搜档网
当前位置:搜档网 › 光伏电池在能量收集中的应用

光伏电池在能量收集中的应用

光伏电池在能量收集中的应用
光伏电池在能量收集中的应用

光伏电池在能量收集中的应用

超低功率解决方案可用于众多的无线系统,包括交通运输基础设施、医疗设备、轮胎压力检测、工业检测、楼宇自动化和贵重物品追踪。此类系统通常在其服役生涯的大部分时间里都处于待机睡眠模式,仅需极低的μW级功率。当被唤醒时,传感器将测量诸如压力、温度或机械偏转等参数并以无线的方式把这些数据传送至一个远程控制系统。整个测量、处理和传送时间通常只有几十ms,但在此短暂期间内有可能需要几百mW的功率。由于这些应用的占空比很低,因此必须收集的平均功率也会相对较低。电源可能就是一节电池而已。然而,电池将不得不以某种方式进行再充电,最终还得更换。在许多此类应用中,实际更换电池的成本之高使其缺乏可行性。这使得环境能量源成为了一种更具吸引力的替代方案。

?新兴的毫微功率无线传感器应用

?就楼宇自动化而言,诸如占有传感器、温度自动调节器和光控开关等系统能够免除通常所需的电源或控制线路,而代之以一个机械或能量收集系统。除了可以免除首先进行线路安装(或在无线应用中定期更换电池)的需要之外,这种替代方法还能减低有线系统往往存在的例行维护成本。

?类似地,运用能量收集技术的无线网络能够将一幢建筑物内任何数目的传感器链接到一起,以通过在建筑物内无人居住时关断非紧要区域的供电来降低采暖、通风和空调(HVAC)以及照明成本。

?典型的能量收集配置或无线传感器节点由4个模块组成(见图1)。它们是:1、一个环境能量源,比如:太阳能电池;2、一个用于给节点的其余部分供电的功率转换组件;3、一个将节点链接到现实世界的感测组件以及一个计算组件(由微处理器或微控制器组成,负责处理测量数据并将这些数据存贮到存储

砷化镓太阳能电池(GaAs)的溶解层特性研究

Epitaxial Lift-Off of Large-Area GaAs Thin-Film Multi-Junction Solar Cells C. Youtsey, J. Adams, R. Chan, V. Elarde, G. Hillier, M. Osowski, D. McCallum, H. Miyamoto, N. Pan, C. Stender, R. Tatavarti, F. Tuminello, A. Wibowo MicroLink Devices, Inc. 6457 W. Howard St., Niles, IL 60048 847-588-3001, cyoutsey@https://www.sodocs.net/doc/1716600973.html, Keywords: Epitaxial lift-off, multi-junction solar cells Abstract MicroLink Devices is currently transitioning into production a wafer-scale, epitaxial lift-off process technology for GaAs- and InP-based materials. This process enables the separation of thin, epitaxially-grown layers from the substrate on which they were deposited, and multiple reuses of the original substrate. Key advantages include cost reduction, weight reduction, improved thermal conductivity and high flexibility. I NTRODUCTION Epitaxial lift-off (ELO) is a processing technique that enables thin epitaxial layers grown on GaAs or InP substrates to be “peeled off” from the host substrate. Although explored by many groups since the 1970s [1-3], ELO is finally transitioning to a viable manufacturing technology. The ELO process offers several important advantages for both performance enhancement and cost reduction of III-V electronic and optoelectronic devices. The epitaxial films can be transferred to new support substrates that are thin, flexible, lightweight, and with higher thermal conductivity than the original growth substrate. The GaAs or InP substrate can be reused many times. At MicroLink Devices we have developed an industry-first ELO process capable of lifting off large areas of semiconductor material from substrates up to 6 inches in diameter without any degradation of material quality or performance characteristics [4-6]. An example of a 4-inch GaAs foil with large-area solar cells is shown in Figure 1. We are actively pursuing the commercialization of this technology for fabricating thin, flexible large-area multi-junction solar cells with very high efficiency. Potential applications include electric-powered, unmanned aerial vehicles (UAVs), space satellites, and terrestrial solar concentrator systems. E XPERIMENTAL All epitaxial structures were grown by metallorganic chemical vapor deposition (MOCVD) at 100 mbar using arsine (AsH3), phosphine (PH3), trimethylindium (TMI), trimethylgallium (TMG) as precursors and using a V/III ratio >50. Inverted metamorphic multijunction (IMM) InGaP/GaAs/InGaAs structures were grown on GaAs substrates. Figure 2 and 3 show schematics that outline the basic ELO process. The first layer deposited on the substrate is a thin, AlAs release layer (~5 nm). The solar cell epitaxial layers are then deposited, followed by application of a thick (1-2 mil) flexible metal carrier layer. The wafer is then immersed in a concentrated HF-acid chemistry, which selectively dissolves the release layer (the etch selectivity relative to the GaAs epitaxial structure is greater than 1E5). The thin, composite structure consisting of the metal carrier Figure 1: 4-inch GaAs ELO foil attached to a thin and flexible metal backing. The wafer contains two large-area (20-cm2) solar cells.

锂电池知识及生产流程

锂电池知识及生产流程锂电池知识及生产流程一、锂电池基本知识锂离子电池的特点?6?1 运用于汽车领域正成为一项核心技术?6?1 优点:重量轻、储能大、功率大、无污染、也无二次污染、寿命长、自放电系数小、温度适应范围宽泛,是电动自行车、电动摩托车、电动小轿车、电动大货车等较为理想的车用动力。?6?1 缺点是价格较贵、安全性较差。不过现在已有技术开发锰酸锂、磷酸铁锂、磷酸钒锂等新型材料,大大提高了锂离子电池的安全性,而且降低了成本。各类蓄电池对比(纵向对比横向)铅酸镍镉镍氢锂离子传统液态聚合物铅酸质量能量密度、体积能量密度、工作温度范围、自放电率、可靠性质量能量密度、体积能量密度、自放电率质量能量密度、体积能量密度、电压输出、自放电率质量能量密度、体积能量密度、结构特点、自放电率镍镉更好的可循环性、电压输出、价格质量能量密度、体积能量密度质量能量密度、体积能量密度、电压输出、自放电率质量能量密度、体积能量密度、结构特点、自放电率镍氢更好的可循环型、电压输出、价格工作温度范围、更好的可循环性、自放电率、可靠性质量能量密度、体积能量密度、工作温度范围、自放电率、电压输出质量能量密度、体积能量密度、结构特点、自放电率锂离子传统液态更好的可循环性、安全、价格工作温度范围、更好

的可循环性、价格、安全价格、安全、自放电率、重复循环质量能量密度、体积能量密度、结构特点、安全、价格聚合物更好的可循环性工作温度范围、更好的可循环性、价格体积能量密度、更好的可循环性、价格工作温度范围、更好的可循环性绝对优势更好的可循 环性、价格工作温度范围、价格体积能量密度质量能量密度、体积能量密度、自放电率、结构特点质量能量密度、体积能量密度、自放电率、电压输出、结构特点资料来源:陈清泉、孙立清,电动汽车的现状及发展趋势,科技导报,2005年4月,第23卷第4期锂离子电池分类锂离子电池聚合物锂离子电池(LIP) 电解质为聚合物与盐的 混合物,这种电池在常温下的离子电导率低,适于高温使用。在固体聚合物电解质中加入增塑剂等添加剂,从而提高离子电导率,使电池可在常温下使用。采用导电聚合物作为正极材料,其比能量是现有锂离子电池的3倍,是最新一代的锂离子电池。固体聚合物电解质凝胶聚合物电解质聚合物正极材料液态锂离子电池(LIB) 聚合物锂电vs.液态锂电聚合物——下一代锂离子电池?6?1 优势1:用固体电解质代替了液体电解质–具有可薄形化、任意面积化与任意形状化等优点;–不会产生漏液与燃烧爆炸等安全上的问题,由此用铝塑复合薄膜制造电池外壳,从而提高整个电池的比容量。?6?1 优势2:可采用高分子正

光伏电池组件简介

光伏电池组建简介 单体太阳电池不能直接做电源使用。作电源必须将若干单体电池串、并联连接和严密封装成组件。光伏组件(也叫太阳能电池板)是太阳能发电系统中的核心部分,也是太阳能发电系统中最重要的部分。其作用是将太阳能转化为电能,或送往蓄电池中存储起来,或推动负载工作。 目录 1、基本信息 1.1 组成结构 1.2 制作流程 1.3 生产流程 1.4 制造特点 2、材料构成 3、组件应用 4、组件类型 4.1 单晶硅 4.2 多晶硅 4.3 非晶硅 4.4 多元化 5、功率计算 6、测试条件 6.1 测试原理 6.2 测试工具 6.3 测试参数 7、应用领域 8、逆变器 9、安全细则

1、基本信息 1.1 组织结构 又称太阳电池组件( Solar Cell module),是指具有封装及内部联结的,能单独提供直流电输出的,最小不可分割的光伏电池组合装置。 光伏组件(俗称太阳能电池板)由太阳能电池片(整片的两种规格125*125mm、156*156mm、124*124mm等)或由激光切割机机或钢线切割机切割开的不同规格的太阳能电池组合在一起构成。由于单片太阳能电池片的电流和电压都很小,然后我们把他们先串联获得高电压,再并联获得高电流后,通过一个二极管(防止电流回输)然后输出。 并且把他们封装在一个不锈钢、铝或其他非金属边框上,安装好上面的玻璃及背面的背板、充入氮气、密封。 整体称为组件,也就是光伏组件或说是太阳电池组件。 1.2 制作流程 组件制作流程经电池片分选-单焊接-串焊接-拼接(就是将串焊好的电池片定位,拼接在一起)-中间测试(中间测试分:红外线测试和外观检查)-层压-削边-层后外观-层后红外-装框(一般为铝边框)-装接线盒-清洗-测试(此环节也分红外线测试和外观检查.判定该组件的等级)-包装. (1)电池测试 由于电池片制作条件的随机性,生产出来的电池性能不尽相同,所以为了有效的将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的输出参数(电流和电压)的大小对其进行分类。以提高电池的利用率,做出质量合格的电池组件。 (2)正面焊接 将汇流带焊接到电池正面(负极)的主栅线上,汇流带为镀锡的铜带,我们使用的焊接机可以将焊带以多点的形式点焊在主栅线上。焊接用的热源为一个红外灯(利用红外线的热效应)。焊带的长度约为电池边长的2倍。多出的焊带在背面焊接时与后面的电池片的背面电极相连。 (3)背面串接 背面焊接是将电池串接在一起形成一个组件串,我们目前采用的工艺是手动的,电池的

硅太阳能电池的结构及工作原理

硅太阳能电池的结构及 工作原理 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

一.引言: 太阳能是人类取之不尽用之不竭的可再生能源。也是清洁能源,不产生任何的环境污染。?? 当电力、煤炭、石油等不可再生能源频频告急,能源问题日益成为制约国际社会经济发展的瓶颈时,越来越多的国家开始实行“阳光计划”,开发太阳能资源,寻求经济发展的新动力。欧洲一些高水平的核研究机构也开始转向可再生能源。在国际光伏市场巨大潜力的推动下,各国的太阳能电池制造业争相投入巨资,扩大生产,以争一席之地。 全球太阳能电池产业1994-2004年10年里增长了17倍,太阳能电池生产主要分布在日本、欧洲和美国。2006年全球太阳能电池安装规模已达1744MW,较2005年成长19%,整个市场产值已正式突破100亿美元大关。2007年全球太阳能电池产量达到3436MW,较2006年增长了56%。 中国对太阳能电池的研究起步于1958年,20世纪80年代末期,国内先后引进了多条太阳能电池生产线,使中国太阳能电池生产能力由原来的3个小厂的几百kW一下子提升到4个厂的4.5MW,这种产能一直持续到2002年,产量则只有2MW左右。2002年后,欧洲市场特别是德国市场的急剧放大和无锡尚德太阳能电力有限公司的横空出世及超常规发展给中国光伏产业带来了前所未有的发展机遇和示范效应。 目前,我国已成为全球主要的太阳能电池生产国。2007年全国太阳能电池产量达到1188MW,同比增长293%。中国已经成功超越欧洲、

日本为世界太阳能电池生产第一大国。在产业布局上,我国太阳能电池产业已经形成了一定的集聚态势。在长三角、环渤海、珠三角、中西部地区,已经形成了各具特色的太阳能产业集群。 中国的太阳能电池研究比国外晚了20年,尽管最近10年国家在这方面逐年加大了投入,但投入仍然不够,与国外差距还是很大。政府应加强政策引导和政策激励,尽快解决太阳能发电上网与合理定价等问题。同时可借鉴国外的成功经验,在公共设施、政府办公楼等领域强制推广使用太阳能,充分发挥政府的示范作用,推动国内市场尽快起步和良性发展。 太阳能光伏发电在不远的将来会占据世界能源消费的重要席位,不但要替代部分常规能源,而且将成为世界能源供应的主体。预计到2030年,可再生能源在总 绿色环保节能太阳能 能源结构中将占到30%以上,而太阳能光伏发电在世界总电力供应中的占比也将达到10%以上;到2040年,可再生能源将占总能耗的50%以上,太阳能光伏发电将占总电力的20%以上;到21世纪末,可再生能源在能源结构中将占到80%以上,太阳能发电将占到60%以上。这些数字足以显示出太阳能光伏产业的发展前景及其在能源领域重要的战略地位。由此可以看出,太阳能电池市场前景广阔。 在太阳能的有效利用当中;大阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。

2018年砷化镓太阳能电池行业分析报告

2018年砷化镓太阳能电池行业分析报告

目录 一、太阳能电池行业的基本情况与发展趋势 (4) 1、太阳能电池简介 (4) 2、太阳能电池产业链 (5) 3、不同材料太阳能电池适用性的比较 (5) 4、太阳能电池市场规模与发展趋势 (6) (1)全球太阳能电池市场容量 (6) (2)国内太阳能电池行业发展现状 (7) (3)太阳能电池行业发展趋势 (8) ①产品结构趋向多元化 (8) ②技术创新成为未来竞争的核心 (8) 二、砷化镓太阳能电池市场分析与发展趋势 (9) (1)空间用砷化镓太阳能电池 (10) (2)地面聚光砷化镓太阳能电池 (11) (3)国际砷化镓太阳能电池的市场状况 (13) (4)国内砷化镓太阳能电池的市场状况 (13) 2、国内砷化镓太阳能电池市场的发展趋势 (14) (1)空间用砷化镓太阳能电池市场稳定且潜力巨大 (14) (2)地面聚光砷化镓太阳能电池目前处于市场导入期,未来可能快速增长 (15) 三、进入砷化镓太阳能电池领域的主要壁垒 (15) 1、技术壁垒 (15) 2、资本壁垒 (16) 3、客户资源壁垒 (16) 四、砷化镓太阳能电池利润水平的影响因素与变化趋势 (17) 五、砷化镓太阳能电池技术发展趋势 (17) 1、空间用砷化镓太阳能电池技术发展趋势 (17) 2、地面聚光砷化镓太阳能电池技术发展趋势 (18)

六、行业的季节性与周期性 (19)

一、太阳能电池行业的基本情况与发展趋势 1、太阳能电池简介 太阳能电池是利用光伏效应将太阳能通过半导体物质转变为直流电能的一种器件。目前,已商业化的太阳能电池主要有晶体硅太阳能电池(单晶硅太阳能电池和多晶硅太阳能电池)、薄膜太阳能电池和半导体化合物太阳能电池(以砷化镓太阳能电池为主)三大类。 晶体硅太阳能电池目前占据绝大部分太阳能电池市场份额,广泛应用于发电;薄膜太阳能电池近年来因技术的迅速发展,具备了相对于晶体硅太阳能电池的成本优势;相比于晶体硅和薄膜太阳能电池产品,砷化镓太阳能电池是新能源、新材料的典型代表之一,在太阳能电池产品中光电转换效率最高、科技含量最高、技术难度最高,产品问世初期主要应用于空间飞行器电源和其他高端用途,近年来随着聚光技术和跟踪技术的发展,产品应用范围逐步扩展,砷化镓聚光电池应用于地面发电系统的比较经济优势已开始显现。 光电转换效率是衡量太阳能电池技术水平最重要的指标,不同种类太阳能电池最高光电转换效率情况如下表: 不同种类太阳能电池光电转换效率比较表

2019年光伏电池行业分析报告(32y)

【2019年光伏电池行业】 ---分析报告 2019年2月

目录 一、光伏电池迎来“技术革命”,产能结构迈向高端化 (2) 1、光伏电池是典型的“技术驱动型”行业 (2) 2、光伏发电的基本原理 (3) 3、传统光伏电池的制备流程 (5) 4、光伏电池技术的改进都是围绕着转换效率的提升进行的 (7) 二、PERC 在众多技术路线中脱颖而出 (10) 1、单晶VS 多晶:金刚线切片技术带来单晶硅革命 (10) 2、P 型技术VS N 型技术:目前P 型占主导,未来N 型有望 引领新一轮技术热潮 (11) 3、为什么PERC 技术能够脱颖而出? (13) 三、技术迭代引领新一轮设备投资 (19) 1、一代技术,一代设备 (19) 2、详解PERC 电池生产设备 (20) 3、PERC 设备市场空间达百亿,2019 年将高速增长 (21) 4、大部分关键设备已经实现了国产化 (24) 5、PERC+和N 型电池的设备介绍 (26) 四、关注技术实力领先的设备企业 (29) 五、风险 (31)

一、光伏电池迎来“技术革命”,产能结构迈向高端化 1、光伏电池是典型的“技术驱动型”行业 技术的升级迭代是光伏电池发展的主要推动力。光伏产业链按顺序来说包括硅料制造,硅片生产、电池片生产、光伏组件制造和最终的光伏发电系统。每个产业链环节都有数十家企业参与竞争,因此提升效率和降低成本是企业永恒的追求,而背后最核心的推动力就是技术的升级迭代。 图表1: 晶体硅光伏电池产业链环节示意图 2、光伏发电的基本原理 产生电流通常需要两个条件,首先要产生自有电子,其次自有电子要定向移动。 ?自由电子的生成:通过掺杂微量元素增加载流子浓度。纯净的、不含其它杂质的半导体称为本征半导体,在室温下,本征半导

砷化镓太阳电池(终稿)

砷化镓太阳能电池 摘要 本文主要对砷化镓太阳电池的结构、性能、研制及生产情况作了简单介绍,分析了GaAs太阳电池的发展方向,最后根据GaAs太阳电池的研制进展和空间试用情况,提出了发展GaAs太阳电池的设想。 关键词:砷化镓太阳能电池; 技术; 进展 引言: 近年来,太阳能光伏发电在全球取得长足发展。常用光伏电池一般为多晶硅和单晶硅电池,然而由于原材料多晶硅的供应能力有限,加上国际炒家的炒作,导致国际市场上多晶硅价格一路攀升,最近一年来,由于受经济危机影响,价格有所下跌,但这种震荡的现状给光伏产业的健康发展带来困难。目前,技术上解决这一困难的途径有两条:一是采用薄膜太阳电池,二是采用聚光太阳电池,减小对原料在量上的依赖程度。常用薄膜电池转化率较低,因此新型的高倍聚光电池系统受到研究者的重视。聚光太阳电池是用凸透镜或抛物面镜把太阳光聚焦到几倍、几十倍,或几百倍甚至上千倍,然后投射到太阳电池上。这时太阳电池可能产生出相应倍数的电功率。它们具有转化率高,电池占地面积小和耗材少的优点。高倍聚光电池具有代表性的是砷化镓(GaAs)太阳电池。 1.砷化镓简介 砷化镓是一种重要的半导体材料,属Ⅲ-Ⅴ族化合物半导体,化学式GaAs,分子量144.63,属闪锌矿型晶格结构,晶格常数5.65×10-10m,熔点1237℃,禁带宽度1.4电子伏。砷化镓于1964年进入实用阶段,砷化镓可以制成电阻率比硅、锗高3个数量级以上的半绝缘高阻材料,用来制作集成电路衬底、红外探测器、γ光子探测器等。由于其电子迁移率比硅大5~6倍,故在制作微波器件和高速数字电路方面得到重要应用。用砷化镓制成的半导体器件具有高频、高温、低温性能好、噪声小、抗辐射能力强等优点。此外,还可以用于制作转移器件──体效应器件。砷化镓是半导体材料中,兼具多方面优点的材料,但用它制作的晶体

砷化镓太阳能电池或将逐渐取代晶硅太阳能电池

砷化鎵太阳能电池或将逐渐取代晶硅太阳能电池 来源:网络来源日期:2012-7-13 作者:全球电池网点击:15639 根据最近刚刚结束的京都议定书修改,未来高耗能产品输出将受到严格限制。生产过程须高耗能的单、多晶硅太阳能电池将面临严苛挑战。而具环保低耗能且发电转换效率更高的砷化鎵太阳能电池,估计将逐渐取代晶硅太阳能电池市场。目前市场上量产的单晶与多晶硅的太阳电池平均效率约在15%上下,为了提炼晶硅原料,需要花费极高的能源,所以严格地说,现今的晶硅太阳电池,也是某种型式的浪费能源。而砷化鎵太阳能电池,由于原料取得不需使用太多能源,而且光电转换效率高达38%以上,比传统晶硅原料高出许多,符合修改后的京都议定书规范,估计未来将成市场主流。 为了解决这一问题,人们不得不把眼光盯向薄膜电池,使近年薄膜电池异军突起,引起投资者的极大兴趣。但薄膜电池光电转换效率相对较低,特别是砷化镓薄膜电池价格昂贵,目前仅在空间领域应用,给光伏产业的大规模发展带来一定制约。而采用砷化镓薄膜电池聚光跟踪发电系统即所谓HCPV系统,却能实现光热与光伏的综合利用,并充分降低生产成本、提高转换效率,为光伏产业更大发展开辟新的市场空间。 一、砷化镓薄膜电池聚光跟踪发电系统的基本构想 在光伏发电产业中,单晶硅和多晶硅等硅基光伏电池几乎占到全部产量的94%以上。由于近年太阳能级硅材料供不应求,且持续大幅度涨价,在一定程度上制约了硅基光伏电池的发展。因此,如何提高光伏电池的转换效率和降低光伏电池的生产成本,成为目前光伏产业必须研究和解决的核心问题。人们一方面在研究和扩大太阳能级硅材料的生产,另一方面又在研究和推广不用或少用硅材料来生产新的光伏电池。在这样一种背景下,非晶硅、硫化镉、碲化镉及铜铟硒等薄膜电池应运而生,乘势发展。上述光伏电池中,非晶硅电池效率低下,且稳定性有待提高。尽管硫化镉、碲化镉薄膜电池的效率较非晶硅薄膜电池效率高,成本较晶体硅电池低,且易于大规模生产,但是镉有剧毒,会对环境造成严重污染,硒和铟是储量很少的稀有元素,因此大规模发展必将受到材料制约。而砷化镓化合物材料具有十分理想的禁带宽度以及较高的光吸收效率,适合于制造高效电池。此外,还可以通过叠层技术做成多结砷化镓基电池,以进一步提高转换效率。但是,由于砷化镓基材料价格昂贵,砷化镓薄膜电池目前只在航天等特殊领域应用,离地面应用的商业化运行还有很大距离。

光伏电池制备工艺

光伏电池制备工艺 第一章 1. 太阳能电池基本工作原理? 答: 1) 能量转换,太阳光的能量转换为电能; 2) 吸收光产生电子空穴对、空穴对—电子分离或扩散、发电电流的传输。 2. 硅太阳能电池吸收光的特点? 答: 1) 低于带隙)(v e 12.1的不被吸收; 2) 波长越长(能量低),光吸收越慢; 3) 对电池材料厚度的要求: ① 晶体硅:m 500 以上才能最大化吸收; ② 砷化镉:只需要10几微米就可。 3. 太阳电池光吸收类型及对发电有贡献的类型? 答: 光吸收类型: 1) 本证吸收; 2) 杂质吸收; 3) 自由载流子吸收; 4) 激子吸收; 5) 晶格吸收。 对太阳电池转换效率有贡献的最主要的是本证吸收。 4. 太阳能电池中的复合类型? 答: 1) 辐射复合→发光; 2) 俄歇复合→发热; 3) 陷阱辅助复合。 5. 晶体硅太阳电池的基本结构组成? 答: 1) 前电极(主栅、细栅); 2) 减反射绒面; 3) 氮化硅减反射层; 4) N 型层; 5) P 型层; 6) 铝背场; 7) 后电极(主栅、铝膜)。 6. 晶体硅太阳电池的主要参数? 答: 1) 开路电压(oc U ); 2) 短路电流(sc I ); 3) 最大输出功率(mp P );

4) 工作电压(mp U ); 5) 工作电流(mp I ); 6) 转换效率(η); 7) 填充因子(FF ); 8) 串联电阻(s R ); 9) 并联电阻(sh R )。 10) mp mp I U P mp ?= 11) sc oc mp I U P FF ?= 7. 晶体硅太阳能电池生产工艺流程及作用? 答: 一清→扩散→二清→PECVD 镀膜→丝网印刷、烧结→检测 作用: 一清:制绒降低反射率、去损伤层、扩散前清洗; 扩散:在P 型硅片上扩散N 型磷,从而形成N P -结; 二清:去除磷硅玻璃、去边结。 PECVD 镀膜:镀氧化磷膜、减反射、钝化。 丝网印刷、烧结:制作金属电极、制作铝背场、形成金属与硅的良好接触。 第二章 1. 单晶、多晶绒面特点? 答: 单晶:正金字塔结构; 多晶:蜂窝结构。 2. 单晶制绒夜的主要成分? 答: OH N a 、异丙酸(IPA )、添加剂。 3. 多晶制绒液的主要成分? 答: HF 、3HNO 。 4. 单晶制绒质量要求? 答: 1) 反射率低(%15≤); 2) 绒面颗粒均匀(m 52μ→); 3) 覆盖率达%100; 4) 外观均匀,无白点、色差等; 5) 表面清洁无污染; 6) 腐蚀重量在规定范围内。 5. 多晶绒面质量要求? 答: 1) 反射率低(%20≤); 2) 绒面颗粒大小均匀; 3) 表面暗纹尽量少; 4) 表面清洁无污染;

砷化镓薄膜电池聚光技术

砷化镓薄膜电池聚光技术 随着全球化石能源的日渐枯竭和人类环保意识的 逐步增强,以光伏为核心的太阳能发电事业近年来有了快速发展。但光伏电力比传统火电价格高达4-6倍以上,完全市场化运营特别是为普通老百姓所接受还有一定困难。根据最近刚刚结束的京都议定书修改,未来高耗能产品输出将受到严格限制。生产过程须高耗能的单、多晶硅太阳能电池将面临严苛挑战。而具环保低耗能且发电转换效率更高的砷化鎵太阳能电池,估计将逐渐取代晶硅太阳能电池市场。目前市场上量产的单晶与多晶硅的太阳电池平均效率约在15%上下,为了提炼晶硅原料,需要花费极高的能源,所以严格地说,现今的晶硅太阳电池,也是某种型式的浪费能源。而砷化鎵太阳能电池,由于原料取得不需使用太多能源,而且光电转换效率高达38%以上,比传统晶硅原料高出许多,符合修改后的京都议定书规范,估计未来将成市场主流。 为了解决这一问题,人们不得不把眼光盯向薄膜电池,使近年薄膜电池异军突起,引起投资者的极大兴趣。但薄膜电池光电转换效率相对较低,特别是砷化镓薄膜电池价格昂贵,目前仅在空间领域应用,给光伏产业的大规模发展带来一定制约。而采用砷化镓薄膜电池聚光跟踪发电系统即所谓HCPV系统,却能实现光热与光伏的综合利用,并充分降低

生产成本、提高转换效率,为光伏产业更大发展开辟新的市场空间。 一、砷化镓薄膜电池聚光跟踪发电系统的基本构想 在光伏发电产业中,单晶硅和多晶硅等硅基光伏电池几乎占到全部产量的94%以上。由于近年太阳能级硅材料供不应求,且持续大幅度涨价,在一定程度上制约了硅基光伏电池的发展。因此,如何提高光伏电池的转换效率和降低光伏电池的生产成本,成为目前光伏产业必须研究和解决的核心问题。人们一方面在研究和扩大太阳能级硅材料的生产,另一方面又在研究和推广不用或少用硅材料来生产新的光伏 电池。在这样一种背景下,非晶硅、硫化镉、碲化镉及铜铟硒等薄膜电池应运而生,乘势发展。上述光伏电池中,非晶硅电池效率低下,且稳定性有待提高。尽管硫化镉、碲化镉薄膜电池的效率较非晶硅薄膜电池效率高,成本较晶体硅电池低,且易于大规模生产,但是镉有剧毒,会对环境造成严重污染,硒和铟是储量很少的稀有元素,因此大规模发展必将受到材料制约。而砷化镓化合物材料具有十分理想的禁带宽度以及较高的光吸收效率,适合于制造高效电池。此外,还可以通过叠层技术做成多结砷化镓基电池,以进一步提高转换效率。但是,由于砷化镓基材料价格昂贵,砷化镓薄膜电池目前只在航天等特殊领域应用,离地面应用的商业化运行还有很大距离。

2017年中国太阳能光伏电池组件现状研究及发展趋势预测

2017-2022年中国太阳能光伏电池 组件市场调研及投资前景评估报告 (目录) 华经情报网 https://www.sodocs.net/doc/1716600973.html,

公司介绍 北京艾凯德特咨询有限公司是一家专业的调研报告、行业咨询有限责任公司,公司致力于打造中国最大、最专业的调研报告、行业咨询企业。拥有庞大的服务网点,公司高覆盖、高效率的服务获得多家公司和机构的认可。公司将以最专业的精神为您提供安全、经济、专业的服务。 公司致力于为各行业提供最全最新的深度研究报告,提供客观、理性、简便的决策参考,提供降低投资风险,提高投资收益的有效工具,也是一个帮助咨询行业人员交流成果、交流报告、交流观点、交流经验的平台。依托于各行业协会、政府机构独特的资源优势,致力于发展中国机械电子、电力家电、能源矿产、钢铁冶金、服装纺织、食品烟酒、医药保健、石油化工、建筑房产、建材家具、轻工纸业、出版传媒、交通物流、IT通讯、零售服务等行业信息咨询、市场研究的专业服务机构。服务对象涵盖机械、汽车、纺织、化工、轻工、冶金、建筑、建材、电力、医药等几十个行业。 我们的服务领域

2017-2022年中国太阳能光伏电池组件市场调研及投资前景评 估报告(目录) 【出版日期】2017年 【关键字】太阳能光伏电池组件 【交付方式】Email电子版/特快专递 【价格】纸介版:8000元电子版:8000元纸介+电子:8500元2011-2016 年我国光伏电池组件产量、增长率及全球光伏电池组件 产量统计 2016 年在电池组件方面,随着光伏行业的整体好转以及由于组件价格下降使得光伏发电成本不断逼近平价上网,预计全球组件产量继续呈现增长势头,全年将达到 65GW,我国光伏组件产量(含海外工厂)有望达到 50GW。中国光伏行业协会预计 2016 年我国光伏组件产量(含海外工厂)有望达到 50GW,产业集中度有进一步提升趋势。

微反应器应用领域

微反应器,即“微通道反应器”的简称。顾名思义,微反应器是一种反应物质在微小通道内连续流动、发生反应、同时实现换热的装备。然而,随着精细化工行业对微反应器用于化学品一定规模工业化生产的需求,微反应器通道的不断优化与改进,微反应通道尺寸早已达到毫米级。而我们可以使用它进行很多复杂且危险的实验了,并且成功解决了很多之前使用传统反应器所造成的弊端。而在医药制造领域这个成效是非常显而易见的。下面我们就为大家详细介绍一下。 一、在化工产品生产中的应用 由于香精挥发性高、留香时间短影响终产品的品质,所以香精香料的缓释和控释技术是目前国内外研究的热点和难点。微胶囊香精技术是香精香料的缓释和控释技术中非常重要的一种,主要是指制造固体香精的技术。它是指选择某些特殊材料以物理结合或化学结合与香精分子之间形成一定的包覆关系,从而减缓或控制香精香料在应用中的挥发性,延长香精香料的留香时间。目前商品化的微胶囊香精基本上由三聚氰胺-甲醛的界面聚合反应制得,但是该工艺中存在不少问题——使用了大型反应器、反应时间长、以环境不友好的化合物为原料,而且微胶囊强度不理想导致其储存稳定性不高。 二、微反应技术在化工安全中的应用 特别地,在精细化工领域,微反应技术所具有的优势能极大地提高精细化工过程的本质安全性: 极大的传热系数,能让反应接近等温条件下进行,没有热点的聚集,对于放热量巨大的快速化学反应,控制过程失控具有重大意义; 通过控制通道尺寸小于易燃易爆物质的

临界直径,能有效地阻断自由基的链式反应,从而使爆炸无从发生; 多反应单元线性组合可以保证即使有毒有害物质发生泄漏,泄漏量也非常小,对周围环境和人体健康造成的危害有限,且能在其他单元继续生产的同时予以更换。有研究统计,现阶段微反应技术可应用在20% ~30%的精细化工反应中,提升反应安全性,由于精细化工面宽量多,这已经是一个相当大的应用规模。另外随着基础研究和设备制造的进步,该应用比例还会进一步提高。 微反应技术提高了产品的收率,减少了副产物的产生,降低了能耗,并且微反应器因其微小的反应体积特性,而对试剂消耗量减少。从环保角度来说它可以有效减少化工产业中污染物的排放实现可持续发展。目前,微反应器技术广泛涉猎于精细化研发和生产的各个领域,比如在农药中间体、医药中间体、染料中间体、纳米材料、环保处理、萃取、乳化等等,等多个工业化项目中有较为成功的使用。 上海惠和化德生物科技有限公司,是一家专注于微反应器连续工艺开发及工业化的创新性高科技公司。公司于2015年6月在中国(上海)自由贸易试验区内成立,随着业务的发展,公司于2019年10月整体搬迁至上海化学工业园内。公司上海本部实验室配备十余套微反应器,并与梅特勒托利多共建化学过程联合实验室、与沈阳化工研究院和上海化工研究院共建过程安全联合体、与南大淮安高新技术研究院共建特殊反应实验室等。公司主要服务于国内外精细化工企业,帮助客户进行微反应器连续流工艺咨询与评估、工艺开发、工业化项目投资和管理等。公司立足于客户具体项目,以“以终为始”的项目

砷化镓,碲化镉太阳能电池资料

砷化镓太阳能电池历史版本 为了寻找单晶硅电池的替代品,人们除开发了多晶硅、非晶硅薄膜太阳能电池外,又不断研制其它材料的太阳能电池。其中主要包括砷化镓III-V族化合物、硫化镉、硫化镉及铜锢硒薄膜电池等。上述电池中,尽管硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代。 砷化镓III-V化合物及铜铟硒薄膜电池由于具有较高的转换效率受到人们的普遍重视。GaAs 属于III-V族化合物半导体材料,其能隙为1.4eV,正好为高吸收率太阳光的值,与太阳光谱的匹配较适合,且能耐高温,在250℃的条件下,光电转换性能仍很良好,其最高光电转换效率约30%,特别适合做高温聚光太阳电池。 砷化镓生产方式和传统的硅晶圆生产方式大不相同,砷化镓需要采用磊晶技术制造,这种磊晶圆的直径通常为4—6英寸,比硅晶圆的12英寸要小得多。磊晶圆需要特殊的机台,同时砷化镓原材料成本高出硅很多,最终导致砷化镓成品IC成本比较高。磊晶目前有两种,一种是化学的MOCVD,一种是物理的MBE。GaAs等III-V化合物薄膜电池的制备主要采用MOVPE和LPE技术,其中MOVPE方法制备GaAs薄膜电池受衬底位错、反应压力、III-V 比率、总流量等诸多参数的影响。 GaAs(砷化镓)光电池大多采用液相外延法或MOCVD技术制备。用GaAs作衬底的光电池效率高达29.5%(一般在19.5%左右),产品耐高温和辐射,但生产成本高,产量受限,目前主要作空间电源用。以硅片作衬底,用MOCVD技术异质外延方法制造GaAs电池是降低成本很有希望的方法。 已研究的砷化镓系列太阳电池有单晶砷化镓、多晶砷化镓、镓铝砷--砷化镓异质结、金属--半导体砷化镓、金属--绝缘体--半导体砷化镓太阳电池等。砷化镓材料的制备类似硅半导体材料的制备,有晶体生长法、直接拉制法、气相生长法、液相外延法等。由于镓比较稀缺,砷有毒,制造成本高,此种太阳电池的发展受到影响。除GaAs外,其它III-V化合物如Gasb、GaInP等电池材料也得到了开发。1998年德国费莱堡太阳能系统研究所制得的GaAs 太阳能电池转换效率为24.2%,为欧洲记录。首次制备的GaInP电池转换效率为14.7%。另外,该研究所还采用堆叠结构制备GaAs,Gasb电池,该电池是将两个独立的电池堆叠在一起,GaAs作为上电池,下电池用的是Gasb,所得到的电池效率达到31.1%。铜铟硒CuInSe2简称CIC。CIS材料的能降为1.leV,适于太阳光的光电转换,另外,CIS薄膜太阳电池不存在光致衰退问题。因此,CIS用作高转换效率薄膜太阳能电池材料也引起了人们的注目。CIS电池薄膜的制备主要有真空蒸镀法和硒化法。真空蒸镀法是采用各自的蒸发源蒸镀铜、铟和硒,硒化法是使用H2Se叠层膜硒化,但该法难以得到组成均匀的CIS。CIS 薄膜电池从80年代最初8%的转换效率发展到目前的15%左右。日本松下电气工业公司开发的掺镓的CIS电池,其光电转换效率为15.3%(面积1cm2)。1995年美国可再生能源研究室研制出转换效率为17.l%的CIS太阳能电池,这是迄今为止世界上该电池的最高转换效率。预计到2000年CIS电池的转换效率将达到20%,相当于多晶硅太阳能电池。CIS 作为太阳能电池的半导体材料,具有价格低廉、性能良好和工艺简单等优点,将成为今后发展太阳能电池的一个重要方向。唯一的问题是材料的来源,由于铟和硒都是比较稀有的元素,因此,这类电池的发展又必然受到限制。 多元化合物薄膜太阳能电池多元化合物薄膜太阳能电池材料为无机盐,其主要包括砷化镓III-V族化合物、硫化镉、硫化镉及铜锢硒薄膜电池等。 硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代产品。

影响光伏电池、组件输出特性的因素概要

由于光伏电池、组件的输出功率取决于太阳光照强度、太阳能光谱的分布和光伏电池的温度、阴影、晶体结构。因此光伏电池、组件的测量在标准条件下(STC进行,测量条件被欧洲委员会定义为101号标准,其条件是:光谱辐照度为1000瓦/平米;光谱 AM1.5;电池温度25摄氏度。 在该条件下,太阳能光伏、电池组件所输出的最大功率被称为峰值功率,其单位表示为瓦(Wp。在很多情况下,太阳能电池的光照、温度都是不断变化的,所以组件的峰值功率通常用模拟仪测定并和国际认证机构的标准化的光伏电池进行比较。 (1温度对光伏电池、组件输出特性的影响 大家都知道,光伏电池、组件温度较高时,工作效率下降。随着光伏电池温度的升高,开路电压减小,在20-100摄氏度范围,大约每升高1摄氏度,光伏电池的电压减小2mV;而光电流随温度的升高略有上升,大约每升高1摄氏度电池的光电流增加千分之一。总的来说,温度每升高1摄氏度,则功率减少0.35%。这就是温度系数的基本概念,不同的光伏电池,温度系数也不一样,所以温度系数是光伏电池性能的评判标准之一。 (2光照强度对光伏电池组建输出特性的影响 光照强度与光伏电池、组件的光电流成正比,在光强由100-1000瓦每平米范围内,光电流始终随光强的增长而线性增长;而光

照强度对电压的影响很小,在温度固定的条件下,当光照强度在400-1000哇每平米范围内变化,光伏电池、组件的开路电压基本保持不变。所以,光伏电池的功率与光强也基本保持成正比。 (3阴影对光伏电池、组件输出特性的影响 阴影对光伏电池、组件性能的影响不可低估,甚至光伏组件上的局部阴影也会引起输出功率的明显减少。所以要注意避免阴影的产生,及时清理组件表面,防止热斑效应的产生。一个单电池被完全遮挡时,太阳电池组件输出减少75%左右。虽然组件安装了二极管来减少阴影的影响,但如果低估局部阴影的影响,建成的光伏系统性能和投资收效都将大大降低。

微反应器技术的应用

过程强化技术 结业论文 论文题目:微反应器技术及其在有机反应中的应用姓名:姜炜 学号:10110494 学院:化工学院 班级:循环110

摘要 近年来,微反应器技术已逐渐成为国际化工技术领域的研究热点。该文介绍了微反应技术的研究进展;阐明了微反应器的特殊优势;分析了微反应器适合的化学反应;列举了大量微反应器在有机化学中应用的成功案例。 关键词:微反应器,有机氧化,有机合成

Abstract As an emerging technology,micro-reaction technology is becoming an increasing hot spot in the global chemical industry.The advances of this technology are introduced. This paper demonstrates the superior advantage of micro-reactor,types of chemical reactions that could benefit from the micro-reactor are discussed.In the major part of this paper,many successful applications of micro-reaction technology are presented. Keywords: micro-reactor,oxidation of organic,organic synthesis

目录 1 微反应器的分类............................. 错误!未定义书签。 1.1 气固相催化反应器 (2) 1.2 液液相微反应器................................... 错误!未定义书签。 1.3 气液相微反应器................................... 错误!未定义书签。 1.4 气液固三相微反应器 (3) 1.5 电化学和光化学微反应器 (3) 2 微反应器的反应特征 (4) 2.1 反应温度能够精确控制 (4) 2.2 物料能够精确比例................................. 错误!未定义书签。 2.3 反应时间的精确控制 (4) 2.4 小试工艺能力可以直接放大 (4) 2.5 有着良好的操作性 (4) 2.6 结构安全性 (5) 3 微反应器适合的反应类型 (6) 3.1 放热剧烈的反应 (6) 3.2 反应物或产物不稳定的反应 (6) 3.3 对反应物配比要求很严的快速反应 (6) 3.4 危险化学反应以及高温高压反应 (6) 3.5 纳米材料及需要产物均匀分布的颗粒形成反应或聚合反应 (7) 4 反应器的优点总结 (8) 4.1 温度控制 (8) 4.2 反应器体积 (8) 4.3 转化率和收率 (8) 4.4 安全性能 (8) 4.5 放大问题 (9) 5 微反应器在有机氧化反应中的应用 (10) 5.1 低温Swern氧化反应 (10) 5.2 高温硝化反应 (11) 6 微反应器在有机合成方面的应用 (14) 7 结语 (18) 8 参考文献 (19)

相关主题