搜档网
当前位置:搜档网 › 舷外水密度变化引起船舶吃水差改变量的近似计算

舷外水密度变化引起船舶吃水差改变量的近似计算

舷外水密度变化引起船舶吃水差改变量的近似计算
舷外水密度变化引起船舶吃水差改变量的近似计算

舷外水密度变化引起船舶吃水差改变量的近似计算

1 前言

众所周知,船舶进出不同密度水域时,船舶的平均水尺将会发生增减。但其原有的吃水差也将发生变化,这一点往往被人们忽视。

2 简析

引起船舶吃水差变化的原因主要是由于受船舶线型的影响,船体表面是具有双重曲率的复杂表面,所以船体不是简单均匀的长方体,而是一个有着空间曲度的立方体。当船舶吃水发生变化时,其水线下排水体积的变化是非线性的,船舶排水体积中心(浮心)和水线面中心(漂心)的位置也将随着船舶吃水发生变化;而在一定载况下,船舶连同货物的总重心是一固定值,不随船舶吃水的变化而变化,即船舶重力力矩不变。由于船舶浮心位置变化,导致浮力力矩发生变化,从而使船舶总纵倾力矩变化,这样就导致船舶原有吃水差发生变化。

船舶吃水差变化的程度随船型、水密度的变化值的大小而不同,对于小型船有时甚至可以忽略,但对于大型船而言,是不容忽视的,特别是在港口航道水深受限,水密度变化较大时,更要引起重视。

3 近似计算

下面以73000吨级散货船SSH轮为例,近似计算(计算过程中忽略对船舶排水量进行纵倾修正)因水密度变化引起吃水差的变化量以及变化后的船舶水尺。

(在所有使用的公式中:Δ——船舶实际排水量,ρ——标准海水密度,ρ

1

——原水

密度,ρ

2——新水密度,δd——平均吃水变化量,Xp——船舶重心、Xb

1——

船舶原浮心、

Xb

2——水密度改变后的新浮心、Xf

2

——新漂心、t

1

——原吃水差、t

2

——新吃水差,δt

——吃水差改变量。吃水差首倾为“+”,所有符号船中前为“+”,中后为“-”。)

假设SSH轮船舶水尺Df

1=12.50m、Dm

1

=12.58m、Da

1

=12.66m、Δ=75845t、LBP=217m,

当前水密度1.020,当船舶进入密度1.005的新水域时,新水尺近似计算如下:方法一:

1、计算可得平均水尺Dmean

1=( Df

1

+6Dm

1

+Da

1

)/8,据此查表得到Xb

1

和MTC

1

;根据

吃水差计算公式t

1=Df

1

-Da

1

,t

1

=Δ(Xp- Xb

1

)/100MTC

1

,可求得Xp= Xb

1

+t

1

*100MTC

1

/Δ;

2、已知Δ可以查得对应TPC,根据公式δd=Δ(ρ/ρ

2-ρ/ρ

1

)/100TPC ,可以得

到船舶平均吃水变化量δd,进而得到船舶新的平均水尺Dmean

2= Dmean

1

+δd;

3、由Dmean

2查排水量表,可得Xb

2

、Xf

2

、MTC

2

,则t

2

=Δ(Xp- Xb

2

)/100MTC

2

,δt=t

2

-t

1

4、根据公式Df

2=Df

1

+δd+δt *(LBP/2-Xf

2

)/LBP、

Da

2=Da

1

+δd-δt *(LBP/2+Xf

2

)/LBP和Dm

2

=Dm

1

+δd,可以求出在新密度下的船

舶水尺。

按上述步骤,可求得

1、Dmean

1=12.58m, Xb

1

=5.21m,MTC

1

=1018.55,t

1

=Df

1

-Da

1

=-0.16m,

Xp =5.21+101855*(-0.16)/75845=4.995m;

2、由Δ=75845t查得TPC=65.692,

δd=75845(1.025/1.005-1.025/1.020)/6569.2=0.173m,Dmean

2

=12.58+0.173=12.753m;

3、查表得 Xb

2=5.1235m、Xf

2

=-0.9965m、MTC

2

=1023.09,

t

2

=75845(4.995-5.1235)/102309=-0.095m,δt=0.065m;

4、Df

2=12.50+0.173+0.065*(108.5+0.9965)/217=12.706m,Da

2

=12.801m,

Dm

2

=12.753m 方法二:

1、由计算平均水尺Dmean

1,查排水量表得到对应平均水尺下的标准海水排水量Δ

1

(并不是最终计算得到的真正排水量Δ)和Xb

1

,并按船舶实际排水量查得TPC,再按方法一求得Xp;

2、根据ρ

1

2

Δ

2

,求出新水密度下的标准海水排水量Δ

2

,由Δ

2

反查排水量表可

得新水密度ρ

2下的平均吃水Dmean

2

、Xb

2

、Xf

2

、MTC

2

3、δd= Dmean

2-Dmean

1

,t

2

=Δ(Xp- Xb

2

)/100MTC

2

,δt=t

2

-t

1

4、根据方法一第4步,可以求出在新密度下的船舶水尺。按上述步骤,可求得

1、Dmean

1=12.58m,查得Δ

1

=76216.5,Xb

1

=5.21m,;由Δ=75845查得TPC=65.692;

求得Xp= 4.995m;

2、求得Δ

2=77354,据此查表得Dmean

2

=12.753m、Xb

2

=5.1237m、Xf

2

=-0.9963m、

MTC

2

=1023.08;

3、δd =0.173m,t

2

=-0.095m,δt=0.065m;

4、Df

2=12.706m,Da

2

=12.801m,Dm

2

=12.753m 。

比较方法一,所求数据基本一致,实际只是在求取δd时使用的方法不同。

方法三:前提,当船舶进出不同水密度区域时,由于密度改变,可以认为船舶先平行

沉浮,再产生纵倾。如下图(由高密度进入低密度水域),假设船舶先由W

1L

1

水线下沉到

W 2,L

2

,水线,再由W

2

,L

2

,纵倾到W

2

L

2

水线。

2 W

根据少量装卸对吃水差影响的公式,近似计算如下:

1、平行沉浮量δd=Δ(ρ/ρ

2-ρ/ρ

1

)/100TPC;

2、因为船舶平行沉浮,所以厚度为δd的舷外水的浮力作用中心近似在水线面的漂

心处(实际应在新旧水线面漂心和的1/2处),这样,相当于将船舶总浮力中由该水层产生的那部分浮力的作用点由原来的船舶浮心Xb

1

处移到漂心处,所以船

舶纵倾力矩将发生变化,变化量为δM=δd*100TPC(Xb

1-Xf

2

)*ρ

2

/ρ;

3、这一变化量δM,导致原吃水差发生变化,原平行沉浮的水线面随之变化,吃水

差的改变量δt=δM/100MTC

2=δd*TPC

1

*(Xb

1

-Xf

2

)*ρ

2

/(ρ*MTC

2

);

4、再由上述方法一第四步公式,可求出新水密度下的船舶水尺。按上述步骤,可求得

1、由Δ=75845查得TPC=65.692,δd= 0.173m;

2、查表得Xb

1=5.21m、Xf

2

=-0.9965m、MTC

2

=1023.09;

3、δt=0.173*65.692*6.2065*1.005/(1.020*1023.09)=0.068m;

4、Df

2

=12.50+0.173+0.068*109.4965/217=12.707m

Da

2

=12.66+0.173-0.068*107.5035/217=12.799m

Dm

2

=12.58+0.173=12.753m

对于此例,分析上述三种方法的计算结果并与由SSH轮配载仪进行水密度自动换算

的结果(由该轮配载仪计算的结果为Df

2=12.707m 、Dm

2

=12.754m、 Da

2

=12.801m)进行对

比,可以认为上述近似计算的精度是符合要求的。

有许多船龄稍老的散货船,配载仪只能显示标准海水(ρ=1.025)下的数据,不能进行水密度的换算,此时就需要使用上述方法进行计算。此外,对大型船舶而言,拱垂变形是经常出现的,尤其是船舶满载时(中垂居多),而船舶配载仪的计算都是基于船舶没有拱垂变形的理想状态,因此其提供的计算水尺往往与实际水尺不符,此时,若进行吃水差的水密度换算,配载仪的计算结果仍将不能体现船舶实际拱垂变形,所以最好也应按上述方法进行计算。

另外,在大型船舶进行配载时,往往要求抵港(新密度水域)时为平吃水状态,此时可按下述方法进行简单计算,预配离港吃水差。

1、按抵港水尺Dmean2要求,查排水量表得到Xb2和对应的标准海水排水量Δ2,因为

要求平吃水,故此时t

2=0,Xp= Xb

2

;由ρ

2

Δ

2

=ρΔ,计算船舶实际排水量Δ,并

查得对应的TPC;

2、根据δd=Δ(ρ/ρ2-ρ/ρ1)/100TPC,求得δd、Dmean1,再查出Xb1、Xf1、MTC1

(当然,也可以由ρ

1

2

Δ

2

,求得离港时在标准海水下的排水量Δ

1

,由Δ

1

查表得到ρ

1下的平均吃水Dmean

1

、Xb

1

、Xf

1

、MTC

1

);

3、t1,=Δ(Xp- Xb1)/100MTC1=Δ(Xb2- Xb1)/100MTC1;

4、此时t1,即为不考虑两港油水消耗时,离港的预计吃水差,在此基础上虑及油水消

耗对吃水差的影响,即可求出实际要求的离港吃水差t1;

5、再根据相应的船舶首尾及船中水尺计算公式,可以得到离港要求的预计水尺。

例如,SSH轮预计抵港平吃水12.60m,设抵港水密度1.015,预求不考虑油水消耗时的离港水尺(设出发港水密度1.025)。

按上述步骤,可求得:

1、由Dmean2=12.60m,查得Xb2=5.20m,Δ2=76348.3;求得Δ=75603.4

2、δd=0.113m、Dmean1=12.60-0.113=12.487m,由此查表得Xb1=5.2565m、

Xf

1=-0.807m、MTC

1

=1016.08;

3、预计离港吃水差

t 1,=Δ(Xb

2

- Xb

1

)/100MTC

1

=-75603.4*0.0565/101608=-0.042m,δt=0.042m;

4、预计离港水尺

Df

1= Df

2

-δd -δt(217/2-Xf

1

)/217=12.466m

Da

1= Da

2

-δd +δt(217/2+Xf

1

)/217=12.508m

Dm

1= Dm

2

-δd= 12.487m

由上述水尺再加上两港间油水消耗引起的水尺变化量,即可得到实际预计离港水尺。

4 结束语

综上所述,作为一个普遍规律,船舶浮心随船舶吃水的增加将逐渐向后移动,所以船舶从密度大的水域进入密度小的水域,平均吃水增加,吃水差变化呈现首倾趋势;船舶从密度小的水域进入密度大的水域,平均吃水减小,吃水差变化呈现尾倾趋势。以巴拿马型船舶为例,经验和计算都表明当其由标准海水进入密度1.000的淡水水域时,吃水差的变

化量将达到首倾12~13公分,所以对于大型船舶而言,水密度的变化可以导致船舶吃水和吃水差的较大变化,特别是当船舶进出河口港以及巴拿马运河时。因此,在进行船舶配载时,必须充分考虑水密度的影响,提前计算出吃水差的变化量和相应水尺,以最大限度地保证船舶航行安全并创造最大的经济效益。

附:SSH轮LOADING MANUAL 资料摘录

船舶水尺公估中压载水的测算和校正

船舶水尺公估中压载水的测算和校正 发布日期:2007-3-29 8:45:07本文作者:苏冲,张守生本文来源:本站浏览次数: 压载水的测定、校正和计算是水尺公估程序中最繁琐、工作量最大的一项工作,下文简要介绍其工作步骤。 1压载水测定 计量人员应会同船方逐舱测定压载水的深度。测定前,首先向船方了解水舱数量及名称,必要时可通过容积图来核实,以防漏测。 测量前首先检查船方提供的测量工具(尤其是绳尺)是否标准,船方制作的工具标准与否将直接影响测量结果。如发现有工具不标准的情况,需要 立即予以更换。 测量时,当尺锤接近舱底时,应减慢放尺速度,当感觉尺锤触及舱底时,应注意绳尺或钢卷尺不能弯曲,以免影响测深的准确性。若尺上水痕不清,应擦干并抹上白粉或试水膏再次观测。有时船方以部分压水舱是空的为由提出不予测量,应对其耐心说理,以防有呆存水或渗漏水漏测。测量时应认真细致,逐舱测深,并做好测深记录。 需要特别注意的是,顶边舱的舱面由于露天甲板形成弧形和倾斜形,其测量管又安装在船体两侧的位置,因此即使舱内的压载水从测量管溢出也不能简单作为满舱处理,仍应按实测深度结合校正计量。 2压载水校正与计算 当船舶处于纵倾或横倾状态时,压载舱液面与船舶的水线平行,压 载水也呈现纵倾或横倾状态,由于水舱的测量管大都不在舱的中间部位,故此时从测量管内所测得的水深并不真实,应根据船舶的压载水资料进行修正,以求得准确的容量。通常船舶的压载水资料有以下3种情况: 有舱容表且有纵倾修正 对于有纵倾修正的舱容表,根据测得的水深和船舶纵倾值,可直接查表得到各舱的压载水容量。查表方法如下: (1)船舶的各种压载水舱都有容量表或计量表,它们表示每一深度对应的容积或重量。除平浮状态下的容量外,大多数还标制出各种纵倾程度的校正曲线。在

船舶压载水管理计划-全文

目录 C o n t e n t s 章节标题页Chapter Title Page 1.介绍 2 Introduction 2.船舶资料 4 Ship’s particular 3. 负责人员及职责 5 Responsible officer any their duties 4.培训和教育 6 Training and education 5.压载水管理的手段8 Ballast water management measures 6 安全措施13 Safety Precautions 7 更换压载水程序19 Procedure For Ballast Water Exchange 8 记录和报告程序20 Recording and Reporting Procedures 9 附录23 APPENDIXES

压载水管理计划 BALLAST WATER MANAGEMENT PLAN 1.介绍与目的 Introduction and object 1.1 数个国家的研究显示在船上压载水和淤泥中的多种细菌、植物和动物,虽经过数个月的海上旅程,仍能存活。随后在各港口国水域排放压载水或淤泥,将产生对当地的人类,动植物生态,及海洋环境构成威胁的有害水生有机体和病原体。虽然其他媒介已被确定引起有机体在分隔水体之间的传播,但船舶排出的压载水却被列于最显著的媒介之中。 Studies carried out in several countries have shown that many species of bacteria, Plants, and animals can survive in a viable from in the ballast water and sediment carried out in ships, even after journeys of several months’ during. Subsequent discharge of ballast water or sediment into the water of port States may result in the establishment of harmful aquatic organisms and pathogens which may pose threats to indigenous human, animals and plant life, and the marine environment. Although other media have been identified as being responsible for transferring organisms between geographically separated water bodies, ballast water discharge from ship appears to have been among the most prominent. 1.2 为了减少船舶压载水在各海区之间传播对当地海洋中的动植物及海洋环境有危害的海生物的可能性,并符合国际海事组织《为减少有害水生物和病原体传播的对船舶压载水控制和管理的指南》(RESOLUTION A。686(20))的要求。本公司制定了船舶压载水管理计划,计划规定了船舶压载水控制与管理的方法和要求,旨在为船舶提供压载水管理的安全和有效措施,本船船员必执行本计划,

压载水处理系统

一、船舶压载水处理的背景 1、船舶压载水的危害 船舶航行中,压载是一种必然状态。船舶在加装压载水的同时,海水中的生物也随之被加装入到压载舱中,直至航程结束后排放到目的地海域。压载水跟随船舶从一地到它地,从而引起了有害水生物和病原体的传播。压载水的无控制排放可能会对海洋生态系统、社会经济和公众健康造成危害。全球环保基金组织(GEF)已经把船舶压载水引起的外来物种入侵问题列为海洋四大危害之一。 为了更有效的控制船舶压载水传播有害水生物和病原体,国际海事组织(IMO)于2004年通过了《国际船舶压载水和沉积物控制和管理公约》。“公约”自2009年开始,规定所有新建船舶必须安装压载水处理装置,并对现有船舶追溯实施。“公约”对压载水的处理标准,即处理水中可存活生物的种类及数量作了明确规定(D-2标准)。 2、压载水处理D-2标准

3、船舶压载水处理系统的安装时间表 (D-1:压载水置换标准;D-2:压载水处理标准) 二、认证历程

2008年6月建成国内第一个压载水处理陆基实验基地

2009年12月通过CCS陆基实验型式认可

青岛双瑞公司的Bal C lor TM BWMS在第61次国际海事组织(IMO)大会上获得最终认可。 2010年12月将通过CCS实船实验型式认可,2011年初将通过DNV实船型式认可 三、BalClor TM BWMS的处理技术 BalClor TM BWMS对压载水的处理过程分为“过滤”、“电解海水产生次氯酸钠杀菌”、“中和”三步: “过滤”—压载时,利用过滤精度为50μm的自动反冲洗过滤器对所有压载水进行过滤,该步骤可以过滤掉尺寸大于50μm的大部分的海生物及固体颗粒; “电解海水产生次氯酸钠杀菌”—从压载水主管路引一支路海水进入电解装置,电解产生高浓度的次氯酸钠溶液,该溶液经过除气后,回注入压载水主管路,同主管路压载水混合到一定浓度。该浓度的次氯酸钠能够有效杀灭经过滤后的残余的浮游生物、病原体及其幼虫或孢子等,达到规定的杀菌效果(D-2标准),压载水管路中活性物质的浓度由TRO分析仪和控制系统自动控制; “中和”—压载水排放时,当其余氯浓度小于IMO规定值时,中和系统不启动,压载水直接排放;当压载水中余氯浓度大于IMO规定值时,中和系统自动启动,向排水管中注入中和药剂,中和残余的TRO残余氧化剂,中和剂量由控制系统自动控制。 1、灭活-核心技术 电解单元从过滤后的压载水抽取总量1%~2%左右的水流电解,制取氯气和次氯酸钠溶液,同时通过除气装置将电解产生的氢气稀释到安全界限以下,排出舷外。氯气会溶于水迅速产生次氯酸。 当海水进入电解槽后,电解反应机理如下: 阳极:2Cl-→ Cl2 + 2e 阴极:2H2O + 2e → 2OH- + H2↑ 阳极产生的氯气能够迅速溶在海水中生成次氯酸和盐酸: Cl2 + H2O → HOCl + Cl- + H+ 所以,总反应: NaCl + H2O → NaOCl + H2↑ 次氯酸钠溶液作为一种非常有效的杀菌剂可以在压载水中保持一定时间,并迅速有效的杀灭压载水中的浮游生物、孢子、幼虫及病原体。该技术已经在医学灭菌、自来水厂等水处理行业应用多年。

中华人民共和国海事局关于颁布《船舶压载水管理系统申报暂行规定

中华人民共和国海事局关于颁布《船舶压载水管理系统申报 暂行规定》的通知 【法规类别】船舶 【发文字号】海船舶[2012]265号 【发布部门】中华人民共和国海事局 【发布日期】2012.06.15 【实施日期】2012.06.15 【时效性】现行有效 【效力级别】部门规范性文件 中华人民共和国海事局关于颁布《船舶压载水管理系统申报暂行规定》的通知 (海船舶〔2012〕265号) 各直属海事局、各有关单位: 国际海事组织于2004年通过了《2004年控制和管理船舶压载水和沉积物国际公约》(以下简称《压载水公约》)。为使船舶压载水管理系统满足《压载水公约》的有关要求,规范船舶压载水管理系统申报程序,根据公约及国家有关法律法规,制订了《船舶压载水管理系统申报暂行规定》。现将此规定发送你们,请遵照执行。 2012年6月15日附件

中华人民共和国海事局 船舶压载水管理系统申报暂行规定 第一条为使船舶压载水管理系统满足《2004年控制和管理船舶压载水和沉积物国际公约》(以下简称《压载水公约》)的有关要求,规范船舶压载水管理系统申报程序,根据国家有关法律法规,制订本暂行规定。 第二条本规定适用于拟申请安装在中国籍船舶(法律法规另有规定的除外)上的船舶压载水管理系统。 第三条中华人民共和国海事局为船舶压载水管理系统申报的主管机关,负责船舶压载水管理系统申报的申请受理和审查。 第四条船舶压载水管理系统应满足《压载水公约》和国内有关法律法规的要求。船舶压载水管理系统的设计和操作不得危害船舶安全及人员健康和安全,也不得对环境和公众健康造成危害。压载水管理系统的性能应能满足《压载水公约》第D-2条的标准,且船上适用。 第五条申请人向主管机关申报船舶压载水管理系统中应书面说明: (1)申请人名称、地址和联系方式;

船舶稳性校核计算书

一、概述 本船为航行于内河B级航区的一条旅游船。现按照中华人民共和国海事局《内河船舶法定检验技术规则》(2004)第六篇对本船舶进行完整稳性计算。 二、主要参数 总长L OA13.40 m 垂线间长L PP13.00 m 型宽 B 3.10 m 型深 D 1.40 m 吃水 d 0.900 m 排水量?17.460 t 航区内河B航区 三、典型计算工况 1、空载出港 2、满载到港

五、受风面积A及中心高度Z 六、旅客集中一弦倾侧力矩L K L K=1 ? 1? n 5lb =0.030 m n lb =1.400<2.5,取 n lb =1.400 式中:C—系数,C=0.013lb N =0.009<0.013,取C=0.013 n—各活动处所的相当载客人数,按下式计算并取整数 n=N S bl=28.000 S—全船供乘客活动的总面积,m2,按下式计算: S=bl=20.000 m2 b—乘客可移动的横向最大距离,b=2.000 m; l—乘客可移动的横向最大距离,b=2.000 m。 七、全速回航倾侧力矩L V L V=0.045V m2 S KG?a2+a3F r d KN?m 式中:Fr—船边付氏数,F r=m 9.81L ; Ls—所核算状态下的船舶水线长,m; d—所核算状态下的船舶型吃水,m; ?—所核算状态下的船舶型排水量,m2; KG—所核算状态下的船舶重心至基线的垂向高,m; Vm—船舶最大航速,m/s;

a3—修正系数,按下式计算; a3=25F r?9 当a3<0,取a3=0;当a3>1时,取a3=1; a2—修正系数,按下式计算; a2=0.9(4.0?Bs/d) 当Bs/d<3.5时,取Bs/d=3.5;当Bs/d>4.0时,取Bs/d=4.0;

压载水系统

压载水系统 船舶压载水系统 目录定义系统设计原则船舶压载水处理系统 定义 船舶压载水系统主要由压载水泵、压载水管路、压载舱及有关阀件组成,系统的作用是:根据船舶营运的需要,对全船压载舱进行注入或排出,以达到调整船舶的吃水和船体纵、横向的平稳及安全的稳心高度;减小船体变形,以免引起过大的弯曲力矩与剪切力,降低船体振动;改善空舱适航性的目的。 系统设计原则 组成 船舶压载水系统主要由压载水泵、压载水管路、压载舱及有关阀件组成。 舱室布置 根据船舶的种类、用途和吨位的不同,压载水舱在船上的位置、大小和数量也不同。一般船可用首尖舱、尾尖舱、双层底舱、边舱、顶边舱与深舱等作为压载水舱。货油船可以用货油舱兼压载舱。 管路 1、船舶压载水系统的管路布置有三种形式:支管式、总管式和管隧

式。2、船舶压载水舱内吸口管应当同时具有加水功能。3、各压载水舱的压载吸入口应布置在有利于压载水排出的位置。4、为满足压载水系统的工作特点和简化管路,多采用调驳阀箱来调驳各压载水舱的压载水。5、船舶压载水系统应当能够将全船各压载舱的压载水驳进、驳出或相互调驳。也可不用压载泵,舷外海水靠压差自动流入压载水舱。 船舶压载水处理系统 定义 船舶压载水处理系统就是对船舶排放海里的压载水进行处理的装置。前景 因为船舶压载水的无控制排放对海洋生态、公众健康造成严重危害,2004 年,国际海事组织(IMO)通过了《国际船舶压载水和沉积物控制与管理公约》,旨在防止船舶压载水排放引起的外来物种入侵,病原体传播导致的环境、人类健康、财产及资源方面损害。“公约”规定,从2009 年起新造船舶必须安装压载水处理设备,并对现有船舶实施追溯,到2017 年所有远洋船舶均须安装压载水处理设备。否则,公约生效后就不能驶入IMO 成员国港口,违反公约将面临制裁和处罚。随着“压载水公约”生效日期的临近,世界各国都在加紧研发船舶压载水处理技术。截至目前,国外研发机构共30 余家,已有13 家研发机构获得IMO 初步批准,其中瑞典、德国、韩国及挪威已获最终批准。我国现拥有占世界总吨位 3.4%的庞大船队,我国又是造修船大国,拥有一个巨大的船舶关键设备市场,同时,

船舶压载水系统

船舶压载水系统 目录 定义 系统设计原则 船舶压载水处理系统 定义 船舶压载水系统主要由压载水泵、压载水管路、压载舱及有关阀件组成,系统的作用是:根据船舶营运的需要,对全船压载舱进行注入或排出,以达到调整船舶的吃水和船体纵、横向的平稳及安全的稳心高度;减小船体变形,以免引起过大的弯曲力矩与剪切力,降低船体振动;改善空舱适航性的目的。 系统设计原则 组成 船舶压载水系统主要由压载水泵、压载水管路、压载舱及有关阀件组成。 舱室布置 根据船舶的种类、用途和吨位的不同,压载水舱在船上的位置、大小和数量也不同。 一般船可用首尖舱、尾尖舱、双层底舱、边舱、顶边舱与深舱等作为压载水舱。 货油船可以用货油舱兼压载舱。 管路 1、船舶压载水系统的管路布置有三种形式:支管式、总管式和管隧式。 2、船舶压载水舱内吸口管应当同时具有加水功能。 3、各压载水舱的压载吸入口应布置在有利于压载水排出的位置。 4、为满足压载水系统的工作特点和简化管路,多采用调驳阀箱来调驳各压载水舱的压载水。 5、船舶压载水系统应当能够将全船各压载舱的压载水驳进、驳出或相互调驳。也可不用压载泵,舷外海水靠压差自动流入压载水舱。 船舶压载水处理系统 定义 船舶压载水处理系统就是对船舶排放海里的压载水进行处理的装置。

前景 因为船舶压载水的无控制排放对海洋生态、公众健康造成严重危害,2004年,国际海事组织(IMO)通过了《国际船舶压载水和沉积物控制与管理公约》,旨在防止船舶压载水排放引起的外来物种入侵,病原体传播导致的环境、人类健康、财产及资源方面损害。“公约”规定,从2009年起新造船舶必须安装压载水处理设备,并对现有船舶实施追溯,到2017年所有远洋船舶均须安装压载水处理设备。否则,公约生效后就不能驶入IMO成员国港口,违反公约将面临制裁和处罚。随着“压载水公约”生效日期的临近,世界各国都在加紧研发船舶压载水处理技术。截至目前,国外研发机构共30余家,已有13家研发机构获得IMO初步批准,其中瑞典、德国、韩国及挪威已获最终批准。 我国现拥有占世界总吨位3.4%的庞大船队,我国又是造修船大国,拥有一个巨大的船舶关键设备市场,同时,国际市场也蕴含巨大潜力。 压载水处理技术的产业化不仅是保护海洋生态环境的迫切需要,而且对提高国产船舶关键设备装船率、提高航运业和造修船业核心竞争力具有重要意义。同时,对海军自主装备建设意义也十分重大。

船舶压载水处理技术研究[论文+开题+综述]

开题报告 轮机工程 船舶压载水处理技术研究 一、选题的背景与意义 随着对海洋环境保护意识的日益提高,人们已经意识到船舶压载水的随意排放是造成海洋间有害水生物和病原体传播的最主要途径,破坏了全球海洋生物物种的多样性。每年全球船舶携带的压载水有100多亿吨,全球每天在压载水中携带的生物3000~4000种。到目前为止,全球已确认有500种左右的外来生物物种是由船舶压载水传播的。因压载水引起的外来生物入侵,已成为海洋面临的“四大危害”之一。 压载水的大量排放,使海洋环境日趋恶化,海洋生态环境被破坏,尤其是一些沿岸及河口水域已遭到严重的污染损害,也危害到人类的健康,为了人类的健康,也为子孙后代创造一个良好的生态环境,使人类社会可持续发展,必需严格控制对海洋的污染,船舶污染物的控制是目前航运界主要考虑的问题之一。压载水本身无害,但是泵入压载舱后,只要能通过压载泵入口的任何物质都有可能自然地混入其中。若压载舱种水域的含盐量,温度及含氧量等与原水域很相似,这些生物就很可能得以立足,所以,人们对压载水的处理问题越来越引起人们的重视,隔离或者减少外来生物进入海洋使海洋环境得以保护在当今也显得任重道远。 二、研究的基本内容与拟解决的主要问题: 1.压载水污染带来的危害及后果 在中国,据有关方面对渤海湾船舶压载水入侵生物现状调查发现,4种有毒藻类通过船舶压载水传播到我国,并造成大面积的赤潮灾害。据国家环保官方记载,2008年我国由于生物入侵造成的直接经济损失高达574亿元,海洋生物入侵是主要成因之一。近年来,我国海岸赤潮越来越严重,其原因是生存能力较强的赤潮生物的危害。 而在国外,海洋外来生物也对各国海岸大势施虐。1990年,美国的栉水母侵入黑海,吞噬了那里大量的浮游生物,致使黑海鱼苗几乎枯竭。1996年侵入美国和加拿大交界五大湖生物就有139种,而侵入的斑马贝大量繁殖,阻塞水下结构和管路,给当地造成的经济损失已达到数十亿美元。因为外来的海洋生物不能为海洋清除、吸收,这些生物一旦被引进,事实上也不可能被消灭掉,甚至还可能造成巨大的经济损失,导致巨大的灾难。 2.压载水处理的现有技术,各种处理技术的原理、方法、优缺点(存在问题)。

船舶压载水系统

船舶压载水系统 概述 船舶在营运过程中,需要根据具体情况调整吃水、稳性、横倾和纵倾。这一任务通过改变各压载水舱中的压载水量来完成。压载水管系就是向压载水舱注入或排出压载水,以达到:①保持恰当的排水量、吃水深度和船体纵、横向平衡;②维持一定的稳性高度;③减少船体过大的弯曲力矩,免受过大的剪切力;④减轻船体因压载不当而引起的船体振动。 压载水系统的设计,应保证船舶在正常或倾斜状态下,均能及时有效地排出、注入或调拨各压载舱内的压载水。 运输船舶的压载水量相当大,约相当于船舶载重量的40%~80%,因此要有足够的压载水舱。船舶的艏尖舱、艉尖舱、双层底舱、边舱、顶边舱和深舱等均可作为压载水舱。艏、艉尖舱对调整船舶纵倾最为有效。艏尖舱因处于船首隔壁前,易受碰撞,故常作压载舱使用。因舰机型船的尾部一般设有燃油舱,故常将艉尖舱作为压载水舱,用以调整因燃油消耗而引起的纵倾。 小型船舶常将艏、艉尖舱作为清水舱兼压载水舱。 货船的双层底舱常作为燃油舱或清水舱兼压载水舱使用。但是货船仅以艏、艉尖舱和双层底舱作为压载水舱时其压载水量是不够的,故常以部分货舱兼作压载水舱。散装货船不仅双层底,还常以顶边舱作为压载水舱,以保证必要的压载水量。油船除货油舱外,一般另设专用压载水舱。 压载水系统的任务是通过压载水泵、阀箱和压载管路将压载水注入各压载舱、将压载水从各压载舱排出,以及进行各压载水舱之间的调拨。 船舶压载水处理系统主要由压载水泵、压载水管路、压载舱及有关阀件组成,系统的作用是根据船舶营运的需要,对全船压载舱进行注入或排出,以达到调整船舶的吃水和船体纵、横向的平稳及安全的稳心高度;减小船体变形,以免引起过大的弯曲力矩与剪切力,降低船体振动;改善空舱适航性的目的。 根据船舶的种类、用途和吨位的不同,压载水舱在船上的位置、大小和数量也不同。一般船可用首尖舱、尾尖舱、双层底舱、边舱、顶边舱与深舱等作为压载水舱。货油船可以用货油舱兼压载舱。 因为船舶压载水的无控制排放对海洋生态、公众健康造成严重危害,2004年,国际海事组织(IMO)通过了《国际船舶压载水和沉积物控制与管理公约》,旨在防止船舶压载水排放引起的外来物种入侵,病原体传播导致的环境、人类健康、财产及资源方面损害。“公约”规定,从2009年起新造船舶必须安装压载水处理设备,并对现有船舶实施追溯,到2017年所有远洋船舶均须安装压载水处理设备。否则,公约生效后就不能驶入IMO成员国港口,违反公约将面临制裁和处罚。

保证船舶具有适当的吃水差模拟题

第四章保证船舶具有适当的吃水差模拟题 2011-3-13第一节航行船舶对吃水差和吃水的要求 1.船舶纵倾后浮心向()移动。 A.船中 B.中前 C.中后 D.倾斜方向 2.根据经验,万吨级货船在满载时适宜的吃水差为尾倾()m。 A.~ B.~ C.~ D.~ 3.从最佳纵倾的角度确定吃水差,目的是使船舶的()。 A.所受阻力最小 B.装货量最大 C.燃油消耗率最小 D.吃水最合适 4.某万吨货轮某航次轻载出港时吃水差t=-0.5m,则根据经验将会对船舶产生()影响。 A.航速减低 B.舵效变差 C.操纵性变差 D.A、B、C均有可能 5.某万吨货船某航次满载出港时吃水差t=-2.3m,则根据经验将会对船舶产生()影响。 A.船首部底板易受波浪拍击 B.甲板上浪 C.操纵性变差 D.A和C均有可能 6.某万吨货轮某航次半载出港时吃水差t=-0.7m,则根据经验将会对船舶产生()影响。 A.提高航速 B.提高船舶舵效 C.减少甲板上浪

D.A、B、C均有可能 7.普通船舶首倾航行时,可能会产生下述()影响。 A.首部甲板易上浪,强度易受损 B.出现飞车现象 C.船舶操纵困难,航速降低 D.A、B、C均有可能 8.按我国定义,船舶吃水差是指船舶()。 A.首尾吃水之差 B.装货前后吃水差 C.满载与空载吃水之差 D.左右舷吃水之差 9.船舶在空载航行时必须进行压载的原因是()。 A.稳性较差 B.受风面积大,影响航速 C.螺旋桨的推进效率低 D.A、B、C均是 10.当泊位水深受限时,船舶出港时的吃水差应为()。 A.正值 B.负值 C.0 D.以上均可 11.当船舶装载后其重心纵坐标与正浮时浮心纵坐标不同时,船舶将会()。A.横倾 B.正浮 C.纵倾 D.任意倾斜 12.船舶纵倾后()。 A.重心与浮心共垂线 B.漂心与重心共垂线 C.重心不与正浮时漂心共垂线 D.重心不与浮心共垂线 13.吃水差产生的原因是()。 A.船舶装载后重心不与浮心共垂线 B.船舶装载后漂心不与重心共垂线 C.船舶装载后重心不与正浮时漂心共垂线 D.船舶装载后重心不与正浮时浮心共垂线

稳性的基本概念

第一节 稳性的基本概念 一、稳性概述 1. 概念:船舶稳性(Stability)是指船舶受外力作用发生倾斜,当外力消失后能够自行 回复到原来平衡位置的能力。 2. 船舶具有稳性的原因 1)造成船舶离开原来平衡位置的是倾斜力矩,它产生的原因有:风和浪的作用、 船上货物的移动、旅客集中于一舷、拖船的急牵、火炮的发射以及船舶回转等,其大小取决于这些外界条件。 2)使船舶回复到原来平衡位置的是复原力矩,其大小取决于排水量、重心和浮心 的相对位置等因素。 S M G Z =?? (9.81)kN m ? 式中: G Z :复原力臂,也称稳性力臂,重力和浮力作用线之间的距离。 ◎船舶是否具有稳性,取决于倾斜后重力和浮力的位置关系,而排水量一定时, 船舶浮心的变化规律是固定的(静水力资料),因此重心的位置是主观因素。 3. 横稳心(Metacenter)M : 船舶微倾前后浮力作用线的交点,其距基线的高度KM 可从船舶资料中查取。 4. 船舶的平衡状态 1)稳定平衡:G 在M 之下,倾斜后重力和浮力形成稳性力矩。 2)不稳定平衡:G 在M 之上,倾斜后重力和浮力形成倾覆力矩。 3)随遇平衡:G 与M 重合,倾斜后重力和浮力作用在同一垂线上,不产生力矩。 如下图所示

例如: 1)圆锥在桌面上的不同放置方法; 2)悬挂的圆盘 5. 船舶具有稳性的条件:初始状态为稳定平衡,这只是稳性的第一层含义;仅仅具 有稳性是不够的,还应有足够大的回复能力,使船舶不致倾覆,这是稳性的另一层含义。 6. 稳性大小和船舶航行的关系 1)稳性过大,船舶摇摆剧烈,造成人员不适、航海仪器使用不便、船体结构容易 受损、舱内货物容易移位以致危及船舶安全。 2)稳性过小,船舶抗倾覆能力较差,容易出现较大的倾角,回复缓慢,船舶长时 间斜置于水面,航行不力。 二、稳性的分类 1. 按船舶倾斜方向分为:横稳性、纵稳性 2. 按倾角大小分为:初稳性、大倾角稳性 3. 按作用力矩的性质分为:静稳性、动稳性 4. 按船舱是否进水分为:完整稳性、破舱稳性 三、初稳性 1. 初稳性假定条件: 1)船舶微倾前后水线面的交线过原水线面的漂心F; 2)浮心移动轨迹为圆弧段,圆心为定点M(稳心),半径为BM(稳心半径)。2.初稳性的基本计算 初稳性方程式:M R = ??GM?sinθ GM = KM - KG

压载水处理系统

压载水处理系统 【定义: 1、船舶压载水处理系统就是对船舶排放海里的压载水进行处理的装置。也称船舶压载水管理系统。英文简称BWMS。 2、系指对压载水进行处理使其达到或高于《国际船舶压载水及其沉积物管理和控制公约》第D-2条规定的压载水性能标准的任何系统。压载水管理系统包括压载水处理设备、所有相关控制设备、监测设备以及取样设施。 【背景: 船舶航行中,压载是一种必然状态。船舶在加装压载水的同时,海水中的生物也随之被加装入到压载舱中,直至航程结束后排放到目的地海域。压载水跟随船舶从一地到它地,从而引起了有害水生物和病原体的传播。压载水的无控制排放可能会对海洋生态系统、社会经济和公众健康造成危害。全球环保基金组织(GEF)已经把船舶压载水引起的外来物种入侵问题列为海洋四大危害之一。 为了更有效的控制船舶压载水传播有害水生物和病原体,国际海事组织(IMO)于2004年通过了《国际船舶压载水和沉积物控制和管理公约》。“公约”自2009年开始,规定所有新建船舶必须安装压载水处理装置,并对现有船舶追溯实施。“公约”对压载水的处理标准,即处理水中可存活生物的种类及数量作了明确规定(D-2标准)。 【D2标准生效日的不确定性: 《压载水公约》中对船舶的要求是排放经处理的压载水必须满足D2标准,而D2标准的生效并不取决于该公约的生效。这是因为虽然该公约生效日期不确定,但公约中D2标准的生效日对各类型船舶很明确,而该条款又是追溯性的,这就意味着无论公约是否生效,无论是否缔约国,对船舶安装满足D2标准压载水管理系统的要求都是强制性的,所以船舶尤其是新造船舶一定要在船舶设计时考虑这一要求。目前的问题是没有满足所有船舶需要的、足够数量的压载水管理系统,所以D2标准第1个生效日的推迟在所难免。2007年召开的IMO 第25次大会A.1005(25)决议解决了2009年建造的船舶问题,将D2标准的适用日推迟到2011年12月31日,但2010年及之后建造的船舶和现有船舶的适用时间是否推迟要由2009年召开的MEPC(59)会议决定。 【压载水处理D-2标准

水和水蒸气的密度

附录一 水和水蒸汽的密度

续表

续表 下列温度值(℃)时,水和水蒸气的密度ρ'、ρ"(kg/m 3) 绝对压力 p (MPa) 饱和温度 t s (℃) 饱和水密度 ρ's (kg/m 3) 饱和蒸汽密度 ρ"s (kg/m 3) 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 700 0.1 0.2 0.3 0.4 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 6.0 99.63 120.23 133.54 143.62 151.85 179.88 198.28 212.37 223.94 233.34 242.54 250.33 257.41 263.92 275.56 958.41 942.68 931.53 922.59 915.08 887.00 866.70 849.91 835.28 822.17 810.04 798.66 787.96 777.73 758.32 0.5901 1.1288 1.6505 2.1625 2.6680 5.1467 7.5959 10.047 12.515 15.011 17.538 20.105 22.717 25.374 30.855 0.36600.73371.10291.47381.8464 3.73415.66577.64539.676811.765 13.91416.12918.41620.78625.800 0.35410.70921.06611.42431.7838 3.60235.45857.35299.293711.273 13.30315.38717.52519.72424.325 0.34280.68681.03181.37801.7253 3.48075.26597.08728.936610.832 12.76214.73416.74818.81123.089 0.33220.66531.00001.33481.6711 3.36705.09166.83998.620710.432 12.27614.15216.06418.01522.036 0.32230.64560.96991.29431.6202 3.26164.92616.61388.326410.067 11.83313.62615.44917.30121.106 0.31300.62660.94161.25631.5723 3.16364.77336.40618.06019.7314 11.42713.14814.89216.66120.280 0.3041 0.6090 0.9141 1.2206 1.5272 3.0713 4.6318 6.2112 7.8064 9.4251 11.055 12.708 14.382 16.077 19.535 0.29590.59240.88891.18671.4848 2.98424.49846.02777.57009.1324 10.65212.30313.91415.54218.857 0.28790.57640.86511.15471.4447 2.90194.37255.85487.35298.8652 10.38711.92713.48115.05118.235 0.28050.56150.84251.12451.4067 2.82494.25355.69487.14808.6133 10.08811.57713.07914.59217.662 0.27340.54700.82101.09581.3708 2.75104.14255.54326.95418.3752 9.805811.24912.70314.16817.132 0.26670.53360.80131.06861.3365 2.68174.03555.39966.77058.1500 9.542010.94112.35013.77016.639 0.26020.52080.78191.04281.3041 2.61573.93555.26326.59637.9428 9.293710.65312.02113.39816.176 0.25410.50840.76341.01801.2732 2.55363.84025.13356.43507.7399 9.058010.38011.71013.04615.743 0.2483 0.4968 0.7457 0.9945 1.2438 2.4938 3.7495 5.0125 6.2814 7.5529 8.8339 10.122 11.416 12.716 15.335 0.2227 0.4456 0.6684 0.8921 1.1150 2.2331 3.3557 4.4803 5.6085 6.7431 7.8740 9.0171 10.158 11.305 13.607

船舶压载水处理系统

船舶压载水处理系统 2009年3月9日 [关键词]压载水处理系统;空化;脱氧 [摘要]较详细地介绍了三种符合国际海事组织(IMO)压载水排放标准的压载水处理系统。为2009年以后设计建造的新船以及2016年底前全部现有船舶的改装设计提供了新装备、新技术的线索,值得关注。 0引言 2004年,国际海事组织(IMO)通过了《船舶压载水和沉积物控制和管理国际公约》,旨在达成国际上的一致,“通过控制和管理船舶压载水和沉积物来防止、减少和最终消除有害水生物和病原体的传播”。压载水排放可能扰乱生态平衡,为了应对由此造成的对全球环境的威胁,需要配置得到IMO认可的处理系统。按照公约的要求,如果在2009年1月1日以后建成的新船,必须安装专门的处理设备;从2012年起所有的新船均应装设压载水处理系统,而全部现有船舶则应在2016年底之前配备此项技术装置。 随着2009年的临近,距离公约正式生效的日子已经不远,目前有多少压载水处理系统已经研制成功并得到IMO批准呢? 1国外主要的压载水处理系统介绍 1.1NEI公司的文氏管脱氧方式压载水处理系统(Venturi Oxygen Stripping——VOS) NEI公司从2002年开始致力于研制VOS系统来解决水栖有害生物问题,同时保护压载舱不被腐蚀。该系统使用氮气在船舶压载舱内制造一个低氧的环境,该环境限制了含氧量,避免了氧化铁或锈的形成;同时,该低氧环境极大降低了随压载水带来的水栖生物的生存率。该项技术已在船舶实验中得到证明,完全符合IMO的压载水排放标准。图1为VOS系统流程图。 VOS系统与船舶现有的压载系统相结合,当吸入的压载水流经安装在压载管路上的文氏管喷射器时,将会发生空化现象;同时在其中喷入由制氮装置产生的氮气,使其达到过饱和。经过这一过程,压载水中的含氧量将在l0s内减少95%。当压载水排出压载舱时,VOS系统将通过甲板管路向空舱中注入氮气,以使压

船舶压载水系统论文

“凯敏”轮压载水管理系统的科学管理初探 [摘要] 随着世界航运业的发展,船舶压载水问题给全球海洋环境和经济发展带来一定程度的威胁。压载水会把侵害性水生物带到新的环境,从而破坏新环境生物链的正常生产,甚至可能危害人类的正常生活。目前,已经成为影响海洋生态环境安全的四大危害因素之一。因此,安全而有效治理船舶压载水及其沉积物已成为国际海洋环境研究中的热点课题。首先,在查阅多方相关资料后,本文对压载水进行了综合论述,分析了压载水处理的重要性;其次,简述了几种针对压载水处理的管理方法,分析了它们的优缺点;接着,详细论述了“凯敏”轮所使用压载水处理技术,并就其处理原理进行分析。同时针对“凯敏”轮电解法处理压载水所产生的问题进行分析,并提出解决办法。 [关键词] 压载水;电解制氯;腐蚀;监控系统

The Scientific Managment of Ballast Water Treatment System in New Activity Tanker [Abstract] With the development of the world shipping industry, the ship ballast water problem has brought a certain degree of threat to the global marine environment and economic development. The ballast water will take the invasive aquatic organisms to the new environment, destroy the normal production of the food chain in the new environment, It could even do harm to the human normal life. At present,the ballast water has become one of the four major risk factors that affect the safety of marine ecological environment. Therefore, the safe and effective way to manage ship ballast water and sediment has become a hot topic in the international marine environmental research.Firstly,based on the references,the Paper summarizes the related Problem of ballast water,clarifies the importance. Secondly,the paper briefly introduces several kinds of treatments of ballast water. Besides, compares the advantages and disadvantages among those treatments and the practicality of the extant methods. Lastly, the paper initially analyses the problem which might be raised by use of electrolytic method for the treatment of ballast water onboard,makes advice about the ballast water treatment system of “NEW ACTIVITY”. [Key words] Ballast water;Electrochlorination;Corrosion;Monitoring system

船舶吃水差的概念与基本计算

第一节 船舶吃水差的概念与基本计算 一、吃水差概述 1. 吃水差(trim)概念 当t = 0 时,称为平吃水(Even keel); t = d F -d A 当t > 0时,称为首倾(Trim by head); 当t < 0时,称为尾倾(Trim by stern)。 2. 吃水差对船舶航海性能的影响 3. 适当吃水差的范围 1)载货状态下,对万吨级货轮: 满载时:t = -0.3~-0.5 m 半载时:t = -0.6~-0.8 m 轻载时:t = -0.9~-1.9 m 2)空载航行时: ◎一般要求 dm ≥ 50%d s (冬季航行dm ≥ 55%d s ) I/D ≥0.65~0.75 | t | <2.5%L bp 其中:d s —— 船舶夏季满载吃水(m); I —— 螺旋桨轴心至水面高度(m); D —— 螺旋桨直径(m)。 ◎推荐值 当L bp ≤ 150m 时 d Fmin ≥ 0.025L bp ( m ) d mmin ≥ 0.02L bp + 2 ( m )

当L bp > 150m 时 d Fmin ≥ 0.012L bp + 2 ( m ) d mmin ≥ 0.02L bp + 2 ( m ) 二、吃水差产生的原因 1. 纵向上,船舶装载后总重心与正浮时的浮心不共垂线,即g b x x ≠ 2. g x 的求法 合力矩定理 () i i g P x x ∑?= ? 三、吃水差的基本计算 1. 纵向小倾角静稳性 理论证明,船舶在小角度纵倾时,其纵倾轴为过初始水线面漂心的横轴,在排水量一定时,纵倾前后相临两浮力作用线的交点L M 为定点,L M 称为纵稳心。 sin tan RL L L L BP t M GM GM GM L ??=???≈???=??? 2. 每厘米纵倾力矩MTC :吃水差改变1cm 所需要的纵倾力矩,可由资料查得。 或:船舶吃水差改变1cm 时,船舶本身所具有的纵向复原力矩。 令1t cm =,则0.01100L RL L L BP BP BP BM t M GM BM MTC L L L ??≈???≈???== 3. 吃水差的计算 ()100100100g b i i b T x x Px x M t MTC MTC MTC ?-∑-??= ==??? 显然,g b x x ≠时,船舶将存在一定的吃水差。 4. 首尾吃水的计算 由图可得: 2BP f F m BP L x d d t L -=+?

船舶压载水置换方法及工作要点

第31卷 第1期世界海运Vol.31 No.1 2008年2月World Shipping Feb. 2008 船舶防污船舶压载水置换方法及工作要点 栾法敏Ξ (青岛远洋船员学院,山东青岛 266071) 【关键词】船舶压载水;风险评估;置换方法 【摘 要】根据国际海事组织对船舶压载水管理制定的相关法规及要求,探讨船舶压载水置换方法以及工作要点,围绕置换前的风险评估、置换方法的选择、不同置换方法应该注意的工作要领等方面对压载水的置换进行阐述。 中图分类号:U698.7 文献标识码:B 文章编号:100627728(2008)0120050203 1 压载水置换的相关法规 IMO于1997年11月通过了加强对船舶压载水的控制和管理指南来减少有害水生物及病原体传播的A.868 (20)号决议,2004年2月IMO又通过了《2004年国际船舶压载水和沉淀物控制与管理公约》,许多国家都将船舶压载水管理列入本国法律。实施船舶压载水置换,旨在尽量减少由于船舶压载水和相关沉淀物导致有害水生物和病原体的转移,即减少对海洋环境的污染,加强对世界海洋环境的保护。由于近岸(包括港口和河口)生物被排放到深海中,或深海生物被排放到近岸水域通常都不能存活,因此公约要求船舶在深海中或者在港口国指定的海域进行压载水置换。根据公约的要求,在置换压载水时必须满足以下3个条件中的任何一个:距离最近的陆地至少200n mile,水深至少200m;如果条件不满足,则尽可能远离最近陆地,在任何情况下距离最近陆地至少50n mile,水深至少200m;或在港口国指定的海域。 2 目前置换压载水的主要方法 根据国际海事组织对压载水的管理指南,目前被认可和接受的置换方法主要包括以下3种。 (1)逐一更换法(empty/re2fill method)。是指将压载水从压载舱中用泵排放干净,并重新吸入洁净海水的方法。该方法的优点是:能够比较彻底地对压载水进行有效置换,在3种置换方法中该方法是更换最彻底的一种;完成压载水置换的时间较短。该方法的缺点是:由于排放压载水能够改变船舶的吃水差以及船舶的稳性,同时对船舶的固有剪力和弯矩也会产生影响,因而需要仔细计划和监控,做好精确的计算,保证每一步都能够确保船舶整体和局部强度、稳性和吃水差维持在允许的范围内;需要考虑动态负荷影响,要考虑吃水差的变化是否会造成船上货物位移;要考虑天气情况的影响。 (2)溢流法(flow2through method)。又称为注入顶出法,是指从压载舱的底部泵入清洁海水,使原来的压载水通过溢流孔从顶部排出的方法。因为压载舱有一定的舱容,所以当泵入一定量海水时也同时排出相同量的海水,从而达到压载水置换的目的。研究发现,要达到压载水95%的更换量,需要泵入3倍舱容的水量。该方法的优点是:由于不改变船舶的吃水差和稳性,对船舶的局部强度和总纵强度影响不大,同时也不会产生货物移位等负面影响。基于这些优点,在使用该方法进行压载水置换时,不用进行周密的计算,也便于船员的操作;同时该方法在不得已的情况下,在恶劣天气里也可以进行操作。该方法的缺点是:对于老旧船该方法不太适用,因为在使用溢流法置换时泵和管系的压力比较大,很容易造成对管系的破坏;不仅如此,置换过程中压载舱压力增大同样也存在着危险。另外,有些船没有设计顶部溢流的端口,不能使用该方法。 (3)稀释法(dilution method)。是通过管路的设计,将清洁海水从压载舱顶部注入同时从底部排出的方法。此方法也是至少向舱内泵入3倍于舱容量的海水。稀释法因涉及船舶设备、管路的改进或添置,故仅在新造船上设置后才能使用。 对于目前大多数船舶来说,压载水的置换方法主要为逐一更换法和溢流法。 3 置换压载水时的风险评估以及方法选择在压载水置换以前应做好风险评估,然后采用适合于本船的置换方法。不同类型的船舶应选择不同的置换方法,船长应充分考虑压载水置换过程中产生的风险,然后谨慎决定采用哪种方法。 Ξ[收稿日期]2007207220 [作者简介]栾法敏(1969-),男,山东高密人,船长,讲师

相关主题