g f ?=? C .()()()()()())(x h g h f x h g f = D . ()()()()()())(x h g h f x h g f ???=?? 4、已知函数 2 ()1,()43,x f x e g x x x =-=-+-若有()(),f a g b =则b 的取值范围为 A . [22-+ B .(22+ C .[1,3] D .(1,3) 5、设直线x t =与函数2 (),()ln f x x g x x ==的图像分别交于点,M N ,则当||MN 达到最小时t 的值 为( )A .1 B .1 2 C .2 D .2 6、设函数 ?? ?>-≤=-1,log 11,2)(21x x x x f x ,则满足2)(≤x f 的x 的取值范围是 A .1[-,2] B .[0,2] C .[1,+∞] D .[0,+∞] 7、函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>' x f ,则42)(+>x x f 的解集为 A .(1-,1) B .(1-,+∞) C .(∞-,1-) D .(∞-,+∞) 8、函数 1 1y x = -的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于 (A )2 (B) 4 (C) 6 (D)8 9、函数 2sin 2x y x = -的图象大致是 10)已知()f x 是R 上最小正周期为2的周期函数,且当02x ≤<时, 3 ()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为(A )6 (B )7 (C )8 (D )9 11、设函数()()21 2log ,0log ,0 x x f x x x >?? =?--,则实数a 的取值范围是( ). A. ()()1001,,U - B. ()()11,,-∞-+∞U C. ()()101,,-+∞U D. ()()101,,-∞-U 12、设函数()22g x x =-()x ∈R ,()()()()()4,,,,g x x x g x f x g x x x g x ++

相关主题