搜档网
当前位置:搜档网 › 功率放大器公式

功率放大器公式

功率放大器公式
功率放大器公式

输出功率L

om L

om om om om o o o R U R U U I U I U P 2212

12

=?

=

?=

?=

最大输出电压峰值CES CC omm om U U U U -==(max)

最大输出功率L

CES CC L

omm om R U U R U P 2)

(22

2

-=

=

效率CC om

E

o U U P P ?

=

=4π

η

最大效率%5.784

4

4

≈≈

-?

=

?

=

=

π

π

π

ηCC

CES

CC CC

omm E

om m U U U U U P P ,

实际上只能达到60%左右。 单管平均管耗为:)(2

121o E T T P P P P -==

当CC CC om U U U 6.02

≈=

π

时,管耗最大,单管平均最大管耗为:

om m T m T P P P 2.021≈=

输出功率L

om L

om om om om o o o R U R U U I U I U P 2212

12

=?

=

?=

?=

最大输出电压峰值CES CC omm om U U U U -==2/(max)

最大输出功率L

CC

L

CES CC L

omm om R U R U U R U P 82)

2/(22

2

2

-=

=

效率2/4CC om

E

o U U P P ?=

η

最大效率%5.784

2

/2/4

2

/4≈≈

-?

=

?

=

=

π

π

π

ηCC CES

CC CC omm

E

om m U U U U U P P ,

实际上只能达到60%左右。 单管平均管耗为:)(2

121o E T T P P P P -==

当CC CC om U U U 3.01

≈=

π

时,管耗最大,单管平均最大管耗为:

om m T m T P P P 2.021≈=

音频功率放大器设计报告分析

目录 课程设计任务书 (2) 摘要 (3) 1 模电课设概述 (5) 1.1设计背景 (5) 1.2音频放大类别 (5) 1.3设计目的及意义 (6) 1.4开发环境Multisim 10.0简要介绍 (7) 2 课程设计内容 (8) 2.1功放电路方案的选择 (8) 2.2 BTL电路的组成 (10) 2.3 电路仿真 (13) 3 实物焊接及调试过程 (18) 3.1 焊接实物 (18) 3.2 调试过程遇到的问题及解决方法 (19) 4 总结与心得 (20) 附录 (21) 附件一实验原理图 (21) 附录二元件清单 (22) 附录三参考文献 (23) 成绩评定表 (24)

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位:、 题目: 音频功率放大器 初始条件:芯片:TDA2030A、极性电容、非极性电容、可变电阻、定值电阻、扬声器、 要求完成的主要任务: 1.选择合适的功放电路,如:OCL、OTL、或BTL电路。完成对高 保真音频功率放大器的设计、装备与调试; 2.输入信号Uid≤100mv,频率响应范围30Hz-3KHz; 3.在8Ω扬声器的负载下,输出功率连续可调,最大输出功率达 到6W; 4.音频信号放大后,失真≤5%。 5.效率≥60% 时间安排: 安装调试,地点: 指导教师签名:年月日 系主任(或责任教师)签名:年月日

摘要 这学期刚学习模电课,学校要求我们完成一次课程设计任务。模电这门课程主要讲 直流稳压电源。功率放大器的作用是给音响放大器的负载RL 率尽可能高。功率放大器的常见电路形式有OTL电路和OCL电路。有用继承运算放大器 BTL功 TDA2030A集成功放,并采用双电源电源供电。TDA2030A集成电路的特点是输出功率大,而且保护性能比较完善,其工作电压范围较广,信号失真度较小,使用两块TDA2030A组成BTL电路,输出功率可增至35W。实验用multism软件对BTL multism软件模拟 该电路由于价廉质优,使用方便,广泛应用于各种款式收录机和高保真立体声设备中。 BTL、TDA2030A、功率放大、multism。

一个简单功放设计制作与电路图分析

一个简单功放设计制作与电路图分析|电路图 - dickmoore的日志 - 网易博客 默认分类 2009-11-09 19:01 阅读32 评论0 字号:大中小 一个简单功放设计制作与电路图分析|电路图 电子资料 2009-11-06 11:15 功放电路图 一个简单功放设计制作与电路图分析 我的电脑音响坏了快一年了,每次看电影都用耳机,每次用的耳朵都痛,很不爽.因此就想亲手做一个小功放用用,前几天又去了趟电子市场发现有LM386,很便宜,所以干脆用386做了一个单声道的功放先用着,有时间把另外一个声道也加上.在这里把功放设计到调试基本完成的过程写写,纪念这个过程. 1.设计 我们是听听就算的门外汉,对20~20K的音域也不是完全敏感.所以幅频特性不用考虑太多,但是自己要用得爽声音一定要大,因此LM386一般的输出功率肯定是不够拉(好像极限功率也就1W左右,具体还是看芯片资料吧),所以就浪费些多加个LM386做成BTL电路,提高一倍再说.设计出来的电路就是这个样子,原理很简单,就不说了 2.调试 a. 两个104的电容本来是用来隔直的,不过好像电脑主板和声卡上出来的音频都不带直流成份,而且用104时输入电平 比较高的时候声音有失真,(估计是低频过滤在输入电平高的时候人听起来比较明显).于是去掉两个104的电容. b. 在这个时候上电(我用的是12V),接上我的MP3一听,嗯!还不错,可是就是杂声比较厉害,调了调R1的大小,当R1被 调到最大的时候杂声没有了,最小的时候也没有了(这不是废话么,最小的时候输入都没有了 .把连接到功放的音频线拔了也没杂音了,原因可能有两个音频线上有电容在输入电阻R1比较小的时候,和LM386自激产生杂音,一放大就不得了了.于是决定R1就直接调到50K,音量就让MP3调去吧. c. 好像一切都没有问题了,拿到电脑上吧,刚接上去,嗯声音停大,不错!!刚以为要完事,电脑里一首歌就放完了,本来该是安静的却听见喇叭里噼噼啪啪,这个噪声奇了怪了,开始还是以为是R1的问题,索性就把R1去掉(反正LM386也不希罕从前级得到能量),噪音仍然存在,怀疑是主板上的高频噪声,于是在输入端并上一个102的电容---不起作用.这个电容也不敢并大了,大了要影响高频特性.又怀疑是功率大了C1吃不消,于是又在电源上并了一个100uF的电容,还是不行....... d. 就在这个时候用手一抓我的功放输入端的焊点,好了!没杂音了,仔细一想,原来是这样:我从电脑接出来的线是一个声

音频功率放大器实验报告

一、实验目的 1)了解音频功率放大器的电路组成,多级放大器级联的特点与性能; 2)学会通过综合运用所学知识,设计符合要求的电路,分析并解决设计过程中遇到的问题,掌握设计的基本过程与分析方法; 3)学会使用Multisim、Pspice等软件对电路进行仿真测试,学会Altium Designer使用进行PCB制版,最后焊接做成实物,学会对实际功放的测试调试方法,达到理想的效果。 4)培养设计开发过程中分析处理问题的能力、团队合作的能力。 二、实验要求 1)设计要求 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8Ω。要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标: (1)频带宽度50Hz~20kHz,输出波形基本不失真; (2)电路输出功率大于8W; (3)输入阻抗:≥10kΩ; (4)放大倍数:≥40dB; (5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz 处有±12dB的调节范围; (6)所设计的电路具有一定的抗干扰能力; (7)具有合适频响宽度、保真度要好、动态特性好。 发挥部分: (1)增加电路输出短路保护功能; (2)尽量提高放大器效率; (3)尽量降低放大器电源电压; (4)采用交流220V,50Hz电源供电。 2)实物要求 正确理解有关要求,完成系统设计,具体要求如下: (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出;

(5)PCB文件生成与打印输出; (6)PCB版图制作与焊接; (7)电路调试及参数测量。 三、实验内容与原理 音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于对弱音频信号的放大以及音频信号的传输增强和处理。按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。 v 图1 音频功率放大器的组成框图 1)前置放大级 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD 唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,

音响灯光汽车功放电源电路分析

音响灯光汽车功放电源电路分析 时间:2010-09-20 10:13来源:unknown 作者:admin 点击:5次 汽车功放电源电路分析2010-06-10 18:43一。电源电路采用开关电源方式,将蓄电池的+12V直流电变换成为±22V供功放电路使用。它由一片集成电路TL494CN和几只大功率场效应管以及一只开关变压器等组成了比较典型的并联型开关稳压电路。为了提高输出功率。两路开关管均采用双管并联的方式,即Q1和Q2并联,Q3和Q4并联。在电路中,B+端接蓄电池的正极,REMOTE为开机控制端。开机时,控制电压+12V通过D4加到TL494的电源脚12脚,其14脚输出基准电压5V,13脚为输出状态控制端,当13脚接地时,两路输出晶体管同时导通或截止,形成单端工作状态。在图中,13脚与14脚相连,形成双端工作状态,其内部两路输出晶体管交替导通。TL494的⑤脚和⑥脚上外接的电阻R9和电容c4及内部电路组成振荡电路,可输出约几十千赫的振荡信号。该信号经片内处理后,从⑨脚和⑩脚输出两路相位差180度、宽度可变的调制脉冲,加到Q1、Q2和Q3、Q4的基极,使两路开关管轮流处于饱和与截止状态。在变压器B1初级得到的交流脉冲电压感应到次级绕组,经高频整流滤波后获得末级功放所需的±22V直流电压;再经过7815、7915稳压后得到±15V的直流电压作为功放前级的电源。从次级输出电压反馈回来的电压分别经R15与R13和R14与R12分压送到TL494的误差放大器的同相输入端①脚和反相输入端②脚。当输出的±22V电压不稳时,反馈到①脚和②脚的电压经片内误差放大器放大后,调整振荡脉

OCL功率放大器

带三段均衡的OCL 功率放大器(C题)设计报告

功率放大器 摘要:本设计主要是音频放大器的负载RL(扬声器)提供一定的输出功率。当负载一定时,输出的功率尽可能大(功放管的电压和电流变化范围很大),输出信号的非线性失真尽可能的小(在大信号状态下,电压、电流摆动幅度很大,极易超出管子特性曲线的线性范围而进入非线性区),效率尽可能高(负载上得到的信号功率与电源供给的直流功率之比),实现了对功率的放大作用。 功率放大电路的电路形式很多,有双电源供电的OCL互补对称功放电路,单电源供电的OTL功放电路,BTL桥式推挽电路和变压器耦合功放电路,等等。我选用的是双电源供电的OCL互补对称功放电路。 本次设计选用了双运放LM358、二端接口若干、三极管9013、9012、BD237、BD238、TIP41、TIP42、L7812、L7912、电阻若干、电容若干、构成了三段均衡电路和功率放大电路。经测试成功的使功率放大,达到了对声音的放大效果。 关键字:LM358 功率放大

1 方案比较与论证 方案一:采用LM358双运放设计电路和四个三极管组成,运放为电路的驱动级电路。差分电压±30V,输入电压±16.5V。四个三极管构成功率输出级由双电源供电的OCL互补功放电路构成。为了克服交越失真,由二极管和电阻构成输出级的偏置电路。为了稳定工作状态和功率增益并减小失真,电路中引入电压串联负反馈。功率放大器的作用是给音响放大器的负载(一般是扬声器)提供所需要的输出功率。 方案二:采用LM324通用四运算放大器,双列直插8脚封装,其内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“V o”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放,输出端V o的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端V o的信号与该输入端的相位相同。 方案选取:本设计选择方案一采用LM358和三级管就能满足实验要求了,这样设计电路简单,应用简单。

功放电路设计说明书

功率放大器(OTL ) 一、基本原理及原理图 下图为乙类推挽功率放大器的电路原理图。图中,Q1和Q2为两个特 性配对的互补功率管(NPN 型和PNP 型);若忽略功率管发射结导通电压,则当V1正半周时,NPN 型Q1管导通、PNP 型Q2管截止,i 1C (≈i 1E )为处于正半周的半个正弦波;当V1负半周时,Q1管截止、Q2管导通,i 1C (≈i 1E )为处于负半周的半个正弦波,通过R L 的电流i L = i 1E -i 2E ,合成完整的正弦波。但在实际电路中由于有导通电压,零偏置会使输出电压波形产生交越失真,图中选用二极管偏置电路为互补功率管加合适的偏置电压,使之工作在乙类状态,减小失真且具有高热稳定性;采用单电源供电(加大容量的C3)使两互补管电压均是2 1V CC ;互补管间加两个电阻帮助两管散热;输入信号为互补功率管提供振幅接近电源电压的推动电压,产生自举效应;设计合适的参数使此电路高效地使功率放大相应的倍数驱动负载。 功率放大器电路原理图 二、设计步骤 1.设计要求: (分立元件)设计并仿真功率放大器(OTL ),要求: ① 电压增益:5倍以上

②负载:0.5W以上(8Ω扬声器) ③频率范围:20Hz~20kHz 2.设计过程: ①电源的选取: 由P=I2R L =U2/R L (R L =8Ω)得U=2V ∴U P P-=2×2√2≈5.7V ∴V CC =15V ②电阻的选取: P=I2R L =U2/R L ,令U=3v,I L R = 2 1U P P- /R L ≈350mA (β=100) ∴i 1 B =I L R /β=3.5mA 取i 3 R =20mA ∴R 5+R 6 =3/(20mA)≈150 ∴R 5 =10Ω,R 6 =90Ω ∵R2/(R 1+R 2 +R 9 )=3+0.7=3.7 即R 1 /(R 2 +R 9 )≈4 取调试好的R 1=10kΩ,R 2 =41kΩ(R 2 为1kΩ,起保护作用;R 9 可 调) 令R 3=600Ω,R 4 可调,不要取太大,起到作用即可 取R 7=R 8 =1Ω(一般取小点) ③电容的选取: C1=10uF,C2=47uF,C3=470 uF (电容大,交流压降趋于零) 三、仿真调试 1. 仿真电路图:

D 类放大高效率音频功率放大器电路图原理

D类放大高效率音频功率放大器电路图原理为提高功放效率,以适应现代社会高效、节能和小型化的发展趋势,以D类功率放大器为核心,以单片机89C51和可编程逻辑器件(FPGA)进行控制及时数据的处理,实现了对音频信号的高效率放大。系统最大不失真输出功率大于1W,可实现电压放大倍数1~20连续可调,并增加了短路保护断电功能,输出噪声低。系统可对功率进行计算显示,具有4位数字显示,精度优于5%。 传统的音频功率放大器主要有A类(甲类)、B类(乙类)和AB(甲乙类)。A类功率放大器在整个输入信号周期内都有电流连续流过功率放大器件,它的优点是输出信号的失真比较小,缺点是输出信号的动态范围小、效率低,理想情况下其最高效率为50%.B类功率放大器在整个输入信号周期内功率器件的导通时间为50%,它的优点是在理想情况下效率可达78.5%,但缺点是会产生交越失真,增加噪声。AB类(甲乙类)功率放大器是以上两种放大器的结合,每个功率器件的导通时间在50%~100%之间,兼有甲类失真小和乙类效率高的特点,其工作效率介于二者之间。传统音频功率放大器效率偏低,体积偏大的缺点与音频功率放大高效、节能和小型化的发展趋势的矛盾,催生了D类(丁类)音频功率放大器出现和发展。本系统即采用D类功率放大实现,并用单电源供电,符合现代社会对电源小巧、便携要求的实际需要。 1系统方案论证与选择 1.1整体方案 方案①:数字方案。输入信号经前置放大调理后,即由A/D采入单片机进行处理,三角波产生及与音频信号的比较均由软件部分完成,然后由单片机输出两路完全反向的PWM 波给入后级功率放大部分,进行放大。此种方案硬件电路简单,但会引入较大数字噪声。 方案②:硬件电路方案。三角波产生及比较、PWM产生仍由硬件电路实现,此方案噪声较小、且幅值能做到更大,效果较好,故采用此方案。 1.2三角波产生电路设计 方案①:利用NE555产生三角波。该电路的特点是采用恒流源对电容线性冲、放电产生三角波,波形线性度较好、频率控制简单,信号幅度可通过后加衰减电位器控制。 方案②:对方波积分产生三角波。积分器与比较器级联,通过对比较器产生的方波积分得到三角波,频率与幅值控制只需调整某些电阻值,控制简单。但考虑积分电路存在积分漂移。 此处采用选择方案①。

音频功率放大器的设计毕业论文

音频功率放大器的设计毕业论文

单刀音频功率放大器的设计 摘要 本次课程设计题目为音频功率放大器,简称音频功放,音频功率放大器主要用于推动扬声器发声,凡发声的电子产品中都要用到音频功放。 设计中主要采用OP07进行音频放大器的设计,OP07芯片是一种低噪声,非斩波稳零的双极性运算放大器集成电路。由于OP07具有非常低的输入失调电压(对于OP07A最大为25μV),所以OP07在很多应用场合不需要额外的调零措施。设计中的音频功率放大器主要由直流稳压电源、前置放大电路、二级放大电路和功率放大电路组成。前置放大电路采用了反相比例运算放大器,二级放大电路用一个低通滤波器和一个高通滤波器组成一个带通滤波器,功率放大电路采用了OCL电路。直流电源采用桥式电路进行整流,输出则采用了三端集成稳压器。 对前置放大电路和二级放大电路进行了输入、输出分析和频率响应分析。对功率放大电路进行了输入和输出功率分析。对直流电源进行了输出电压验证。最后对总电路进行了输入、输出

分析、频率响应分析、噪声分析。 关键词: OP07 音频功率放大器

目录 摘要................................................................ I Abstract.......................... 错误!未定义书签。第一章音频放大器的概述.. (1) 1.1音频放大电路的回顾 (1) 1.2音频功率放大器的介绍 (2) 1.2.1 A类(甲类)功率放大器 (3) 1.2.2 B类(乙类)功率放大器 (3) 1.2.3 AB类(甲乙类)功率放大器 (4) 1.2.4 C类(丙类)功率放大器 (4) 1.2.5 D类(丁类)功率放大器 (5) 1.3放大器的技术指标 (5) 第二章音频功率放大器的设计 (11) 2.1设计方案分析 (11) 2.2前置放大电路设计 (11) 2.3二级放大电路设计 (15) 2.2.1 低通滤波器设计 (15) 2.2.2 高通滤波器设计 (17) 2.2.3 二级放大电路电路设计 (20) 2.4功率放大器设计 (21) 2.5 直流稳压电源设计 (23)

奇声AV-757DB功放电路原理与分析

奇声AV-757DB功放电路原理与分析 奇声A V-757DB功放电路原理与分析整机电路由系统控制、信号源选择、杜比定向逻辑解码、卡拉OK、前置、功放与保护等电路组成,如图2-63所示。 (1).系统控制电路 系统控制电路由IC501(767DB)和有关外围元件组成,如图2-64所示。 767DB是微处理器集成电路,内部结构及引脚功能(见表2-6)均与89C55基本相同。 767DB根据键矩阵电路送入的键控指令脉冲,去控制杜比环绕声解码等电路的工作,同时驱动LED显示电路显示整机的工作状态。 767DB⑦脚为复位端,外接复位电容C501。在每次开机时,+5V电压均会经C501在⑨脚产生一个高电平脉冲电压,使微处理器内部电路清零复位,进入初始化状态。 767DB⑦脚为工作模式控制端,外接控制开关K702-2,可分别选择DSP声场处理、PRO杜比定向逻辑解码、3CH三声道和2CH二声道共四种工作模式。 IC502(4094)在微处理器767DB的作用下,通过C1~C3、D1和D2的输出信号去控制杜比定向逻辑解码电路。

(2).信号源选择电路 信号源选择电路由电子开关集成电路IC001(4052)、转换开关K001和有关外围元件组成,如图2-65所示。 K001为四挡转换开关,可控制IC001⑨脚和⑩脚的电平,从而控制其内部的电子开关,分别选择ID,VCD、TAPE和TUNER四路音频信号。

(3).杜比定向逻辑解码电路 杜比定向逻辑电路由IC704(M69032P)和IC2701(YSS228)、IC702(4053)等组成,见图2-66和图2-67。 信号源选择电路选出的左、右声道音频信号分别从IC2704的(15)脚和(22)脚输人,经环绕声解码处理后的左、右声道信号分别从(32)脚和(33)脚输出,经信号直通/解码处理转换继电器J801送往前置放大电路的E端和F端。中置声道信号从(38)脚输出,经C761送往前置放大电路的C端。 解码后的环绕声道信号从IC704(39)脚输出,经IC702转换后送入IC701进行延时处理。延时处理后的环绕声信号经IC704(47)脚内部的7kHz低通滤波器滤波后从其(42)脚馈入,再经杜比B降噪电路降噪后,从(29)脚输出,经C762送往前置放大电路的D端。 IC704的(36)脚外接中置声道模式控制电路,(23)脚~(25)脚接受来自微处理器IC501的测试控制信号和IC502的调配组合转换控制信号。IC501还通过DA TA、CLK和REQ信号对IC701进行控制。 IC704(34)脚输出L+R信号,经C765、11743加至前置放大器的B端。

高效音频功率放大器

高效音频功率放大器 一、设计任务与要求 1、设计任务 设计并制作一个高效率音频功率放大器及其参数的测量、显示装置。功率放大器的电源电压为+5V(电路其他部分的电源电压不限),负载为8Ω电阻。 2、设计要求 ⑴基本要求 ①功率放大器 a.3 dB通频带为300~3400Hz,输出正弦信号无明显失真。 b.最大不失真输出功率≥1W。 c.输入阻抗>10kΩ,电压放大倍数1~20连续可调。 d.低频噪声电压(20kHz以下)≤10mV,在电压放大倍数为10、输入端对地交流短路时测量。 e.在输出功率500mW时测量的功率放大器效率(输出功率/放大器总功耗)≥50%。 ②设计并制作一个放大倍数为1的信号变换电路,将功率放大器双端输出的信号转换为单端输出,经RC滤波供外接测试仪表用,如下图所示。图中,高效率功率放大器组成框图可参见本题第3项“说明”。 图1 系统组成框图 ③设计并制作一个测量放大器输出功率的装置,要求具有3位数字显示,精度优于5%。 ⑵发挥部分 ① 3dB通频带扩展至300Hz~20kHz。 ②输出功率保持为200mW,尽量提高放大器效率。 ③输出功率保持为200mW,尽量降低放大器电源电压。 ④增加输出短路保护功能。 ⑤其他。 1、说明 ⑴采用开关方式实现低频功率放大(即D类放大)是提高效率的主要途径之一,D类放大原理框图如下图所示。本设计中如果采用D类放大方式,不允许使用D类功率放大集成电路。

图2 D类放大原理框图 ⑵效率计算中的放大器总功耗是指功率放大器部分的总电流乘以供电电压(+5 v),不包括“基本要求”中第(2)、(3)项涉及的电路部分功耗。制作时要注意便于效率测试。 ⑶在整个测试过程中,要求输出波形无明显失真。 二、方案论证与比较 根据设计任务的要求,本系统的组成方框图如图1所示。下面对每个框电路的设计方案分别进行论证与比较。 1、高效率功率放大器 ⑴高效率功放类型的选择 方案一:采用A类、B类、AB类功率放大器。这三类功放的效率均达不到题目的要求。 方案二:采用D类功率放大器。D类功率放大器是用音频信号的幅度去线性调制高频脉冲的宽度,功率输出管工作在高频开关状态,通过LC低通滤波器后输出音频信号。由于输出管工作在开关状态,故具有极高的效率。理论上为100%,实际电路也可达到80%~95%,所以我们决定采用D类功率放大器。 ⑵高效D类功率放大器实现电路的选择本题目的核心就是功率放大器部分,采用何种电路形式以达到题目要求的性能指标,这是关键。 图3 脉宽调制器电路 ①脉宽调制器(PWM) 方案一:可选用专用的脉宽调制集成块,但通常有电源电压的限制,不利于本题发挥部分的实现。 方案二:采用图3所示方式来实现。三角波产生器及比较器分别采用通用集成电路,各部分的功能清晰,实现灵活,便于调试。若合理的选择器件参数,可使其能在较低的电压下工作,故选用此方案。 ②高速开关电路

OCL功率放大器设计分析

设计题目:OCL功率放大器设计 姓名: 学号: 班级:14级 专业:电子信息工程 设计时间:2016 2016年 7 月 4 日

目录 概述 (3) 一、任务及要求: (4) 1.设计任务 (4) 2.设计要求 (4) 二.总体方案设计 (4) 1.设计思路 (4) 2. OCL功放各级的作用和电路结构特征 (4) 三.单元电路的选择及设计 (5) 1、设计方案 (5) 2、设计选择 (5) (1)设计一个放大器所需要的直流稳压电源 (5) (2)差分放大电路电路图 (6) (3)复合管放大电路电路图 (7) (4) U的倍增电路电路图 (7) BE 四.总体电路图 (9) 五.元器件参数的选择: (10) a.确定工作电压 V (10) CC b.功率输出级的设计: (11) c.推动级(V4)的设计 (12) d.输入级的设计 (13) 六、总结与体会 (15)

概述 (1)放大电路实质上都是能量转换电路。从能量控制的观点来看,功率放大电路和电压放大电路没有本质的区别。但是,功率放大电路和电压放大电路所要完成的任务是不同的。对电压放大电路的主要的要求是使其输出端得到不失真的电压信号,讨论的主要指标是电压增益,输入和输出阻抗等,输出的功率并不一定大。而功率放大电路则不同,它主要要求获得一定的不失真(或失真较小)的输出功率,因此功率放大电路包含这一系列在电压放大电路中没有出现过的特殊问题,这些问题是: 要求输出功率尽可能大 为了获得大的功率输出,要求功放管的电压和电流都有足够大的输出幅度,因此器件往往在接近极限运用状态下工作。 效率更高 (2)由于输出功率大,因此直流电源消耗的功率也大,这就存在一个效率问题。所谓效率就是负载得到的有用信号功率和电源供给的直流功率的比值。这个比值越大,意味着效率越高。 非线性失真小 (3)功率放大电路是在大信号下工作,所以不可避免地会产生非线性失真,而且同一功放管输出功率越大,非线性失真往往越严重,这就使输出功率和非线性失真成为一对主要矛盾。但是,在不同场合下,对非线性失真的要求不同。 (4)功率器件的散热问题:在功率放大电路中,为了输出较大的信号功率,器件承受的电压高。为了充分利用允许的管耗而使管子输出足够大的功率,放大器件的散热就成为一个重要问题了。 (5)此外,在功率放大电路中,为了输出较大的信号功率,器件承受的电压要高,通过的电流要大,功率管损坏的可能性也就比较大,所以功率管的损坏与保护问题也不容忽视。 (6)OCL功率放大器是一种一种直接耦合的功率放大器,它具有频响宽,保真度高,动态特性好及易于集成化等特点。OCL是英文Output Capacitor Less 的缩写,意为无输出电容。采用两组电源供电,使用了正负电源,在电压不太高的情况下,也能获得比较大的输出功率,省去了输出端的耦合电容。使放大器低频特性得到扩展。OCL功放电路也是定压式输出电路。

OCL功率放大器的设计报告解析

课程设计报告 题目:由集成运放和晶体管组成的OCL 功率放大器的设计 学生姓名:郭二珍 学生学号: 07 系别:电气学院 专业:自动化 届别: 2015年 指导教师:廖晓纬 电气信息工程学院制 2014年3月

OCL功率放大器的设计 学生:郭二珍 指导老师:廖晓纬 电气学院10级自动化 1、绪论 功率放大器(简称功放)的作用是给音频放大器的负载R L(扬声器)提供一定的输出功率。当负载一定时,希望输出的功率尽可能大,输出信号的非线性失真尽可能地小,效率尽可能高。 OCL是英文Output Capacitor Less的缩写,意为无输出电容的功率放大器。采用了两组电源供电,使用了正负电源。在输入电压不太高的情况下,也能获得较大的输出频率。省去了输出端的耦合电容,使放大器的频率特性得到扩展。OCL 功率放大器是一种直接耦合的功率放大器,它具有频响宽、保真度高、动态特性好及易于集成化等特点。性能优良的集成功率放大器给电子电路功放级的调试带来了极大的方便。集成功率放大电路还具有输出功率大、外围元件少、使用方便等优点,因此在收音机、电视机、扩音器、伺服放大电路中也得到了广泛的应用。 功率放大器可分为三种工作状态:(1)甲类工作状态Q点在交流负载的中点,输出的是一种没有削波失真的完整信号,但效率较低。(2)乙类工作状态Q点在交流负载线和IB=0输出特性曲线的交界处,放大器只有半波输出,存在严重的失真。 (3)甲乙类工作状态Q点在交流负载线上略高于乙类工作点处,克服了乙类互补电路产生交越失真,提高了效率。 因此,本设计可采用甲乙类互补电路。

2、内容摘要 本设计中要求设计一个由集成运放和晶体管组成的OCL功率放大器。在输入正弦波幅度Ui等于200mV,负载电阻R L等于8Ω的条件下最大输出不失真功率P ≥2W,功率放大器的频带宽度BW≥80Hz~10KHZ o 功率放大电路实质上是能量转换电路,它主要要求输出功率尽可能大,效率尽可能的高,非线性失真尽可能要小,功率器件的散热较好。 本设计选用的是双电源供电的OCL互补推挽对称功放电路。 此推挽功率放大器的工作状态为甲乙类,其目的是为了减少“交越失真”。 由于两管的工作点稍高于截止点,因而均有一很小的静态工作电流I CQ。这样,便可克服管子的死区电压,使两管交替工作处的负载中电流能按正弦规律变化,从而克服了交越失真。 OCL互补推挽对称功放电路一般包括驱动级和功率输出级,前者为后者提供一定的电压幅度,后者则向负载提供足够的信号频率,以驱动负载工作。 因此,需要设计两部分,即驱动级和功率输出级。

高效率功率放大器的现状及发展趋势

高效率功率放大器的现状及发展趋势 学院:电子工程学院 专业:电磁场与微波技术 :王元佳 学号:201320000289 报告日期:2013.11.05

一、引言 现代通信系统中的射频系统要求功耗低、效率高以及体积小。近年来,无线通讯朝大容量、多电平、多载波、高峰均比和宽频带方向飞速发展,宽带数字传输技术(如OFDM、CDMA等)和高频谱效率的调制方式(如QPSK、QAM等)正获得越来越广泛的应用,从而对射频系统性能提出更为苛刻的要求。功率放大器作为射频系统的关键部件,其所消耗的功率在整个射频系统所占比例相当大。低效率的功率放大器严重影响系统的整体性能。所以,设计高效率射频功率放大器对于减少电源消耗,提高系统稳定性,节约系统成本都由十分重大的意义。 传统的功率放大器通过调整工作状态(即调整晶体管导通角)来提高效率,这就是A类、B类、AB类、C类功率放大器的演进过程。其中C类功率放大器的理论效率最高达到100%,但此时其输出功率却为零。其根本原因在于,上述功率放大器工作状态下电流、电压同时存在于晶体管中,要使晶体管的耗散功率为零,必然使输出功率也为零。通过不断减小导通角的方式已不能满足不断提高效率的要求。为进一步提高效率,晶体管工作在开关状态的功率放大器应运而生。 二、研究现状 2.1 高效率功率放大器 2.1.1 D类功率放大器 当前,国内外高效率射频功率放大器的研究都集中在开关模型功率放大器及高效率功率放大器结构上。开关模型功率放大器主要有D、E两类。其设计思想都是使晶体管上“电流、电压不同时出现”。D类功率放大器一般由两个晶体

管构成,两只晶体管轮流导通、截止,实现电流、电压的不同时出现条件。但其晶体管和寄生电容耗能都是单管放大电路的双倍。同时,在开关瞬间存在两晶体管同时导通或截止引起二次击穿造成晶体管损坏的危险。工作频率比较低时,晶体管开关延时可以忽略,晶体管近似理想开关,不会产生损耗;在高频下,晶体管开关延时不可忽略,会引入损耗,另外元器件本身也会有损耗。因此,D类功放适合于频率较低的应用,并不适用于射频领域,D类放大器现在主要应用于音频领域。如图所示为D类功率放大器的电路结构。 2.1.2 E类功率放大器 为了克服D类功放在不完全导通与不完全截止过程中引入的较大损耗,提出了E类功放的设计。与D类功放不同,E类功率放大器采用单只晶体管,可工作于较高的频段,漏极电流为直流和漏极分路电容的充电电流之和。E类放大器是一种开关式的高效率放大器,理想情况下,效率可达100%。在这种功率放大器中,足够强的驱动电压使得输出功率管在完全导通和完全截止之间瞬时切换,流过开关的电流与开关上电压波形没有重叠,因而开关不消耗功耗。E类功率放大器的主要设

OTL功率放大器设计解析

电子技术基础课程设计任务书 20xx-20xx学年第一学期第xx周-xx周 注:1、此表一组一表二份,课程设计小组组长一份;任课教师授课时自带一份备查。

2、课程设计结束后与“课程设计小结”、“学生成绩单”一并交院教务存档。

目录 一、设计任务 (2) 二、总体方案的设计与选择 (2) 三、总体电路图及印刷板图 (6) 四、计算机仿真 (7) 五、安装调试 (8) 六、焊接实图 (10) 七、心得体会 (11) 参考书籍 (11)

设计题目:OTL功率放大器设计 一、设计任务 (一)设计任务:设计一个OTL功率放大器 (二)设计要求: 1、要求电路采用集成电路组成; 2、额定输出功率大于等于10W; 3、负载阻抗等于8Ω; 4、采用TDA2003集成芯片。 二、总体方案的设计与选择 (一)电路原理 1、OTL功放原理 (1)乙类输出无变压器(output transformerless 简记OTL)功率放大器 图2-5-14所示乙类OTL功放电路, V 1与V 2 为互补对称管,故这种电 路也是互补对称电路。 由于电路结构上的对称性,静态下A、B对地电压均为U G /2,C 1 、C 2 端 电压U C1=U C2 =UG/2。因此,输出耦合电容又相当于一个U G /2的直流电源。图 中的A点又称中点。 图2-5-14 乙类OTL功放 当电路输入正弦信号,且u i >0时,功放管V 1 导通、V 2 截止,电路为射 极输出器,u O≈u i ,u O 输出正半周,其振幅最多可达U G /2,;u i <0时,V 1 截 止,V 2导通,u O ≈u i ,u o 输入负半周,振幅最多可达U G /2。当U om =U G /2时,

功率放大电路分析

B类OTL功率放大电路原理 发布: | 作者:--| 来源: --| 查看:351次| 用户关注: 三极管Hi-Fi放大器的功率级大部分使用B类SEPP.OTL功率放大电路。因为B类放大电路功率较高,最高达78.5%,除非是发烧级的音响,为求完美的不失真才会用A类。就三极管的散热以及电源电路的容量,B类都比A类好很多。PP电路中虽然有输出电路产生的偶次高谐波可互相抵销的优点,但实际上, 三极管Hi-Fi放大器的功率级大部分使用B类SEPP.OTL功率放大电路。因为B类放大电路功率较高,最高达78.5%,除非是发烧级的音响,为求完美的不失真才会用A类。就三极管的散热以及电源电路的容量,B类都比A类好很多。PP电路中虽然有输出电路产生的偶次高谐波可互相抵销的优点,但实际上,主放大器推动PP电路中的A类驱动级就会产生二次高谐波,因此高谐波还是很多。不过,B类PP电路为减少交叉失真,须特别注意偏压的稳定。以下介绍几个代表性的B类SEPP.OTL电路 图a 半对称互补OTL放大电路 图b 全对称互补OTL放大电路

图一输入变压器式功放电路输入变压器式SEPP电路如图一,利用输入变压器进行相位反转作用。线路简单而中心电压又稳定,如果使用两电源方式,可简单剪掉输出电容器。又,输出短路时,不容易流出大电流,对过载引起的破坏,有很大的防止作用。不过因为输入变压器的影响,不能有较深的负反馈,所以不能获得较低的失真,在高频特性及失真会显著恶化是主要缺点。 CE分割方式

图二CE分割方式 如图二所示,利用三极管Q1 集电极与发射极之相位相反进行反向的方式,与真空管的PK分割相同。因为可以由NPN型三极管构成,所以很容易找到特性整齐的三极管。但是,因为有电路比较复杂,需用的交连电容多,低频特性不好,所以一直不能成为主流的电路。 互补方式

TDA2030集成电路功率放大器设计方案

TDA2030集成电路功率放大器设计 一、设计题目集成电路功率放大器 二、给定条件字串5 设计一款额定输出功率为10 ~ 20W的低失真集成电路功率放大器,要求电路简洁,制作方便、性能可靠。性能主要指标: 字串3 输出功率:10 ~ 20W (额定功率); 字串9 频率响应:20Hz ~ 100kHz ( < 3dB 字串6 谐波失真:w 瑶(10W,30Hz~20kHz ); 字串9 输出阻抗:< 0.16 Q字串4 输入灵敏度:600mV (1000Hz,额定输出时) 三、设计内容 1 ?根据具体电路图计算电路参数字串8 2?选取元件、识别和测试。包括各类电阻、电容、变压器的数值、质量、电器性能的准确判断、解决大功率放大器散热的问题。字串5 3 ?了解有关集成电路特点和性能资料情况 字串5 4?根据实际机壳大小设计1:1印刷板布线图字串3 5 ?制作印刷线路板

字串4 6 ?电路板焊接、调试(调试步骤可以参考《模拟电子技术实验指 字串2 导书》有关放大器测试过程字串5 7?实训期间必须遵守实训纪律、听从老师安排和注意用电安全。 四、功率放大电路的测试基本内容 字串6 注意:将输入电位器调到最大输入的情况。 字串2 1测量输出电压放大倍数Au字串7 测试条件:直流电源电压14v,输入信号1KH z 70 mv (振幅值100mv),输出负载电阻分另为4Q 和8Q O 字串3 字串4 2.测量允许的最大输入信号(1KH z)和最大不失真输出功率 字串5 测试条件:①直流电源电压14v,负载电阻分别为4 Q和8 Q O 字串3 ②直流电源电压10v,负载电阻为8Q O

基于LM386的功放电路设计

基于LM386的简单功放系统设计 一、系统概述、设计思路 功率放大器的作用是给音响放大器的负载(扬声器)提供一定的输出概率。当负载一定时,希望输出的功率尽可能大,输出的信号的非线性失真尽可能小,效率尽可能高。 LM386是美国的国家半导体公司生产的音频功率放大器,主要应用于低电压消费类产品。为使外围元件最少,电压增益内置为20,但在1脚和8脚之间增加一只外接电阻或电容,便可将电压增益调为任意值,直至200。输入端以地为参考,同时输出端被自动地偏置到电源电压的一半,工作电压范围宽,4~12V 或5~18V,在6V电源电压下,它的静态功耗仅为24mV,且外围元件少。 二、系统组成及工作原理 (1)外形与引脚功能 LM386是8引脚双排直插式塑料封装结构,其外形与引脚排列如图所示, 2脚为反向输入端,3脚为同向输入端,5脚为输出端,6脚与4脚分别为电源和地端,1脚和8脚为电压增益设定端;使用时,引脚7和地之间接旁路电容,通常为10uf。 (2)其内部电路如下 由图可知,该集成OTL型功放电路的常见类型,与通用型集成运放的特性相似,是一个三级放大电路:第一级为差分放大电路;第二级为共射放大电路;第三级

为准互补输出级功放电路。 第一级为差分放大电路,T1和T3、T2和T4分别构成复合管,作为差分放大电路的放大管;T5和T6组成镜像电流源作为T1和T2的有源负载;T3和T4信号从管的基极输入,从T2管的集电极输出,为双端输入单端输出差分电路。使用镜像电流源作为差分放大电路有源负载,可使单端输出电路的增益近似等于双端输出电容的增益。 第二级为共射放大电路,T7为放大管,恒流源作有源负载,以增大放大倍数。第三级中的T8和T9管复合成PNP型管,与NPN型管T10构成准互补输出级。二极管D1和D2为输出级提供合适的偏置电压,可以消除交越失真。 引脚2为反相输入端,引脚3为同相输入端。电路由单电源供电,故为OTL电路。输出端(引脚5)应外接输出电容后再接负载。 电阻R7从输出端连接到T2的发射极,形成反馈通路,并与R5和R6构成反馈网络,从而引入了深度电压串联负反馈,使整个电路具有稳定的电压增益。 当1脚和8脚之间开路时,电压增益为26db;若在1脚和8脚之间接阻容串联元件,则增益可达46DB,改变阻容值则增益可在26db-46db之间任意选取。电阻值越小增益越大。 (3)功能框图 LM386集成功放属于直接耦合的多级放大器结构,它是一个三级放大电路,如下图所示。 输入级由差分放大器组成,它可以克服直接耦合产生的零漂现象,使电路工作稳定。中间放大要求有较高的电压增益,因此由共射放大电路组成,它为输出级提供足够大的信号电压。输出级要驱动负载,所以要求输出电阻小,输出电压幅度高,输出功率大,因此采用互补对称功放电路。 (4)设计电路图

新型定压输出功率放大器电路分析与维修图解

新型定压输出功率放大器电路分析与维修图解 定压输出的功放过去叫扩音机,在农村和企业常作广播系统使用,近年来在宾馆、饭店、广场播放背景音乐也得到广泛应用。目前流行的定压功放一改过去推挽输出的功率放大电路,而是采用如彩页附图REESOUND MA-300这种新型功放电路。如ET-5350、MP-600P等机型都采用了这种电路。 从电路图中可看出这种功放电路与普通OCL功率放大器有很大区别。普通的家用或专业功放电路功率管均采用发射极输出形式,功率输出由中点通过负载到公共地构成回路。此电路功率管却是集电极输出方式,PNP和NPN不同极性的功率管集电极直接连在一起,输出中点与信号输入地连接。电源变压器B1次级单绕组120V经桥式整流后通过C1、C2、R1、R2分压形成正负电源(±60V)和悬浮地。作为负载的输出变压器B2的初级绕组就跨接在输入地和悬浮地之间。有资料把这种电路形式叫电流源激励共射输出放大电路。功率管不在大环路反馈环之内,克服了功率管温度特性不稳定的缺点,并充分发挥了集电极输出电压增益高的优点ZD1、ZD2两个3V稳压管相对着跨接在输入端与地之间,可防止输入信号过强。T1、T2、T3、T4组成双差分放大电路,反馈信号不象普通电路取自中点而是取自悬浮地。送往下级的信号不是由输入管集电极取出,而是从反向输入管集电极取出,这也是与传统OCL电路的不同之处。T5、T6和T7、T8组成共射共基电压放大电路,用D1、D2,D3、D4发光二极管给T6、T7基极提供稳定的电压可减小因电压波动而引起的

非线性失真。T9是恒压偏置管,热敏电阻Rt并联在T9基极的上偏置电路里,安装在散热片上,起到温度补偿的功能。ZD3、ZD4两个12V稳压管和电阻电容给前两级提供稳定电压,有效的隔离了功率输出引起的电压波动。T10、T11,T12、T13构成复合电流放大级,ZD5、ZD6的加入可防止信号过强时引起对功率管的过激励,是一种新颖的保护电路。T14-T23是五对功率管(原电路板有六对位置只装五对),因采用这种新电路使功率管安装很方便,不用云母片而直接固定在方桶型散热片上(配有风机)。C3、R3是茹贝尔补偿网络,克服输出变压器纯感性负载造成的高频移相自激。T24、T25组成过流检测电路,T26是悬浮地直流检测电路。当电路过流或悬浮地直流偏移严重时两个检测电路就会使继电器驱动电路截止,释放继电器起到保护作用。T27、T28是继电器J驱动电路,温度继电器Jt是常闭型,安装在散热片上。当散热片温度过高时,Jt由常闭转为打开状态,T28失去偏置而截止,继电器J释放,触点JK打开而停止功率输出。因扬声器是通过线间变压器和输出变压器与直流电路隔离,不存在开机电流冲击现象,因此继电器不需要延迟闭合,开机就吸和。也有机型采用继电器常态不吸和,利用常闭触点接通负载,在有故障时继电器吸和断开负载。输出变压器B2次级设置有20V、70V、100V三档,其中20V可直接配接16Ω25W号筒喇叭。100V输出需经过定压式线间变压器再连接号筒喇叭或吸顶扬声器、室外音柱。为适应饭店多套客房背景音乐的控制,有的机型面板还设置了四个选择开关,背后增加了四组接线柱,按下某个选择开关相应一路就接入100V输出端。

相关主题