搜档网
当前位置:搜档网 › 温度测量方法

温度测量方法

温度测量方法
温度测量方法

材料物理专业杨洁学号:0743011033 温度测量方法材料物理专业一班杨洁学号:0743011033 我们大家都知道温度是表征物体冷热程度的物理量. 而测量温度的标尺是温度计,其按照测量方式可以分为接触式和非接触式两种. 通常来说的接触式测量仪表比较简单,可靠,测量精度高,但是因为测温元件与被测介质需要进行充分的热交换,所以其需要一定的时间才能达到热平衡, 所以,存在测温延迟现象,同时受耐高温和耐低温材料的限制,不能应用于这些极端的温度测量.非接触式仪表测温仪是通过热辐射的原理来测量温度的,测温元件不需要与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体发射率,测量距离,烟尘和水汽等外界因素的影响,其测量误差较大. 下面就简单介绍几种温度计: 1,气体温度计:利用一定质量的气体作为工作物质的温度计.用气体温度计来体现理想气体温标为标准温标. 用气体温度计所测得的温度和热力学温度相吻合.气体温度计是在容器里装有氢或氮气(多用氢气或氦气作测温物质,因为氢气和氦气的液化温度很低,接近于绝对零度,故它的测温范围很广) ,它们的性质可外推到理想气体.这种温度计有两种类型:定容气体温度计和定压气体温度计.定容气体温度计是气体的体积保持不变,压强随温度改变.定压气体温度计是气体的压强保持不变,体积随温度改变. 2,电阻温度计:根据导体电阻随温度而变化的规律来测量温度的温度计. 最常用的电阻温度计都采用金属丝绕制成的感温元件, 主要有铂电阻温度计和铜电阻温度计,在低温下还有碳,锗和铑铁电阻温度计.精密的铂电阻温度计是目前最精确的温度计,温度覆盖范围约为14~903K,其误差可低到万分之一摄氏度,它是能复现国际实用温标的基准温度计.我国还用一等和二等标准铂电阻温度计来传递温标,用它作标准来检定水银温度计和其他类型的温度计.分为金属电阻温度计和半导体电阻温度计,都是根据电阻值随温度的变化这一特性制成的.金属温度计主要有用铂,金,铜,镍等纯金属的及铑铁,磷青铜合金的;半导体温度计主要用碳,锗等.电阻温度计使用方便可靠,已广泛应用.它的测量范围为-260℃至600℃左右. 3,温差电偶温度计:利用温差电偶来测量温度的温度计.将两种不同金属导体的两端分别连接起来,构成一个闭合回路,一端加热,另一端冷却,则两个接触点之间由于温度不同,将产生电动势,导体中会有电流发生.因为这种温差电动势是两个接触点温度差的函数,所以利用这一特性制成温度计.若在温差电偶的回路里再接入一种或几种不同金属的导线, 所接入的导线与接触点的温度都是均匀的,对原电动势并无影响,通过测量温差电动势来求被测的温度,这样就构成了温差电偶温度计.这种温度计测温范围很大.例如,铜和康铜构成的温差电偶的测温范围在200~400℃之间;铁和康铜则被使用在200~1000℃之间;由铂和铂铑合金(铑10%)构成的温差电偶测温可达千摄氏度以上;铱和铱铑(铑50%)可用在2300℃;若用钨和钼(钼25%)则可高达2600℃. 4,高温温度计:是指专门用来测量500℃以上的温度的温度计,有光测温度计,比色温度计和辐射温度计.高温温度计的原理和构造都比较复杂,这里不再讨论.其测量范围为500℃至3000℃以上,不适用于测量低温. 2010-3-25 1 材料物理专业杨洁学号:0743011033 5,指针式温度计:是形如仪表盘的温度计,也称寒暑表,用来测室温,是用金属的热胀冷缩原理制成的.它是以双金属片做为感温元件,用来控制指针. 双金属片通常是用铜片和铁片铆在一起,且铜片在左,铁片在右.由于铜的热胀冷缩效果要比铁明显的多,因此当温度升高时,铜片牵拉铁片向右弯曲,指针在双金属片的带动下就向右偏转(指向高温) ;反之,温度变低,指针在双金属片的带动下就向左偏转(指向低温) . 6,玻璃管温度计:玻璃管液体温度计是应用最广泛的一种温度计,其结构简单,使用方便,准确度高,价格低廉.按用途分类,可分为工业,标准和实验室用三种.标准玻璃温度计是成套供应的,可以作为检定其他温度计用,准确度可达0.05 ~ 0.1 摄氏度;工业用玻璃温度计为了避免使用是被碰碎,在玻璃管外通常由金属保护套管,仅露出标尺部分,供操作人员读数.实验室用的玻璃管温度计的形式和标准的相仿,准确度也较高. 7,压力式温度计:新一代液体压力式温度计以及由此开发的系列化测温仪表,克服了原仪表性能单一,可靠性差以及温包积大的缺点,并将测温元件体积缩小到原

来的1/30 或1/60,创造性地将传感器热电阻安装于测温元件内,实现了机电一体化的测温功能.形成了以液体压力式温度计为基本测温仪表的远传, 防震,防腐,电接点,温度信号变送等多功能系列化温度仪表.分为两个系列, 普通型和防爆型. 该温度计的原理是基于密闭测温系统内蒸发液体的饱和蒸气压力和温度之间的变化关系,而进行温度测量的.当温包感受到温度变化时,密闭系统内饱和蒸气产生相应的压力,引起弹性元件曲率的变化,使其自由端产生位移,再由齿轮放大机构把位移变为指示值,这种温度计具有温包体积小,反应速度快,灵敏度高,读数直观等特点,几乎集合了玻璃棒温度计,双金属温度计, 气体压力温度计的所有优点,它可以制造成防震,防腐型,并且可以实现远传触点信号,热电阻信号, 0-10mA 或4-20mA 信号.是目前使用范围最广,性能最全面的一种机械式测温仪表. 8,转动式温度计:转动式温度计是由一个卷曲的双金属片制成.双金属片一端固定,另一端连接着指针.两金属片因膨胀程度不同,在不同温度下,造成双金属片卷曲程度不同,指针则随之指在刻度盘上的不同位置,从刻度盘上的读数,便可知其温度. 9,半导体温度计:半导体的电阻变化和金属不同,温度升高时,其电阻反而减少,并且变化幅度较大.因此少量的温度变化也可使电阻产生明显的变化, 所制成的温度计有较高的精密度,常被称为感温器. 10,热电偶温度计:两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应, 而这种电动势称为热电势. 热电偶就是利用这种原理进行温度测量的, 其中,直接用作测量介质温度的一端叫做工作端(也称为测量端) ,另一端叫做冷端(也称为补偿端) ;冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势.热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应注意如下几个问题: ①热电偶的热电势是热电偶工作端的两端温度函数的差, 而不是热电偶冷端与工作端,两端温度差的函数;②热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关;③当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是2010-3-25 2 材料物理专业杨洁学号:0743011033 工作端温度的单值函数. 11, 光测高温计: 它是利用热源辐射的亮度和温度的关系来测量高温的仪器. 该仪器主要部分包括:望远镜M 管内装一红色玻璃滤色镜 F 及一个小灯泡L. 当光测高温计对着熔铁炉时.从望远镜里看到灯泡的黑色灯丝及后面炉火的强光.灯丝和电源 E 及可变电阻R 串接,调节可变电阻R 的阻值使适当的电流通过灯丝.直到灯丝的亮度与炉火的亮度相同时为止.如果事先在安培表 A 上将已知温度值刻好,则由安培表的读数就可以直接读出温度的数值.测温时,不需将仪器与被测体接触,因此光测高温计,可用来测很多金属的熔点以上的温度. 物体温度若高到会发出大量的可见光时, 便可利用测量其热辐射的多少以决定其温度,此种温度计即为光测温度计.此温度计主要是由装有红色滤光镜的望远镜及一组带有小灯泡,电流计与可变电阻的电路制成.使用前,先建立灯丝不同亮度所对应温度与电流计上的读数的关系.使用时,将望远镜对正待测物,调整电阻,使灯泡的亮度与待测物相同,这时从电流计便可读出待测物的温度了. 12,液晶温度计:用不同配方制成的液晶,其相变温度不同,当其相变时, 其光学性质也会改变,使液晶看起来变了色.如果将不同相变温度的液晶涂在一张纸上, 则由液晶颜色的变化, 便可知道温度为何. 此温度计之优点是读数容易, 而缺点则是精确度不足,常用于观赏用鱼缸中,以指示水温

温度的测量

温度是一个十分重要的热工参量。从微观上说,它反映物体分子运动平均动能的大小,而宏观上则表示的体的冷热程度。在各种热工实验中几乎都离不开温度,所以,温度测量是最重要的热工测量。

用来量度物体温度高低的标尺称为温标,如热力学温标、国际实用温标、摄氏温标、华氏温标等

各种测温方法大都是利用物体的某些物理化学性质(如物体的膨胀率、包阻率、热电势、辐射强度和颜色等)与温度具有—定关系的原理。当温度不同时,上述各参量中的—个或几个随之发生变化,测出这些参量的变化。就可间接地知道被测物体的温度。

测温方法可为接触式与非接触式两大类。用接触式方法测温时,感温元件需要与被测介质直接接触,液体膨胀式温度计、热电偶温度计、热电阻温度计等均属于此类。当用光学高温计、辐射高温汁、红外探测器测温时,感温元件不必与被测介质相接触,故称为非接触式测温方法。接触式测温简单、可靠、测量精度高,但由于达到热平衡需要—定时间,因而会产生测温的滞后现象。此外,感温元件往往会破坏被测对象的温度场,并有可能受到被测介质的腐蚀。非接触式测温是通过热辐射来测量温度的,感温速度一般比较快,多用于测量高温,但由于受物体的发射率、热辐射传递空间的距离、烟尘和水蒸气的影响,故测量误差较大。本节仅对热工实验中常用的几种接触式测温仪表作一简介。

常用的测温仪表及它们的工作原理见下表:

一、膨胀式温度计

利用测温物质的体积(或长度)随温度发生变化的性质制作的温度测量仪表称为膨胀式温度计。分两类:玻璃管式温度计及双金属温度计。

l、玻璃管式温度计

水银玻璃管温度计是热工过程中使用最为广泛的一种液体膨胀式温度计。优点:结构简单、使用方便、准确度高,价格便宜;缺点:易损坏,读数较难且易产生误差,测量结果不能远距离传送和自动记录且有较大的热惯性。

水银玻璃管温度计按其结构可分为三种基本类型,即棒式、内标式和外标式,如图2—1—l所示。

热工测量用的水银温度汁按其测量精度可分成三种,即工业用的、实验室用的和标准温度计。在热工实验中,还常常用到一种特殊的玻璃管温度汁,称为电接触式水银温度计。如图2—l—2所示。它可以作为温度信号发生器和自动温度调节仪表:它的原理是在所规定的温度下,通过水银柱将电路接通,从而使温度控制电路接通。其内可移动的接点常通过外部磁铁来调节它的高度,

使用玻璃管式温度计测温时,其误差来源主要有:

(1)零点位移

由于玻璃的热惯性较大,当加热以后再度冷却时,温度计的温包不能立刻恢复到起始容积,从而使零点产生位移。此时如再用改温度计测量,就会引起附加的测量误差.

(2)插入误差

玻璃管温度计标定时,是将它的全部液柱浸没到介质中,这就使温度计的指标值与介质的真实温度发生偏离.

(3)读数误差

进行读数时,观察者的视线应与标尺垂直并与液柱端面保持同一水平面,否则将

引起附加的读数误差。

2、双金属温度计

利用两种膨胀系数非常不同的弹性金属薄片组合在一起,可构成另—类膨胀式温度计——双金属温度计。这类温度计经常用于环境温度的自动测量和控制,测温范围为-80~600℃。它的测量误差较大,通常不作为精密测量用.

二、压力表式温度计

压力表式温度计是根据在封闭容器中液体、气体或蒸汽受热后压力变化的原理而进行测温的.由于压力的变化用压力表测出,所以称为压力表式温度计: 根据压力的变化再推算出温度.常用的压力表式温度计有气体温度计和蒸汽温度计两类.

三、电阻温度计

利用金属和半导体的电阻随温度的变化也可以用来测量温度.其特点是准确度高,在低温下(500℃)测量时,它的输出讯号比热电偶要大得多.灵敏度高. 电阻温度计输出是电讯号,因此便了于远距离传送和实现多点切换测量

电阻温度汁是电热电阻。显示仪表和连接导线所组成:热电阻由电阻体、绝缘管和保护套等主要部件所组成.热电阻是测温的敏感元件,它可由导体或半导体制成,大多数金属导体当温度升高时,其电阻值增大;而半导体的电阻值则要减小。使用电阻温度计测量温度时,其测量误差的主要来源是:

(1)电阻自热效应引起的误差;

(2)引线误差;

(3)安装误差。

四、热电偶温度计

热电偶温度计价格便宜。制作容易。结构简单。测温范围广(14K~1300℃),准确度高,而且可以把温度信号转变成电讯号进行远距离传送,所以应用很广泛。

其工作原理基于金属和合金的下列性质,当在两种不同种类的导线的接头(接点)上加热时,会产生温差热电势。

这两种不同种类的导线连接起来就成为热电偶。

热电偶具有以下基本性质。图1中系一闭合电路,由两种不同的导体(热电极)A 和B组成,形成一对热电偶。若接点l和2处分别维持温度t1和t0,则在接电处分别产生电势eab(t1)和eab(t0),在电路中作用的合成热电势Eab(t1,t0)等于各接点上所产生的热电势的代数和:

EAB(t1,t0)=eAB(t1)+ eBA(t0)

但是 eBA(t0)= -eAB(t0)

所以 EAB(t1,t0)= eAB(t1)-eBA(t0)

因此,当t1=t0时热电势为零:导线中的电流随热电势和电路中的电阻的大小而改变,可由欧姆定律决定。

热电偶的工作点1称为热接点放在被测介质里,另—接点称为冷接点。

热电偶温度计由热电偶和电测仪表(如电位计)组成。二者用导线连接,连接方式如图2-1-4所示。导线c接上电测仪表和两热电极之间时,增加了新的串联接

点3和4,若3和4的温度相等,都等于t,则电路中总电势EABC(t1,t,t0)为EABC(t1,t,t0)=eAB(t1)+ eBA(t) +eBC(t)+ eBA(t0)= eAB(t1)-eAB(t0)

可见与式(1)相同,即不会由于连接而引起误差。但如接点3,4温度不等,则将引起误差。

另一种连接方式见图2-1-5所式,它的原理和第二种是相同的。热电偶有二个冷接点2和3,它们均处在同一温度t0下,于是

EABC(t1,t2)= eAB(t1)+ eBC(t0)+ eCA(t0)= eAB(t1)+ eBA(t0)= eAB(t1)+ eAB(t0)

用电热偶测定温度,只有在冷接点的温度t0保持不变,而且器数值为已知条件下才是可能的。这时式(1)、(2)、(3)均可以表示为:EAB(t1,t0)=f(t1) 不同材料组成的热电偶,上述函数f的形式也不同,可用实验方法确定。确定时保持t0不变,测定EAB(t1,t0)随和t1的依变关系(如图4所示),这种关系曲线称为热电偶的分度曲线。有的经实验标定的分度曲线后,就可以由电测仪表读出的热电热查得相应的温度值。一般热电偶的分度曲线近似为直线。标定时通常维持,故应用时也应把冷接点放在冰水混合物中维持0℃。若冷接点不是零度,而是室温,则应把测得的热电势加上室温与0℃间的热电势,然后按此总电势确定热点温度t1.

本实验使用得热电偶均经标定,实验中可根据给定的分度曲线查取温度。

五、电位差计及其使用

1、电位差的工作原理

其工作原理是用一个已知的标准电压与被测电势相比较,调整到二者差值为零时,被测电势就等于已知的标准电压,这种测量方法亦称补偿法或零位法。

图2-1-7是电位差计的工作原理图。图中,工作电流调节电阻RP、标准电池补偿电阻RN、被测电势补偿电阻R及电势为E的工作电源串接成一回路。当转换开关K扳向“标准”位置时,检流计G接入标准电池(电动势EN为已知)回路。调节RP使G的指针指零,此时标准电池的电动势EN由RN上的电压降补偿(即EN=TRN),因此电位差计的工作电流为

II=EN/RN

工作电流I调节好以后,将K扳向“未知”位置,G即接入热电偶(待测热电势为Er)回路,同时立即调节RQ(移动触头Q)再次使G指零。这时被测量的电势ER由RQ上的电压降补偿,则有

标准电势EN和标准电阻RN均为已知。从上式可以看出,只要测出RQ,即可得出ER值,即Q点的位置可以反映出被测热电势ER之大小。

2、电位差计的使用方法

a调节检流计的机械零点(注意:事先应将指针的所紧装置松开)。

b调工作电流I至额定值,把开关K放在标准位置调RP,使检流计中无电流通过c进行测量:连接被测电势,把开关K放在未知位置,改变R使检流计中无电流通过即可得到读数。

3、注意事项

a电位差计不能摆动、倒翻、极柱不能按错

b调检流计的机械零点时,必须松开紧装置。

c如标准电池长时间处于工作状态,将使标准电池寿命大大缩短甚至损坏,为此当调节工作电流时开关按至“标准”时动作需轻巧而迅速,稍一接触可看出检流计偏移方向时,即应将开关断开,切忌长时间将开关按在“标准”位置。

d测量被测电势时,先将电位计的刻度盘放在与次热电势差不多大小的位置上,以免检流计的偏移过大,损坏仪表。当检流计偏移较大时,开关稍一接触可看出检流计得偏移趋势时即可断开。

e不工作时,开关应放在断路位置。详情请见下面网址:

https://www.sodocs.net/doc/2c4455372.html,/jpkc/gcrlx/jxsy/wdcl0.html

表面温度测量方法

表面温度测量方法 表面热电偶在结构上坚固得多,并且不受因安装材料或方法所引起的应变的影响。它们具有设计简单的固有特点,从而使成本较低。所有热电偶表面传感器都具有能够在与表面热电阻传感器相比高出很多的温度下正常工作以及响应更加快速的特定。但是,热电偶传感器生成的电压信号较低,可能需要进行附加放大,这在电气噪声很高的环境中是一个缺点。 与表面热电偶传感器不同,表面热电阻传感器不需要参考点、冰浴或温度补偿电路。这些传感器具有非常低的热质量,因此可提供真实的表面温度测量值以及快到50ms的响应时间。铂传感器被公认为是一种精密温度测量传感器,它可在-190℃~660℃温度范围来定义国际温标(ITS-90)。将铂温度计选择作为首要标准的主要原因是,它的电阻温度参数具有优异的稳定性和重复性。表面热电阻的信号输出大小是热电偶输出的50~200倍。这意味着温度测量常常可使用标准仪表来进行。 TOBTO拓必拓TM-1300A微型测温笔主要用于物体表面温度的精确测量。 TOBTO拓必拓TM-1300A微型测温笔特点: 1、LCD4位数字液晶显示 2、采用集成电路稳定可靠 3、使用充电锂电池,使用周期长

TOBTO拓必拓TM-1300A微型测温笔技术指标: 1、分辨率:1℃;单位:℃ 2、精度:±(2%+1℃) 3、测量范围:TP─01-20℃──300℃ 比例系数:12:1; 4、测量环境:0℃──50℃相对湿度≤80%RH; 5、保存环境:-30℃──60℃相对湿度≤75%RH; 6、电池连续使用寿命720小时。 TOBTO拓必拓TM-1300A微型测温笔使用方法: 1、按开关键开机,红外对准要测量的设备,再按“M”执行键开始 测量,仪器显示采集到的数值后测量完成。 2、手动开/关机。

温度常用测量方法及原理

温度常用测量方法及原理 (1)压力式测温系统是最早应用于生产过程温度测量方法之一,是就地显示、控制温度应用十分广泛的测量方法。带电接点的压力式测温系统常作为电路接点开关用于温度就地位式控制。 压力式测温系统适用于对铜或铜合金不起腐蚀作用场合,优点是结构简单,机械强度高,不怕振动;不需外部电源;价格低。缺点是测温范围有限制(-80~400℃);热损失大,响应时间较慢;仪表密封系统(温包,毛细管,弹簧管)损坏难以修理,必须更换;测量精度受环境温度及温包安置位置影响较大;毛细管传送距离有限制。 (2)热电阻热电阻测量精度高,可用作标准仪器,广泛用于生产过程各种介质的温度测量。优点是测量精度高;再现性好;与热电偶测量相比它不需要冷点温度补偿及补偿导线。缺点是需外接电源;热惯性大;不能使用在有机械振动场合。 铠装热电阻将温度检测元件、绝缘材料、导线三者封焊在一根金属管内,它的外径可以做得很小,具有良好的力学性能,不怕振动。同时,它具有响应快,时间常数小的优点。铠装热电阻可制成缆状形式,具有可挠性,任意弯曲,适应各种复杂结构场合中的温度测量。 (3)双金属温度计双金属温度计也是用途十分广泛的就地温度计。优点是结构简单,价格低;维护方便;比玻璃温度计坚固、耐振、耐冲击;示值连续。缺点是测量精度较低。 (4)热电偶热电偶在工业测温中占了很大比重。生产过程远距离测温大多使用热电偶。优点是体积小,安装方便;信号远传可作显示、控制用;与压力式温度计相比,响应速度快;测温范围宽;测量精度较高;再现性好;校验容易;价

低。缺点是热电势与温度之间是非线性关系;精度比电阻低;在同样条件下,热电偶接点易老化。 (5)光学高温计光学高温计结构简单、轻巧、使用方便,常用于金属冶炼、玻璃熔融、热处理等工艺过程中,实施非接触式温度测量。缺点是测量靠人眼比较,容易引入主观误差;价格较高。 (6)辐射高温计辐射高温计主要用于热电偶无法测量的超高温场合。优点是高温测量;响应速度快;非接触式测量;价格适中。缺点是非线性刻度;被测对象的辐射率、辐射通道中间介质的吸收率会对测量造成影响;结构复杂。(7)红外测温仪(便携式)特点是非接触测温;测温范围宽(600~1800℃ /900~2500℃);精度高示值的1%+1℃;性能稳定;响应时间快(0.7s);工作距离大于0.5m。

测温原理

热电偶的测温原理和常用材料 这就要从热电偶测温原理说起,热电偶是一种感温元件,是一次仪表,它直接测量温度,并把温度信号转换成热电动势信号, 通过电气仪表(二次仪表)转换成被测介质的温度。热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应。 两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系, 制成热电偶分度表; 分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。 在热电偶回路中接入第三种金属材料时, 只要该材料两个接点的温度相同, 热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此, 在热电偶测温时, 可接入测量仪表, 测得热电动势后, 即可知道被测介质的温度。 热电偶工作原理:两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。 热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应注意如下几个问题: 1:热电偶的热电势是热电偶两端温度函数的差,而不是热电偶两端温度差的函数; 2 :热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关; 3:当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。 常用的热电偶材料有:热电偶分度号热电极材料正极负极S 铂铑10 纯铂R 铂铑13 纯铂B 铂铑30 铂铑6 K 镍铬镍硅T 纯铜铜镍J 铁铜镍N 镍铬硅镍硅E 镍铬铜镍 (T型热电偶)铜-铜镍热电偶 铜-铜镍热电偶(T型热电偶)又称铜-康铜热电偶,也是一种最佳的测量低温的廉金属的热电偶。它的正极(TP)是纯铜,负极(TN)为铜镍合金,常之为康铜,它与镍铬-康铜的康铜EN通用,与铁-康铜的康铜JN不能通用,尽管它们都叫康铜,铜-铜镍热电偶的盖测量温区为-200~350℃。 T型热电偶具有线性度好,热电动势较大,灵敏度较高,稳定性和均匀性较好,价格便宜等优点,特别在-200~0℃温区内使用,稳定性更好,年稳定性可小于±3μV,经低温检定可作为二等标准进行低温量值传递。T型热电偶的正极铜在高温下抗氧化性能差,故使用温度上限受到限制。

测量物体表面温度的传感器大全

物体表面温度传感器型号大全,测量物体表面温度可以从中选择适合自己的 1:贴片式温度传感器 贴片式温度传感器JCJ100TTP和被测物体接触面积大,接触紧密,所以在一些表面温度测量方面具有比较明显的优势:测温准确性高、反应速度快,体积小方便固定安装。 2磁性温度传感器 通过磁性吸附在金属表面,一方面非常方便安装固定,另一方面不需打孔固定,对被测物表面不会产生破坏,保护被测物体的完好性。 3:螺纹固定温度传感器 螺纹固定式温度传感器JCJ100ZBS由接线盒、固定螺纹和保护管三部分组成。产品可广泛应用测量气温、液体温度、油温及物体表面温度等。 常温情况可以选择铜热电阻作为感温元件或者数字温度传感器

高温下选择铂热电阻可以测量的范围(-200~600)℃ 4:固定法兰式温度传感器 JCJ100ZGFS与上一种温度传感器不同地方在于固定方式的不同一个采用螺纹固定一个采用法兰式的固定方法 5:直角弯头式温度传感器 直角弯头式温度传感器JCJ100ZZW由接线盒、弯头部分和保护管三部分组成。产品可广泛应用测量气温、液体温度、油温及物体表面温度等。用于生产现场存在高温和有害气体对热电阻接线盒有影响,或不宜直接水平及垂直安装场合。 铂热电阻作为元件:Pt100、Pt500、Pt1000(-200~600)℃

6:WZ系列装配式热电阻 装配式热电阻主要以Pt100作为感温元件,进口薄膜铂电阻具有测量精度高、机械强度高,抗震性能好等特点。装配式热电阻可以测量-200~600℃范围内的气体、液体和蒸汽及固体表面或内部温度。 7:WR系列铠装式热电偶 铠装式热电偶具有测量温度范围大、反应速度快,动态误差小、可弯曲安装,机械强度高,耐压性能好等特点。铠装式热电偶一般可以测量0~1300℃范围内的气体、液体和蒸汽及固体表面或内部温度。铠装式热电偶可以配套数字仪表、记录调节仪表、PLC、数据采集器或计算机使用,作为新一代的温度传感器,它可广泛用于冶金、石油、化工、电力、轻工、纺织、食品、国防及科研等各部门。

车削时切削温度的测量

车削时切削温度的测量 一、实验目的及要求 1、掌握用自然热电偶法测量切削区平均温度的方法。 2、研究车削时,切削热和切削温度的变化规律及切削用理(包括切削速度、走刀量f、切削深度ap)对切削θ的影响。 3、用正交试验设计,确定在切削用量的三个因素中,影响切削温度的主次因素。 二、实验内容 用高速钢车刀和45#钢工件组成的热电偶,以正交试验计法实验切削温度的变化规律。 三、实验设备及用具 1、设备:CA6140型变通车床。 2、仪器:VJ37型直流电位差计(或毫伏表)。 3、刀具:高速钢外圆车刀。 4、工件:45#钢。 四、自然热电偶法测量温度的基本原理和方法 用热电偶测量温度的基本原理是:当两种化学成份不同的金属材料,组成闭合同路时,如果在这两种金属的两个接点上存在温度差(通常温度高的一端称为热端,温度低的一端称为冷端)。在电路上就产生热电势,实验证明,在一定的温度范围内,该热电热与温度具有某种线性关系。 热电偶的特性是: (1)任何两种不同金属都可配制成热电偶。 (2)任何两种均质导体组成的热电偶,其电动热的大小仅与热电极的材料和两接点的温度T、To有关,而与热电偶的几何形状及尺寸无关。 (3)当热电偶冷端温度保持一定,即To=C时,热电势仅是热端温度T的单值数,E= (t),这样,热电偶测量端的温度与热电势建立了——对应关系。 用自然热电偶法测量切削温度时,是利用刀具与工件化学成份的不同而组成热电偶的两级,如图(一)所示。(刀具和工件均与机床绝缘,以消除寄生热电偶的两极的影响),切削时,工件与刀具接触区的温度升后,就形成了热电偶的热端,而工件通过同材料的细棒或切屑再与导体连接形成一冷端,刀具由导线引出形成另一冷端,如在冷端处接入电位差计,即可测得热电势的大小,通过热电热——温度的换算从而反映出刀具与工件接触处的平均温度。 为了将测得的切削温度毫伏值换算成温度值,必须事先对实验用的自然热电

常用的温度测量方法

常用的温度测量方法 温度的测量方法,按照测量温度所使用工具以及原理的不同,通常分为以下几种: 电阻变化:热敏导体或半导体在受热后导致的电阻值变化。 热膨胀:固体、气体、液体等在受热后发生的热膨胀。 热电效应:不同材质导线连接的闭合回路,两接点的温度不同,造成回路内所产生热电势。 热辐射:物体的热辐射随温度的变化而变化。 其它:射流测温、涡流测温、激光测温等。 下表是各种不同温度计的量程和优缺点比较 (一)玻璃管温度计 1. 常用玻璃管温度计 特点:玻璃管温度计结构简单、价格便宜、读数方便,而且有较高的精度 种类:实验室用得最多的是水银温度计和有机液体温度计。水银温度计测量范围广、刻度均匀、读数准确,但玻璃管破损后会造成汞污染。有机液体(如乙醇、苯等)温度计着色后读数明显,但由于膨胀系数随温度而变化,故刻度不均匀,

读数误差较大。 2. 玻璃管温度计的安装和使用 (1)玻璃管温度计应安装在没有大的振动,不易受碰撞的设备上。特别是有机液体玻璃温度计,如果振动很大,容易使液柱中断。 (2)玻璃管温度计的感温泡中心应处于温度变化最敏感处。 (3)玻璃管温度计要安装在便于读数的场所。不能倒装,也应尽量不要倾斜安装。 (4)为了减少读数误差,应在玻璃管温度计保护管中加入甘油、变压器油等,以排除空气等不良导体。 (5)水银温度计读数时按凸面最高点读数;有机液体玻璃温度计则按凹面最低点读数。 (6)为了准确地测定温度,用玻璃管温度计测定物体温度时,如果指示液柱不是全部插入欲测的物体中,会使测定值不准确,必要时需进行校正。 3. 玻璃管温度计的校正 玻璃管温度计的校正方法有以下两种: (1)与标准 >标准温度计在同一状况下比较 实验室内将被校验的玻璃管温度计与标准温度计插入恒温糟中,待恒温槽的温度稳定后,比较被校验温度计与标准温度计的示值。示值误差的校验应采用升温校验,因为对于有机液体来说它与毛细管壁有附着力,在降温时,液柱下降会有部分液体停留在毛细管壁上,影响读数准确。水银玻璃管温度计在降温时也会因磨擦发生滞后现象。 (2)利用纯质相变点进行校正 ①用水和冰的混合液校正0℃ ②用水和水蒸汽校正100℃ (二)热电偶温度计 1. 热电偶测温原理 热电偶是根据热电效应制成的一种测温元件。它结构简单,坚固耐用,使用方便,精度高,测量范围宽,便于远距离、多点、集中测量和自动控制,是应用很广泛的一种温度计。如果取两根不同材料的金属导线A和B,将其两端焊在一起,这样就组成了一个闭合回路。因为两种不同金属的自由电子密度不同,当两种金属接触时在两种金属的交界处,就会因电子密度不同而产生电子扩散,扩散结果在两金属接触面两侧形成静电场即接触电势差。这种接触电势差仅与两金属的材料和接触点的温度有关,温度愈高,金属中自由电子就越活跃,致使接触处所产生的电场强度增加,接触面电动势也相应增高。由此可制成热电偶测温计。 2. 常用热电偶的特性 几种常用的热电偶的特性数据见表3-2。使用者可以根据表中列出的数据,选择合适的二次仪表,确定热电偶的使用温度范围。

实验三-切削温度实验

实验三切削温度实验 一、实验目的和要求 1.了解车削时自然热电偶的构成以及采用自然热电偶进行切削温度实验的原理和 方法; 2.掌握自然热电偶现场快速标定的原理和方法,并获得其标定公式; 3.进行切削温度单因素实验或正交实验,了解切削用量对切削温度的影响规律,获 得切削温度的实验公式; 4.认知计算机辅助实验硬、软件的系统构成,并熟悉自然热电偶标定与切削温度实 验软件的具体操作。 二、实验原理与测量方法 1. 切削温度实验与标定系统的组成 切削温度实验系统由切削系统、切削温度实验仪器和计算机系统三大部分组成(图1、图3)。切削系统包括组成自然热电偶的工件(切屑)和硬质合金刀片,以及水银集电器、专用测温车刀等。切削温度实验仪器包括室温采集与数显板、三路高精度高倍率线性放大板以及为自然热电偶快速标定提供加热电源与控制的元器件等。计算机系统包含12位A/D板、计算机主机及其外设。此外,本系统还设置了自然热电偶标定附件。 系统使用接插线缆连接: 1)切削系统?切削温度实验仪器; 2)标定电源连接; 3)切削温度实验仪器?计算机系统之间有 两组扁平线接插件。 4)仪器电源线与普通的计算机电源线相同。 5)切削温度实验仪器接地螺钉位于其背面 的钢板上,请务必将切削温度实验仪器用 电线连接到符合标准的地线上! 图1 自然热电偶测温系统框图

图2 在车床上的切削温度实验系统全貌 2. 切削温度的测量方法 在切削过程中,硬质合金刀片和工件(切屑)组成了自然热电偶,切削温度实验就是将这个自然热电偶作为传感器来测量切屑温度的。切削时,自然热电偶产生的是温差热电势和温差热电流,“刀-屑”及“刀-工”接触区的高温端温度与硬质合金刀片另一端的冷端温度之差相当显著,所以,产生的热电势可以测量得到。硬质合金刀片作为自然热电偶的一个热电极,工件和切屑作为另一极。再将工件和切屑组成的这一极分成两部分,前者包括被切削加工的工件和与其紧密相连的一段切屑,后者就是一段切屑,这两段切屑端部的电压就是实验的检测对象——自然热电偶的热电势值。由于工件和切屑组成的热电极的前一部分是随着机床主轴旋转的,为将旋转着的切屑的热电势引导出来,便于检测,实验采用了水银集电器。 需要特别关注的是绝缘问题,在这里,由于棒状工件采用了尾顶尖,必须在尾顶尖莫氏锥面和车床尾座主轴莫氏锥孔之间进行绝缘处理,常用的方法是在尾顶尖莫氏锥面上涂塑或贴上一层塑料薄膜。当然,硬质合金车刀刀体与四方刀架之间(上、下两面),也需要垫上绝缘垫片。

温度和风速测量方法总结

第一章风速测量1.1风速测量 风是空气流动时产生的一种自然现象。空气流动有上下流动和左右流动,上下流动为垂直运动,也叫对流;左右流动为水平运动,也就是风。风是一个矢量,用风向和风速表示。地面风指离地平面10─12米高的风。风向指风吹来的方向,一般用16个方位或360°表示。以360°表示时,由北起按顺时针方向度量。风速指单位时间内空气的水平位移,常以米/秒、公里/小时、海里/小时表示。 1.2 风杯风速计 风杯风速计是最常见的一种风速计。转杯式风速计最早由英国鲁宾孙发明,当时是四杯,后来改用三杯。它由3个互成120°固定在支架上的抛物锥空杯组成感应部分,空杯的凹面都顺向一个方向。整个感应部分安装在一根垂直旋转轴上,在风力的作用下,风杯绕轴以正比于风速的转速旋转。转速可以用电触点、测速发电机或光电计数器等记录。 图1.1 风杯风速计 1.3 叶轮风速仪 风速计的叶轮式探头的工作原理是基于把转动转换成电信号,先经过一个临近感应开头,对叶轮的转动进行“计数” 并产生一个脉冲系列,再经检测仪转换处理,即可得到转速值。 法国KIKO叶轮风速仪工作原理如图1.2所示。叶轮的轴杆启动内含八个电磁极的原型磁铁,置于磁铁旁的双霍尔传感器感测到侧场中电磁极的转变信号。传感器的信号转换为电子频率且和风速成正比,并感测旋转方向。 图1.2 KIMO原理 1.4 热线风速计 一根被电流加热的金属丝,流动的空气使它散热,利用散热速率和风速的平方根成线性关系,再通过电子线路线性化(以便于刻度和读数),即可制成热线风速计。

金属丝通常用铂、铑、钨等熔点高、延展性好的金属制成。常用的丝直径为5μm,长为2 mm;最小的探头直径仅1μm,长为0.2 mm。根据不同的用途,热线探头还做成双丝、三丝、斜丝及V形、X形等。为了增加强度,有时用金属膜代替金属丝,通常在一热绝缘的基体上喷镀一层薄金属膜,称为热膜探头。热线探头在使用前必须进行校准。静态校准是在专门的标准风洞里进行的,测量流速与输出电压之间的关系并画成标准曲线;动态校准是在已知的脉动流场中进行的,或在风速仪加热电路中加上一脉动电信号,校验热线风速仪的频率响应,若频率响应不佳可用相应的补偿线路加以改善。 0至100m/s的流速测量范围可以分为三个区段:低速:0至5m/s;中速:5至40m/s;高速:40至100m/s。热线风速计用于0至5m/s的精确测量,使用温度约为±70℃。 当在湍流中使用热线风速计时,来自各个方向的气流同时冲击热元件,从而会影响到测量结果的准确性。在湍流中测量时,热敏式风速仪流速传感器的示值往往高于转轮式风速计。因此,风速仪测量过程应尽量在通道的直线部分进行。直线部分的起点应至少在测量点前10×D(D=管道直径,单位为CM)外;终点至少在测量点后4×D处。流体截面应不得有遮挡(棱角,重悬,物等)。 图1.3 热线风速计 1.4.1 恒流式热线风速计 通过热线的电流保持不变,温度变化时,热线电阻改变,因而两端电压变化,由此测量流速。利用风速探头进行测量。风速探头为一敏感部件。当有一恒定电流通过其加热线圈时,探头内的温度升高并于静止空气中达到一定值。此时,其内测量元件热电偶产生相应的热电势,并被传送到测量指示系统,此热电势与电路中产生的基准反电势相互抵消,使输出信号为零,风速仪指针也能相应指于零点或显示零值。若风速探头端部的热敏感部件暴露于外部空气流中时,由于进行热交换,此时将引起热电偶热电势变化,并与基准反电势比较后产生微弱差值信号,此信号被测量仪表系统放大并推动电表指针 变化从而指示当前风速或经过单片机处理后通过显示屏显示当前风速数值。 1.4.2 恒温式热线风速计 风速仪热线的温度保持不变,给风速敏感元件电流可调,在不同风速下使处于不同热平衡状态的风速敏感元件的工作温度基本维持不便,即阻值基本恒定,该敏感元件所消耗的功率为风速的函数。 恒温风速仪则是利用反馈电路使风速敏感元件的温度和电阻保持恒定。当风速变化时热敏感元件温度发生变化,电阻也随之变化,从而造成热敏感元件两端电压发生变化,此时反馈电路发挥作用,使流过热敏感元件的电流发生相应的变化,而使系统恢复平衡。

实验二采用红外热像仪的切削温度测量

实验二采用红外热像仪的切削温度测量 一、实验概述 切削过程中,会产生一系列物理现象,如切削变形、切削力、切削热与切削温度、刀具磨损等。对切削加工过程中的切削力、切削温度进行实时测量,是研究切削机理的基本实验手段和主要研究方法。通过对实测的切削温度进行分析处理,可以推断切削过程中的切削变形、刀具磨损、工件表面质量的变化机理。在此基础上,可进一步为切削用量优化,提高零件加工精度等提供实验数据支持。 本实验是使用红外热像仪进行切削温度的非接触测量,研究切削用量对于切削温度的影响。通过本实验可使同学们熟悉制造技术工程中的基础实验技术和方法,了解用先进的仪器设备研究传统切削加工的方法。 二、实验目的 1、学习及掌握红外热像仪测量切削温度的方法,了解红外成像测温原理 2、研究υc、f对切削温度的影响. 三、实验仪器设备 1、CA6140车床 2、Flir A315 红外热像仪 3、刀具:YT15,角度:γ o = α o = κr= λs= 。 4、试件:45钢棒料 说明:刀具参数、车床和工件由各班学委负责准备或负责,红外热像仪的操作由胡玉琴同学负责。 四、实验原理 红外热像仪的基本工作原理是利用了斯蒂芬—波尔兹曼定律,即 E =εσT4(1) 式中 E ———物体辐射单元单位面积的辐射能量(W/ m2) ε———物体辐射单元表面辐射率(取决于物体表面性质) σ———斯蒂芬—波尔兹曼常数(σ = 5.76 ×10 - 8W/ m2·K4) T ———物体辐射单元的表面温度(K) 切削时,红外热像仪通过光机扫描机构探测工件(或刀具) 表面辐射单元的

辐射能量,并将每个辐射单元的辐射能量转换为电子视频信号,通过对信号进行处理,以可见图像的形式进行显示,显示的热像图代表被测表面的二维辐射能量场,若辐射单元的表面辐射率已知,则可通过斯蒂芬—波尔兹曼定律求出辐射单元表面的温度分布场及动态变化。虽然红外热像仪所测温度为相对温度,滞后于实际切削温度,但根据传热反求算法可准确求得切削过程中工件(或刀具) 的温度变化规律及动态分布。红外热像仪测温法具有直观、简便、可远距离非接触监测等优点,在恶劣环境下测量物体表面温度时具有较大优越性。 图1 红外热像仪组成结构原理图 注意:红外热像仪属于高值、精密、易损设备,未经允许,不能搬动或触摸。 五、实验方法与步骤 1.熟悉要使用的红外热像仪及其在线测量软件(Monitor;Tools;SDK),机床操作手柄及安全注意事项,安装试件,安放好红外热像仪及电脑设备,请辅导教师检查。 2.试验走刀量 f 对切削温度的影响 固定a p,V改变f,切削,记录保存瞬时的温度分布图和温度随时间的变化曲线。3.试验切削速度对切削温度的影响 固定a p,f 改变V 切削,记录保存瞬时的温度分布图和温度随时间的变化曲线。 六、实验报告要求 1、自行设计切削温度测量的单因素实验表格(预习完成),认真总结红外热像仪测温原理和方法。 2、对获得的温度分布图和变化曲线数据进行整理分析,并与教材上的经验公式计算结果进行比较分析。图线要贴在实验报告上。

温度检测电路工作原理及各器件的参数

温度检测电路工作原理及各器件的参数 在空调整机上,常用到温度传感器检测室内、外环境温度和两器盘管温度,下面根据常用温度检测电路介绍其工作原理及注意事项。 1.电路原理图 2. 工作原理简介温度传感器RT1(相当于可变电阻)与电阻R9形成分压,则T端电压为:5×R9/(RT1+R9);温度传感器RT1的电阻值随外界温度的变化而变化,T端的电压相应变化。RT1在不同的温度有相应的阻值,对应T端有相应的电压值,外界温度与T端电压形成一一对应的关系,将此对应关系制成表格,单片机通过A/D采样端口采集信号,根据不同的A/D值判断外界温度。 3. 各元器件作用及注意事项3.1 RT1与R9组成分压电路,R9又称标准取样电阻,该电阻不可随意替换,否则会影响控温精度。 3.2 D7与D8为钳位二极管,确保输入T端电压不大于+5V、不小于0V;但并不是所有情况下均需要这两个二极管,当RT1引线较短时可根据实际情况不使用这两个二极管。 3.3 E5起到平滑波形的作用, 一般选10uF/16V电解电容,当RT1引线较长时,要求使用100uF/16V电解电容;若E5漏电,T端电压就会被拉低,导致:制冷时压缩机不工作,制热时压缩机不停机。 3.4 R11和C7形成RC滤波电路,滤除电路中的尖脉冲;C7同样会出现E5故障现象。 3.5 电路中,RT1就是我们常说的感温头,实际上它是一个负温度系数热敏电阻,当温度升高时它的阻值下降,温度降低时阻值变大。50℃时,阻值为3.45KΩ。25℃时,为10KΩ;0℃时,为35.2KΩ 。

具体温度与阻值的关系见附表。若RT1开路或短路,空调器不工作,并显示故障代码;若RT1阻值发生漂移(大于或小于标准阻值)则空调器压缩机或关或常开或出现保护代码。空调温度传感器原理及故障分析空调温度传感器为负温度系数热敏电阻,简称NTC,其阻值随温度升高而降低,随温度降低而增大。25℃时的阻值为标称值。NTC常见的故障为阻值变大、开路、受潮霉变阻值变化、短路、插头及座接触不好或漏电等,引起空调CPU检测端子电压异常引起空调故障。空调常用的NTC有室内环温NTC、室内盘管NTC、室外盘管NTC等三个,较高档的空调还应用外环温NTC、压缩机吸气、排气NTC等。NTC在电路中主要有如图一所示两种用法,温度变化使NTC阻值变化,CPU端子的电压也随之变化,CPU根据电压的变化来决定空调的工作状态。本文附表为几种空调的NTC参数。室内环温NTC作用:室内环温NTC根据设定的工作状态,检测室内环境的温度自动开停机或变频。定频空调使室内温度温差变化范围为设定值+1℃,即若制冷设定24℃时,当温度降到23℃压缩机停机,当温度回升到25℃压缩机工作;若制热设定24℃时,当温度升到25℃压缩机停机,当温度回落到23℃压缩机工作。值得说明的是温度的设定范围一般为15℃—30℃之间,因此低于15℃的环温下制冷不工作,高于30℃的环温下制热不工作。变频空调根据设定的工作温度和室内温度的差值进行变频调速,差值越大压缩机工作频率越高,因此,压缩机启动以后转速很快提升。室内盘管NTC 室内盘管制冷

切削温度测量方法概述..

热工测量仪表作业 切削温度测量方法概述Summary of Cutting Temperature Measurement Methods 作者姓名:王韬 专业:冶金工程 学号:20101360 指导老师:张华 东北大学 Northeastern university 2013年6月

切削温度测量方法概述 王韬 东北大学 摘要:高速切削加工现已成为当代先进制造技术的重要组成部分,切削热与切削温度是高速切削技术研究的重要内容。本文根据国内外高速切削温度测量方法的研究现状,对目前常用的切削温度测量方法进行了分类和比较,主要包括接触式测温、非接触式测温和其他测量方法三种,详细介绍了热电偶法、光辐射法、热辐射法、金相结构法等几种常用切削测温方法的基本原理、优缺点、适用范围及发展状况;介绍了几种新型高速切削温度测量方法。最后对各种测量方法作了比较,探讨了切削温度实验测量方法研究的发展方向。 关键词: 切削温度,测量方法,发展状况 Summary of Cutting Temperature Measurement Methods Wang Tao Northeastern university Abstract: High-speed machining has become an important part of the contemporary advanced manufacturing technology. Cutting heat and cutting temperature is the important content of high speed cutting technology research. This paper gives the background to the measurement of metal cutting temperatures and a review of the practicality of the various methods of measuring cutting temperature while machining metals. Classify the cutting temperature measurement methods, mainly including non-contact temperature measurement, non-contact temperature test of other three kinds of measurement methods; Introduced the thermocouple method, radiation method, radiation method and metallographic structure of the basic principle of several kinds of commonly used cutting temperature measurement method, the advantages and disadvantages, applicable scope and the status of the development; Several new high-speed cutting temperature measurement methods are introduced. Finally discusses the development direction of cutting temperature experiment measurement method research for a variety of measurement methods. Keywords:metal cutting, cutting temperature, measurement method

温度测量方法

材料物理专业杨洁学号:0743011033 温度测量方法材料物理专业一班杨洁学号:0743011033 我们大家都知道温度是表征物体冷热程度的物理量. 而测量温度的标尺是温度计,其按照测量方式可以分为接触式和非接触式两种. 通常来说的接触式测量仪表比较简单,可靠,测量精度高,但是因为测温元件与被测介质需要进行充分的热交换,所以其需要一定的时间才能达到热平衡, 所以,存在测温延迟现象,同时受耐高温和耐低温材料的限制,不能应用于这些极端的温度测量.非接触式仪表测温仪是通过热辐射的原理来测量温度的,测温元件不需要与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体发射率,测量距离,烟尘和水汽等外界因素的影响,其测量误差较大. 下面就简单介绍几种温度计: 1,气体温度计:利用一定质量的气体作为工作物质的温度计.用气体温度计来体现理想气体温标为标准温标. 用气体温度计所测得的温度和热力学温度相吻合.气体温度计是在容器里装有氢或氮气(多用氢气或氦气作测温物质,因为氢气和氦气的液化温度很低,接近于绝对零度,故它的测温范围很广) ,它们的性质可外推到理想气体.这种温度计有两种类型:定容气体温度计和定压气体温度计.定容气体温度计是气体的体积保持不变,压强随温度改变.定压气体温度计是气体的压强保持不变,体积随温度改变. 2,电阻温度计:根据导体电阻随温度而变化的规律来测量温度的温度计. 最常用的电阻温度计都采用金属丝绕制成的感温元件, 主要有铂电阻温度计和铜电阻温度计,在低温下还有碳,锗和铑铁电阻温度计.精密的铂电阻温度计是目前最精确的温度计,温度覆盖范围约为14~903K,其误差可低到万分之一摄氏度,它是能复现国际实用温标的基准温度计.我国还用一等和二等标准铂电阻温度计来传递温标,用它作标准来检定水银温度计和其他类型的温度计.分为金属电阻温度计和半导体电阻温度计,都是根据电阻值随温度的变化这一特性制成的.金属温度计主要有用铂,金,铜,镍等纯金属的及铑铁,磷青铜合金的;半导体温度计主要用碳,锗等.电阻温度计使用方便可靠,已广泛应用.它的测量范围为-260℃至600℃左右. 3,温差电偶温度计:利用温差电偶来测量温度的温度计.将两种不同金属导体的两端分别连接起来,构成一个闭合回路,一端加热,另一端冷却,则两个接触点之间由于温度不同,将产生电动势,导体中会有电流发生.因为这种温差电动势是两个接触点温度差的函数,所以利用这一特性制成温度计.若在温差电偶的回路里再接入一种或几种不同金属的导线, 所接入的导线与接触点的温度都是均匀的,对原电动势并无影响,通过测量温差电动势来求被测的温度,这样就构成了温差电偶温度计.这种温度计测温范围很大.例如,铜和康铜构成的温差电偶的测温范围在200~400℃之间;铁和康铜则被使用在200~1000℃之间;由铂和铂铑合金(铑10%)构成的温差电偶测温可达千摄氏度以上;铱和铱铑(铑50%)可用在2300℃;若用钨和钼(钼25%)则可高达2600℃. 4,高温温度计:是指专门用来测量500℃以上的温度的温度计,有光测温度计,比色温度计和辐射温度计.高温温度计的原理和构造都比较复杂,这里不再讨论.其测量范围为500℃至3000℃以上,不适用于测量低温. 2010-3-25 1 材料物理专业杨洁学号:0743011033 5,指针式温度计:是形如仪表盘的温度计,也称寒暑表,用来测室温,是用金属的热胀冷缩原理制成的.它是以双金属片做为感温元件,用来控制指针. 双金属片通常是用铜片和铁片铆在一起,且铜片在左,铁片在右.由于铜的热胀冷缩效果要比铁明显的多,因此当温度升高时,铜片牵拉铁片向右弯曲,指针在双金属片的带动下就向右偏转(指向高温) ;反之,温度变低,指针在双金属片的带动下就向左偏转(指向低温) . 6,玻璃管温度计:玻璃管液体温度计是应用最广泛的一种温度计,其结构简单,使用方便,准确度高,价格低廉.按用途分类,可分为工业,标准和实验室用三种.标准玻璃温度计是成套供应的,可以作为检定其他温度计用,准确度可达0.05 ~ 0.1 摄氏度;工业用玻璃温度计为了避免使用是被碰碎,在玻璃管外通常由金属保护套管,仅露出标尺部分,供操作人员读数.实验室用的玻璃管温度计的形式和标准的相仿,准确度也较高. 7,压力式温度计:新一代液体压力式温度计以及由此开发的系列化测温仪表,克服了原仪表性能单一,可靠性差以及温包积大的缺点,并将测温元件体积缩小到原

传感器原理与应用习题第7章热电式传感器

《传感器原理与应用》及《传感器与测量技术》习题集与部分参考答案 教材:传感器技术(第3版)贾伯年主编,及其他参考书 第7章热电式传感器 7-1 热电式传感器有哪几类?它们各有什么特点? 答:热电式传感器是一种将温度变化转换为电量变化的装置。它可分为两大类:热电阻传感器和热电偶传感器。 热电阻传感器的特点:(1)高温度系数、高电阻率。(2)化学、物理性能稳定。(3)良好的输出特性。(4).良好的工艺性,以便于批量生产、降低成本。 热电偶传感器的特点:(1)结构简单(2)制造方便(3)测温范围宽(4)热惯性小(5)准确度高(6)输出信号便于远传 7-2 常用的热电阻有哪几种?适用范围如何? 答:铂、铜为应用最广的热电阻材料。铂容易提纯,在高温和氧化性介质中化学、物理性能稳定,制成的铂电阻输出-输入特性接近线性,测量精度高。铜在-50~150℃范围内铜电阻化学、物理性能稳定,输出-输入特性接近线性,价格低廉。当温度高于100℃时易被氧化,因此适用于温度较低和没有侵蚀性的介质中工作。 7-3 热敏电阻与热电阻相比较有什么优缺点?用热敏电阻进行线性温度测量时必须注意什么问题? 7-4 利用热电偶测温必须具备哪两个条件? 答:(1)用两种不同材料作热电极(2)热电偶两端的温度不能相同 7-5 什么是中间导体定律和连接导体定律?它们在利用热电偶测温时有什么实际意义? 答:中间导体定律:导体A、B组成的热电偶,当引入第三导体时,只要保持第三导体两端温度相同,则第三导体对回路总热电势无影响。利用这个定律可以将第三导体换成毫伏表,只要保证两个接点温度一致,就可以完成热电势的测量而不影响热电偶的输出。 连接导体定律:回路的总电势等于热电偶电势E AB(T,T0)与连接导线电势E A’B’(Tn,T0)的代数和。连接导体定律是工业上运用补偿导线进行温度测量的理论基础。 7-6 什么是中间温度定律和参考电极定律?它们各有什么实际意义? 答:E AB(T,Tn,T0)=E AB(T,Tn)+E AB(Tn,T0) 这是中间温度定律表达式,即回路的总热电势等于E AB(T,Tn)与E AB(Tn,T0)的代数和。Tn为中间温度。中间温度定律为制定分度表奠定了理论基础。 7-7 镍络-镍硅热电偶测得介质温度800℃,若参考端温度为25℃,问介质的实际温度为多少? 答:t=介质温度+k*参考温度(800+1*25=825) 7-8 热电式传感器除了用来测量温度外,是否还能用来测量其他量?举例说明之。 7-9 实验室备有铂铑-铂热电偶、铂电阻器和半导体热敏电阻器,今欲测量某设备外壳的温度。已知其温度约为300~400℃,要求精度达±2℃,问应选用哪一种?为什么?

常见的温度检测方法

常见温度检测方法分析 摘要:在目前工农业生产和国民经济生活中,温度测量日益重要,新型温度传感器不断涌现,通过对现代常用温度传感器的工作原理和特性的分析,便于在工作中根据具体情况,选用提供依据,以减少生活生产中不必要的损失。 关键词:温度;检测方法;传感器;测量 Study On Methods Of Measuring Teamperature Abstract:In the of industrial and agricultural Produetionornationaleconomicife,measuringtemperatureisinereasinglyimportant,andmoderntemrerat uresensorseontinuouslyarise.Prineipleand charaeterofmoderntemperaturesensorsanalyzedhere is usefulforseientific eworkers.It is foundmentalto choicetemperaturesensorsforuser aeeordingto praetieal circumstances ,So that it can reduce unnecessary lossin thelife production. Keywords:temperature:sensor;measure 温度是科学技术中最基本的物理量之一, 物理、化学、热力学、飞行力学、流体力学等学科都离不开温度,它也是工业生产中最普遍最重要的参数之一。许多工农业产品的质量都与温度密切相关,比如, 离开合适的温度, 许多化学反应就不能正常进行甚至不能进行;没有合适的温度炉窑就不能炼制出合格的产品;没有合适的温度环境, 农作物就不能正常生长, 许多电子仪器就不能正常工作, 粮仓的储粮就会变质霉烂, 家禽的孵化也不能进行。可见, 温度的测量与控制十分重要。 测温方法很多,仅从测量体与被测介质接触与否来分,有接触式测温与非接触式测温两大类。接触式测温是基于热平衡原理,测温敏感元件必须与被测介质接触,使两者处于同一热平衡状态,具有同一温度,如水银温度计,热电偶温度计等就是利用此法测量。非接触式测温是利用物质的热辐射原理,测温元件不需与被测介质接触,而是通过接收被测物体发出的辐射热来判断温度,如辐射温度计,光纤温度计等[1]。 接触式测温简单、可靠,且测量精度高。但是由于测温元件需与被测介质接触后进行的热交换,才能达到热平衡,因而产生了滞后现象。另外,由于受到耐高温材料的限制,接触式测量不能应用于很高温度的测量。非接触式测温,由于测温元件不与被测介质接触,因而其测温范围很广,其测温上限原则上不受限制,测温速度也较快,而且可以对运动体进行测量。但是,它受到物体的发射率,被测对象到仪表之间的距离,烟尘和水汽等其它介质的影响,一般测温误差较大,目前使用较广的是接触式测温。下面介绍几种现代常用温度测量方法。 1电阻温度传感器 这种传感器以电阻作为温度敏感元件,根据敏感材料不同又可分成热电阻式和热敏电阻式,热电阻式一般用金属材料制成, 如铂、铜、镍等1热敏电阻是以半导体材料制成的陶瓷器件, 如锰、镍、钴等金属的氧化物与其它化合物按不同配比烧结而成。 热电阻的温度系数一般为正值,以铂电阻为例, 其阻值Rt 与温度间的关系为Rt=R0(1+At+Bt2), 0℃≤t≤650℃; Rt= R0[1+At+Bt2+Ct3(t- 100) ],- 200℃≤t≤0℃, 其中A = 319684×10- 8/℃, B= - 518470

技术︱使用热电偶能够准确测量表面温度

技术︱使用热电偶能够准确测量表面温度吗? 摘要 虽然热电偶是最常见的表面温度测量方法,但因为热电偶的读数实际上是其自身电流温度的测量值,所以测量的挑战始终是如何让热电偶正确匹配已测表面的热量。但是,当依靠热电偶的测量值作为确定发射率的参考值时,很少有红外热像师会考虑这一测量值的不确定性。 本文将阐述热电偶背后的原理,并通过示范,说明其在使用过程中存在的诸多问题。另外,我们也将重点介绍优先使用红外热像仪和热电偶组合的情况,以及红外热像仪本身作为测量表面温度出众方法的案例。 引言 大量的商业和工业流程依靠精确的温度测量。但是否精确执行了测量?测温方式以及测温精度是所有应用中都必须回答的两个极为重要的问题。我们将在全文中对这一话题进行讨论。 本文的核心主旨围绕“使用热电偶精确测量表面温度”这一个最大的测温难题。作者坦诚表示,虽然热电偶能够提供液体和气体的精确测温读数,但使用热电偶进行表面测温却存在诸多独特的问题。 背景资料

“如果我们想要测温,为什么不能只用热电偶?”这是红外成像讲师常会问的一个问题,让课堂里使用红外热像仪的学生产生有趣的思考。当被问到热电偶安装时,很多学员建议使用电工胶带,因为它价格便宜,易装易拆。一位来自暖通空调行业的学员表示,他通常会在压缩机上用电工胶带安装热电偶,相比其他仪表,更倾向于依靠热电偶的测温读数。 临时性的安装热电偶可能是一个最糟糕的方法,因为它对测量表面温度来说并不能达到一致、准确的结果。通过粘合进行永久性的安装对于需要获得一致测量结果的人员来说是一个首选方法。当永久性的安装方法实施起来不方便也不具可行性时,红外成像技术会是一个首选方案,但并不是唯一的。 过去的观点 物理学家Thomas Seebeck在1821年发现了“热电效应”,即受到温度梯度影响的任何导体会形成电压。Seebeck 错误解读了这一效应,认为电流具有磁效应,而非电效应。事实上,在1822年和1823年提交给普鲁士科学院的报告中,对他的观察结果做了如下描述:“是温差导致了金属和矿石的磁性极化”。 Leopoldi Nobili和Macedonio Melloni这两位意大利物理学家继续Seebeck创造温差电池的工作。这种温差电池现在被称为“温差电堆”。当Nobili和Melloni将温差电堆与电流计耦合时,他们成为第一批能够测量红外辐射的物理学家。 热电偶的基本结构

相关主题