搜档网
当前位置:搜档网 › 深度学习系列(11):神经网络防止过拟合的方法

深度学习系列(11):神经网络防止过拟合的方法

深度学习系列(11):神经网络防止过拟合的方法
深度学习系列(11):神经网络防止过拟合的方法

过拟合(over?tting )是指在模型参数拟合过程中的问题,由于训练数据包含抽样误差,训练时,复杂的模型将抽样误差也考虑在内,将抽样误差也进?行行了了很好的拟合。具体表现就是最终模型在训练集上效果好,?而在测试集上的效果很差,模型的泛化能?力力?比较弱。

那为什什么要解决过拟合现象呢?这是因为我们拟合的模型?一般是?用来预测未知的结果(不不在训练集内),过你个虽然在训练集上效果很好,但在实际使?用时(测试集)效果很差。同时,在很多问题上,我们?无法穷尽所以状态,不不可能将所有情况都包含在训练集上。所以,必须要解决过拟合问题。

之所以过拟合在机器?学习中?比较常?见,就是因为机器?学习算法为了了满?足尽可能复杂的任务,其模型的拟合能?力力?一般远远?高于问题复杂度,也就是说,机器?学习算法有“拟合出正确规则的前提下,进?一步拟合噪声”的能?力力。

过拟合主要是有两个原因造成的:数据太少+模型太复杂。所以,我们可以通过使?用合适复杂度的模型来防?止过拟合问题,让其?足够拟合真正的规则,同时?又不不?至于拟合太多抽样误差。

深度学习系列列(11):神经?网络防?止过拟合的?方法

通过上图可以看出,随着模型训练的进?行行,模型的复杂度会增加,此时模型在训练数据集上的训练误差会逐渐减?小,但是在模型的复杂度达到?一定程度时,模型在验证集上的误差反?而随着模型的复杂度增加?而增?大。此时便便发?生了了过拟合,即模型的复杂度升?高,但是该模型在除训练集之外的数据集上却不不work。

为了了防?止过拟合,我们需要?用到?一些?方法,如下所示:

?一、获取更更多的数据

所有的过拟合?无?非就是训练样本的缺乏和训练参数的增加。?一般要想获得更更好的模型,需要?大量量的训练参数,这也是为什什么CNN?网络越来越深的原因之?一,?而如果训练样本缺乏多样性,那再多的训练参数也毫?无意义,因为这造成了了过拟合,训练的模型泛化能?力力相应也会很差。?大量量数据带来的特征多样性有助于充分利利?用所有的训练参数。

在数据挖掘领域流?行行着这样的?一句句话,“有时候往往拥有更更多的数据胜过?一个好的模型”。因为我们在使?用训练数据训练模型,通过这个模型对将来的数据进?行行拟合,?而在这之间?又?一个假设便便是,训练数据与将来的数据是独?立同分布的。即使?用当前的训练数据来对将来的数据进?行行估计与模拟,?而更更多的数据往往估计与模拟地更更准确。因此,更更多的数据有时候更更优秀。但是往往条件有限,如?人?力力物?力力财?力力的不不?足,?而不不能收集到更更多的数据,如在进?行行分类的任务中,需要对数据进?行行打标,并且很多情况下都是?人?工得进?行行打标,因此?一旦需要打标的数据量量过多,就会导致效率低下以及可能出错的情况。所以,往往在这时候,需要采取?一些计算的?方式与策略略在已有的数据集上进?行行?手脚,以得到更更多的数据。通俗得讲,数据扩增即需要得到更更多的符合要求的数据,

图像平移、翻转、缩放、切割等?手段将数据库成倍扩充,以下为具体的?方案:

?二、使?用合适的模型

2.1 限制权值 Weight Decay

常?用的weight decay有L1和L2正则化,L1较L2能够获得更更稀疏的参数,但L1零点不不可导。在损失函数中,weight decay是放在正则项(regularization)前?面的?一个系数,正则项?一般指示模型的复杂度,所以weight decay的作?用是调节模型复杂度对损失函数的影响,若weight decay很?大,则复杂的模型损失函数的值也就?大。

L1和L2正则化是很重要的过拟合?方法,后边专?门?用?一篇?文章来讲。

2.2 训练时间 Early stopping

提前停?止其实是另?一种正则化?方法,就是在训练集和验证集上,?一次迭代之后计算各?自的错误率,当在验证集上的错误率最?小,在没开始增?大之前停?止训练,因为如果接着训练,训练集上的错误率?一般是会继续减?小的,但验证集上的错误率会上升,这就说明模型的泛化能?力力开始变差了了,出现过拟合问题,及时停?止能获得泛化更更好的模型。如下图(左边是训练集错误率,右图是验证集错误率,在虚线处提前结束训练):

Early stopping?方法的具体做法是,在每?一个Epoch结束时(?一个Epoch集为对所有的训练数据的?一轮遍历)计算validation data的accuracy,当accuracy不不再提?高时,就停?止训练。这种做法很符合直观感受,因为accurary都不不再提?高了了,在继续训练也是?无益的,只会提?高训练的时间。那么该做法的?一个重点便便是怎样才认为validation accurary不不再提?高了了呢?并不不是说validation accuracy?一降下来便便认为不不再提?高了了,因为可能经过这个Epoch后,accuracy降低了了,但是随后的Epoch?又让accuracy?又上去了了,所以不不能根据?一两次的连续降低就判断不不再提?高。?一般的做法是,在训练的过程中,记录到?目前为?止最好的validation accuracy,当连续10次Epoch(或者更更多次)没达到最佳accuracy时,则可以认为accuracy不不再提?高了了。此时便便可以停?止迭代了了(Early Stopping)。这种策略略也称为“No-improvement-in-n”,n即Epoch的次数,可以根据实际情况取,如10、20、30。

在神经?网络中,对于每个神经元?而?言,其激活函数在不不同的区间的性能是不不同的:

当?网络权值较?小时,神经元的激活函数?工作在线性区,此时神经元的拟合能?力力较弱(类似线性神经元)。有了了以上共识之后,就可以解释为什什么训练时间(early stopping)有?用:因为我们在初始化?网络的时候?一般都是初始为较?小的权值。训练时间越?长,部分?网络权值可能越?大。如果我们在合适时间停?止训练,就可以将?网络的能?力力限制在?一定范围内。

2.3 ?网络结构

这个很好理理解,减少?网络的层数、神经元个数等均可以限制?网络的拟合能?力力。

22

does signi?cantly better on the test set!)。

简?而?言之,训练多个模型,以每个模型的平均输出作为结果。

从 N 个模型?里里随机选择?一个作为输出的期望误差 ,会?比所有模型的平均输出的误差?大:

?大概基于这个原理理,就可以有很多?方法了了。

简单理理解,就是分段函数的概念:?用不不同的模型拟合不不同部分的训练集。以随机森林林(Rand Forests )为例例,就是训练了了?一堆互不不关联的决策树。但由于训练神经?网络本身就需要耗费较多?自由,所以?一般不不单独使?用神经?网络做Bagging 。

bagging 和boosting 详细可?见机器?学习算法系列列(6):AdaBoost

正则是通过在代价函数后?面加上正则项来防?止模型过拟合的。?而在神经?网络中,有?一种?方法是通过修改神经?网络本身结构来实现的,其名为Dropout 。该?方法是在对?网络进?行行训练时?用?一种技巧(trick ),

Dropout 是hintion 最近2年年提出的,源于其?文章Improving neural networks by preventing co-adaptation of feature detectors.中?文?大意为:通过阻?止特征检测器?的共同作?用来提?高神经?网络的性能。

三、结合多种模型

<[(t ?)>y i ]2<[(t ?)>y ˉ]23.1 Bagging 和Boost

3.2 Dropout

2H

在训练时,每次随机(如50%概率)忽略略隐层的某些节点;这样,我们相当于随机从个模型中采样选择模型;同时,由于每个?网络只?见过?一个训练数据(每次都是随机的新?网络),所以类似 bagging 的做法,这就是我为什什么将它分类到「结合多种模型」中;

此外,?而不不同模型之间权值共享(共同使?用这 H 个神经元的连接权值),相当于?一种权值正则?方法,实际效果?比 L2 regularization 更更好。

正则化?方法:L1和L2 regularization、数据集扩增、dropout

(完整版)深度神经网络及目标检测学习笔记(2)

深度神经网络及目标检测学习笔记 https://youtu.be/MPU2HistivI 上面是一段实时目标识别的演示,计算机在视频流上标注出物体的类别,包括人、汽车、自行车、狗、背包、领带、椅子等。 今天的计算机视觉技术已经可以在图片、视频中识别出大量类别的物体,甚至可以初步理解图片或者视频中的内容,在这方面,人工智能已经达到了3岁儿童的智力水平。这是一个很了不起的成就,毕竟人工智能用了几十年的时间,就走完了人类几十万年的进化之路,并且还在加速发展。 道路总是曲折的,也是有迹可循的。在尝试了其它方法之后,计算机视觉在仿生学里找到了正确的道路(至少目前看是正确的)。通过研究人类的视觉原理,计算机利用深度神经网络(Deep Neural Network,NN)实现了对图片的识别,包 括文字识别、物体分类、图像理解等。在这个过程中,神经元和神经网络模型、大数据技术的发展,以及处理器(尤其是GPU)强大的算力,给人工智能技术 的发展提供了很大的支持。 本文是一篇学习笔记,以深度优先的思路,记录了对深度学习(Deep Learning)的简单梳理,主要针对计算机视觉应用领域。 一、神经网络 1.1 神经元和神经网络 神经元是生物学概念,用数学描述就是:对多个输入进行加权求和,并经过激活函数进行非线性输出。 由多个神经元作为输入节点,则构成了简单的单层神经网络(感知器),可以进行线性分类。两层神经网络则可以完成复杂一些的工作,比如解决异或问题,而且具有非常好的非线性分类效果。而多层(两层以上)神经网络,就是所谓的深度神经网络。 神经网络的工作原理就是神经元的计算,一层一层的加权求和、激活,最终输出结果。深度神经网络中的参数太多(可达亿级),必须靠大量数据的训练来“这是苹在父母一遍遍的重复中学习训练的过程就好像是刚出生的婴儿,设置。.果”、“那是汽车”。有人说,人工智能很傻嘛,到现在还不如三岁小孩。其实可以换个角度想:刚出生婴儿就好像是一个裸机,这是经过几十万年的进化才形成的,然后经过几年的学习,就会认识图片和文字了;而深度学习这个“裸机”用了几十年就被设计出来,并且经过几个小时的“学习”,就可以达到这个水平了。 1.2 BP算法 神经网络的训练就是它的参数不断变化收敛的过程。像父母教婴儿识图认字一样,给神经网络看一张图并告诉它这是苹果,它就把所有参数做一些调整,使得它的计算结果比之前更接近“苹果”这个结果。经过上百万张图片的训练,它就可以达到和人差不多的识别能力,可以认出一定种类的物体。这个过程是通过反向传播(Back Propagation,BP)算法来实现的。 建议仔细看一下BP算法的计算原理,以及跟踪一个简单的神经网络来体会训练的过程。

深度学习系列(7):神经网络的优化方法

机器?学习中,梯度下降法常?用来对相应的算法进?行行训练。常?用的梯度下降法包含三种不不同的形式,分别是BGD 、SGD 和MBGD ,它们的不不同之处在于我们在对?目标函数进?行行梯度更更新时所使?用的样本量量的多少。 以线性回归算法来对三种梯度下降法进?行行?比较。 ?一般线性回归函数的假设函数为: (即有n 个特征)对应的损失函数为下图即为?一个?二维参数和组对应的损失函数可视化图像:批量量梯度下降法(Batch Gradient Descent ,简称BGD )是梯度下降法最原始的形式,它的具体思路路是在更更新每?一参数时都使?用所有的样本来进?行行更更新,其数学形式如下: 深度学习系列列(7):神经?网络的优化?方法?一、Gradient Descent [Robbins and Monro, 1951,Kiefer et al., 1952] = h θ∑j =0n θj x j L (θ)=12m ∑i =1 m (h ()?)x i y i 2θ0θ11.1 BGD (Batch Gradient Descent )

还是以上?面?小球的例例?子来看,momentum ?方式下?小球完全是盲?目被动的?方式滚下的。这样有个缺 三、NAG (Nesterov accelerated gradient )[Nesterov, 1983]

点就是在邻近最优点附近是控制不不住速度的。我们希望?小球可以预判后?面的“地形”,要是后?面地形还是很陡峭,那就继续坚定不不移地?大胆?走下去,不不然的话就减缓速度。 当然,?小球?自?己也不不知道真正要?走到哪?里里,这?里里以 作为下?一个位置的近似,将动量量的公式更更改为: 相?比于动量量?方式考虑的是上?一时刻的动能和当前点的梯度,?而NAG 考虑的是上?一时刻的梯度和近似下?一点的梯度,这使得它可以先往前探探路路,然后慎重前进。 Hinton 的slides 是这样给出的: 其中两个blue vectors 分别理理解为梯度和动能,两个向量量和即为momentum ?方式的作?用结果。?而靠左边的brown vector 是动能,可以看出它那条blue vector 是平?行行的,但它预测了了下?一阶段的梯度是red vector ,因此向量量和就是green vector ,即NAG ?方式的作?用结果。 momentum 项和nesterov 项都是为了了使梯度更更新更更加灵活,对不不同情况有针对性。但是,?人?工设置?一些学习率总还是有些?生硬,接下来介绍?几种?自适应学习率的?方法 训练深度?网络的时候,可以让学习率随着时间退?火。因为如果学习率很?高,系统的动能就过?大,参数向量量就会?无规律律地变动,?无法稳定到损失函数更更深更更窄的部分去。对学习率衰减的时机把握很有技巧:如果慢慢减?小,可能在很?长时间内只能浪费计算资源然后看着它混沌地跳动,实际进展很少;但如果快速地减少,系统可能过快地失去能量量,不不能到达原本可以到达的最好位置。通常,实现学习率退?火有三种?方式: θ?γv t ?1 =γ+ηJ (θ?γ) v t v t ?1?θv t ?1θ=θ?v t 四、学习率退?火

零基础入门深度学习(5) - 循环神经网络

[关闭] 零基础入门深度学习(5) - 循环神经网络 机器学习深度学习入门 无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的技术,会不会感觉马上就out了?现在救命稻草来了,《零基础入门深度学习》系列文章旨在讲帮助爱编程的你从零基础达到入门级水平。零基础意味着你不需要太多的数学知识,只要会写程序就行了,没错,这是专门为程序员写的文章。虽然文中会有很多公式你也许看不懂,但同时也会有更多的代码,程序员的你一定能看懂的(我周围是一群狂热的Clean Code程序员,所以我写的代码也不会很差)。 文章列表 零基础入门深度学习(1) - 感知器 零基础入门深度学习(2) - 线性单元和梯度下降 零基础入门深度学习(3) - 神经网络和反向传播算法 零基础入门深度学习(4) - 卷积神经网络 零基础入门深度学习(5) - 循环神经网络 零基础入门深度学习(6) - 长短时记忆网络(LSTM) 零基础入门深度学习(7) - 递归神经网络 往期回顾 在前面的文章系列文章中,我们介绍了全连接神经网络和卷积神经网络,以及它们的训练和使用。他们都只能单独的取处理一个个的输入,前一个输入和后一个输入是完全没有关系的。但是,某些任务需要能够更好的处理序列的信息,即前面的输入和后面的输入是有关系的。比如,当我们在理解一句话意思时,孤立的理解这句话的每个词是不够的,我们需要处理这些词连接起来的整个序列;当我们处理视频的时候,我们也不能只单独的去分析每一帧,而要分析这些帧连接起来的整个序列。这时,就需要用到深度学习领域中另一类非常重要神经网络:循环神经网络(Recurrent Neural Network)。RNN种类很多,也比较绕脑子。不过读者不用担心,本文将一如既往的对复杂的东西剥茧抽丝,帮助您理解RNNs以及它的训练算法,并动手实现一个循环神经网络。 语言模型 RNN是在自然语言处理领域中最先被用起来的,比如,RNN可以为语言模型来建模。那么,什么是语言模型呢? 我们可以和电脑玩一个游戏,我们写出一个句子前面的一些词,然后,让电脑帮我们写下接下来的一个词。比如下面这句:我昨天上学迟到了,老师批评了____。 我们给电脑展示了这句话前面这些词,然后,让电脑写下接下来的一个词。在这个例子中,接下来的这个词最有可能是『我』,而不太可能是『小明』,甚至是『吃饭』。 语言模型就是这样的东西:给定一个一句话前面的部分,预测接下来最有可能的一个词是什么。 语言模型是对一种语言的特征进行建模,它有很多很多用处。比如在语音转文本(STT)的应用中,声学模型输出的结果,往往是若干个可能的候选词,这时候就需要语言模型来从这些候选词中选择一个最可能的。当然,它同样也可以用在图像到文本的识别中(OCR)。 使用RNN之前,语言模型主要是采用N-Gram。N可以是一个自然数,比如2或者3。它的含义是,假设一个词出现的概率只与前面N个词相关。我

吴恩达深度学习课程:神经网络和深度学习

吴恩达深度学习课程:神经网络和深度学习[中英文字幕+ppt课件] 内容简介 吴恩达(Andrew Ng)相信大家都不陌生了。2017年8 月8 日,吴恩达在他自己创办的在线教育平台Coursera 上线了他的人工智能专项课程(Deep Learning Specialization)。此课程广受好评,通过视频讲解、作业与测验等让更多的人对人工智能有了了解与启蒙,国外媒体报道称:吴恩达这次深度学习课程是迄今为止,最全面、系统和容易获取的深度学习课程,堪称普通人的人工智能第一课。 关注微信公众号datayx 然后回复“深度学习”即可获取。 第一周深度学习概论: 学习驱动神经网络兴起的主要技术趋势,了解现今深度学习在哪里应用、如何应用。 1.1 欢迎来到深度学习工程师微专业 1.2 什么是神经网络? 1.3 用神经网络进行监督学习 1.4 为什么深度学习会兴起? 1.5 关于这门课

1.6 课程资源 第二周神经网络基础: 学习如何用神经网络的思维模式提出机器学习问题、如何使用向量化加速你的模型。 2.1 二分分类 2.2 logistic 回归 2.3 logistic 回归损失函数 2.4 梯度下降法 2.5 导数 2.6 更多导数的例子 2.7 计算图 2.8 计算图的导数计算 2.9 logistic 回归中的梯度下降法 2.10 m 个样本的梯度下降 2.11 向量化 2.12 向量化的更多例子 2.13 向量化logistic 回归 2.14 向量化logistic 回归的梯度输出 2.15 Python 中的广播 2.16 关于python / numpy 向量的说明 2.17 Jupyter / Ipython 笔记本的快速指南 2.18 (选修)logistic 损失函数的解释 第三周浅层神经网络:

(完整版)深度神经网络全面概述

深度神经网络全面概述从基本概念到实际模型和硬件基础 深度神经网络(DNN)所代表的人工智能技术被认为是这一次技术变革的基石(之一)。近日,由IEEE Fellow Joel Emer 领导的一个团队发布了一篇题为《深度神经网络的有效处理:教程和调研(Efficient Processing of Deep Neural Networks: A Tutorial and Survey)》的综述论文,从算法、模型、硬件和架构等多个角度对深度神经网络进行了较为全面的梳理和总结。鉴于该论文的篇幅较长,机器之心在此文中提炼了原论文的主干和部分重要内容。 目前,包括计算机视觉、语音识别和机器人在内的诸多人工智能应用已广泛使用了深度神经网络(deep neural networks,DNN)。DNN 在很多人工智能任务之中表现出了当前最佳的准确度,但同时也存在着计算复杂度高的问题。因此,那些能帮助DNN 高效处理并提升效率和吞吐量,同时又无损于表现准确度或不会增加硬件成本的技术是在人工智能系统之中广泛部署DNN 的关键。 论文地址:https://https://www.sodocs.net/doc/1116965054.html,/pdf/1703.09039.pdf 本文旨在提供一个关于实现DNN 的有效处理(efficient processing)的目标的最新进展的全面性教程和调查。特别地,本文还给出了一个DNN 综述——讨论了支持DNN 的多种平台和架构,并强调了最新的有效处理的技术的关键趋势,这些技术或者只是通过改善硬件设计或者同时改善硬件设计和网络算法以降低DNN 计算成本。本文也会对帮助研究者和从业者快速上手DNN 设计的开发资源做一个总结,并凸显重要的基准指标和设计考量以评估数量快速增长的DNN 硬件设计,还包括学界和产业界共同推荐的算法联合设计。 读者将从本文中了解到以下概念:理解DNN 的关键设计考量;通过基准和对比指标评估不同的DNN 硬件实现;理解不同架构和平台之间的权衡;评估不同DNN 有效处理技术的设计有效性;理解最新的实现趋势和机遇。 一、导语 深度神经网络(DNN)目前是许多人工智能应用的基础[1]。由于DNN 在语音识别[2] 和图像识别[3] 上的突破性应用,使用DNN 的应用量有了爆炸性的增长。这些DNN 被部署到了从自动驾驶汽车[4]、癌症检测[5] 到复杂游戏[6] 等各种应用中。在这许多领域中,DNN 能够超越人类的准确率。而DNN 的出众表现源于它能使用统计学习方法从原始感官数据中提取高层特征,在大量的数据中获得输入空间的有效表征。这与之前使用手动提取特征或专家设计规则的方法不同。 然而DNN 获得出众准确率的代价是高计算复杂性成本。虽然通用计算引擎(尤其是GPU),已经成为许多DNN 处理的砥柱,但提供对DNN 计算更专门化的加速方法也越来越热门。本文的目标是提供对DNN、理解DNN 行为的各种工具、有效加速计算的各项技术的概述。 该论文的结构如下:

神经网络及深度学习

可用于自动驾驶的神经网络及深度学习 高级辅助驾驶系统(ADAS)可提供解决方案,用以满足驾乘人员对道路安全及出行体验的更高要求。诸如车道偏离警告、自动刹车及泊车辅助等系统广泛应用于当前的车型,甚至是功能更为强大的车道保持、塞车辅助及自适应巡航控制等系统的配套使用也让未来的全自动驾驶车辆成为现实。 作者:来源:电子产品世界|2017-02-27 13:55 收藏 分享 高级辅助驾驶系统(ADAS)可提供解决方案,用以满足驾乘人员对道路安全及出行体验的更高要求。诸如车道偏离警告、自动刹车及泊车辅助等系统广泛应用于当前的车型,甚至是功能更为强大的车道保持、塞车辅助及自适应巡航控制等系统的配套使用也让未来的全自动驾驶车辆成为现实。 如今,车辆的很多系统使用的都是机器视觉。机器视觉采用传统信号处理技术来检测识别物体。对于正热衷于进一步提高拓展ADAS功能的汽车制造业而言,深度学习神经网络开辟了令人兴奋的研究途径。为了实现从诸如高速公路全程自动驾驶仪的短时辅助模式到专职无人驾驶旅行的自动驾驶,汽车制造业一直在寻求让响应速度更快、识别准确度更高的方法,而深度学习技术无疑为其指明了道路。 以知名品牌为首的汽车制造业正在深度学习神经网络技术上进行投资,并向先进的计算企业、硅谷等技术引擎及学术界看齐。在中国,百度一直在此技术上保持领先。百度计划在2019 年将全自动汽车投入商用,并加大全自动汽车的批量生产力度,使其在2021 年可广泛投入使用。汽车制造业及技术领军者之间的密切合作是嵌入式系统神经网络发展的催化剂。这类神经网络需要满足汽车应用环境对系统大小、成本及功耗的要求。 1轻型嵌入式神经网络 卷积式神经网络(CNN)的应用可分为三个阶段:训练、转化及CNN在生产就绪解决方案中的执行。要想获得一个高性价比、针对大规模车辆应用的高效结果,必须在每阶段使用最为有利的系统。 训练往往在线下通过基于CPU的系统、图形处理器(GPU)或现场可编程门阵列(FPGA)来完成。由于计算功能强大且设计人员对其很熟悉,这些是用于神经网络训练的最为理想的系统。 在训练阶段,开发商利用诸如Caffe(Convolution Architecture For Feature Extraction,卷积神经网络架构)等的框架对CNN 进行训练及优化。参考图像数据库用于确定网络中神经元的最佳权重参数。训练结束即可采用传统方法在CPU、GPU 或FPGA上生成网络及原型,尤其是执行浮点运算以确保最高的精确度。 作为一种车载使用解决方案,这种方法有一些明显的缺点。运算效率低及成本高使其无法在大批量量产系统中使用。 CEVA已经推出了另一种解决方案。这种解决方案可降低浮点运算的工作负荷,并在汽车应用可接受的功耗水平上获得实时的处理性能表现。随着全自动驾驶所需的计算技术的进一步发展,对关键功能进行加速的策略才能保证这些系统得到广泛应用。 利用被称为CDNN的框架对网络生成策略进行改进。经过改进的策略采用在高功耗浮点计算平台上(利用诸如Caffe的传统网络生成器)开发的受训网络结构和权重,并将其转化为基于定点运算,结构紧凑的轻型的定制网络模型。接下来,此模型会在一个基于专门优化的成像和视觉DSP芯片的低功耗嵌入式平台上运行。图1显示了轻型嵌入式神经网络的生成

(完整word版)深度学习-卷积神经网络算法简介

深度学习 卷积神经网络算法简介 李宗贤 北京信息科技大学智能科学与技术系 卷积神经网络是近年来广泛应用在模式识别、图像处理领域的一种高效识别算法,具有简单结构、训练参数少和适应性强的特点。它的权值共享网络结构使之更类似与生物神经网络,降低了网络的复杂度,减少了权值的数量。以二维图像直接作为网络的输入,避免了传统是被算法中复杂的特征提取和数据重建过程。卷积神经网络是为识别二维形状特殊设计的一个多层感知器,这种网络结构对于平移、比例缩放、倾斜和其他形式的变形有着高度的不变形。 ?卷积神经网络的结构 卷积神经网络是一种多层的感知器,每层由二维平面组成,而每个平面由多个独立的神经元组成,网络中包含一些简单元和复杂元,分别记为C元和S元。C元聚合在一起构成卷积层,S元聚合在一起构成下采样层。输入图像通过和滤波器和可加偏置进行卷积,在C层产生N个特征图(N值可人为设定),然后特征映射图经过求和、加权值和偏置,再通过一个激活函数(通常选用Sigmoid函数)得到S层的特征映射图。根据人为设定C层和S层的数量,以上工作依次循环进行。最终,对最尾部的下采样和输出层进行全连接,得到最后的输出。

卷积的过程:用一个可训练的滤波器fx去卷积一个输入的图像(在C1层是输入图像,之后的卷积层输入则是前一层的卷积特征图),通过一个激活函数(一般使用的是Sigmoid函数),然后加一个偏置bx,得到卷积层Cx。具体运算如下式,式中Mj是输入特征图的值: X j l=f?(∑X i l?1?k ij l+b j l i∈Mj) 子采样的过程包括:每邻域的m个像素(m是人为设定)求和变为一个像素,然后通过标量Wx+1加权,再增加偏置bx+1,然后通过激活函数Sigmoid产生特征映射图。从一个平面到下一个平面的映射可以看作是作卷积运算,S层可看作是模糊滤波器,起到了二次特征提取的作用。隐层与隐层之间的空间分辨率递减,而每层所含的平面数递增,这样可用于检测更多的特征信息。对于子采样层来说,有N 个输入特征图,就有N个输出特征图,只是每个特征图的的尺寸得到了相应的改变,具体运算如下式,式中down()表示下采样函数。 X j l=f?(βj l down (X j l?1) +b j l)X j l) ?卷积神经网络的训练过程 卷积神经网络在本质上是一种输入到输出的映射,它能够学习大量的输入和输出之间的映射关系,而不需要任何输入和输出之间的精确数学表达式。用已知的模式对卷积网络加以训练,网络就具有了输

深度神经网络及目标检测学习笔记

深度神经网络及目标检测学习笔记 https://youtu.be/MPU2HistivI 上面是一段实时目标识别的演示,计算机在视频流上标注出物体的类别,包括人、汽车、自行车、狗、背包、领带、椅子等。 今天的计算机视觉技术已经可以在图片、视频中识别出大量类别的物体,甚至可以初步理解图片或者视频中的内容,在这方面,人工智能已经达到了3岁儿童的智力水平。这是一个很了不起的成就,毕竟人工智能用了几十年的时间,就走完了人类几十万年的进化之路,并且还在加速发展。 道路总是曲折的,也是有迹可循的。在尝试了其它方法之后,计算机视觉在仿生学里找到了正确的道路(至少目前看是正确的)。通过研究人类的视觉原理,计算机利用深度神经网络(DeepNeural Network,NN)实现了对图片的识别,包括文字识别、物体分类、图像理解等。在这个过程中,神经元和神经网络模型、大数据技术的发展,以及处理器(尤其是GPU)强大的算力,给人工智能技术的发展提供了很大的支持。 本文是一篇学习笔记,以深度优先的思路,记录了对深度学习(Deep Learning)的简单梳理,主要针对计算机视觉应用领域。 一、神经网络 1.1 神经元和神经网络 神经元是生物学概念,用数学描述就是:对多个输入进行加权求和,并经过激活函数进行非线性输出。 由多个神经元作为输入节点,则构成了简单的单层神经网络(感知器),可以进行线性分类。两层神经网络则可以完成复杂一些的工作,比如解决异或问题,而且具有非常好的非线性分类效果。而多层(两层以上)神经网络,就是所谓的深度神经网络。 神经网络的工作原理就是神经元的计算,一层一层的加权求和、激活,最终输出结果。深度神经网络中的参数太多(可达亿级),必须靠大量数据的训练来设置。训练的过程就好像是刚出生的婴儿,在父母一遍遍的重复中学习“这是苹

深度学习与神经网络

CDA数据分析研究院出品,转载需授权 深度学习是机器学习的一个子领域,研究的算法灵感来自于大脑的结构和功能,称为人工神经网络。 如果你现在刚刚开始进入深度学习领域,或者你曾经有过一些神经网络的经验,你可能会感到困惑。因为我知道我刚开始的时候有很多的困惑,我的许多同事和朋友也是这样。因为他们在20世纪90年代和21世纪初就已经学习和使用神经网络了。 该领域的领导者和专家对深度学习的观点都有自己的见解,这些具体而细微的观点为深度学习的内容提供了很多依据。 在这篇文章中,您将通过听取该领域的一系列专家和领导者的意见,来了解什么是深度学习以及它的内容。 来让我们一探究竟吧。 深度学习是一种大型的神经网络 Coursera的Andrew Ng和百度研究的首席科学家正式创立了Google Brain,最终导致了大量Google服务中的深度学习技术的产品化。 他已经说了很多关于深度学习的内容并且也写了很多,这是一个很好的开始。 在深度学习的早期讨论中,Andrew描述了传统人工神经网络背景下的深度学习。在2013年的题为“ 深度学习,自学习和无监督特征学习”的演讲中“他将深度学习的理念描述为: 这是我在大脑中模拟的对深度学习的希望: - 使学习算法更好,更容易使用。 - 在机器学习和人工智能方面取得革命性进展。 我相信这是我们迈向真正人工智能的最好机会

后来他的评论变得更加细致入微了。 Andrew认为的深度学习的核心是我们现在拥有足够快的计算机和足够多的数据来实际训练大型神经网络。在2015年ExtractConf大会上,当他的题目“科学家应该了解深度学习的数据”讨论到为什么现在是深度学习起飞的时候,他评论道: 我们现在拥有的非常大的神经网络......以及我们可以访问的大量数据 他还评论了一个重要的观点,那就是一切都与规模有关。当我们构建更大的神经网络并用越来越多的数据训练它们时,它们的性能会不断提高。这通常与其他在性能上达到稳定水平的机器学习技术不同。 对于大多数旧时代的学习算法来说......性能将达到稳定水平。......深度学习......是第一类算法......是可以扩展的。...当你给它们提供更多的数据时,它的性能会不断提高 他在幻灯片中提供了一个漂亮的卡通片: 最后,他清楚地指出,我们在实践中看到的深度学习的好处来自有监督的学习。从2015年的ExtractConf演讲中,他评论道: 如今的深度学习几乎所有价值都是通过有监督的学习或从有标记的数据中学习 在2014年的早些时候,在接受斯坦福大学的题为“深度学习”的演讲时,他也发出了类似的评论。 深度学习疯狂发展的一个原因是它非常擅长监督学习

神经网络11大常见陷阱及应对方法

深度学习的这些坑你都遇到过吗?神 经网络11 大常见陷阱及应对方法【新智元导读】如果你的神经网络不工作,该怎么办?本文作者列举了搭建神经网络时可能遇到的11个常见问题,包括预处理数据、正则化、学习率、激活函数、网络权重设置等,并提供解决方法和原因解释,是深度学习实践的有用资料。 如果你的神经网络不工作,该怎么办?作者在这里列出了建神经网络时所有可能做错的事情,以及他自己的解决经验。 1.忘记规范化数据 2.忘记检查结果 3.忘记预处理数据 4.忘记使用正则化 5.使用的batch太大 6.使用了不正确的学习率 7.在最后层使用了错误的激活函数 8.你的网络包含了Bad Gradients 9.初始化网络权重不正确 10.你使用的网络太深了 11.使用隐藏单元的数量不对 忘记规范化数据了

问题描述 在使用神经网络时,思考如何正确地规范化数据是非常重要的。这是一个无法改变的步骤——假如这一步骤没有小心、正确地做,你的网络就几乎不可能工作。由于这个步骤非常重要,在深度学习社区中也是众所周知的,所以它很少在论文中被提及,因此初学者常常在这一步出错。 怎样解决? 一般来说,规范化(normalization)的意思是:将数据减去均值,再除以其方差。通常这是对每个输入和输出特征单独做的,但你可能经常会希望对特征组做或特别主翼处理某些特征的规范化。 为什么? 我们需要对数据进行规范化的主要原因是大部分的神经网络流程假设输入和输出数据都以一个约是1的标准差和约是0的均值分布。这些假设在深度学习文献中到处都是,从权重初始化、激活函数到训练网络的优化算法。 还需要注意 未训练的神经网络通常会输出约在-1到1范围之间的值。如果你希望输出其他范围的值(例如RBG图像以0-255范围的字节存储)会出现一些问题。在开始训练时,网络会非常不稳定,因为比如说预期值是255,网络产生的值是-1或1——这会被大多数用于训练神经网络的优化算法认为是严重的错误。这会产生过大的梯度,可能导致梯度爆炸。如果不爆炸,那么训练的前几个阶段就是浪费的,因为网络首先学习的是将输出值缩小到大致是预期的范围。如果规范化了数据(在这种情况下,你可以简单地将数值除以128再减去1),就不会发生这些问题。 一般来说,神经网络中特征的规模也决定了其重要性。如果输出中的有一个特征规模很大,那么与其他特征相比它会产生更大的错误。类似地,输入中的大规模特征将主导网络并导致下游发生更大的变化。因此,使用神经网络库的自动规范化往往是不够的,这些神经网络库会在每个特征的基础上盲目地减去平均值并除以方差。你可能有一个输入特征,通常范围在0.0到0.001之间——这个特征的范围如此之小,因为它是一个不重要的特征(在这种情况下,你可能不想重新scale),或者因为与其他特征相比它有一些小的单元(在这种情

深度神经网络

1. 自联想神经网络与深度网络 自联想神经网络是很古老的神经网络模型,简单的说,它就是三层BP网络,只不过它的输出等于输入。很多时候我们并不要求输出精确的等于输入,而是允许一定的误差存在。所以,我们说,输出是对输入的一种重构。其网络结构可以很简单的表示如下: 如果我们在上述网络中不使用sigmoid函数,而使用线性函数,这就是PCA模型。中间网络节点个数就是PCA模型中的主分量个数。不用担心学习算法会收敛到局部最优,因为线性BP网络有唯一的极小值。

在深度学习的术语中,上述结构被称作自编码神经网络。从历史的角度看,自编码神经网络是几十年前的事情,没有什么新奇的地方。 既然自联想神经网络能够实现对输入数据的重构,如果这个网络结构已经训练好了,那么其中间层,就可以看过是对原始输入数据的某种特征表示。如果我们把它的第三层去掉,这样就是一个两层的网络。如果,我们把这个学习到特征再用同样的方法创建一个自联想的三层BP网络,如上图所示。换言之,第二次创建的三层自联想网络的输入是上一个网络的中间层的输出。用同样的训练算法,对第二个自联想网络进行学习。那么,第二个自联想网络的中间层是对其输入的某种特征表示。如果我们按照这种方法,依次创建很多这样的由自联想网络组成的网络结构,这就是深度神经网络,如下图所示:

注意,上图中组成深度网络的最后一层是级联了一个softmax分类器。 深度神经网络在每一层是对最原始输入数据在不同概念的粒度表示,也就是不同级别的特征描述。 这种层叠多个自联想网络的方法,最早被Hinton想到了。 从上面的描述中,可以看出,深度网络是分层训练的,包括最后一层的分类器也是单独训练的,最后一层分类器可以换成任何一种分类器,例如SVM,HMM等。上面的每一层单独训练使用的都是BP算法。相信这一思路,Hinton早就实验过了。 2. DBN神经网络模型 使用BP算法单独训练每一层的时候,我们发现,必须丢掉网络的第三层,才能级联自联想神经网络。然而,有一种更好的神经网络模型,这就是受限玻尔兹曼机。使用层叠波尔兹曼机组成深度神经网络的方法,在深度学习里被称作深度信念网络DBN,这是目前非

BP神经网络及深度学习研究-综述(最新整理)

BP神经网络及深度学习研究 摘要:人工神经网络是一门交叉性学科,已广泛于医学、生物学、生理学、哲学、信息学、计算机科学、认知学等多学科交叉技术领域,并取得了重要成果。BP(Back Propagation)神经网络是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。本文将主要介绍神经网络结构,重点研究BP神经网络原理、BP神经网络算法分析及改进和深度学习的研究。 关键词:BP神经网络、算法分析、应用 1 引言 人工神经网络(Artificial Neural Network,即ANN ),作为对人脑最简单的一种抽象和模拟,是人们模仿人的大脑神经系统信息处理功能的一个智能化系统,是20世纪80 年代以来人工智能领域兴起的研究热点。人工神经网络以数学和物理方法以及信息处理的角度对人脑神经网络进行抽象,并建立某种简化模型,旨在模仿人脑结构及其功能的信息处理系统。 人工神经网络最有吸引力的特点就是它的学习能力。因此从20世纪40年代人工神经网络萌芽开始,历经两个高潮期及一个反思期至1991年后进入再认识与应用研究期,涌现出无数的相关研究理论及成果,包括理论研究及应用研究。最富有成果的研究工作是多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。因为其应用价值,该研究呈愈演愈烈的趋势,学者们在多领域中应用[1]人工神经网络模型对问题进行研究优化解决。 人工神经网络是由多个神经元连接构成,因此欲建立人工神经网络模型必先建立人工神经元模型,再根据神经元的连接方式及控制方式不同建立不同类型的人工神经网络模型。现在分别介绍人工神经元模型及人工神经网络模型。 1.1 人工神经元模型 仿生学在科技发展中起着重要作用,人工神经元模型的建立来源于生物神经元结构的仿生模拟,用来模拟人工神经网络[2]。人们提出的神经元模型有很多,其中最早提出并且影响较大的是1943年心理学家McCulloch和数学家W. Pitts 在分析总结神经元基本特性的基础上首先提出的MP模型。该模型经过不断改进后,形成现在广泛应用的BP神经元模型。人工神经元模型是由人量处理单元厂泛互连而成的网络,是人脑的抽象、简化、模拟,反映人脑的基本特性。一般来说,作为人工神经元模型应具备三个要素: (1)具有一组突触或连接,常用表示神经元i和神经元j之间的连接强度。 w ij (2)具有反映生物神经元时空整合功能的输入信号累加器。

机器学习算法汇总:人工神经网络、深度学习及其它

学习方式 根据数据类型的不同,对一个问题的建模有不同的方式。在机器学习或者人工智能领域,人们首先会考虑算法的学习方式。在机器学习领域,有几种主要的学习方式。将算法按照学习方式分类是一个不错的想法,这样可以让人们在建模和算法选择的时候考虑能根据输入数据来选择最合适的算法来获得最好的结果。 监督式学习: 在监督式学习下,输入数据被称为“训练数据”,每组训练数据有一个明确的标识或结果,如对防垃圾邮件系统中“垃圾邮件”“非垃圾邮件”,对手写数字识别中的“1“,”2“,”3“,”4“等。在建立预测模型的时候,监督式学习建立一个学习过程,将预测结果与“训练数据”的实际结果进行比较,不断的调整预测模型,直到模型的预测结果达到一个预期的准确率。监督式学习的常见应用场景如分类问题和回归问题。常见算法有逻辑回归(Logistic Regression)和反向传递神经网络(Back Propagation Neural Network) 非监督式学习:

在非监督式学习中,数据并不被特别标识,学习模型是为了推断出数据的一些内在结构。常见的应用场景包括关联规则的学习以及聚类等。常见算法包括Apriori算法以及k-Means算法。 半监督式学习: 在此学习方式下,输入数据部分被标识,部分没有被标识,这种学习模型可以用来进行预测,但是模型首先需要学习数据的内在结构以便合理的组织数据来进行预测。应用场景包括分类和回归,算法包括一些对常用监督式学习算法的延伸,这些算法首先试图对未标识数据进行建模,在此基础上再对标识的数据进行预测。如图论推理算法(Graph Inference)或者拉普拉斯支持向量机(Laplacian SVM.)等。 强化学习:

《神经网络与深度学习综述DeepLearning15May2014

Draft:Deep Learning in Neural Networks:An Overview Technical Report IDSIA-03-14/arXiv:1404.7828(v1.5)[cs.NE] J¨u rgen Schmidhuber The Swiss AI Lab IDSIA Istituto Dalle Molle di Studi sull’Intelligenza Arti?ciale University of Lugano&SUPSI Galleria2,6928Manno-Lugano Switzerland 15May2014 Abstract In recent years,deep arti?cial neural networks(including recurrent ones)have won numerous con-tests in pattern recognition and machine learning.This historical survey compactly summarises relevant work,much of it from the previous millennium.Shallow and deep learners are distinguished by the depth of their credit assignment paths,which are chains of possibly learnable,causal links between ac- tions and effects.I review deep supervised learning(also recapitulating the history of backpropagation), unsupervised learning,reinforcement learning&evolutionary computation,and indirect search for short programs encoding deep and large networks. PDF of earlier draft(v1):http://www.idsia.ch/~juergen/DeepLearning30April2014.pdf LATEX source:http://www.idsia.ch/~juergen/DeepLearning30April2014.tex Complete BIBTEX?le:http://www.idsia.ch/~juergen/bib.bib Preface This is the draft of an invited Deep Learning(DL)overview.One of its goals is to assign credit to those who contributed to the present state of the art.I acknowledge the limitations of attempting to achieve this goal.The DL research community itself may be viewed as a continually evolving,deep network of scientists who have in?uenced each other in complex ways.Starting from recent DL results,I tried to trace back the origins of relevant ideas through the past half century and beyond,sometimes using“local search”to follow citations of citations backwards in time.Since not all DL publications properly acknowledge earlier relevant work,additional global search strategies were employed,aided by consulting numerous neural network experts.As a result,the present draft mostly consists of references(about800entries so far).Nevertheless,through an expert selection bias I may have missed important work.A related bias was surely introduced by my special familiarity with the work of my own DL research group in the past quarter-century.For these reasons,the present draft should be viewed as merely a snapshot of an ongoing credit assignment process.To help improve it,please do not hesitate to send corrections and suggestions to juergen@idsia.ch.

神经网络算法的应用

神经网络算法的应用 别以为名字中带“网络”二字,神经网络就是一种设备,事实上神经网络是一种模拟人脑结构的算法模型。其原理就在于将信息分布式存储和并行协同处理。虽然每个单元的功能非常简单,但大量单元构成的网络系统就能实现非常复杂的数据计算,并且还是一个高度复杂的非线性动力学习系统。1 神经网络的结构更接近于人脑,具有大规模并行、分布式存储和处理、自组织、自适应和自学能力。神经网络的用途非常广泛,在系统辨识、模式识别、智能控制等领域都能一展身手。而现在最吸引IT巨头们关注的就是神经网络在智能控制领域中的自动学习功能,特别适合在需要代入一定条件,并且信息本身是不确定和模糊的情况下,进行相关问题的处理,例如语音识别。 神经网络的发展史 神经网络的起源要追溯到上世纪40年代,心理学家麦克库罗克和数理逻辑学家皮兹首先提出了神经元的数学模型。此模型沿用至今,并且直接影响着这一领域研究的进展。因而,他们两人就是神经网络研究的先驱。随着计算机的高速发展,人们以为人工智能、模式识别等问题在计算机面前都是小菜一碟。再加上当时电子技术比较落后,用电子管或晶体管制作出结构复杂的神经网络是完全不可能的,所以神经网络的研究一度陷于低潮当中。到了20世纪80年代,随着大规模集成电路的发展,让神经网络的应用成为了可能。而且人们也看到了神经网络在智能控制、语音识别方面的潜力。但是这一技术的发展仍然缓慢,而硬件性能的发展以及应用方式的变化,再加上谷歌、微软、IBM等大公司的持续关注,神经网络终于又火了起来。本该在上世纪80年代就出现的诸多全新语音技术,直到最近才与我们见面,神经网络已经成为最热门的研究领域之一。 机器同声传译成真 在国际会议上,与会人员来自世界各地,同声传译就成了必不可少的沟通方式。但是到目前为止,同声传译基本上都是靠人来完成的,译员在不打断讲话者演讲的情况下,不停地将其讲话内容传译给听众。用机器进行同声传译,这个往往只出现在科幻电影中的设备,却成为了现实。 在2012年底天津召开的“21世纪的计算-自然而然”大会上,微软研究院的创始人里克·雷斯特在进行主题演讲时,展示了一套实时语音机器翻译系统。这个系统在里克.雷斯特用英文演讲时,自动识别出英文字词,再实时翻译成中文,先在大屏幕上显示出来,同时用电脑合成的声音读出。最令人惊奇的是,与常见的合成语音声调非常机械不同。在演示之前,雷斯特曾经给这套系统输入过自己长达1个多小时的录音信息,所以由电脑合成的中文语音并不是机械声,而是声调听上去和雷斯特本人一致。 这套实时语音机器翻译系统就是基于神经网络算法,由微软和多伦多大学历时两年共同研发。这个被命名为“深度神经网络”的技术,模仿由不同层次神经元构成的人脑,组成一个多层次的系统。整个系统共分为9层,最底层用来学习将要进行分析的语音有哪些特征,上一层就将这些分析进行组合,并得出新的分析结果,这样经过多次分析处理之后,增加识别的准确性。而最上面的一层用来分析出听到的声音究竟是哪个音组,再通过和已注明音组的语音库里的数据进行比对,从而将正确的结果反馈出来。经过如此复杂精密的处理之后,系统对于语音的识别能力就会有显着的提升,其性能优于以往的办法。 根据微软的测试,运用了这种“深度神经网络”技术的实时语音翻译器,相比旧系统出错率至少降低30%,最好的情况下能达到8个单词仅错1个,这是一个非常不错的成绩了。这个实时语音翻译器已经能支持包括普通话在内的26种语言,不过这个实时语音翻译器目前还不成熟,使用之前必须先在系统中输入1个小时以上的音频资料,让系统识别发言人声

深度神经网络的关键技术及其在自动驾驶领域的应用

ISSN 1674-8484 CN 11-5904/U 汽车安全与节能学报, 第10卷第2期, 2019年 J Automotive Safety and Energy, Vol. 10 No. 2, 2019 1/13 119—145 深度神经网络的关键技术及其在自动驾驶领域的应用 李升波1,关?阳1,侯?廉1,高洪波1,段京良2,梁?爽3,汪?玉3,成?波1, 李克强1,任?伟4,李?骏1 (1. 清华大学车辆与运载学院,北京100084,中国;2. 加州大学伯克利分校机械系,加州 94720,美国; 3. 清华大学电子工程系,北京100084,中国; 4. 加州大学河滨分校电子计算机系,加州92521,美国) 摘?要:?智能化是汽车的三大变革技术之一,深度学习具有拟合能力优、表征能力强和适用范围广的 特点,是进一步提升汽车智能性的重要途径。该文系统性总结了用于自动驾驶汽车的深度神经网络(DNN)技术,包括发展历史、主流算法以及感知、决策与控制技术应用。回顾了神经网络的历史及现状, 总结DNN的“神经元-层-网络”3级结构,重点介绍卷积网络和循环网络的特点以及代表性模型; 阐述了以反向传播(BP)为核心的深度网络训练算法,列举用于深度学习的常用数据集与开源框架,概 括了网络计算平台和模型优化设计技术;讨论DNN在自动驾驶汽车的环境感知、自主决策和运动控 制3大方向的应用现状及其优缺点,具体包括物体检测和语义分割、分层式和端到端决策、汽车纵 横向运动控制等;针对用于自动驾驶汽车的DNN技术,指明了不同问题的适用方法以及关键问题的 未来发展方向。 关键词:?智能汽车;自动驾驶;深度神经网络(DNN);深度学习;环境感知;自主决策;运动控制 中图分类号:?TP 18;U 463.6 文献标志码:?A DOI:?10.3969/j.issn.1674-8484.2019.02.001 Key technique of deep neural network and its applications in autonomous driving LI Shengbo1, GUAN Yang1, HOU Lian1, GAO Hongbo1, DUAN Jingliang2, LIANG Shuang3, WANG Yu3, CHENG Bo1, LI Keqiang1, REN Wei4, LI Jun1 (1. School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China; 2. Mechanical Engineering, University of California Berkeley, Berkeley, CA 94720, USA; 3. Electronic Engineering, Tsinghua University, Beijing 100084, China; 4. Electrical and Computer Engineering, University of California Riverside, Riverside, CA 92521, USA) Abstract: Autonomous driving is one of the three major innovations in automotive industry. Deep learning is a crucial method to improve automotive intelligence due to its outstanding abilities of data fitting, feature representation and model generalization. This paper reviewed the technologies of deep neural network (DNN) 收稿日期?/?Received?:?2019-01-19。 基金项目?/?Supported?by?: “十三五”国家重点研发计划(2016YFB0100906);国家自然科学基金面上项目(51575293);国家自然科学基金优秀青年科学基金项目(U1664263);国家自然科学基金重点项目(51622504);北京市自然科学基金杰出青 年科学基金项目(JQ18010);汽车安全与节能国家重点实验室开放基金课题(KF1828)。 第一作者?/?First?author?:?李升波(1982—),男(汉),山东,副教授。E-mail: lishbo@https://www.sodocs.net/doc/1116965054.html,。

相关主题