搜档网
当前位置:搜档网 › 常用三种加速老化测试模型

常用三种加速老化测试模型

常用三种加速老化测试模型
常用三种加速老化测试模型

在环境模拟试验中,常常会遇到这样一个问题:产品在可控的试验箱环境中测试若干小时相当于产品在实际使用条件下使用多长时间?这是一个亟待解决的问题,因为它的意义不仅仅在于极大地降低了成本,造成不必要的浪费,也让测试变得更具目的性和针对性,有利于测试人员对全局的掌控,合理进行资源配置。

在众多的环境模拟试验中,温度、湿度最为常见,同时也是使用频率最高的模拟环境因子。实际环境中温度、湿度也是不可忽略的影响产品使用寿命的因素。所以,迄今将温度、湿度纳入考量范围所推导出的加速模型在所有的老化测试加速模型中占有较大的比重。由于侧重点的不同,推导出的加速模型也不一样。下面,本文将解读三个极具代表性的加速模型。

模型一.只考虑热加速因子的阿伦纽斯模型(Arrhenius Mode)

某一环境下,温度成为影响产品老化及使用寿命的绝对主要因素时,采用单纯考虑热加速因子效应而推导出的阿伦纽斯模型来描述测试,其预估到的结果会更接近真实值,模拟试验的效果会更好。此时,阿伦纽斯模型的表达式为:

AF=exp{(E

a /k)·[(1/T

u

)-(1/T

t

)]}

式中:

AF是加速因子;

E

a

是析出故障的耗费能量,又称激活能。不同产品的激活能是不一样的。一

般来说,激活能的值在0.3ev~1.2ev之间;

K是玻尔兹曼常数,其值为8.617385×10-5;

T

u

是使用条件下(非加速状态下)的温度值。此处的温度值是绝对温度值,以K(开尔文)作单位;

T

t

是测试条件下(加速状态下)的温度值。此处的温度值是绝对温度值,以K(开尔文)作单位。

案例:某一客户需要对产品做105℃的高温测试。据以往的测试经验,此种

产品的激活能E

a

取0.68最佳。对产品的使用寿命要求是10年,现可供测试的样品有5个。若同时对5个样品进行测试,需测试多长时间才能满足客户要求?

已知的信息有T

t 、E

a

,使用的温度取25℃,则先算出加速因子AF:

AF=exp{[0.68/(8.617385×10-5)]·【[1/(273+25)]- [1/(273+105)]】}

最终:

AF≈271.9518

又知其目标使用寿命:

L

目标

=10years=10×365×24h=87600h 故即可算出:

L

测试= L

目标

/AF=87600/271.9518h=322.1159h≈323h

现在5个样品同时进行测试,则测试时长为:

L

最终

=323/5h=65h

这即是说明,若客户用5个产品同时在105℃高温下测试65h后产品未发生故障,则说明产品的使用寿命已达到要求。

通过这个案例可以看出,利用阿伦纽斯模型可以提前预估测试的相关信息,指导客户该怎样进行测试才既能达到目标值而又最大限度的降低成本。本案例中,若客户急需测试结果,那么可以投入10个或者更多的样品来缩短整个测试时长;或者在允许的情况下进一步提高温度,加快完成测试。根据需求灵活的调整测试方案,这才能更完美地达到目标,提高工作效率,省去一些不必要的费用。

模型二.综合温度及湿度因素的阿伦纽斯模型(Arrhenius Mode With Humidity)综合温度及湿度因素的阿伦纽斯模型的表达式为:

AF=exp{(E

a /k)·[(1/T

u

)-(1/T

t

)]+(RH

t

^n-RH

u

^n)}

式中:

AF是加速因子;

E

a

是析出故障的耗费能量,又称激活能。不同产品的激活能是不一样的。一般来说,激活能的值在0.3ev~1.2ev之间;

K是玻尔兹曼常数,其值为8.617385×10-5;

T

u

是使用条件下(非加速条件下)的温度值。此处的温度值是绝对温度值,以K(开尔文)作单位;

T

t

是测试条件下(加速条件下)的温度值。此处的温度值是绝对温度值,以K(开尔文)作单位;

RH

u

是使用条件下(非加速状态下)的相对湿度值;

RH

t

是测试条件下(加速状态下)的相对湿度值。

模型二可以说是模型一的拓展,它只是在模型一的基础上简单地添加了湿度这一影响因素。长期以来的测试经验表明,用模型二来解释某些情况下湿度对加速测试的影响并不准确。所以,一种更为准确的综合考虑温湿度影响的模型将被提出,这即是下文将介绍的另外一种模型—Hallberg-Peck模型。

模型三.Hallberg-Peck模型

Hallberg-Peck模型综合考虑了温度、湿度影响,它相比于模型二更能准确的描述在温湿度条件下进行的老化测试,其表达式为:

AF=(RH

t /RH

u

)3·exp{(E

a

/k)·[(1/T

u

)-(1/T

t

)]}

式中:

AF是加速因子;

E

a

是析出故障的耗费能量,又称激活能。不同产品的激活能是不一样的。一般来说,激活能的值在0.3ev~1.2ev之间;

K是玻尔兹曼常数,其值为8.617385×10-5;

T

u

是使用条件下(非加速条件下)的温度值。此处的温度值是绝对温度值,以K(开尔文)作单位;

T

t

是测试条件下(加速条件下)的温度值。此处的温度值是绝对温度值,以K(开尔文)作单位;

RH

u

是使用条件下(非加速状态下)的相对湿度值;

RH

t

是测试条件下(加速状态下)的相对湿度值。

案例:某一半导体元件生产厂家,经过长期研究开发出一款新产品。初步将新产品的MTBF定为20年。新产品日常的使用环境为45℃,25%RH。为了验证其使用寿命是否达到要求,厂家要把新产品置于85℃,85%RH的高温高湿条件下做加速测试。现客户共有3款新产品,仅2款可用于测试,剩余一款作为其余两款试验后对比之用。厂家现在希望能最快地完成测试,得到相关结果,那这一最快时间是多少?

现在,采用Hallberg-Peck模型来解答这一问题。已知:

RH

t =85%,RH

u

=25%,T

t

=85℃,T

u

=45℃,E

a

=1.0(按类似产品的经验值)

则有:

AF=(85%/25%)3·exp{[1/(8.617385×10-5)]·【[1/(273+45)]- [1/(273+85)]】} 最终:

AF=2318.42204

又知其目标使用寿命:

MTBF

目标

=20years=20×365×24h=175200h

故即可算出测试时长:

T

测= MTBF

目标

/AF=175200/2318.42204h=75.5686h≈76h

现在最多只能用2个产品同时进行测试,则测试时长为:

T

最终

=76/2h=38h

这即是说明,若客户想得到最快的测试结果需同时用2个产品进行85℃,85%RH的高温高湿测试38h,若之后产品未发生故障,则可说明其MTBF已达目标。

综合以上三个模型可以看出,他们都有一些共通的参数,如E

a 、k、T

u

、T

t

其中k是一恒量,其值始终不会变,变化的是E

a 、T

u

、T

t

,T

u

和T

t

是人为设定的,

它的变化有很强的随机性。而E

a

则不同,它是析出故障所耗费的能量,当故障

具体到某一种特定类型时,其值会在很小的范围内产生波动,几乎可认为不变。

以下是一些常见故障的E

a

值:

氧化膜破坏: 0.3ev

离子性(Si02中Na离子漂移) 1.0---1.4ev

离子性(Si-SiO2界面的慢陷阱) 1.0ev

电迁移造成短路或开路 0.6ev

铝腐蚀 0.6---0.9ev

金属间化合物生长 0.5---0.7ev

另外,GR-468标准中还推荐了一部分Ea值以供选取。不过,选择E

值的最

a

佳方法就是从产品的相关数据库得出。这样得出的值更真实准确,比一些推荐值更具说服力。

通过这三个模型可以看到,在进行以温湿度为主的测试时,需先对产品所处的使用环境有个彻底详尽的了解,然后确定何为主要环境因素,继而确定相应的加速测试模型,在条件允许的情况下以最优的方法来解决问题,以求达到事半功倍的效果。

现代社会办事讲求的是高效率高质量,谁能在最短的时间内高质量地完成工作,谁必将脱颖而出,成为胜者。同样,运用在测试当中,就是谁能在最短时间保质保量地完成既定测试目标,进而降低生产成本,缩短研制周期,对产品的市场占有率有着积极的促进作用

加速老化试验预测橡胶使用寿命(自己翻译过来的)

加速试验预测橡胶组件的使用寿命(翻译的) 摘要:橡胶材料的性能及橡胶组件使用寿命的预测、估算在橡胶组件的设计过程中有着重要的作用。我们通过加速老化试验和模拟相结合的办法,对橡胶材料在氧气环境中的寿命预测做了很多年的研究。这篇论文研究了热老化对橡胶性能的影响,同时也对冷冻机用三元乙丙橡胶(EPDM),丁腈橡胶(NBR)橡胶组件的使用寿命进行了预测。实验结果表明橡胶组分影响着橡胶的交联密度;老化时间及活化能可以很好的用以描述老化行为;通过单轴拉伸试验得到应力应变曲线。为了预测EPDM,NBR的使用寿命,对这两种橡胶做了50℃到100℃,1天到180天的加速老化试验,并测试了一系列的物理性能试验。通过阿伦尼乌斯方程进行了计算,并通过压缩永久变形试验,本文提出了一系列方程用以预测橡胶材料使用寿命。 关键词:加速试验,丁腈橡胶,活化能,交联,三元乙丙橡胶,热老化,寿命预测,橡胶材料。 符号缩写:C.S 压缩永久变形;d0 样品的厚度;d1压缩状态下样品厚度;d2 卸载后厚度k 交联密度变化程度;(K)T 反应速率;A,B 常数;E 反应活化能;R 气体常数;T 绝对温度 I 前言 橡胶是一种最为通用的材料,有着广泛的用途,甚至很难说清它到底有多少用途。从普通的家用,商用,汽车制造等到高尖端的航天航空工业都有橡胶的身影。许多橡胶组件在使用中需要承受一定的机械力作用,为了保证橡胶组件的安全性和可靠性,使用寿命的预测估算是一项关键技术。如何防止橡胶组件在使用过程中损坏是一个关键问题。橡胶组件在使用过程中承受着一定的载荷,还受到温度,辐射以及一些其它的有害物质的影响。所有的影响因素结合在一起,导致了橡胶物理及化学结构的改变,最终表现为橡胶机械性能的降低。橡胶在使用了一段时间后,开始老化,通常表现为挺性增加,阻尼性能下降。老化不光光影响了性能,同时也影响了组件的使用寿命。橡胶组件所处环境的不同,使得它们的降解方式也不一样。橡胶组件的逐步老化降解,不仅与外部因素有关,同时与橡胶基体本身以及橡胶里面的添加剂有关。广义上讲,橡胶的老化是这些因素的一个加和。这些因素具体起到了多大的作用,很难计算出来。它们的分类可以见表1。 表1 橡胶老化因素表 中,直到这些橡胶组件被替换下来之前,它们必须保持足够的物理机械性能,但是受到温度、湿度、紫外光、臭氧、化学物质、载荷的影响,它们的使用寿命又很难估算。所以找到橡胶的统一属性和它处于的环境影响,并预计它的寿命显得非常重要。通过对橡胶材料降解老化的研究,可以为提高使用寿命,增加可靠性提供必要的条件。 橡胶硫磺硫化体系形成的交联网络,随着热老化的不断进行而发生着改变。受到热老化后,高硫磺含量硫化体系形成的交联网络的变化要大于低硫磺含量硫化体系所形成的交联网络。 为了解决工程实践中的一些问题,橡胶材料物理性能受老化影响的程度,橡胶组件使用

NBR加速老化试验预测橡胶使用寿命

加速老化预测NBR橡胶的使用寿命 摘要:橡胶材料的性能及橡胶组件使用寿命的预测、估算在橡胶组件的设计过程中有着重要的作用。我们通过加速老化试验和模拟相结合的办法,对橡胶材料在氧气环境中的寿命预测做了很多年的研究。这篇论文研究了热老化对橡胶性能的影响,同时也对冷冻机用,丁腈橡胶(NBR)橡胶组件的使用寿命进行了预测。实验结果表明橡胶组分影响着橡胶的交联密度;老化时间及活化能可以很好的用以描述老化行为;通过单轴拉伸试验得到应力应变曲线。为了预测NBR的使用寿命,对NBR橡胶做了50℃到100℃,1天到180天的加速老化试验,并测试了一系列的物理性能试验。通过阿伦尼乌斯方程进行了计算,并通过压缩永久变形试验,本文提出了一系列方程用以预测橡胶材料使用寿命。 关键词:加速试验,丁腈橡胶,活化能,交联,三元乙丙橡胶,热老化,寿命预测,橡胶材料。 符号缩写:C.S 压缩永久变形;d0 样品的厚度;d1压缩状态下样品厚度;d2 卸载后厚度 k 交联密度变化程度;(K)T 反应速率;A,B 常数;E 反应活化能;R 气体常数;T 绝对温度 I 前言 橡胶是一种最为通用的材料,有着广泛的用途,甚至很难说清它到底有多少用途。从普通的家用,商用,汽车制造等到高尖端的航天航空工业都有橡胶的身影。许多橡胶组件在使用中需要承受一定的机械力作用,为了保证橡胶组件的安全性和可靠性,使用寿命的预测估算是一项关键技术。如何防止橡胶组件在使用过程中损坏是一个关键问题。橡胶组件在使用过程中承受着一定的载荷,还受到温度,辐射以及一些其它的有害物质的影响。所有的影响因素结合在一起,导致了橡胶物理及化学结构的改变,最终表现为橡胶机械性能的降低。橡胶在使用了一段时间后,开始老化,通常表现为挺性增加,阻尼性能下降。老化不光光影响了性能,同时也影响了组件的使用寿命。橡胶组件所处环境的不同,使得它们的降解方式也不一样。橡胶组件的逐步老化降解,不仅与外部因素有关,同时与橡胶基体本身以及橡胶里面的添加剂有关。广义上讲,橡胶的老化是这些因素的一个加和。这些因素具体起到了多大的作用,很难计算出来。它们的分类可以见表1。 表1 橡胶老化因素表 冷冻机中空压机部分所使用的橡胶组件的使用寿命是它的一项关键指标。在使用过程中,直到这些橡胶组件被替换下来之前,它们必须保持足够的物理机械性能,但是受到温度、湿度、紫外光、臭氧、化学物质、载荷的影响,它们的使用寿命又很难估算。所以找到橡胶的统一属性和它处于的环境影响,并预计它的寿命显得非常重要。通过对橡胶材料降解老化的研究,可以为提高使用寿命,增加可靠性提供必要的条件。 橡胶硫磺硫化体系形成的交联网络,随着热老化的不断进行而发生着改变。受到热老化后,高硫磺含量硫化体系形成的交联网络的变化要大于低硫磺含量硫化体系所形成的交联网络。

常用三种加速老化测试模型

在环境模拟试验中,常常会遇到这样一个问题:产品在可控的试验箱环境中测试若干小时相当于产品在实际使用条件下使用多长时间?这是一个亟待解决的问题,因为它的意义不仅仅在于极大地降低了成本,造成不必要的浪费,也让测试变得更具目的性和针对性,有利于测试人员对全局的掌控,合理进行资源配置。 在众多的环境模拟试验中,温度、湿度最为常见,同时也是使用频率最高的模拟环境因子。实际环境中温度、湿度也是不可忽略的影响产品使用寿命的因素。所以,迄今将温度、湿度纳入考量范围所推导出的加速模型在所有的老化测试加速模型中占有较大的比重。由于侧重点的不同,推导出的加速模型也不一样。下面,本文将解读三个极具代表性的加速模型。 模型一.只考虑热加速因子的阿伦纽斯模型(Arrhenius Mode) 某一环境下,温度成为影响产品老化及使用寿命的绝对主要因素时,采用单纯考虑热加速因子效应而推导出的阿伦纽斯模型来描述测试,其预估到的结果会更接近真实值,模拟试验的效果会更好。此时,阿伦纽斯模型的表达式为: AF=exp{(E a/k)·[(1/T u)-(1/T t)]} 式中: AF是加速因子; E a是析出故障的耗费能量,又称激活能。不同产品的激活能是不一样的。一般来说,激活能的值在0.3ev~1.2ev之间;

K是玻尔兹曼常数,其值为8.617385×10-5; T u是使用条件下(非加速状态下)的温度值。此处的温度值是绝对温度值,以K(开尔文)作单位; T t是测试条件下(加速状态下)的温度值。此处的温度值是绝对温度值,以K(开尔文)作单位。 案例:某一客户需要对产品做105℃的高温测试。据以往的测试经验,此种产品的激活能E a取0.68最佳。对产品的使用寿命要求是10年,现可供测试的样品有5个。若同时对5个样品进行测试,需测试多长时间才能满足客户要求? 已知的信息有T t、E a,使用的温度取25℃,则先算出加速因子AF:AF=exp{[0.68/(8.617385×10-5)]·【[1/(273+25)]- [1/(273+105)]】}最终: AF≈271.9518 又知其目标使用寿命: L目标=10years=10×365×24h=87600h 故即可算出: L测试= L目标/AF=87600/271.9518h=322.1159h≈323h 现在5个样品同时进行测试,则测试时长为:

塑胶类材料人工加速老化测试常用那些标准

塑胶类材料人工加速老化测试常用那些标准 塑料材料由于其组成的不同,在不同的环境情况下会存在不同程度的老化情况。了解材料或者产品耐老化的能力如何,就需要做一些人工加速老化试验,以下是一些常见的老化测试项目以及标准: 氙灯老化( Xenon-Arc Weathering)常用的测试标准: ASTM G155-05a氙灯老化测试实验; ASTM D2565户外用塑料的氙弧型曝光装置的标准实施规范; ASTM D4459室内使用塑料氙弧灯曝光加速老化试验; ASTM D3424-01印刷品氙灯老化测试; ASTM D4355土工布氙灯老化试验; ISO 4892-2:2006实验室光源曝露-氙灯; ISO 11341 涂料氙灯老化试验; GB/T 16422.2:1999 塑料实验室光源曝露试验-氙灯; GB/T 1865 色漆和清漆氙灯老化试验; AATCC 169 纺织品耐气候测试:氙弧灯曝晒法; SAE J1885、SAE J2412、SAE J1960、SAE J2527汽车内饰件氙灯老化测试. 碳弧灯老化(Carbon-Arc Weathering)测试常用的测试标准 ASTM G152,cycle 1,2,6碳弧光老化测试;

ASTM D3361涂料碳弧光老化测试; ASTM D822 涂料碳弧光老化测试; ASTM D1499碳弧光老化测试; JIS D0205-1987 汽车零件耐候性试验方法。 紫外老化( QUV Weathering)常用的测试标准 ASTM G154/G53非金属材料荧光紫外灯曝露试验操作; ASTM D4329 塑料的荧光紫外线曝露试验; ASTM D4587 涂料老化测试(紫外老化); AATCC 186 耐气候性:紫外线和湿度暴露; ISO 4892-3:2006 实验室光源曝露-荧光紫外灯; ISO 11507 涂层暴露于荧光紫外灯和水; SAE J2020汽车外饰材料UV快速老化测试; GB/T 16422.3紫外光老化试验标准。 臭氧老化(Ozone Aging)测试常用的测试标准: ASTM D1149橡胶臭氧老化测试; ASTM D1171 橡胶臭氧老化测试; ISO 10960 橡胶和塑料软管臭氧老化测试; ISO 7326 橡胶和塑料软管静态条件下抗臭氧性能评估;

加速老化实验

山东华普医疗科技有限公司 加速老化试验 版本/修改状态:生效日期: 文件编号:发放号:控制状态:拟制:审核:批准:

加速老化实验计划 一、使用范围 本公司生产的一次性使用氧气面罩,一次性使用鼻氧管,医用雾化器及其外包装。 二、过程要求 1、微生物屏障 2、无毒性 3、物理特性的符合性 4、化学特性的符合性 5、生物特性的符合性 三、预计完成时间: 老化实验前 全能性实验:2012年5月20日前 包装验证实验:2012年5月22日前 阻菌实验:2012年5月24日前 老化实验时间:2012年5月26日前 加速第一年验证 无菌实验:2012年6月18日前 全能性实验:2012年6月25日前 包装验证实验:2012年6月25日前 阻菌实验:2012年6月27日前 加速第二年验证 无菌实验:2012年7月1日前 全能性实验:2012年7月8日前 包装验证实验:2012年7月8日前 阻菌实验:2012年7月10日前 加速第三年验证 无菌实验:2012年7月15日前 全能性实验:2012年7月22日前 包装验证实验:2012年7月22日前 阻菌实验:2012年7月24日前 加速第四年验证 无菌实验:2012年7月29日前 全能性实验:2012年8月6日前 包装验证实验:2012年8月6日前

阻菌实验:2012年8月8日前 加速第五年验证 无菌实验:2012年8月13日前 全能性实验:2012年8月20日前 包装验证实验:2012年8月20日前 阻菌实验:2012年8月22日前 目的:在有效期三年内和三年有效期外,通过对我公司产品检验实验,来验证我们的产品规定为三年的有效期是有科学依据的,可靠有效的。

人工紫外加速老化和自然老化测试结果间的相关性

人工紫外加速老化和自然老化测试结果间的相关性 长期以来,人工加速老化和自然老化测试结果间的相关性问题一直是业内关注的热点。一般来说,工业上要求快速地得出老化测试结果,同时要求实验室人工加速老化和自然老化测试结果间有较好的相关性,然而实际上这两个要求是相互矛盾的。人工加速老化方法使用比实际环境更高的测试温度、更短波长光源、更大的辐照强度,在加速材料老化进程的同时,降低了与自然条件材料老化结果的相关性。 QUV加速老化设备配备的UVA-340 灯管提供了一个新的解决方案。UVA-340紫外灯光源能很好地模拟太阳光谱中短波紫外光( <365 nm部分)。由于UVA-340紫外灯光源所模拟的太阳短波紫外光通常是引起聚合物破坏的主要原因,理论上这种方法的测试结果和户外自然老化的相关性较好。为了验证这一点,我们针对户外自然曝晒和使用UVA-340 紫外光源人工加速老化的相关性进行了一系列的实验。 人工加速老化和自然老化测试结果间的相关性: 1 实验 本实验选用了环氧涂料、聚氨酯涂料以及聚酯涂料,分别进行户外自然曝晒和紫外人工加速老化实验,记录实验中样品光泽和颜色的变化。 1.1户外自然曝晒实验 由于全球各地户外自然曝晒的情况很不相同,为了准确地评价实验,这里选择了三种不同的典型气候类型:亚热带气候( 佛罗里达的迈阿密)、沙漠气候( 亚利桑那的凤凰城) 和美国北方工业型气候(俄亥俄州的克里夫兰) 。 户外自然曝晒严格按照ASTM G7《非金属材料的户外自然曝晒试验标准》执行。被测试样的背板为厚1.6mm的夹板,试样架45°,朝南。 1.2人工加速老化实验 人工加速老化测试按照ASTMG154《非金属材料的紫外老化测试方法》执行。实验设备为紫外加速老化试验机。该试验箱具有闭环反馈回路系统控制,可设定并控制UV光辐照强度。试验使用UVA-340紫外灯管,光强峰值为343nm,截止点为295nm。为了排除不同温度对实验结果的影响,测试温度统一设定在50℃。 实验分别在三种不同的循环条件下测试: 条件1 :4 h紫外光照射,4h 冷凝;UVA-340灯管的辐照点控制在0.83W/(m2·nm)@340nm;整个测试循环温度控制在50℃。本测试循环中紫外的辐照强度相当于夏天正午的太阳光照。 条件2 :4 h紫外光照射,4h 冷凝;UVA-340灯管的辐照点控制在1.35W/(m2·nm)@340 nm;整个测试循环温度控制在50℃。条件2与条件1基本类似,但辐照度更强。 条件3 :4 h紫外光照射(100 %紫外辐照,无冷凝,无暗周期);UVA-340灯管的辐照点控制在1.35W/(m 2·nm)@340 nm;整个测试循环温度控制在50℃。 2 结果与讨论 2.1环氧涂料 样板为涂覆在钢板上的高光灰色环氧涂料。 户外自然曝晒在一开始就表现出快速地失光和粉化,曝晒1年后,样板基本无光泽。此外,三个曝晒地点的样品都出现锈蚀现象,在佛罗里达的样板表面完全为锈斑所覆盖,而在亚利桑那和克里夫兰的样板有部分锈蚀。 人工加速老化测试中,样板很快失光,辐照强度越高,样板失光越快。此外带有冷凝循环时样板易粉化,单纯采用紫外辐照的则不易产生粉化。 从以上的数据可以看出,就环氧涂料的光泽和粉化的变化而言,带有冷凝循环的人工加速老化实验结果和户外自然曝晒的结果相关性较好。但由于ASTMG154标准要求测试采用纯水,因此实验结果没有产生户外自然曝晒中出现的生锈现象。如果改为使用腐蚀性溶液可能更接近户外自然曝晒,估计样板会产生生锈现象。建议实际使用中,结合采用盐雾/ 紫外人工老化测试以达到更接近自然的结果。 2.2聚氨酯涂料 样板采用涂覆在钢底材上的高光灰色聚氨酯涂料。 户外自然曝晒中佛罗里达和亚利桑那的光泽下降较快,俄亥俄州的光泽下降较慢。曝晒2年后,所有样板钢底材全部裸露。三个户外自然曝晒点的样板都发生锈蚀现象。其中佛罗里达样板的生锈面积达整个面积的20%,俄亥俄的样板仅有几个锈点,而亚利桑那样板几乎无锈蚀。 人工加速老化测试中带有冷凝循环条件的测试的样板失光较快,并伴有粉化现象。而单纯采用紫外辐照条件的测试样板失光速度较为缓慢且无粉化现象。

医疗器械加速老化实验方案及报告

华普医疗科技 加速老化试验 版本/修改状态:生效日期: 文件编号:发放号:控制状态:拟制:审核:批准:

加速老化实验计划 一、使用围 本公司生产的一次性使用氧气面罩,一次性使用鼻氧管,医用雾化器及其外包装。 二、过程要求 1、微生物屏障 2、无毒性 3、物理特性的符合性 4、化学特性的符合性 5、生物特性的符合性 三、预计完成时间: 老化实验前 全能性实验: 2012年5月20日前 包装验证实验: 2012年5月22日前 阻菌实验: 2012年5月24日前 老化实验时间: 2012年5月26日前 加速第一年验证 无菌实验: 2012年6月18日前 全能性实验: 2012年6月25日前 包装验证实验: 2012年6月25日前 阻菌实验: 2012年6月27日前 加速第二年验证 无菌实验: 2012年7月1日前 全能性实验: 2012年7月8日前 包装验证实验: 2012年7月8日前 阻菌实验: 2012年7月10日前 加速第三年验证 无菌实验: 2012年7月15日前 全能性实验: 2012年7月22日前 包装验证实验: 2012年7月22日前 阻菌实验: 2012年7月24日前 加速第四年验证 无菌实验: 2012年7月29日前 全能性实验: 2012年8月6日前 包装验证实验: 2012年8月6日前

阻菌实验: 2012年8月8日前 加速第五年验证 无菌实验: 2012年8月13日前 全能性实验: 2012年8月20日前 包装验证实验: 2012年8月20日前 阻菌实验: 2012年8月22日前 目的:在有效期三年和三年有效期外,通过对我公司产品检验实验,来验证我们的产品规定为三年的有效期是有科学依据的,可靠有效的。

人工加速老化试验条件的选择

人工加速老化试验条件的选择 这个问题实际上可以理解为应该模拟哪些老化因素,高分子材料在使用过程中,气候环境里许多因素都有可能对高分子材料的老化产生作用。如果事先知道产生老化的主要因素,就可以有针对性的选择试验方法。我们可以从该材料的运输、储存、使用环境以及其老化机理等方面考虑,确定试验方法。例如硬聚氯乙烯型材,使用聚氯乙烯为原料,添加稳定剂、颜料等助剂加工而成,主要用于室外。 从聚氯乙烯的老化机理考虑,聚氯乙烯受热易分解;从使用环境考虑;空气中的氧、紫外光、热、水分都是引起型材老化的原因。 因此,国标GB/T8814-2004《门、窗用未增塑聚氯乙烯(PVC-U)型材》中,既规定了光氧老化试验方法,采用GB/T 16422.2《塑料实验室光源曝露试验方法第二部分:氙弧灯》老化4000h或6000h,模拟了室外紫外光及可见光、温度、湿度、降雨等因素,同时又规定了热氧老化项目:加热后状态,150℃放置30min,目测观察是否出现气泡、裂纹、麻点或分离现象,以考察型材的耐热性能。 又如我国在国际市场上有竞争力的一个产品:外贸出口鞋。在使用过程中,阳光中的紫外线是引起鞋子变色、褪色的主要原因,因此,有必要用紫外线试验箱对其进行耐黄变测试。常用的鞋类耐黄变试验箱

采用30WUV灯,样品离光源20cm,照射3h后观察颜色变化。同时,在运输过程中,集装箱内闷热、潮湿的恶劣环境会引起鞋面、鞋底、胶水的变色、斑点,甚至是变质。因此,在装船运输之前,有必要考虑进行耐湿热老化试验,模拟集装箱内高热、高湿环境,在70℃、95%相对湿度的条件下,进行48h试验后观察外观、颜色变化。

产品加速老化测试方案

产品加速老化测试方案 1、试验前准备 1.1 试验产品信息 样品名称: 样品型号: 样品数量: 样品序号: 1.2 试验所需的设备信息 设备名称:恒温恒湿箱 设备编号: 设备参数:温度测试范围为: 湿度测试范围为: 1.3 测试人员: 复核人员: 批准人员: 1.4 测试环境:加速老化测试在75℃、90% RH的恒温恒湿箱中进行 1.5 测试时间: 2、试验原理和步骤 2.1 使用的物理模型--最弱链条模型 最弱链条模型是基于元器件的失效是发生在构成元器件的诸因素中最薄弱的部位这一事实而提出来的。 该模型对于研究电子产品在高温下发生的失效最为有效,因为这类失效正是由于元器件内部潜在的微观缺陷和污染,在经过制造和使用后而逐渐显露出来的。暴露最显著、最迅速的地方,就是最薄弱的地方,也是最先失效的地方。 2.2 加速因子的计算 加速环境试验是一种激发试验,它通过强化的应力环境来进行可靠性试验。加速环境试验的加速水平通常用加速因子来表示。加速因子的含义是指设备在正常工作应力下的寿命与在加速环境下的寿命之比,通俗来讲就是指一小时试验相当于正常使用的时间。因此,加速因子的

计算成为加速寿命试验的核心问题,也成为客户最为关心的问题。加速因子的计算也是基于一定的物理模型的,因此下面分别说明常用应力的加速因子的计算方法。 2.2.1温度加速因子 温度的加速因子计算: ?? ???????? ???==stress normal a stress normal AF T T k E L L T 1-1exp ……………… (1) 其中,normal L 为正常应力下的寿命; stress L 为高温下的寿命; a E 为失效反应的活化能(eV ); normal T 为室温绝对温度; stress T 为高温下的绝对温度; k 为Boltzmann 常数,8.62× 10-5eV/K ; 实践表明绝大多数电子元器件的失效符合Arrhenius 模型,下表给出了半导体元器件常见的失效反应的活化能。 2.2.2 湿度的加速因子 2.3 试验方案 本试验采用最弱链条的失效模型,通过提高试验温度和湿度来考核产品电路板和显示屏的使用寿命。在75℃、90% RH 下做加速寿命测试,故其加速因子应为温度加速因子和湿度加速因子的乘积,计算如下: n normal stress stress normal a AF AF RH RH T T k E H T AF ???? ????????????? ???=?=1-1ex p (3)

老化测试标准

老化测试标准 科标检测为您提供包括橡胶、塑料、涂料、胶黏剂、建筑材料、金属材料、电芯电缆、汽车配件、化工品等多行业多种类材料产品的老化性能检测服务。 自然大气曝晒试验 直接自然大气曝晒(ASTM G7,ASTM D4141等) 黑箱曝晒(SAE J1976,ISO877等) 太阳跟踪IP/DP箱曝晒试验(ISO2810,ISO105-B03等) 玻璃下曝晒(GB/T3681,GB/T9276等) 太阳跟踪聚光加速试验(GB/T3511,GB/T15596等) 人工加速光老化试验 氙弧灯老化试验(ASTM G155,ASTM D4459,ASTM D2565,ASTM D6695,ISO4892-2,ISO11341,ISO105-B02,ISO105-B04,ISO105-B06,ISO4665,ISO3917,GB/T1865,GB/T16422.2, SAE J2412,SAE J2527等) 氙灯测试(高辐照度试验(ASTM G155,NES M0135中1-2-1A,2-2-1,NES M0141等) 荧光紫外灯老化试验(ASTM G154,ASTM D4329,ASTMD499,ASTM D5208,ASTM D4587,ISO 4892-3,ISO11507,SAE J2020,GB/T16422.3,GB/T14522等) 金属卤素灯老化试验(DIN75220,IEC60068-2-5,ISO9022-9,ISO12097-2,MIL STD810F 等) 红外灯老化试验(NES M0131,PV2005等) 阳光碳弧灯老化试验箱(GB/T16422.4、ISO4892-4、ASTM G152、JIS B7753、JIS D0205等) 紫外碳弧灯老化试验箱(JIS L08422004、AATCC16方法1、JIS A14151999,TSL0601G 等) 温湿度老化试验 高温试验(ISO188,GB/T2423.2,ASTM D573,IEC60068-2-2等) 低温试验(GB/T2423.1,IEC60068-2-1等) 恒温恒湿试验(GB/T2423.3,IEC60068-2-78等) 温度循环试验(GB/T2423.22) 温湿度循环试验(GB/T2423.4,IEC60068-2-30等)

加速寿命试验公示计算汇总

加速寿命试验公示计算汇总 一、前言 新研究的医疗器械在上市前应确保在储存期( 通常 1 到5 年) 内产品的质量不应发生任何影响安全性和有效性变化,新产品一般没有实时和储存周围环境条件下确定有效期的技术资料。如果按实际储存时间和实际环境储存条件进行检测需要很长的时间才能获得结果,为了在实时有效期结果获得以前,有必要进行加速老化实验提供确定有效期的实验数据。 医疗器械设计人员能够准确地预计聚合物性能的变化对于医疗器械产业化是非常重要的。建立聚合物材料退行性变的动态模型是非常困难和复杂的,事实上材料短期产生的变化或变性的单速率表达形式可能不能充分反映研究的产品或材料在较长有效期的真实情况。为了设计试验方案能准确模拟医疗器械时间相关的退行性变,有必要对材料的组成、结构、成品用途、组装和灭菌过程的影响、失效模型机制和储存条件有深入的了解。 一个给定的聚合物具有以各种方式( 晶体、玻璃、不定形等) 组成的许多化学功能基团,并含有添加剂如抗氧化剂、无机充填剂、色素和加工助剂。所有这些变量的总和结合产品使用和储存条件变量决定了材料的化学性能的退行性变。得庆幸的是,生产医疗器械的大部分都是采用常用的几种高分子材料,这些材料已经广泛使用并且都进行了良好的表征。根据以碰撞理论为基础的阿列纽斯(Arrhenius) 模型建立的老化简化实验方案(Simplified Protocol for Accelerated Aging) ,也称“10 度原则”(10-degree rule) ,可在中度温度范围内适用于良好表征的聚合物,试验结果可以在要求的准确度范围内。 医疗器械或材料的老化是指随着时间的延长它们性能的变化,特别是与安全性和有效性有关的性能。加速老化是指将产品放置在比正常储存或使用环境更严格或恶劣的条件下,在较短的时间内测定器械或材料在正常使用条件下的发生变化的方法。 采用加速老化实验合格测试的主要原因是可以将医疗器械产品尽早上市。主要目标是可以给病人和企业带来利益,病人可以尽早使用这些最新的医疗器械,挽救病人的生命;企业可以增加销售获得效益,而又不会带来任何风险。尽管加速老化试验技术在学术领域已经比较成熟,但是这些技术在医疗器械产品的应用还是有限的。美国FDA 发布了一些关于接触眼镜、药物和生物制品等关于加速老化实验的指导性文件,还没有加速老化试验的标准。在我国尚无关于医疗器械有效期确定的加速老化的实验指导原则。国外许多医疗器械企业根据这些指导原则和文献建立自己的加速老化试验方法。(来源于:《中国医疗器械信息》2008年第14卷第5期《医疗器械加速老化实验确定有效期的基本原理和方法》) 二、实验条件和时间对比表

常用三种加速老化测试模型

常用三种加速老化测试模型 在环境模拟试验中,常常会遇到这样一个问题:产品在可控的试验箱环境中测试若干小时相当于产品在实际使用条件下使用多长时间?这是一个亟待解决 的问题,因为它的意义不仅仅在于极大地降低了成本,造成不必要的浪费,也让测试变得更具目的性和针对性,有利于测试人员对全局的掌控,合理进行资 源配置。 在众多的环境模拟试验中,温度、湿度最为常见,同时也是使用频率最高的模拟环境因子。实际环境中温度、湿度也是不可忽略的影响产品使用寿命的因素。所以,迄今将温度、湿度纳入考量范围所推导出的加速模型在所有的老化测试加速模型中占有较大的比重。由于侧重点的不同,推导出的加速模型也不一样。下面,本文将解读三个极具代表性的加速模型。 模型一.只考虑热加速因子的阿伦纽斯模型( Arrhenius Mode ) 某一环境下,温度成为影响产品老化及使用寿命的绝对主要因素时,采用单纯考虑热加速因子效应而推导出的阿伦纽斯模型来描述测试,其预估到的结果会更接近真实值,模拟试验的效果会更好。此时,阿伦纽斯模型的表达式为: AF=exp{(E a/k) ? [(1/T u)-(1/T t)]} 式中: AF是加速因子; E a是析出故障的耗费能量,又称激活能。不同产品的激活能是不一样的。一般来说,激活能的值在0.3ev~1.2ev之间;

K是玻尔兹曼常数,其值为8.617385 X 10-5; T u是使用条件下(非加速状态下)的温度值。此处的温度值是绝对温度值, 以K(开尔文)作单位; T t是测试条件下(加速状态下)的温度值。此处的温度值是绝对温度值,以K(开尔文)作单位。 案例:某一客户需要对产品做105C的高温测试。据以往的测试经验,此种产品的激活能E a取0.68最佳。对产品的使用寿命要求是10年,现可供测试的样品有5个。若同时对5个样品进行测试,需测试多长时间才能满足客户要求? 已知的信息有T t、E a,使用的温度取25C,贝U先算出加速因子AF: 5 AF=exp{[0.68/(8.617385 X 10-)] ?【[1/(273+25)]-[1/(273+105)] 】} 最 终: AF^ 271.9518 又知其目标使用寿命: L 目标=10years=10 X 365X 24h=87600h 故即可算出: L 测试=L 目标/AF=87600/271.9518h=322.1159h ?323h 现在5个样品同时进行测试,则测试时长为: L 最终=323/5h=65h 这即是说明,若客户用5个产品同时在105C高温下测试65h后产品未发生故障,则说明产品的使用寿命已达到要求。 通过这个案例可以看出,利用阿伦纽斯模型可以提前预估测试的相关信息,指导客户该怎样进行测试才既能达到目标值而又最大限度的降低成本。本案例中,若客户急需测试结果,那么可以投入10个或者更多的样品来缩短整个测试时长;或者在允许的情况下进一步提高温度,加快完成测试。根据需求灵活的调整测试方案,这才能更完美地达到目标,提高工作效率,省去一些不必要的费用。 模型二.综合温度及湿度因素的阿伦纽斯模型(Arrhenius ModeWith Humidity )

无菌医疗器械包装的加速老化试验标准指南

ASTM F 1980:2002 无菌医疗器械包装的加速老化试验标准指南 Standard Guide for Accelertated Aging of Sterile Medical Device Package 1 范围 1.1 本指南提供了开发加速老化方案的信息,以便快速确定包装的无菌完好性和包装材料的物理特性受所经历的时间和环境的影响。 1.2 用本指南获得的信息可用以支持产品包装的有效日期。 1.3 加速老化指南涉及初包装整体,不涉及包装与产品间的相互作用或相容性,这在新产品的开发中可能涉及到。在包装设计之前的材料分析过程中宜涉及包装与产品的相容性和相互作用。 1.4本指南不涉及实际时间老化方案,但进行实际时间老化研究能证实用同样评价方法的加速老化试验的结果。 1.5 用于包装过程确认的方法,包括机械过程、灭菌过程、运输、贮存的影响也不在本指南的范围内。 1.6 本标准不打算涉及标准使用中的所有安全问题,本标准的使用者在使用前有责任建立相应的安全和卫生规范,并确定法规限制的适用性。 2 规范性引用文件 2.1 ASTM 标准 D 3078 用气泡发射法测定软性包装的试验方法 D 4169 运输容器和系统的性能试验规范 D 4332 容器、包装或包装组件的试验用状态调节的规范 E 337 用干湿球温度计(测量湿球温度和干球温度)测定湿度的试验方法 F 88 软质屏障材料密封强度的试验方法 F 1140医疗应用无约束包装抗内压破坏试验方法 F1327 医用包装屏障材料的相关术语 F 1585 医用包装多孔屏障材料完好性试验指南 F 1608 医用包装多孔屏障材料的微生物等级的试验方法 F 1929 用染色穿透的方法测定多孔材料医用包装中密封泄漏的试验方法 2.2 AAMI 标准 ANSI/AAMI/ISO 11607 最终灭菌医疗器械的包装 AAMI TIR 17-1997 辐射灭菌材料鉴定 3 术语 3.1 定义 医疗器械包装的一般定义见ISO 11607。有关医用包装屏障材料的术语见F1327 3.2 本标准规定术语的定义: 3.2.1 加速老化(AA) 样品贮存在严酷的温度(T AA),以一种缩短时间的方式来模拟实际时间老化 3.2.2 加速老化因子(AAF) 一个估计的或计算出的与实际时间(RT)条件贮存的包装达到同样水平的物理性能变化的时间比率

医疗器械加速老化试验方案及报告

. . . .. .. . 华普医疗科技 加速老化试验

版本/修改状态:生效日期: 文件编号:发放号:控制状态:拟制:审核:批准: ... .. .s. . . . . .. .. . 加速老化实验计划 一、使用围

本公司生产的一次性使用氧气面罩,一次性使用鼻氧管,医用雾化器及其外包装。 二、过程要求 1、微生物屏障 2、无毒性 3、物理特性的符合性 4、化学特性的符合性 5、生物特性的符合性 三、预计完成时间: 老化实验前 全能性实验:2012年5月20日前 包装验证实验:2012年5月22日前 阻菌实验:2012年5月24日前 老化实验时间:2012年5月26日前 加速第一年验证 无菌实验:2012年6月18日前 全能性实验:2012年6月25日前 包装验证实验:2012年6月25日前 阻菌实验:2012年6月27日前 加速第二年验证 无菌实验:2012年7月1日前 全能性实验:2012年7月8日前

包装验证实验:2012年7月8日前 阻菌实验:2012年7月10日前 加速第三年验证 无菌实验:2012年7月15日前 全能性实验:2012年7月22日前 包装验证实验:2012年7月22日前 阻菌实验:2012年7月24日前 加速第四年验证 无菌实验:2012年7月29日前 全能性实验:2012年8月6日前 包装验证实验:2012年8月6日前 ... .. .s. . . . . .. .. . 阻菌实验:2012年8月8日前 加速第五年验证 无菌实验:2012年8月13日前 全能性实验:2012年8月20日前 包装验证实验:2012年8月20日前 阻菌实验:2012年8月22日前 目的:在有效期三年和三年有效期外,通过对我公司产品检验实验,来验证我们的产品规定为三年的有效期是有科学依据的,可靠有效的。 ... .. .s. .

医械加速老化实验确定有效期的原理和方法

医疗器械加速老化实验确定有效期的基本原理和方法 1、内容提要 加速老化简化试验方案是医疗器械生产企业获得新产品的关键性能和有效期数据的重要手段。该方法获得的结果具有保守性,加速老化试验的有效期和实时老化获得的结果相比要短。这一方案是假设所有材料按照零级和一级反应速率关系确定的,在整个研究的时间框架内反应物质的提供是保持恒定的。为了获得更加可靠的结果,应充分了解降解反应化学,选择中等的老化温度可以使误差因素降到最小,要充分了解一些对升高温度敏感的反应物质。采用任何加速老化试验方法,在没有获得实时/大气环境试验结果前都是有风险的。如论如何,设计的试验方法提供的数据最终应满足产品的标准要求。 2、前言 医疗器械设计人员能够准确地预计聚合物性能的新研究的医疗器械在上市前应确保在储存期( 通常变化对于医疗器械产业化是非常重要的。建立聚合物1 到5 年) 内产品的质量不应发生任何影响安全性和有材料退行性变的动态模型是非常困难和复杂的,事实效性的变化,新产品一般没有实时和储存周围环境条上材料短期产生的变化或变性的单速率表达形式可能件下确定有效期的技术资料。如果按实际储存时间和不能充分反映研究的产品或材料在较长有效期的真实实际环境储存条件进行检测需要很长的时间才能获得情况。为了设计试验方案能准确模拟医疗器械时间相同结果,为了在实时有

效期结果获得以前,有必要进行关的退行性变,有必要对材料的组成、结构、成品加速老化实验提供确定有效期的实验数据。用途、组装和灭菌过程的影响、失效模型机制和储存条件有深入的了解。一个给定的聚合物具有以各种方式( 晶体、玻璃、r = dq/dt = C2[T2-T1]/10 不定形等) 组成的许多化学功能基团,并含有添加剂应该指出的是10 度原则提供了室温活化能小于如抗氧化剂、无机充填剂、色素和加工助剂。所有这0.7eV 时一个保守的加速因子,由于指数效应,在量级些变量的总和结合产品使用和储存条件变量决定了材上应该有一定的保守性。在某些情况下,通过采用其料的化学性能的退行性变。值得庆幸的是,生产医疗他5? 到20? 温度差改良的10 度原则可以使老化模型和器械的大部分都是采用常用的几种高分子材料,这些室温试验数据之间很好的吻合。 材料已经广泛使用并且都进行了良好的表征。根据以10 度原则在医疗器械有效期的确定时虽然具有碰撞理论为基础的阿列纽斯(Arrhenius) 模型建立的加一定的保守性,然而,加速老化试验确定的有效期必须通过产品正常储存和使用条件下实时试验结果进速老化简化实验方案(Simplified Protocol for Accelerated Aging) ,也称“10 度原则”(10-degree rule) ,可在中度一步验证。产品上市前在进行加速老化试验的同时应温度范围内适用于良好表征的聚合物,试验结果可以进行连续“室温”条件下的老化试验,并且室温老化在要求的准确度范围内。 试验时间要比产品实际使用时间要长,这一点是非常医疗器械或材料

DJ5000 LED加速老化试验仪使用说明

DJ5000 LED加速老化试验仪使用说明 一、操作前必须注意以下事项 (1)本仪器使用的额定电压为220V±22V,确认供电电源在本仪器的额定电压范围内。 (2)连接好电源线,并确保本仪器已良好接地。 二、操作指南 1 按下电源开关,仪器显示初始状态,先预热15 分钟。 2 设置参数 2.1 通道选择:按通道键(CHANNEL),选择通道,当CH1~CH6 相应的指示灯点亮时,表示选择了该通道,电流窗口显示该通道的电流设定值。 2.2 电流参数的设定:先按电流键(CURRENT),当指示灯(CURRENT)点亮时,进入当前通道的电流设定状态,然后按左移键(<)选择设定位,通过参数调节旋钮(PARAMETER ADJUST)设置被选择位的参数,最后,当参数设置到期望值后,按电流键(CURRENT)保存当前通道的电流设置参数,并退出电流设置状态。 2.3 参考电流参数的设定步骤,设定频率、定时时间、占空比的试验数值。 3 测试 3.1 完成上面的接线及参数设置后,分清正负正确安装被测LED,然后将测试平台与仪器后面板上对应的输出通道接口相连。 3.2 按下前面板上的输出键(OUTPUT),指示灯(OUTPUT)点亮,仪器进入老化试验状态,仪器后面板上的输出通道(CH1~CH6)将按设定的参数输出。 3.3 按下前面板上的输出键(OUTPUT),指示灯(OUTPUT)灭,仪器退出老化试验状态,回到待机状态。 3.4 换负载 断开负载前,请务必先按输出键“OUTPUT”,输出指示灯(OUTPUT)灭,然后将原负载拆除,换接新负载。 4 关机 使用完毕,按电源开关(POWER),关机。 5 仪器自身过热保护功能和自动开启风机功能 当仪器内部散热元件的温度大于45℃时,仪器风机将自动开启。当内部散热元件的温度大于80℃时,仪器将自动停止输出,温度窗口将显示“OT”。 6 掉电保护功能和来电自动复机功能 在测试过程中,本仪器具有实时保存试验参数的功能,若发生因仪器供电原因导致仪器掉电的,本仪器将在复机后自动恢复到掉电时的状态,继续工作。

老化测试老化试验

老化测试老化试验 老化检测是可靠性检测的一部分,是模拟产品在现实使用条件中涉及到的各种因素对产品产生老化的情况进行相应条件加强实验的过程。 主要通过使用各种环境试验设备模拟气候环境中的高温、低温、高温高湿以及温度变化等情况,加速激发产品在使用环境中可能发生的失效,来验证其是否达到在研发、设计、制造中的预期的质量目标,从而对产品整体进行评估,以确定产品可靠性寿命。老化检测正是可靠性测试的重要部分。 一、主要的测试范围包括: 材料寿命推算 冷热冲击 盐雾测试 快速温变 老化检测气候老化(自然气候暴晒试验,人工气候老化) 紫外老化检测 臭氧老化检测 老化试验湿热老化检测 氙灯老化检测 碳弧灯老化检测 二、重点检测项目 1、紫外老化检测 采用荧光紫外灯为光源(有UVA,UVB不同型号灯源),通过模拟自然阳光中的紫外辐射和冷凝,对材料进行加速耐气候性试验,以获得材料耐候性的结果。 紫外老化测试,可以再现阳光、雨水和露水所产生的破坏。设备通过将待测材料曝晒放在经过控制的阳光和湿气的交互循环中,同时提高温度的方式来进行试验。试验设备采用紫外线荧光灯模拟阳光,同时还可以通过冷凝或

喷淋的方式模拟湿气影响。用来评估材料在颜色变化、光泽、裂纹、起泡、催化、氧化等方面的变化。 紫外老化试验机并不模拟全光谱太阳光,但是却模拟太阳光的破坏作用。通过把荧光灯管的主要辐射控制在太阳光谱的紫外波段来实现。这种方式是有效的,因为短波紫外线是造成户外材料老化的最主要因素。 2、盐雾老化检测 盐雾试验是一种主要利用盐雾试验设备所创造的人工模拟盐雾环境条件来考核产品或金属材料耐腐蚀性能的环境试验。 盐雾试验分为:天然环境暴露试验;人工加速模拟盐雾环境试验。 人工模拟盐雾试验: 包括中性盐雾试验、醋酸盐雾试验、铜盐加速醋酸盐雾试验、交变盐雾试验。 3、臭氧老化检测 臭氧老化就是将试样暴露于密闭无光照的含有恒定臭氧浓度的空气和恒温的试验箱中,按预定时间对试样进行检测,从试样表面发生的龟裂或其它性能的变化程度,以评定试样的耐臭氧老化性能。 臭氧老化分为静态拉伸测试和动态拉伸测试,在这个测试中臭氧浓度、温度、试样定伸比是非常重要的三个参数。 4、湿热老化检测 湿热老化检测适用于可能在温暖潮湿的环境中使用的产品,湿度试验、恒定湿热、交变湿热,是可靠性测试的一种。 试验的目的:检验产品对温暖潮湿的环境的适应能力。对塑性材料、PCB、PCBA多孔性材料或成品等而言,各种不同材料对温度与湿气有不同形态之物理反应,温度所产生效应多为塑性变形或产品过温或低温启动不良等等,多孔性材料在湿度环境下会应毛细孔效应而出现表面湿气吸附,渗入、凝结等情形,在低湿环境中会因静电荷累积效应诱发产品出现失效。 常见湿度效应:物理强度的丧失、化学性能的改变、绝缘材料性能的退化、电性短路、金属材料氧化腐蚀、塑性的丧失、加速化学反应、电子组件的退化等现象。

胶体金试纸加速老化试验原理及方案设计

胶体金试纸加速老化试验原理及方案设计 点击次数:305 作者:Tombacon 发表于:2008-08-20 13:49转载请注明来自丁香园 来源:丁香园 你制作的胶体金试纸保质期有多长, 1年, 2年? 难道我要将试纸放置两年以后才知道质量是否过关? 为了解决保质期的问题,我们设计了将试纸放置于高温环境下烘烤的加速老化试验。然而这个实验到目前为止都没有明确的技术资料,大多数文献资料里面只有 "37度2个月=常温下2年", "45度一个月=常温下2年" 的一个概念描述,那么这个实验的原理是什么,是否真的如以上所说。实验应该如何设计。一系列的问题接踵而至。 一、原理 37度或45度老化试验的原理是什么? --------阿伦尼乌斯公式;Arrhenius equation 由瑞典的阿伦尼乌斯所创立,表示化学反应速率常数( k )对温度( T )的依赖关系的经验公式。公式的演算和背景分析,请大家自己GOOGLE. 公式如下: d(In k)/dT=Ea/RT2 (这个2, 是T的平方,论坛里不知道怎么搞上去) Ea为表观活化能,R为摩尔气体常量。变化趋势为T增大,一般k也增大。 Ea 约等于19.5 Kcal/mol. 于是计算出对应的温度与老化天数关系。全部数值以一年稳定性情况对比。 温度/天

85.2/1.2 80.2/1.8 74.9/2.7 70.1/4.0 65.0/6.0 60.1/9.3 55.1/14.6 50.1/23.0 45.0/37.5 40.1/64.4 37.0/91.0 30.1/193.0 25.1/343.7 22.1/494.8 20.1/616.7 15.1/1145.3 12.0/1688.4 提取我们经常用的数值温度/天 25.1/343.7 37.0/91.0

相关主题