搜档网
当前位置:搜档网 › 基于Retinex算法图像增强的MATLAB实现

基于Retinex算法图像增强的MATLAB实现

基于Retinex算法图像增强的MATLAB实现
基于Retinex算法图像增强的MATLAB实现

基于Retinex算法视频增强的MATLAB实现

一、读书笔记

1:数字图像文件简介

BMP文件:Windows操作系统中的标准图像文件格式,能够被多种Windows应用程序所支持。

GIF文件:GIF文件的数据是一种基于LZW算法的连续色调的无损压缩格式,不属于任何应用程序。

JPEG图像格式:后缀名为.jpg或者.jpeg,是一种有损压缩格式。

ICO文件:Windows的图标文件格式的一种,可以存储单个图案、多尺寸、多色板的图标文件

HDF文件:层次型数据格式可以存储不同类型的图像和数码数据,有函数库。

PNG文件:常用于JAVA程序、网页和S60中。

TIFF文件:主要用来存储包括照片和艺术图在内的文件格式。

DICOM文件:数字影像和通信标准。

2:基于MATLAB图像处理基础

1)图像数据类型

double类型:图像处理最常用的数据类型,也是matlab中默认的数

据类型。图像数据的取值范围为0-1。

Unit8类型:常用于从存储设备中读取数据时,操作不能使结果超出

[0,255].

Unit16类型:用于精度较高的图像中。

Logical类型:常用于二值图像中,可用true、false或关系运算符

得到。

2)数据类型转换

3)文件信息读取

Matlab提供imfinfo函数来实现所有格式(除DICOM)的信息读取,调用形式: info=imfinfo(’filename’)

4)读取图像

使用imread可以将图像读入matlab环境,语法:

imread (‘filename’),其中,filename是一个含有文件全名的字符串。

函数size可给出一副图像的行数和列数

>>size(f)

Ans=

1024 1024

5)显示图像

在matlab桌面上显示图像一般用imshow,语法:

imshow (f,G)

其中,f是一个图像数组,G为显示该图像的灰度级数。若将G省略,则默认256.语法 imshow(f,[low high])会将小于或等于low的显示为黑色,大于或等于high的显示为白色,介于两者之间的值以默认的级数显示为中等亮度值。语法 imshow(f,[])可以将变量low设置为数组f的最小值,将high 设置为f的最大值。

6)保存图像

使用imwrite函数可将图像写入磁盘,语法;

Imwrite(f,’filename’)

Filename必须是一个可识别的文件格式扩展名

另一种常用但只用于jpeg图像的函数imwrite,其语法为

Imwrite(f,’filename.jpg’,’quality’,q),

Q为一个0到100的整数,q越小,图像退化越严重

3:亮度变换与空间滤波

1)函数imadjust是对灰度图像进行亮度变换的基本IPT工具。语法

g=imadjust(f,[low_in high_in],[low_out high_out],gamma) 将low_in至high_in之间的值映射到low_out至high_out之间的值,其他的值被剪切掉了。

2)对数和对比度的拉伸变换

对数变换通过以下表达式实现:

g=c*log(1+double(f))

3)阈值变换

表达式:g=1./(1+(m./(double(f)+eps)).^E)

Eps可避免f出现0值的溢出现象

4)计算并绘制图像直方图

函数:imhist(f);

直方图均衡化有函数histep实现,语法:g=histep(f,nlev)

Nelv为输出图像制定的灰度等级

5)空间滤波:

工具箱使用函数imfilter来实现线性空间滤波,语法

g=imfilter(f,w,filter_mode,boundary_options,size_options)

w为滤波掩膜,g为滤波结果

二、Retinex算法简介与实现

1)简介

Retinex(视网膜”Retina”和大脑皮层”Cortex”的缩写)理论是一种建立在科学实验和科学分析基础上的基于人类视觉系统(Human Visual System)的图像增强理论。该算法的基本原理模型最早是由Edwin Land(埃德温?兰德)于1971年提出的一种被称为的色彩的理论,并在颜色恒常性的基础上提出的一种基于理论的图像增强方法。Retinex 理论的基本内容是物体的颜色是由物体对长波(红)、中波(绿)和短波(蓝)光线的反射能力决定的,而不是由反射光强度的绝对值决定的;物体的色彩不受光照非均性的影响,具有一致性,即Retinex 理论是以色感一致性(颜色恒常性)为基础的。

不同于传统的图像增强算法,如线性、非线性变换、图像锐化等只能增强图像的某一类特征,如压缩图像的动态范围,或增强图像的边缘等,Retinex可以在动态范围压缩、边缘增强和颜色恒常三方面达到平衡,因此可以对各种不同类型的图像进行自适应性地增强。

单尺度(Single-Scale Retinex, SSR)算法原理根据Land提出的理论,一幅给定的图像S(x,y)分解成两幅不同的图像:反射物体图像R(x,y)和入射光图像

L(x,y),其原理示意图如下

Retinex原理示意图

对于观察图像S中的每个点(x,y),用公式可以表示为:

S(x,y)=R(x,y)﹒L(x,y) (1)

据Retinex 理论,物体的颜色是由物体对光线的反射能力决定的,而物体对光线的反射能力是物体本身固有的属性,与光源强度的绝对值没有依赖关系。因此通过计算各个像素间的相对明暗关系,可以对图像中的每个像素点做校正,从而

确定该像素点的颜色。

单尺度(Single-Scale Retinex, SSR)算法在对数域中则表示为:

根据上面式的原理,Retinex理论进行图像增强的关键是从原图像中有效的信息计算出亮度图像L(x,y)。但是从原图像计算亮度图像在数学上是一个奇异问题,因此只能通过数学上近似估计的方式估算亮度图像。在Retinex算法的发展史中,曾经出现过平方反比的环绕形式、指数形式以及高斯指数形式,但在单尺度Retinex增强算法中,杰泊森(Jobson)论证了高斯卷积函数可以对源图像提供更局部的准确处理,因而可以更好地增强图像,其可以表示为:

其中λ是常量矩阵,c是滤波半径,并且满足:

c越小,灰度动态范围压缩的越多,c越大,图像锐化的越厉害。因此亮度图像最终可以表示为:

单尺度(SSR)可以表示为:

2)matlab实现

步骤:读入图像→归一化→设置高斯函数参数及矩阵→高斯函数和输入图像矩阵卷积→取对数→和输入图像矩阵的对数相差→取指数→输出图

结果:

原图

处理后

原图

处理后的图

matlab的图像拼接程序(20210119152549)

mat lab的图像拼接程 序 -CAL-FENGHAI-(2020YEAR-YICAI) JINGBIAN ll=imread{,,);%6dTAEuODpAp¥dy2All%6D j u j A ll=double(ll); [hl wl dl]=size(ll);%TEOEdl±al2lldU±a>>0dl I2= imread(n);

I2=double(l2); [h2 w2 d2]=size(l2); %show input images and prompt for correspondences figure;subplot( 1,2,1); image(ll/255); axis image; hold on; title(*first input image'); [XI Yl]=ginput(2); %get two points from the usersubplot(l z2,2); image(l2/255); axis image; hold on; title('sec ond input image*); [X2 Y2]=ginput(2); %get two points from the user %estimate parameter vector(t); Z=[X2' Y2'; Y2'?X2'; HOOjOOll]1; xp=[Xl; Yl]; t=Z\xp; %solve the I in ear system a=t(l); %=s cos(alpha) b=t(2);%=s sin(alpha) tx=t(3); ty=t(4); % con struct transformation matrix(T) T=[a b tx;?b a ty; 0 0 1]; % warp incoming corners to determine the size of the output image(in to out) cp二T*[l 1 w2 w2; 1 h2 1 h2; 1 111]; Xpr=min([cp(l/:)/O]): max([cp(l/:)/wl]);%min x:maxx Ypr=min([cp(2/:)/0]): max([cp(2/:)/hl]); %min y: max y [Xp/Yp]=ndgrid(Xpr/ Ypr); [wp hp]=size(Xp); %=size(Yp) % do backwards transform (from out to in) X=T\[Xp(:) Yp(:) ones(wp*hp/l)]';%warp %re-sample pixel values with bilinear interpolation clear Ip; xl二reshape(X(b:)Mp,hp)‘; yl=reshape(X(2/:)/wp/hp)1; lp(:/:/l)=interp2(l2(:/:/l)/xl/ yl, '?bilinear*); %red Ip(:/:/2)=interp2(l2(:/:/2)/xl/ yl, '?bilinear1);%green lp(:z:/3)=interp2(l2(:/:/3)/xl/ yl, ^bilinear1);%blue % offset and copy original image into the warped image offset= -rounddmindcpfl/)^]) min([cp(2,:),0])]); lp(l+offset ⑵:hl+offset(2), 1+off set {1): wl+offset (1 )z:); doublefllflihl.liwl,:)); %show the result figure; image(lp/255); axis image; title('mosaic image'); ll=double(imread(n)); [hl wl dl]=size(ll);%TEOEdl±aPll6lJ±agl I2=double(imread(n)); [h2 w2 d2]=size(l2); %show input images and prompt for correspondences figure; subplot(l,2z l); image(ll/255); axis image; hold on; title('first input image'); [XI Yl]=ginput(2); %get two points from the user subplot(122); image(l2/255); axis image; hold on; title('sec ond input image1); [X2 Y2]=ginput(2); %get two points from the user %estimate parameter vector(t); Z=[X2' Y2'; Y2'-X2' ;1100;0011]'; xp=[Xl; Yl]; t=Z\xp; %solve the linear system %% a=t(l); %=s cos(alpha) b=t(2); %=s sin(alpha)

基于matlab的图像识别与匹配

基于matlab的图像识别与匹配 摘要 图像的识别与匹配是立体视觉的一个重要分支,该项技术被广泛应用在航空测绘,星球探测机器人导航以及三维重建等领域。 本文意在熟练运用图像的识别与匹配的方法,为此本文使用一个包装袋并对上面的数字进行识别与匹配。首先在包装袋上提取出来要用的数字,然后提取出该数字与包装袋上的特征点,用SIFT方法对两幅图进行识别与匹配,最终得到对应匹配数字的匹配点。仿真结果表明,该方法能够把给定数字与包装袋上的相同数字进行识别与匹配,得到了良好的实验结果,基本完成了识别与匹配的任务。

1 研究内容 图像识别中的模式识别是一种从大量信息和数据出发,利用计算机和数学推理的方法对形状、模式、曲线、数字、字符格式和图形自动完成识别、评价的过程。 图形辨别是图像识别技术的一个重要分支,图形辨别指通过对图形的图像采用特定算法,从而辨别图形或者数字,通过特征点检测,精确定位特征点,通过将模板与图形或数字匹配,根据匹配结果进行辨别。 2 研究意义 数字图像处理在各个领域都有着非常重要的应用,随着数字时代的到来,视频领域的数字化也必将到来,视频图像处理技术也将会发生日新月异的变化。在多媒体技术的各个领域中,视频处理技术占有非常重要的地位,被广泛的使用于农业,智能交通,汽车电子,网络多媒体通信,实时监控系统等诸多方面。因此,现今对技术领域的研究已日趋活跃和繁荣。而图像识别也同样有着更重要的作用。 3 设计原理 3.1 算法选择 Harris 角点检测器对于图像尺度变化非常敏感,这在很大程度上限制了它的应用范围。对于仅存在平移、旋转以及很小尺度变换的图像,基于Harris 特征点的方法都可以得到准确的配准结果,但是对于存在大尺度变换的图像,这一类方法将无法保证正确的配准和拼接。后来,研究人员相继提出了具有尺度不变性的特征点检测方法,具有仿射不变性的特征点检测方法,局部不变性的特征检测方法等大量的基于不变量技术的特征检测方法。 David.Lowe 于2004年在上述算法的基础上,总结了现有的基于不变量技术的特征检测方法,正式提出了一种基于尺度空间的,对图像平移、旋转、缩放、甚至仿射变换保持不变性的图像局部特征,以及基于该特征的描述符。并将这种方法命名为尺度不变特征变换(Scale Invariant Feature Transform),以下简称SIFT 算法。SIFT 算法首先在尺度空间进行特征检测,并确定特征点的位置和特征点所处的尺度,然后使用特征点邻域梯度的主方向作为该特征点的方向特征,以实现算子对尺度和方向的无关性。利用SIFT 算法从图像中提取出的特征可用于同一个物体或场景的可靠匹配,对图像尺度和旋转具有不变性,对光照变化、

MATLAB图像增强总结程序

MATLAB图像增强程序举例 1.灰度变换增强程序: % GRAY TRANSFORM clc; I=imread('pout.tif'); imshow(I); J=imadjust(I,[0.3 0.7],[0 1],1); %transforms the walues in the %intensity image I to values in J by linealy mapping %values between 0.3 and 0.7 to values between 0 and 1. figure; imshow(J); J=imadjust(I,[0.3 0.7],[0 1],0.5); % if GAMMA is less than 1,the mapping si weighted to ward higher (brighter) %output values. figure; imshow(J); J=imadjust(I,[0.3 0.7],[0 1],1.5); % if GAMMA is greater than 1,the mapping si weighted toward lower (darker) %output values. figure; imshow(J) J=imadjust(I,[0.3 0.7],[0 1],1); % If TOP

2.直方图灰度变换 %直方图灰度变换 [X,map]=imread('forest.tif'); I=ind2gray(X,map);%把索引图像转换为灰度图像 imshow(I); title('原图像'); improfile%用鼠标选择一条对角线,显示线段的灰度值 figure;subplot(121) plot(0:0.01:1,sqrt(0:0.01:1)) axis square title('平方根灰度变换函数') subplot(122) maxnum=double(max(max(I)));%取得二维数组最大值 J=sqrt(double(I)/maxnum);%把数据类型转换成double,然后进行平方根变换%sqrt函数不支持uint8类型 J=uint8(J*maxnum);%把数据类型转换成uint8类型

利用MATLAB进行图像截取_拼接(灰色_彩色)

%灰色图像拼接 clc; clear; A=imread('C:\Documents and Settings\s35\桌面\新建文件夹\v1.jpg'); figure,imshow(A) A1=im2bw(A); A2=double(A1); se=strel('disk',20); A4=imdilate(A2,se); figure,imshow(A4) A5=double(A4); A6=not(A5); A7=double(A6); B=imread('C:\Documents and Settings\All Users\Documents\My Pictures\示例图片\Water lilies.jpg'); C=imread('C:\Documents and Settings\All Users\Documents\My Pictures\示例图片\Winter.jpg'); [m,n]=size(A4); B2=rgb2gray(B); B3=imresize(B2,[m,n]); B4=double(B3); C2=rgb2gray(C); C3=imresize(C2,[m,n]); C4=double(C3); D=A5.*B4; E=A7.*C4; F=uint8(D+E); figure,imshow(F) %彩色图像拼接 clc; clear; A=imread('C:\Documents and Settings\s35\桌面\新建文件夹\v1.jpg'); figure,imshow(A) A1=im2bw(A); A2=double(A1); se=strel('disk',20); A4=imdilate(A2,se); figure,imshow(A4)

matlab图像几何变换和图像增强

一.图像几何变化 (1)放大,缩小,旋转 程序: I=imread('111.jpg'); J=imresize(I,1.5); L=imresize(I,0.75); K=imrotate(I,35,'bilinear'); subplot(221),subimage(I); title('原图像'); subplot(222),subimage(J); title('放大后图像'); subplot(223),subimage(L); title('缩小后图像'); subplot(224),subimage(K);title('旋转后图像'); 二.图像频域变换 (1)傅里叶变换 真彩图像灰度图像傅里叶变换谱程序:I=imread('111.jpg'); figure(1); imshow(I); B=rgb2gray(I); figure(2);

imshow(B) D=fftshift(fft2(B)); figure(3); imshow(log(abs(D)),[ ]); (2)离散余弦变换 真彩图灰度图进行离散余弦变换后程序: RGB=imread('111.jpg'); figure(1); imshow(RGB); G=rgb2gray(RGB); figure(2); imshow(G); DCT=dct2(G); figure(3); imshow(log(abs(DCT)),[]); 三.图像增强: (1)指数变换 程序:

f=imread('111.jpg') f=double(f); g=(2^2*(f-1))-1; f=uint8(f); g=uint8(g); subplot(1,2,1),subimage(f); subplot(1,2,2),subimage(g); (2)直方图均衡 程序: I=imread('111.jpg'); I=rgb2gray(I); figure subplot(221);imshow(I); subplot(222);imhist(I) I1=histeq(I); figure; subplot(221);imshow(I1) subplot(222);imhist(I1) (3)空域滤波增强 锐化滤波(Roberts算子Sobel算子拉普拉斯算子)

图像拼接原理及方法

第一章绪论 1.1图像拼接技术的研究背景及研究意义 图像拼接(image mosaic)是一个日益流行的研究领域,他已经成为照相绘图学、计算机视觉、图像处理和计算机图形学研究中的热点。图像拼接解决的问题一般式,通过对齐一系 列空间重叠的图像,构成一个无缝的、高清晰的图像,它具有比单个图像更高的分辨率和更大的视野。 早期的图像拼接研究一直用于照相绘图学,主要是对大量航拍或卫星的图像的整合。近年来随着图像拼接技术的研究和发展,它使基于图像的绘制( IBR )成为结合两个互补领域 ――计算机视觉和计算机图形学的坚决焦点,在计算机视觉领域中,图像拼接成为对可视化 场景描述(Visual Seene Representaions)的主要研究方法:在计算机形学中,现实世界的图像过去一直用于环境贴图,即合成静态的背景和增加合成物体真实感的贴图,图像拼接可以 使IBR从一系列真是图像中快速绘制具有真实感的新视图。 在军事领域网的夜视成像技术中,无论夜视微光还是红外成像设备都会由于摄像器材的限制而无法拍摄视野宽阔的图片,更不用说360度的环形图片了。但是在实际应用中,很 多时候需要将360度所拍摄的很多张图片合成一张图片,从而可以使观察者可以观察到周围的全部情况。使用图像拼接技术,在根据拍摄设备和周围景物的情况进行分析后,就可以将通过转动的拍摄器材拍摄的涵盖周围360度景物的多幅图像进行拼接,从而实时地得到 超大视角甚至是360度角的全景图像。这在红外预警中起到了很大的作用。 微小型履带式移动机器人项目中,单目视觉不能满足机器人的视觉导航需要,并且单目 视觉机器人的视野范围明显小于双目视觉机器人的视野。利用图像拼接技术,拼接机器人双 目采集的图像,可以增大机器人的视野,给机器人的视觉导航提供方便。在虚拟现实领域中,人们可以利用图像拼接技术来得到宽视角的图像或360度全景图像,用来虚拟实际场景。 这种基于全景图的虚拟现实系统,通过全景图的深度信息抽取,恢复场景的三维信息,进而建立三维模型。这个系统允许用户在虚拟环境中的一点作水平环视以及一定范围内的俯视和仰视,同时允许在环视的过程中动态地改变焦距。这样的全景图像相当于人站在原地环顾四 周时看到的情形。在医学图像处理方面,显微镜或超声波的视野较小,医师无法通过一幅图 像进行诊视,同时对于大目标图像的数据测量也需要把不完整的图像拼接为一个整体。所以把相邻的各幅图像拼接起来是实现远程数据测量和远程会诊的关键环节圆。在遥感技术领域中,利用图像拼接技术中的图像配准技术可以对来自同一区域的两幅或多幅图像进行比较,也可以利用图像拼接技术将遥感卫星拍摄到的有失真地面图像拼接成比较准确的完整图像,作为进一步研究的依据。 从以上方面可以看出,图像拼接技术的应用前景十分广阔,深入研究图像拼接技术有着很重 要的意义 1.2图像拼接算法的分类 图像拼接作为这些年来图像研究方面的重点之一,国内外研究人员也提出了很多拼接算 法。图像拼接的质量,主要依赖图像的配准程度,因此图像的配准是拼接算法的核心和关键。根据图像匹配方法的不同仁阔,一般可以将图像拼接算法分为以下两个类型: (1) 基于区域相关的拼接算法。 这是最为传统和最普遍的算法。基于区域的配准方法是从待拼接图像的灰度值出发,对 待配准图像中一块区域与参考图像中的相同尺寸的区域使用最小二乘法或者其它数学方法 计算其灰度值的差异,对此差异比较后来判断待拼接图像重叠区域的相似程度,由此得到待

图像增强及MATLAB实现

《数字图像处理》课程设计 课设题目:图像增强与MATLAB实现学校学院:华东交通大学理学院 学生班级:13级信息计算(2)班学生:超 学生学号:20130810010216 指导老师:自柱

图像增强与MATLAB实现 摘要 数字图像处理是指将图像信号转换成数字格式并利用计算机对其进行处理的过程。图像增强是数字图像处理的过程中经常采用的一种方法,它对提高图像质量起着重要的作用。本文先对图像增强的原理进行概述,然后对图像增强的方法分类并给出直方图增强、对比度增强、平滑和锐化等几种常用的增强方法的理论基础,通过Matlab实验得出的实际处理效果来对比各种算法的优缺点,讨论不同的增强算法的技术要点,并对其图像增强方法进行性能评价。 关键字:图像;图像增强;算法

目录 一、MATLAB的简介 (1) 1.1MATLAB主要功能 (1) 二、MATLAB的主要功能 (1) 2.1数字增强技术概述 (1) 2.2数字图像的表示 (2)

三、直方图的均衡化 (2) 3.1图像的灰度 (2) 3.2灰度直方图 (2) 3.3直方图均衡化 (3) 四、图像二值化 (5) 4.1图像二值化 (5) 五、对比度增强 (7) 5.1对比度增强 (7) 5.2灰度调整 (8) 5.3对数变换 (9) 六、滤波 (10) 6.1平滑滤波 (10) 6.2线性平滑滤波程序: (11) 6.3非线性滤波 (12) 七、锐化 (18) 八、参考文献 (19) 九、自我评价 (20)

一、Matlab的简介 1.1 MATLAB主要功能 MATLAB是建立在向量、数组和矩阵基础上的一种分析和仿真工具软件包,包含各种能够进行常规运算的“工具箱”,如常用的矩阵代数运算、数组运算、方程求根、优化计算及函数求导积分符号运算等;同时还提供了编程计算的编程特性,通过编程可以解决一些复杂的工程问题;也可绘制二维、三维图形,输出结果可视化。目前,已成为工程领域中较常用的软件工具包之一。 二、MATLAB的主要功能 2.1数字增强技术概述 图像增强是按特定的需要突出一幅图像中的某些信息,同时,消弱或去除某些信息使得图像更加实用。图像增强技术主要包含直方图修改处理、图像平滑处理、图像尖锐化处理等。 图像增强技术主要包括:直方图修改处理,图像平滑处理,图像尖锐化处理,彩色图像处理。从纯技术上讲主要有两类:频域处理法和空域处理法。 频域处理法主要是卷积定理,采用修改图像傅立叶变换的方法实现对图像的增强处理技术;空域处理法:是直接对图像中的像素进行处理,基本上是以灰度映射变换为基础的。

王能超 计算方法——算法设计及MATLAB实现课后代码

第一章插值方法 1.1Lagrange插值 1.2逐步插值 1.3分段三次Hermite插值 1.4分段三次样条插值 第二章数值积分 2.1 Simpson公式 2.2 变步长梯形法 2.3 Romberg加速算法 2.4 三点Gauss公式 第三章常微分方程德差分方法 3.1 改进的Euler方法 3.2 四阶Runge-Kutta方法 3.3 二阶Adams预报校正系统 3.4 改进的四阶Adams预报校正系统 第四章方程求根 4.1 二分法 4.2 开方法 4.3 Newton下山法 4.4 快速弦截法 第五章线性方程组的迭代法 5.1 Jacobi迭代 5.2 Gauss-Seidel迭代 5.3 超松弛迭代 5.4 对称超松弛迭代 第六章线性方程组的直接法 6.1 追赶法 6.2 Cholesky方法 6.3 矩阵分解方法 6.4 Gauss列主元消去法

第一章插值方法 1.1Lagrange插值 计算Lagrange插值多项式在x=x0处的值. MATLAB文件:(文件名:Lagrange_eval.m)function [y0,N]= Lagrange_eval(X,Y,x0) %X,Y是已知插值点坐标 %x0是插值点 %y0是Lagrange插值多项式在x0处的值 %N是Lagrange插值函数的权系数 m=length(X); N=zeros(m,1); y0=0; for i=1:m N(i)=1; for j=1:m if j~=i; N(i)=N(i)*(x0-X(j))/(X(i)-X(j)); end end y0=y0+Y(i)*N(i); end 用法》X=[…];Y=[…]; 》x0= ; 》[y0,N]= Lagrange_eval(X,Y,x0) 1.2逐步插值 计算逐步插值多项式在x=x0处的值. MATLAB文件:(文件名:Neville_eval.m)function y0=Neville_eval(X,Y,x0) %X,Y是已知插值点坐标 %x0是插值点 %y0是Neville逐步插值多项式在x0处的值 m=length(X); P=zeros(m,1); P1=zeros(m,1); P=Y; for i=1:m P1=P; k=1; for j=i+1:m k=k+1;

图像拼接原理及方法

第一章绪论 1.1 图像拼接技术的研究背景及研究意义 图像拼接(image mosaic)是一个日益流行的研究领域,他已经成为照相绘图学、计算机视觉、图像处理和计算机图形学研究中的热点。图像拼接解决的问题一般式,通过对齐一系列空间重叠的图像,构成一个无缝的、高清晰的图像,它具有比单个图像更高的分辨率和更大的视野。 早期的图像拼接研究一直用于照相绘图学,主要是对大量航拍或卫星的图像的整合。近年来随着图像拼接技术的研究和发展,它使基于图像的绘制(IBR)成为结合两个互补领域——计算机视觉和计算机图形学的坚决焦点,在计算机视觉领域中,图像拼接成为对可视化场景描述(Visual Scene Representaions)的主要研究方法:在计算机形学中,现实世界的图像过去一直用于环境贴图,即合成静态的背景和增加合成物体真实感的贴图,图像拼接可以使IBR从一系列真是图像中快速绘制具有真实感的新视图。 在军事领域网的夜视成像技术中,无论夜视微光还是红外成像设备都会由于摄像器材的限制而无法拍摄视野宽阔的图片,更不用说360 度的环形图片了。但是在实际应用中,很多时候需要将360 度所拍摄的很多张图片合成一张图片,从而可以使观察者可以观察到周围的全部情况。使用图像拼接技术,在根据拍摄设备和周围景物的情况进行分析后,就可以将通过转动的拍摄器材拍摄的涵盖周围360 度景物的多幅图像进行拼接,从而实时地得到超大视角甚至是360 度角的全景图像。这在红外预警中起到了很大的作用。 微小型履带式移动机器人项目中,单目视觉不能满足机器人的视觉导航需要,并且单目视觉机器人的视野范围明显小于双目视觉机器人的视野。利用图像拼接技术,拼接机器人双目采集的图像,可以增大机器人的视野,给机器人的视觉导航提供方便。在虚拟现实领域中,人们可以利用图像拼接技术来得到宽视角的图像或360 度全景图像,用来虚拟实际场景。这种基于全景图的虚拟现实系统,通过全景图的深度信息抽取,恢复场景的三维信息,进而建立三维模型。这个系统允许用户在虚拟环境中的一点作水平环视以及一定范围内的俯视和仰视,同时允许在环视的过程中动态地改变焦距。这样的全景图像相当于人站在原地环顾四周时看到的情形。在医学图像处理方面,显微镜或超声波的视野较小,医师无法通过一幅图像进行诊视,同时对于大目标图像的数据测量也需要把不完整的图像拼接为一个整体。所以把相邻的各幅图像拼接起来是实现远程数据测量和远程会诊的关键环节圆。在遥感技术领域中,利用图像拼接技术中的图像配准技术可以对来自同一区域的两幅或多幅图像进行比较,也可以利用图像拼接技术将遥感卫星拍摄到的有失真地面图像拼接成比较准确的完整图像,作为进一步研究的依据。 从以上方面可以看出,图像拼接技术的应用前景十分广阔,深入研究图像拼接技术有着很重要的意义 1.2图像拼接算法的分类 图像拼接作为这些年来图像研究方面的重点之一,国内外研究人员也提出了很多拼接算法。图像拼接的质量,主要依赖图像的配准程度,因此图像的配准是拼接算法的核心和关键。根据图像匹配方法的不同仁阔,一般可以将图像拼接算法分为以下两个类型:(1) 基于区域相关的拼接算法。 这是最为传统和最普遍的算法。基于区域的配准方法是从待拼接图像的灰度值出发,对

matlab提供的红外图像增强实例

matlab里提供的TM图像增强实例: View code for landsatdemoRun this demo Landsat Color Composite landsatdemo Landsat color composite demo. This demo allows you to experiment with creating color composites from Landsat Thematic Mapper https://www.sodocs.net/doc/226859441.html,ndsat data consists of7spectral bands that each reveal different features of the region that is imaged.The data is read into a512-by-512-by-7array.To create a color composite, we form an RGB image by assigning spectral bands to red,green,and blue intensities. Try out some common color composites by clicking on the radio buttons.The numbers in square brackets map the spectral bands to red, green,and blue.The array[321]means band3will be shown as red intensities,band2will be shown as blue intensities,and band1will be shown as green intensities. "True Color[321]"-shows what our eyes would see from an airplane. "Near Infrared[432]"-shows vegetation as red,water as dark. "Shortwave Infrared[743]"-shows changes due to moisture. Click on"Custom Composite",and change the popup menus to create your own combinations of red,green,and blue. Click on"Single Band Intensity"to see individual bands as gray intensity images. Try turning off"Saturation Stretch"by clicking on the checkbox.For most Landsat data sets,saturation stretching is important.When saturation stretching is turned on,the demo clips2%of the pixels in each band and does a linear contrast stretch before displaying the image. Try turning on"Decorrelation Stretch"by clicking on the checkbox. This visual enhancement increases color separation by eliminating correlation between channels,making subtle spectral differences easier to recognize.If both"Saturation Stretch"and"Decorrelation Stretch"are checked,the decorrelation stretch is followed by a linear saturation stretch.

matlab数字图像处理—图像增强汇总

图像增强 图像增强的定义 图像增强是指按特定的需要突出一幅图像中的某些信息,同时削弱或去除某些不需要的信息的处理方法,也是提高图像质量的过程[9]。图像增强的目的是使图像的某些特性方面更加鲜明、突出,使处理后的图像更适合人眼视觉特性或机器分析,以便于实现对图像的更高级的处理和分析。图像增强的过程往往也是一个矛盾的过程:图像增强希望既去除噪声又增强边缘。但是,增强边缘的同时会同时增强噪声,而滤去噪声又会使边缘在一定程度上模糊,因此,在图像增强的时候,往往是将这两部分进行折中,找到一个好的代价函数达到需要的增强目的[10]。传统的图像增强算法在确定转换函数时常是基于整个图像的统计量,如:ST 转换,直方图均衡,中值滤波,微分锐化,高通滤波等等。这样对应于某些局部区域的细节在计算整幅图的变换时其影响因为其值较小而常常被忽略掉,从而局部区域的增强效果常常不够理想,噪声滤波和边缘增强这两者的矛盾较难得到解决。 常用的图像增强方法 图像增强可分成两大类:空间域法和频率域法。基于空间域的算法处理时直接对图像灰度级做运算;基于频率域的算法是在图像的某种变换域内对图像的变换系数值进行某种修正,是一种间接增强的算法。 基于空间域的算法分为点运算算法和邻域去噪算法。点运算算法即灰度级校正、灰度变换和直方图修正等,目的或使图像成像均匀,或扩大图像动态范围,扩展对比度。邻域增强算法分为图像平滑和锐化两种。平滑一般用于消除图像噪声,但是也容易引起边缘的模糊。常用算法有均值滤波、中值滤波。锐化的目的在于突出物体的边缘轮廓,便于目标识别。常用算法有梯度法、算子、高通滤波、掩模匹配法、统计差值法等。 基于频率域的算法把图像看成一种二维信号,对其进行基于二维傅里叶变换的信号增强。采用低通滤波(即只让低频信号通过)法,可去掉图中的噪声;采用高通滤波法,则可增强边缘等高频信号,使模糊的图片变得清晰。 图像增强的方法是通过一定手段对原图像附加一些信息或变换数据,有选择地突出图像中感兴趣的特征或者抑制(掩盖)图像中某些不需要的特征,使图像与视觉响应特性相匹配。在图像增强过程中,不分析图像降质的原因,处理后的图像不一定逼近原始图像。 ?????? ?????????????????????彩色图像灰度图像处理对象局部处理全局处理处理策略频率域模板处理(滤波)点处理(变换)空间域处理方法图像增强

基于MATLAB的图像拼接技术

基于MATLAB的图像拼接技术 基于MATLAB的图像拼接技术实验报告 学院:数信学院 专业班级: 12级信息工程1班 姓名学号: 一、实验名称:基于MATLAB的图像拼接技术 二、实验目的:利用图像拼接技术得到超宽视角的图像,用来虚拟实际场景。 三、实验原理: 基于相位相关的图像拼接技术是一种基于频域的方法,通过求得图像在频 域上是相位相关特点来找到特征位置,从而进行图像拼接。其基本原理是 基于傅氏功率谱的相关技术。该方法仅利用互功率谱中的相位信息进行图 像配准,对图像间的亮度变化不敏感,而且所获得的相关峰尖突出,具有 一定的鲁棒性和较高的配准精度。 基于相位相关法进行图像拼接的基本原理如下:假设f(x,y)表示尺寸为MN的图像,该函数的二维离散傅里叶变换(DFT)为: , MN,,111,,,juxMvyN2(//) Fuvfxye,(,)(,),,MN,xy,,00 其中,F(u,v)是复变函数;u、v是频率变量,u=0,1,…,M-1,v=0,1,…,N-1;x、y是空间或图像变量。 二维离散傅里叶逆变换(IDFT)为: N,1M,1,,juxMvyN2(//),fuve(,) Fxy(,),,,y,0x,0 ,…,M-1;y=0,1,…,N-1。其中,x=0,1 设两幅图像、的重叠位置为(,),则图像、的互功率谱为:IIxyII112002 *II(,)(,),,,,,,,jxy,,,2()1200 ,eII(,)(,),,,,,12

其中,*为共轭符号,对上式两边进行傅里叶逆变换将在(x,y)处产生一00个函数。因此,只要检测上式傅里叶逆变换结果最大值的位置,就可以获得两xy幅图像间的评议量(,。具体算法步骤如下: 00 II?读入两幅图片、(函数输入),并转换为灰度图像; 12 II?分别对、做二维傅里叶变换,即: 12 fftIfftI A=() B=() 1222 C则通过A、B的简单的矩阵运算得到另一矩阵,即: 3 C =B*.conj(A)/norm(B*.conj(A),1) 3 矩阵的二维傅里叶逆变换C在(,)处取得最大,可通过遍历比较C(i,Cxy300 j)大小即可找到该位置,并作为函数返回值。 四实验程序 tic x=[1 2;0 1]; a=imread('7.jpg'); %读取图片 b=imread('8.jpg'); figure imshow(a); figure imshow(b); imwrite(b,'160.jpg'); IMG={a,b}; %将图片存为元胞结构 num=size(IMG,2); %计算图片个数 move_ht=0; %累计平移量初值 move_wd=0; for count=1:num-1 input1=IMG{count}; %读取图象 input11=imresize(rgb2gray(input1),[300,200]);

matlab中的图像增强实验附程序代码

图像增强实验

一:试验目的 熟悉并掌握数字图像空域增强:空域变换增强,空域滤波增强 二:实验内容 (1)直方图均衡化进行图像增强代码: imag=imread('pout.tif'); imag=im2double(imag); subplot(2,2,1);imshow(imag);title('原始图像'); subplot(2,2,2);imhist(imag);title('原始图像的直方图'); imag1=histeq(imag); subplot(2,2,3);imshow(imag1);title('直方图均衡化后的图像'); subplot(2,2,4);imhist(imag1);title('直方图均衡化后的图像的直方图'); 直方图均衡化进行图像增强效果图 (2)对图像加入椒盐噪声,并分别用中值滤波和自适应的方法进行去噪处理的代码: imag2=imnoise(imag,'salt',0.02); imag3=medfilt2(imag2); imag4=wiener2(imag2); subplot(2,2,1);imshow(imag);title('原始图像'); subplot(2,2,2);imshow(imag2);title('加入椒盐噪声后的图像'); subplot(2,2,3);imshow(imag3);title('进行中值滤波后的图像'); subplot(2,2,4);imshow(imag4);title('进行自适应滤波后的图像'); 对图像加入椒盐噪声,并分别用中值滤波和自适应的方法进行去噪处理的效果 原始图 像 0.5 1 原始图像的直方图 直方图均衡化后的图像 0.5 1 0直方图均衡化后的图像的直方图

0计算方法及MATLAB实现简明讲义课件PPS8-1欧拉龙格法

第8章 常微分方程初值问题数值解法 8.1 引言 8.2 欧拉方法 8.3 龙格-库塔方法 8.4 单步法的收敛性与稳定性 8.5 线性多步法

8.1 引 言 考虑一阶常微分方程的初值问题 00(,),[,],(). y f x y x a b y x y '=∈=(1.1) (1.2) 如果存在实数 ,使得 121212(,)(,).,R f x y f x y L y y y y -≤-?∈(1.3) 则称 关于 满足李普希茨(Lipschitz )条件, 称为 的李普希茨常数(简称Lips.常数). 0>L f y L f (参阅教材386页)

计算方法及MATLAB 实现 所谓数值解法,就是寻求解 在一系列离散节点 )(x y <<<<<+121n n x x x x 上的近似值 . ,,,,,121+n n y y y y 相邻两个节点的间距 称为步长. n n n x x h -=+1 如不特别说明,总是假定 为定数, ),2,1( ==i h h i 这时节点为 . ) ,2,1,0(0 =+=i nh x x n 初值问题(1.1),(1.2)的数值解法的基本特点是采取 “步进式”. 即求解过程顺着节点排列的次序一步一步地向前推进. 00(,),[,], (). y f x y x a b y x y '=∈=

描述这类算法,只要给出用已知信息 ,,,21--n n n y y y 计算 的递推公式. 1+n y 一类是计算 时只用到前一点的值 ,称为单步法. 1+n y n y 另一类是用到 前面 点的值 , 1+n y k 11,,,+--k n n n y y y 称为 步法. k 其次,要研究公式的局部截断误差和阶,数值解 与 精确解 的误差估计及收敛性,还有递推公式的计算 稳定性等问题. n y )(n x y 首先对方程 离散化,建立求数值解的递推 公式. ),(y x f y ='

图像拼接算法及实现.doc

图像拼接算法及实现(一) 来源:中国论文下载中心 [ 09-06-03 16:36:00 ] 作者:陈挺编辑:studa090420 论文关键词:图像拼接图像配准图像融合全景图 论文摘要:图像拼接(image mosaic)技术是将一组相互间重叠部分的图像序列进行空间匹配对准,经重采样合成后形成一幅包含各图像序列信息的宽视角场景的、完整的、高清晰的新图像的技术。图像拼接在摄影测量学、计算机视觉、遥感图像处理、医学图像分析、计算机图形学等领域有着广泛的应用价值。一般来说,图像拼接的过程由图像获取,图像配准,图像合成三步骤组成,其中图像配准是整个图像拼接的基础。本文研究了两种图像配准算法:基于特征和基于变换域的图像配准算法。在基于特征的配准算法的基础上,提出一种稳健的基于特征点的配准算法。首先改进Harris角点检测算法,有效提高所提取特征点的速度和精度。然后利用相似测度NCC(normalized cross correlation——归一化互相关),通过用双向最大相关系数匹配的方法提取出初始特征点对,用随机采样法RANSAC(Random Sample Consensus)剔除伪特征点对,实现特征点对的精确匹配。最后用正确的特征点匹配对实现图像的配准。本文提出的算法适应性较强,在重复性纹理、旋转角度比较大等较难自动匹配场合下仍可以准确实现图像配准。 Abstract:Image mosaic is a technology that carries on the spatial matching to a series of image which are overlapped with each other, and finally builds a seamless and high quality image which has high resolution and big eyeshot. Image mosaic has widely applications in the fields of photogrammetry, computer vision, remote sensing image processing, medical image analysis, computer graphic and so on. 。In general, the process of image mosaic by the image acquisition, image registration, image synthesis of three steps, one of image registration are the basis of the entire image mosaic. In this paper, two image registration algorithm: Based on the characteristics and transform domain-based image registration algorithm. In feature-based registration algorithm based on a robust feature-based registration algorithm points. First of all, to improve the Harris corner detection algorithm, effectively improve the extraction of feature points of the speed and accuracy. And the use of a similar measure of NCC (normalized cross correlation - Normalized cross-correlation), through the largest correlation coefficient with two-way matching to extract the feature points out the initial right, using random sampling method RANSAC (Random Sample Consensus) excluding pseudo-feature points right, feature points on the implementation of the exact match. Finally with the correct feature point matching for image registration implementation. In this paper, the algorithm adapted, in the repetitive texture, such as relatively large rotation more difficult to automatically match occasions can still achieve an accurate image registration. Key words: image mosaic, image registration, image fusion, panorama 第一章绪论

相关主题